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Abstract In this paper, we analize a novel approach for calibrating the one-
factor and the two-factor Hull-White models using swaptions under a market-
consistent framework. The technique is based on the pricing formulas for
coupon bond options and swaptions proposed by Russo and Fabozzi (2016b)
and Russo and Fabozzi (2017b). Under this approach, the volatility of the
coupon bond is derived as a function of the stochastic durations. Consequently,
the price of coupon bond options and swaptions can be calculated by simply
applying standard no-arbitrage pricing theory given the equivalence between
the price of a coupon bond option and the price of the corresponding swap-
tion. This approach can be adopted to calibrate parameters of the one-factor
and the two-factor Hull-White models using swaptions quoted in the market.
It represents an alternative with respect to the existing approaches proposed
in the literature and currently used by practitioners. Numerical analyses are
provided in order to highlight the quality of the calibration results in com-
parison with existing models, addressing some computational issues related to
the optimization model. In particular, calibration results and sensitivities are
provided for the one- and the two-factor models using market data from 2011
to 2016. Finally, an out-of-sample analysis is performed in order to test the
ability of the model in fitting swaption prices different from those used in the
calibration process.
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1 Introduction

Interest rate stochastic models are widely used by practitioners for the evalu-
ation of fixed-income instruments. In this context, one- and two-factor short-
rate models are the most widely used in interest rate modeling.

Among the one-factor models, the more popular models include the Hull-
White model (HW1) proposed in Hull and White (1990), the Black-Karasinski
model proposed in Black and Karasinski (1991), and the CIR++ model pro-
posed in Brigo and Mercurio (2006). Recently, squared-Gaussian term struc-
ture models have received increased attention in the literature where one-factor
models have been proposed by Jamshidian (1995), Pellser (1997) and Russo
and Fabozzi (2016a).
Concerning the two-factor models, relevant two-factor models are the two-
factor Hull-White model (HW2) proposed in Hull and White (1994b) and the
extension of the Longstaff-Schwartz model1 proposed by Brigo and Mercurio
(2006) to fit the term structure of interest rates (CIR2++).

All those models are based on an assumed dynamics in the continuously
compounded short-rate. Such models are able to generate yield curves of vari-
ous realistic forms where the parameters of the models can be estimated quite
easily from market data.
However, all the one-factor models have some unrealistic properties. They are
not able to generate all the yield curve shapes observed in practice. For exam-
ple, the Hull-White and the CIR++ models can only produce an increasing
curve, a decreasing curve, and a curve with a small hump. Therefore, these
models do not allow the so-called twists of the term structure of interest rates,
where yield curve changes with short-maturity yields and long-maturity yields
move in opposite directions. A further critical point is that changes over in-
finitesimal time periods of any two interest rate dependent variables will be
perfectly correlated. This is, for example, the case for any two bond prices or
any two yields. This is due to the fact that all unexpected changes are pro-
portional to the shock to the short-rate. It is thus clear that the one-factor
diffusion models may very well be too simple to provide a reasonable fit of
both the cross-section and time-series dynamics of bond prices.
Instead, two-factor models are more flexible and should be able to generate
additional yield curve shapes and yield curve movements relative to the one-
factor models. Furthermore, two-factor models are featured by a non-perfect
correlations between different interest rate dependent variables.

Despite the wide class of models available in the literature and despite the

1 Longstaff and Schwartz (1992).
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drawback related to the one-factor models, one-factor and two-factor Hull-
White models are among the most common, since they guarantee a good
trade-off between analytical tractability and accuracy of the results. One of
the interesting features of these models is that they are able to fit the term
structure of interest rates. Both models admit negative interest rates but this
feature is not totally undesirable as, in the recent years and for some curren-
cies, debt instruments are experiencing or have experienced negative interest
rates for the short-term and medium-term sectors of the yield curve. Further-
more, the two-factor Hull-White model is featured by a realistic correlation
structure between different rates.

When these types of models are used for pricing purposes, they need to
be calibrated in a consistent manner using financial instruments quoted in the
market. Calibrated models can then be used to evaluate more complex deriva-
tives and structured products. Interest rate models are typically calibrated
using caps, floors or swaptions, as these derivatives are among the most liquid
instruments traded in the market. In recent years, market practices are moving
towards the use of swaptions more than caps and floors, as they contain in-
formation on the correlation between different maturities of the interest rates
curve. In fact, swaptions are able to capture the negative correlation between
stochastic factors in multi-factors interest rate models such as the two-factor
Hull-White model.

Under the HW1 the HW2 models, closed-form pricing formulas for zero-
coupon bond options, caps and floors are available. Instead, exact pricing
formulas for European swaptions and European coupon bond options are not
available. Consequently, semi-analytic formulas or numerical techniques as bi-
nomial/trinomial trees have to be considered for pricing and calibration pur-
poses.2

In this paper, we address the problem related to the evaluation of swaptions
for calibrating both the HW1 and the HW2 models under a market-consistent
setting. In particular, we use the methodology recently introduced by Russo
and Fabozzi (2016b) and Russo and Fabozzi (2017b). Assuming that the for-
ward price of a coupon bond is a martingale under the forward risk-neutral
measure, the proposed approach involves deriving the volatility of the coupon
bond as a function of the stochastic durations calculated in the case of, respec-
tively, the HW1 and the HW2 models. Once the volatility function is defined,
the price of a coupon bond option can be derived by simply applying stan-
dard no-arbitrage pricing theory. Given the equivalence between the price of a
coupon bond option and the price of the corresponding swaption, this model
can be adopted to calibrate parameters of the HW1 and the HW2 models us-
ing swaptions quoted in the market. The advantage of this approach is that,
relying on the stochastic duration, it allows us to obtain a convenient formula

2 See Hull and White (1994a), Hull and White (1994b), and Hull and White (2001).
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for the pricing of swaption that requires only the computation of one integral
to obtain the volatility of the coupon bond.

