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FRAMEWORK
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Abstract. In this paper, we consider a random vector X = (X1, X2) fol-
lowing a multivariate Skew Normal distribution and we provide an explicit

formula for the expected value of X conditioned to the event X ≤ X, with

X ∈ R2. Such a conditional expectation has an intuitive interpretation in the
context of risk measures.
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1. Introduction

The employment of nonstandard probability distributions in financial risk theory
represents a growing field of research, leading to either theoretical additions as
well as relevant practical implications (see e.g. the monograph [20] and the recent
contributions [16, 19]). In this context, a relevant role is played by the Skew Nor-
mal distributions. Indeed, multivariate Skew Normal distributions can be looked
upon as a generalization of the Gaussian distributions. One of their key features
is the introduction of an additional shape parameter governing the asymmetry of
the density function. In so doing, Skew Normal distributions are able to capture
several aspects of applied science, meaning that they are suitable for a wide range
of application, including finance and management science. They were initially in-
troduced by Azzalini and Dalla Valle [5] in 1996. After their seminal contribution,
such distributions have been extensively studied and analyzed in a large number of
papers. Just to cite a few, a list of relevant statistical applications is provided in
Azzalini and Capitanio [4] in 1999, whereas in 2001 Branco and Dey [12] extend
Azzalini and Dalla Valle’s methods to multivariate Skew Elliptical distributions.
Moreover, a further class of multivariate Skew Normal distributions is introduced
by Gupta et al. [15] in 2004. In the next year, Azzalini ([3], 2005) presents a rich
overview on the family of Skew Normal of distributions and on their generalizations
for continuous random variables sharing the same generating mechanism.

Among the most recent contributions, it is worth mentioning at least two articles
where Skew Normal distributions are used to deal with real data: an application
to HIV–RNA by Ghosh et al. [14] in 2007 and a methodology for measurement
error based on scale mixtures of Skew Normal distributions. There is also a further
stream of studies on finite mixtures of multivariate Skew Normal distributions (e.g.
Cabral et al. [13], 2012 and Lee and Mclachlan [18], 2013).

To the best of our knowledge, Skew Normal distributions have been studied in
detail in the univariate case. As far as the multivariate framework is concerned,
scanty attention has been paid to an explicit formulation of the expectation of
such random variables conditioned to the fact that a prefixed barrier is not ever
crossed. Such a conditional expectation, known as tail conditional expectation, has
been calculated in Bernardi ([8], 2013) for univariate Skew Normal distributions and
their mixtures. The conditional expectation is a highly relevant concept in financial
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applications: namely, it is quite frequent that expectation of a random variable
must be calculated based on some given conditioning event. For example, the
conditioning event might be something occurring in the financial market or in the
bank system, such as the distress of an important institution, possibly leading to the
diffusion of distress among the remaining institutions. In Bernardi et al. ([6], 2016)
the contagion risk in a financial framework is taken into account, to evaluate the
systemic relevance of interconnected institutions. For this purpose, the instrument
constructed by Bernardi et al. is called SCoVaR and it turns out to be an extension
of CoVaR, designed by Adrian and Brunnermeier [2] in 2016. Bernardi et al. ([7],
2017), instead makes explicit use of the the Skew Normal generating mechanism to
calculate the asymptotic distribution of the Network CoVaR, a statistical procedure
to test the pairwise systemic dominance of a financial institution over another
one. Further insights on the relation between risk assessment and Skew Normal
distributions can be found in ([8] 2013) and in ([10] 2017).

Namely, in the absence of specific formulas for conditional expectation of random
variables distributed according to the Skew Normal law, the present paper intends
to fill this gap. In particular, we aim at providing an explicit formula for the
bivariate Tail Conditional Expectation (TCE, hereafter), defined as

TCE≤ = E
(
X | X ≤ X

)
, (1)

whereX = (X1, X2) is a bivariate Skew Normal random variable andX =
(
X1, X2

)
∈

R2. Clearly, X can be interpreted as a suitable benchmark, based on the chosen
application.

When dealing with bivariate Skew Normal distributions it is worth noting that
the bivariate TCE defined in equation (1) strongly differs from the expectation of
the involved conditional random variable either from a probabilistic and a risk man-
agement perspective. From the probabilistic point of view, it is undoubtedly true
that a special distribution of the skew family, namely, the Extended Skew Normal
distribution, is closed under marginalization and conditionalization. Therefore an
alternative formulation of the tail conditional expectation in equation (1) can be
calculated with reference to the univariate conditional distribution of the bivariate
Skew Normal, see Bernardi ([8], 2013). However, such a conditional expected value,
i.e., TCE= = E

(
X1 ≤ X1 | X2 = X2

)
does not involve the bivariate distribution

of the random variable (X1, X2). From