We extend the results obtained in Russo and Fabozzi (2016b) and Russo
and Fabozzi (2017b) by analysing the empirical properties of the proposed
models and by comparing the proposed models with existing techniques cur-
rently used by practitioners: the Jamshidian’s approach (Jamshidian, 1989)
for the one-factor model and the approximation proposed by Schrager and
Pelsser (2006) for the two-factor model. We perform numerical analyses in
order to highlight the quality of the calibration results in comparison with
existing models, highlighting some of the computational issues related to the
optimization procedure. Moreover, we calibrate and test the goodness of the
models also under a negative interest rates environment; in this context, we
use shifted log-normal swaption quotes for calibration purposes as suggested
in Russo and Fabozzi (2017a).

The paper is structured as follows: in Section 2 we describe the framework
related respectively to one-factor and two-factor Hull-white model, in Section
3 we show the pricing of coupon bond options and swaptions, in Section 4 we
discuss the calibration procedure, in Section 5 we present the empirical results.
Finally, we provide our conclusion.

2 The Framework: One-Factor and Two-Factor Hull-White Models

In this section, we describe the one- and the two-factor Hull-White models,
following Brigo and Mercurio (2006), Russo and Fabozzi (2016b), and Russo
and Fabozzi (2017b). We formalize the framework referring to an alternative
representation of both the HW1 and the HW2 models in terms of Gaussian
processes (with constant parameters) plus a deterministic function.

2.1 One-Factor Hull-White Model

In the case of the one-factor Hull-White model, the short-rate r(t) at time
t ≥ 0, under the risk-neutral measure, is defined as follows:

r(t) = α(t) + x(t), (1)

where x(t) is the state variable while α(t) is a deterministic function of time.
The variable x(t) is such that

dx(t) = −axx(t)dt+ σxdWx(t), x(0) = 0, (2)

where ax and σx are model parameters while dWx(t) is a Brownian motion.
Under the HW1 model, the function α(t) is calculated as follows:

α(t) = fM (0, t) +
σ2
x

2a2x

(
1− e−axt

)2
. (3)
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The price of a zero-coupon bond at time t with maturity in T > t can be
expressed analytically:

P (t, T ) =
PM (0, T )

PM (0, t)

Px(0, t)

Px(0, T )
Px(t, T ), (4)

where PM (0, t) is the market price of a zero-coupon bond quoted at t = 0 and
maturity at t and Px(t, T ) is such that

Px(t, T ) = Gx(t, T )e−Hx(t,T )x(t). (5)

Furthermore, we define the following quantities,

Gx(t, T ) = exp

{
− σ2

x

2a2x

[
Hx(t, T )− (T − t)

]
− σ2

x

4ax
Hx(t, T )2

}
, (6)

Hx(t, T ) =
1

ax

[
1− e−ax(T−t)

]
. (7)

The price of a zero-coupon bond with maturity T satisfies the following
stochastic differential equation,

dP (t, T )

P (t, T )
= r(t)dt− σxDPx

(t, T )dWx(t). (8)

The quantity DPx(t, T ) is the stochastic duration of the zero-coupon bond
such that (see Munk, 1999):

DPx
(t, T ) = − 1

P (t, T )

∂P (t, T )

∂x(t)
= Hx(t, T ). (9)

Let’s consider a coupon bond with cash flows payments Ci at time Ti such
that:

Ci = Kτ(Ti−1, Ti) for i = 1, 2, ..., n− 1,
Ci = Kτ(Ti−1, Ti) + 1 for i = n,

where K is the coupon rate and τ(Ti−1, Ti) denotes the time measure between
Ti−1 and Ti computed as a fraction of the year.
Denoting by B(t, Tn) the spot price at time t ≥ 0 of a coupon bond with
maturity Tn, we have that

B(t, Tn) =

n∑
i=1

CiP (t, Ti). (10)

Applying Ito’s lemma, we assume that, under the risk-neutral measure, the
market value of a coupon bond at time t evolves according to the following
stochastic dynamic:

dB(t, Tn)

B(t, Tn)
= r(t)dt− σxDBx

(t, Tn)dWx(t). (11)

The quantity DBx(t, Tn) is the stochastic durations of the coupon bond such
that

DBx(t, Tn) = − 1

B(t, Tn)

∂B(t, Tn)

∂x(t)
=

∑n
i=1 CiP (t, Ti)Hx(t, Ti)∑n

i=1 CiP (t, Ti)
. (12)
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2.2 Two-Factor Hull-White Model

Under the risk-neutral measure, the short-rate r(t) at time t ≥ 0 is defined as
follows:

r(t) = α(t) + x(t) + y(t), (13)

where x(t) and y(t) are state variables while α(t) is a deterministic function
of time. The variables x(t) and y(t) are such that

dx(t) = −axx(t)dt+ σxdWx(t), x(0) = 0, (14)

dy(t) = −ayy(t)dt+ σydWy(t), y(0) = 0, (15)

where ax, ay, σx and σy are model parameters while dWx(t) and dWy(t) are
correlated Brownian motions such that

dWx(t)dWy(t) = ρdt, (16)

with −1 ≤ ρ ≤ 1. Under the HW2 model, the function α(t) is calculated as
follows:

α(t) = fM (0, t) +
σ2
x

2a2x

(
1− e−axt

)2
+

σ2
y

2a2y

(
1− e−ayt

)2
+

ρ
σxσy
axay

(
1− e−axt

)(
1− e−ayt

)
. (17)

The price of a zero-coupon bond at time t with maturity in T > t can be
expressed analytically as follows,

P (t, T ) =
PM (0, T )

PM (0, t)

Pxy(0, t)

Pxy(0, T )
Pxy(t, T ), (18)

where Pxy(t, T ) is such that

Pxy(t, T ) = Px(t, T )Py(t, T )C(t, T ), (19)

and,

Px(t, T ) = Gx(t, T )e−Hx(t,T )x(t), (20)

Py(t, T ) = Gy(t, T )e−Hy(t,T )y(t). (21)

The quantity C(t, T ) represents the correlation-related component of the price
and it is formulated as follows,

C(t, T ) = exp

{
ρσxσy
axay

[
(T − t)−Hx(t, T )−Hy(t, T ) +

1

ax + ay

(
1− e−(ax+ay)(T−t)

)]}
. (22)
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Furthermore, we define the following quantities,

Gx(t, T ) = exp

{
− σ2

x

2a2x

[
Hx(t, T )− (T − t)

]
− σ2

x

4ax
Hx(t, T )2

}
, (23)

Gy(t, T ) = exp

{
−

σ2
y

2a2y

[
Hy(t, T )− (T − t)

]
−

σ2
y

4ay
Hy(t, T )2

}
, (24)

Hx(t, T ) =
1

ax

[
1− e−ax(T−t)

]
, (25)

Hy(t, T ) =
1

ay

[
1− e−ay(T−t)

]
. (26)

The price of a zero-coupon bond with maturity T satisfies the following stochas-
tic differential equation,

dP (t, T )

P (t, T )
= r(t)dt− σxDPx

(t, T )dWx(t)− σyDPy
(t, T )dWy(t). (27)

The quantities DPx
(t, T ) and DPy

(t, T ) are stochastic durations of the zero-
coupon bond with respect to the factors x and y respectively

DPx(t, T ) = − 1

P (t, T )

∂P (t, T )

∂x(t)
= Hx(t, T ), (28)

DPy
(t, T ) = − 1

P (t, T )

∂P (t, T )

∂y(t)
= Hy(t, T ). (29)

Applying Ito’s lemma, we assume that under the risk-neutral measure the
market value of a coupon bond at time t evolves according to the following
stochastic dynamic,

dB(t, Tn)

B(t, Tn)
= r(t)dt− σxDBx

(t, Tn)dWx(t)− σyDBy
(t, Tn)dWy(t). (30)

The quantities DBx
(t, Tn) and DBy

(t, Tn) are the stochastic durations of the
coupon bond with respect to the factors x and y respectively,

DBx
(t, Tn) = − 1

B(t, Tn)

∂B(t, Tn)

∂x(t)
=

∑n
i=1 CiP (t, Ti)Hx(t, Ti)∑n

i=1 CiP (t, Ti)
, (31)

DBy (t, Tn) = − 1

B(t, Tn)

∂B(t, Tn)

∂y(t)
=

∑n
i=1 CiP (t, Ti)Hy(t, Ti)∑n

i=1 CiP (t, Ti)
. (32)
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3 Pricing Coupon Bond Options and Swaptions

Given the spot price at time t of a coupon bond that starts at T0 with maturity
Tn, we define its forward price as,

B(t, T0, Tn) =
B(t, Tn)

P (t, T0)
, (33)

with t < T0 < Tn. We assume the coupon bond forward price is a martingale
under the T -forward measure. Consequently, the ratio between the coupon
bond price and the zero-coupon bond price is a martingale under both HW1
and HW2 models.

3.1 Volatility Function Under the One-Factor Hull-White Model

In this section, following Russo and Fabozzi (2016b) we show that it is pos-
sible to derive the volatility function to be used for coupon bond option and
swaption pricing. By application of Ito’s lemma we obtain that

dB(t, T0, Tn)

B(t, T0, Tn)
= −σxDBx

(t, T0, Tn)dWT
x (t), (34)

where dWT
x (t) is a Brownian motion under the T -forward measure.

The quantity DBx(t, T0, Tn) is defined as the forward stochastic duration of
the coupon bond. After simple calculations we obtain,

DBx
(t, T0, Tn) = DBx

(t, Tn)−DPx
(t, T0) (35)

=

∑n
i=1 CiP (t, Ti)

[
Hx(t, Ti)−Hx(t, T0)

]∑n
i=1 CiP (t, Ti)

.

Given the process above, the variance of the forward price of the coupon bond
is

σB(t, T0, Tn)2 = σ2
xDBx

(t, T0, Tn)2. (36)

In order to provide the pricing function, we need to derive the variance of the
coupon bond price under the T -forward risk-adjusted measure,

ΣB(t, T0, Tn)2 =

∫ T0

t

σB(u, T0, Tn)2du. (37)

Consequently, we find that the volatility of the coupon bond is

ΣB(t, T0, Tn) =

√∫ T0

t

σB(u, T0, Tn)2du. (38)

The integral can be solved using a numerical method in order to calculate the
volatility of the coupon bond under the proposed model.
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3.2 Volatility Function Under the Two-Factor Hull-White Model

Following Russo and Fabozzi (2017b), by application of the Ito’s lemma, we
obtain that

dB(t, T0, Tn)

B(t, T0, Tn)
= −σxDBx(t, T0, Tn)dWT

x (t)− σyDBy (t, T0, Tn)dWT
y (t),

where dWT
x (t) and dWT

y (t) are Brownian motions under the T -forward mea-
sure.
The quantitiesDBx(t, T0, Tn) andDBx(t, T0, Tn) are defined as forward stochas-
tic durations of the coupon bond with respect to the factors x and y respec-
tively. After simple calculations we obtain,

DBx
(t, T0, Tn) = DBx

(t, Tn)−DPx
(t, T0) (39)

=

∑n
i=1 CiP (t, Ti)

[
Hx(t, Ti)−Hx(t, T0)

]∑n
i=1 CiP (t, Ti)

,

DBy
(t, T0, Tn) = DBy

(t, Tn)−DPy
(t, T0) (40)

=

∑n
i=1 CiP (t, Ti)

[
Hy(t, Ti)−Hy(t, T0)

]∑n
i=1 CiP (t, Ti)

.

Given the process above, the variance of the forward price of the coupon bond
is,

σB(t, T0, Tn)2 = σ2
xDBx

(t, T0, Tn)2 + σ2
yDBy

(t, T0, Tn)2 +

+2ρσxσyDBx
(t, T0, Tn)DBy

(t, T0, Tn).

In order to provide the pricing function, we need to derive the variance of the
coupon bond price under the T -forward risk-adjusted measure,

ΣB(t, T0, Tn)2 =

∫ T0

t

σB(u, T0, Tn)2du. (41)

Consequently, we find that the volatility of the coupon bond is

ΣB(t, T0, Tn) =

√∫ T0

t

σB(u, T0, Tn)2du. (42)

Also in this case, a numerical integration method is required to calculate the
volatility of the coupon bond under the proposed model.
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3.3 Closed Formula for Coupon Bond Options and Swaptions

Consider the value at time t of an option written on a coupon bond that
pays fixed annual coupons. The maturity of the option is T0 > t while the
strike price is X. The underlying coupon bond has maturity at time Tn with
cash flows C1, C2, ..., Ci, ..., Cn paid at future dates T1, T2, ..., Ti, ..., Tn. It is
worth noting that, for option pricing purposes, we consider only the bond’s
cash flows paid after the option’s maturity. Consequently, we neglect all the
bond’s payments between t and T0. We assume that B(t, Tn) is log-normally
distributed under the T -forward risk-adjusted measure. We define as ET the
expectation under the T -forward risk-adjusted measure denoted by MT (the
probability measure that is defined by the Radon-Nikodym derivative) and Ft

as the sigma-field generated up to time t.

As coupon bond prices are assumed to be log-normal, we can price op-
tions on coupon bonds explicitly following standard option pricing techniques.
The results of the previous sections allow us to explicitly calculate the price
of a European coupon bond option when the coupon bond price is log-normal
and interest rates are stochastic and evolve according to theHW1 or HW2
processes. According to option pricing theory, the arbitrage-free price for a
coupon bond call option (CBC) is,

CBC(t, T0, Tn,K,X) = P (t, T0)ET
[(
B(T0, Tn)−X

)+∣∣∣∣Ft

]
. (43)

Consequently, we have that

CBC(t, T0, Tn,K,X) = B(t, Tn)Φ(d1)−XP (t, T0)Φ(d2), (44)

where Φ denotes the cumulative distribution function of the standard Gaussian
distribution with

d1 =

log

[
B(t,Tn)
P (t,T0)

1
X

]
+ 1

2ΣB(t, T0, Tn)2

ΣB(t, T0, Tn)
, (45)

and

d2 =

log

[
B(t,Tn)
P (t,T0)

1
X

]
− 1

2ΣB(t, T0, Tn)2

ΣB(t, T0, Tn)
. (46)

The corresponding coupon bond put option (CBP) can be obtained by simply
applying the put-call parity.

The proposed model can be used also to price swaptions since, from a
pricing perspective, swaptions are equivalent to coupon bond options. In par-
ticular, a European payer (receiver) swaption can be shown to be equivalent
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to a European put (call) option on a coupon bond with unitary strike. Denot-
ing respectively by PSwpt(t, T0, Tn,K) and RSwpt(t, T0, Tn,K), the price of
a payer and a receiver swaption with strike K and maturity T0 (both written
on an interest rate swap with issue date T0 and maturity Tn), it follows that

CBC(t, T0, Tn,K, 1) = RSwpt(t, T0, Tn,K), (47)

and

CBP (t, T0, Tn,K, 1) = PSwpt(t, T0, Tn,K). (48)

Finally, swaptions can be evaluated as follows:

RSwpt(t, T0, Tn,K) = B(t, Tn)Φ(d1)− P (t, T0)Φ(d2), (49)

and

PSwpt(t, T0, Tn,K) = P (t, T0)Φ(−d2)−B(t, Tn)Φ(−d1), (50)

where

d1 =

log

[
B(t,Tn)
P (t,T0)

]
+ 1

2ΣB(t, T0, Tn)2

ΣB(t, T0, Tn)
, (51)

d2 =

log

[
B(t,Tn)
P (t,T0)

]
− 1

2ΣB(t, T0, Tn)2

ΣB(t, T0, Tn)
. (52)

4 Model Calibration

Using the closed formulas derived in Section 3, we can calibrate Hull-White
models using prices of swaptions prevailing in the market. In particular, the
objective of the calibration process is to choose the model parameters in such a
way that the model prices are consistent with swaptions quoted by the market.
The solution is found by means of a numeric optimization procedure so as to
minimize the square root of the sum of the squares of the relative differences
between market and model swaption prices,

arg min
β

√√√√ N∑
i=1

(
Swpti − SwptMi

SwptMi

)2

, (53)

where SwptMi is the value of the swaption quoted by the market and Swpti
represents the swaption’s theoretical price under the HW1 or HW2 models.
The number of calibrated instruments is N , while β is the vector of parame-
ters. The HW1 model requires the calibration of 2 parameters (a and σ) while
the HW2 model has 5 parameters (ax, ay, σx, σy and ρ).
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We calibrate all the model parameters at the same time in order to match
market prices. It is worth to highlight that it is one of the possible approaches
that can be adopted. In fact, some authors propose to estimate the mean re-
version parameter using historical data rather than calibrate it in the context
of the optimization procedure described above. Others estimate it in two sep-
arate steps. For istance, Schlenkrich (2012) proposes to calibrate the mean
reversion parameter using Bermudan swaptions, and the volatility parameter
using European swaptions.

In the calibration process we use theoretical swaption prices (Swpti) cal-
culated under the approach proposed by Russo and Fabozzi (2016b) for the
HW1 model, and Russo and Fabozzi (2017b) for the HW2 model. The numer-
ical integrals in Equations (37) and (41) are solved by discretizing the time at
one month intervals.3 The optimization problem is not convex, and we search
for a local optimum with a simulated annealing algorithm (Ingber, 1996). Con-
cerning the HW1 model, the convergence is rather fast and stable, while for
the HW2 model we test multiple starting points to avoid local minima. In line
with the common practices, we perform the calibration of co-maturity swap-
tions (see Section 5.1). Still, this practice may induce some overfitting and
parameter instability, especially for the two-factor model. In Section 5.2 we
repeat the calibration process by considering a different calibration set that
includes a grid of swaptions characterized by different combinations of tenor
and maturity.

In addition, we compare the calibration results with the results obtained
using respectively the Jamshidian’s approach and the Schrager-Pelsser approx-
imation.

The Jamshidian’s approach is usually adopted by practitioners to calculate
prices for coupon bond options and requires the calculation of a zero-coupon
bond option price for each of the payment dates of the coupon bond after the
option’s expiration date. Although this method provides analytical pricing for
swaptions, the formula is not explicit in the model parameters. In fact, the
critical value, for which the price of the coupon-bearing bond equals the strike
price of the option on the bond at option maturity, has to be computed nu-
merically.

Under the HW2 model, a well-known technique for the evaluation of Eu-
ropean swaptions is the one proposed by Brigo and Mercurio (2006). This
solution involves a semi-analytical formula that requires the numerical eval-
uation of an integral. However, this approach poses some issues in practice
since the integral does not have clear boundaries and its evaluation requires
to truncate the integration region. Instead, we consider the Schrager-Pelsser
approximation4 that is computationally more efficient in comparison with the

3 Preliminary analyses show that the resolution of the discretization do not influence
significantly the calibration. Results are available upon request and are not reported for
brevity.

4 This approach is implemented in Di Francesco (2012).
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solution proposed by Brigo-Mercurio. However, a drawback of the Schrager-
Pelsser method is that the approximation error is smaller for shorter tenors
and maturity options and grows marginally for swaptions with higher tenors
and maturity.

Alternatively, the models could be calibrated using numerical schemes
based on binomial/trinomial trees, as proposed in Hull and White (1994a),
Hull and White (1994b) and further discussed in Hull and White (2001).

5 Numerical Results

5.1 Calibration results

The calibration of both the HW1 and the HW2 models is performed using
EUR swaption prices obtained from Bloomberg for the last business day in
2011, 2012, 2013, 2014, 2015 and 2016. In particular, we have considered at-
the-money (ATM) co-terminal swaptions. This is a common practice adopted
to calibrate interest rate models, in part due to hedging reasons. We high-
light that for years 2011-2014 Black/log-normal swaptions volatilities have
been considered for calibration purposes while for years 2015-2016 shifted log-
normal swaption volatilities have been used. It is needed in order to address
the issue featuring the Black model under negative rate environments.5

Tables 1 and 2 report the parameters of the one-factor Hull-White model
(HW1) and the two-factor Hull-White model (HW2). The HW1 model has
been calibrated using the Jamshidian decomposition (J) and the Russo-Fabozzi
approach (RF). The HW2 model has been calibrated using the Schrager-
Pelsser approximation (SP) and the Russo-Fabozzi approach. In order to eval-
uate the quality fitting, Table 3 reports the Root Mean Square Percentage
Error (RMSPE) calculated using market and model prices under the two ap-
proaches analyzed, computed as in Equation (53).

Concerning the HW1 model (Table 1), the comparison of the calibrated
parameters presented in Table 1 shows rather similar values between the two
approaches analyzed before 2013, while since 2014 the Russo-Fabozzi approach
selects smaller values for the parameter a. Concerning the calibration error,
The Russo-Fabozzi model shows in all the cases smaller RMSPE (see Table 3,
cf. columns 2 and 3).

Regarding the HW2 model calibration (Table 2), we note that the values
of the parameters of the process y (ay and σy), are generally smaller than
parameters of the process x (ax and σx) for both the calibration procedures
(Russo-Fabozzi and Schrager-Pelsser). This result is similar to the one ob-
tained by Brigo and Mercurio (2006). Concerning the correlation parameter,
as the calibration process is performed using swaptions, the correlation pa-
rameters should be different from −1. However, using the Schrager-Pelsser

5 See Russo and Fabozzi [2017a] for further details about models calibration practices
under negative rates.
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Table 1 Calibrated parameters for the one-factor Hull-White model.

Year Model a σ

2011 Jamshidian 0.1412 0.0181
Russo-Fabozzi 0.1298 0.0155

2012 Jamshidian 0.0803 0.0115
Russo-Fabozzi 0.1173 0.0120

2013 Jamshidian 0.1050 0.0142
Russo-Fabozzi 0.1983 0.0185

2014 Jamshidian 0.0320 0.0076
Russo-Fabozzi 0.0004 0.0057

2015 Jamshidian 0.0220 0.0080
Russo-Fabozzi 0.0012 0.0065

2016 Jamshidian 0.0304 0.0085
Russo-Fabozzi 0.0005 0.0065

Table 2 Calibrated parameters for the two-factor Hull-White model.

Year Model ax σx ay σy ρ

2011 Schrager-Pelsser 1.2056 0.0124 0.1685 0.0216 -1.0000
Russo-Fabozzi 0.2789 0.0991 0.0179 0.0229 -0.9999

2012 Schrager-Pelsser 0.6065 0.0296 0.1296 0.0172 -0.6188
Russo-Fabozzi 0.9987 0.0387 0.0229 0.0096 -0.9142

2013 Schrager-Pelsser 0.7617 0.0483 0.1621 0.0259 -1.0000
Russo-Fabozzi 0.9998 0.0560 0.0208 0.0116 -0.9441

2014 Schrager-Pelsser 0.4617 0.0223 0.0623 0.0128 -1.0000
Russo-Fabozzi 0.5248 0.0640 0.0149 0.0086 -0.8306

2015 Schrager-Pelsser 0.5322 0.0133 0.0338 0.0100 -0.9380
Russo-Fabozzi 0.3124 0.0510 0.0174 0.0140 -0.9818

2016 Schrager-Pelsser 0.2770 0.0118 0.0551 0.0136 -1.0000
Russo-Fabozzi 0.0756 0.2278 0.0220 0.0246 -0.9975

Table 3 Model calibration: RMSPE for HW1 and HW2 models.

Year HW1 J HW1 RF HW2 SP HW2 RF

2011 0.173 0.085 0.167 0.085
2012 0.030 0.024 0.025 0.025
2013 0.123 0.046 0.036 0.039
2014 0.173 0.089 0.072 0.058
2015 0.077 0.053 0.015 0.035
2016 0.078 0.048 0.015 0.039

approach, the correlation parameter ρ is equal to −1 in four of the six trading
days considered in the numerical analysis. In contrast, using the Russo-Fabozzi
approach, ρ is always stricly greater than −1, implying that the model is more
capable to capture the correlation between interest rates with different ma-
turities. As far as the calibration error, we see in Table 3 that the two-factor
model, having more parameters, performs overall better than the one-factor
model showing smaller RMSPE (cf. columns 3 and 5). Comparing the two
calibration techniques (Russo-Fabozzi and Schager-Pelsser, cf. columns 4 and
5), we see that none of the approaches dominate the other, with the Schager-
Pelsser performing better in 2013, 2015 and 2016, and the Russo-Fabozzi in



Calibration of One-Factor and Two-Factor Hull-White Models Using Swaptions 15

2011, 2012 and 2014. the RMSPE are very similar, with the Russo-Fabozzi
approach method showing slightly better performances.

In general, the calibration procedure under the Russo-Fabozzi approach
seems to perform well in comparison to state-of-art techniques used by prac-
titioners. With respect to such practices, the Russo-Fabozzi approach shows
similar calibration errors, good analytical properties and, in the case of the
HW2 model, the ability to estimate correlation coefficients different than −1.

5.2 Out-of-Sample Analysis

The calibration performed in Section 5.1 has been done on 10-years co-maturity
swaptions, as commonly done by practitioners. Such choice, although moti-
vated by hedging considerations, may lead to sub-optimal calibration results
due to inefficient use of data (only a small sub-set of swaptions quoted in the
market are considered), and overfitting, especially concerning the two-factor
model that has a larger number of parameters to calibrate.

Here, we test the out-of-sample performances of the HW1 and HW2 models,
calibrated with the Russo-Fabozzi approach, by pricing a set of swaptions
different from those used in the calibration process. In particular, we evaluate
a set of 170 swaptions with maturity between 1 and 10 years and tenor between
1 month and 30 years. We price the instruments using Equations (49) - (52).
We then compare model and market prices using the RMSPE computed as
in (53). Notice that, by introducing a common calibration technique for the
HW1 and the HW2 models, we are able to compare the two models for pricing
purposes, limiting the influence of calibration procedures.

We also test a calibration procedure that considers not only co-maturity
swaptions, but instead uses a set of 45 swaptions that span all the combina-
tions of maturity and tenor. This allows us to test the potential overfitting
of the model to the calibration set and to test how well the HW1 and HW2
models can fit the market swaption prices.

Table 4 reports the RMSPE for the HW1 model, calibrated on either 10-
years co-maturity swaptions, and the grid of 45 swaptions. For both procedures
we report the RMSPE for the calibration set and the one for the entire set
of swaptions. Table 5 reports the same data for the HW2 model. We see that
the good in-sample performances of the HW1 model calibrated on 10-years
co-maturities swaptions (column 2 of Table 4) are not completely reflected by
the pricing of the other swaptions in the market, that present higher errors
(column 3). The calibration performed on a set of swaptions larger than the
10-years co-maturity allows to reduce the out-of-sample pricing error (column
5), although the in-sample fit is not as good as in the previous case, denoting
that the parametrization of the HW1 model is too narrow to fit the entire set of
swaptions. Table 5 shows the results for the HW2 model. As we highlighted in
the previous section, the in-sample fit on co-maturity swaptions is marginally
better than the HW1 (column 2). Here we see that this improvement comes
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at the cost of worse pricing of swaptions outside the calibration set (see col-
umn 3), suggesting the presence of overfitting. The results for the alternative
calibration set (columns 4 and 5) show instead much better results compared
to the HW1 model, thanks to the richer parametrization.

These results suggest that the HW2 model allows to better fit the price
of swaption across all the spectrum of tenures and maturities, but that the
calibration set has to be chosen carefully to avoid overfitting. Practitioners
interested in hedging applications that require a particularly accurate fit of
a certain set of swaptions, may choose a different weighting scheme for the
objective function in the optimization, in order to give more importance to
certain assets.

Table 4 Model calibration: RMSPE for the HW1 model calibrated using 10-years co-
maturity swaptions and a grid of 45 swaptions with different tenor and maturity.

Year Co-maturity swaptions Grid of swaptions
calib. set all calib. set all

2011 0.0850 0.3922 0.1396 0.1472
2012 0.0240 0.5636 0.1689 0.1796
2013 0.0458 0.8050 0.2297 0.2137
2014 0.0890 0.4665 0.2866 0.3227
2015 0.0534 0.4837 0.3188 0.3169
2016 0.0476 0.8129 0.4970 0.4721

Table 5 Model calibration: RMSPE for the HW2 model calibrated using 10-years co-
maturity swaptions and a grid of 45 swaptions with different tenor and maturity.

Year Co-maturity swaptions Grid of swaptions
calib. set all calib. set all

2011 0.0852 0.3979 0.0765 0.0893
2012 0.0252 0.7352 0.0730 0.0637
2013 0.0387 0.3343 0.0891 0.0796
2014 0.0577 2.1734 0.2846 0.3373
2015 0.0350 2.2916 0.0528 0.0493
2016 0.0394 3.3505 0.0729 0.0605

5.3 Sensitivity Analysis

We provide here a brief analysis in order to study the sensitivity of swaption
prices to changes in parameters in the HW1 and HW2 models.

Figure 1 reports the effects on receiver swaptions prices of changes in the
mean-reversion parameter a (top panels) and interest rate volatility σ (bot-
tom panels) under the HW1. We have performed the analysis using swaptions
with different tenors and two different maturities, 0.5 and 5 years. The x axes
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Fig. 1 HW1 model - Receiver swaption prices for different levels of σ and a.

report the tenor of the receiver swaption while the y axes reports its price.
The baseline values of the parameters are a = 0.1 and σ = 0.02. Looking at
the upper panels we see that, the higher the parameter a, the lower the price
of the swaption. Moreover, the effect of changes in a are particularly relevant
for swaptions with long tenor, while for shorter tenors the effect is limited, es-
pecially for swaptions with short maturity (Figure 1, top-left panel). Changes
in σ instead have an opposite effect: higher levels of volatility lead to higher
prices, and the effect is consistent across maturities and tenors.

Figure 2 reports the sensitivity analysis for the HW2 model. The base-
line values for the parameters are ax = 0.3, ay = 0.1, σx = 0.02, σy = 0.02
and ρ = −0.8. We change ay, σy and ρ with the values specified in Figure
2. Focusing on the correlation coefficient ρ, we see that values closer to −1
are consistent with lower swaptions prices. The changes in prices are similar
for different tenors (note the parallel shifts in the graphs in bottom panels of
Figure 2), and the changes are stronger for shorter maturities.

Overall, the two-factor Hull-White model allows a more complete parametriza-
tion of the system, with a larger set of parameters that allows to fit accurately
swaption prices.

In relation to our optimization procedure, we also test the sensitivity
of the RMSPE with respect to the parameters of the HW1 and HW2 models,
computing the error for a grid of suitably chosen parameter values. Similarly to
Section 5.2, we consider both the RMSPE computed on 10-years co-maturity
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Fig. 2 HW2 model - Receiver swaption prices for different levels of σ and a.

Fig. 3 HW1 model - RMSPE for different model parameters.
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Fig. 4 HW2 model - RMSPE for different model parameters.

swaptions and on the entire grid of 170 swaptions with tenors ranging from 1
month to 30 years and maturity from 1 to 10 years.
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The results for the HW1 model are reported in Figure 3, where the color
represents the value of the RMSPE. We can see that, in the case of the 10-years
co-maturity swaptions (left panel), the local minimum is located in a “long
valley”, making the optimization problem ill-posed and the solution likely to
be unstable. Instead, the RMSPE surface for the entire set of swaptions (right
panel) appears to have a better defined optimum. Figure 4 reports the sensitiv-
ity results for the HW2 model by showing some slices of the RMSPE surface.
In particular, we report the values for different combinations of the param-
eters a1, a2, σ1, σ2 and ρ; each panel shows the surface for two parameters,
while the others are assigned the optimal value computed for the year 2011.
The optimization problem is clearly more challenging for the HW2 compared
to the HW1 model due to the higher dimensionality and the complexity of
the objective function. Still, we see that, also in this case, the surfaces for the
10-years co-maturity swaptions set seem to present less clearly defined optima
due to the presence of valleys that may compromise the stability of the result.
This is consistent with the results in Section 5.2, where the calibration on co-
maturity swaptions gave bad out-of-sample performances, suggesting to pay
particular care to the selection of the calibration set.

6 Conclusion

In this paper, we address the problem related to the evaluation of swaptions for
calibrating both the one-factor and the two-factor Hull-White models under
a market-consistent setting. In particular, we use the methodology recently
introduced by Russo and Fabozzi (2016b) and Russo and Fabozzi (2017b).
Assuming that the forward price of a coupon bond is a martingale under
the forward risk-neutral measure, the proposed approach involves deriving the
volatility of the coupon bond as a function of the stochastic durations calcu-
lated in the case of, respectively, one-factor and two-factor Hull-White models.
Once the volatility function is defined, the price of a coupon bond option can
be derived by simply applying standard no-arbitrage pricing theory. Given the
equivalence between the price of a coupon bond option and the price of the
corresponding swaption, this model can be adopted to calibrate parameters of
the one-factor and the two-factor Hull-White models using swaptions quoted
in the market. The advantage of this approach is that, relying on the stochastic
duration, it allows us to obtain a convenient formula for the pricing of swap-
tion that requires only the computation of one integral to obtain the volatility
of the coupon bond.

We have extended the results obtained in Russo and Fabozzi (2016b) and
Russo and Fabozzi (2017b) by analyzing the empirical properties of the pro-
posed models and by comparing the proposed models with existing techniques
currently used by practitioners: the Jamshidian’s approach (Jamshidian, 1989)
for the one-factor model and the approximation proposed by Schrager and
Pelsser (2006) for the two-factor model. Numerical analyses have been per-
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formed in order to highlight the quality of the calibration results in compari-
son with existing models. Moreover, following Russo and Fabozzi (2017a), we
have calibrated and tested the goodness of the models under a negative inter-
est rates environment using shifted log-normal swaption quotes for calibration
purposes. In particular, some computational issues have been addressed to
solve the optimization model implemented to calibrate parameters. In gen-
eral, the calibration procedure under the Russo-Fabozzi approach seems to
perform well in comparison to state-of-art techniques used by practitioners.
With respect to such practices, the Russo-Fabozzi approach shows similar cal-
ibration errors, good analytical properties and, in the case of the HW2 model,
the ability to estimate correlation coefficients different than -1. In addition,
we performed an analysis aimed at studying the sensitivity of the solution
to changes in model parameters and an out-of-sample analysis in which we
used the calibrated model to price swaptions outside the calibration set. The
sensitivity analysis and the out-of-sample evaluation of the calibrated model
suggest that the calibration on co-maturity swaptions, although commonly
used in the industry, may lead to sub-optimal calibration, due to over fitting
and inefficient use of the data, we recommend therefore to consider a larger
set of swaptions for the calibration to improve the stability of the results.

We can conclude that the Russo-Fabozzi approach presents several ad-
vantages compared to the other calibration techniques. In fact, it relies on a
largely analytical pricing formula (requiring only the numerical computation of
one integral), it can be applied to both the one- and the two-factor Hull-White
models and it does not require approximations.
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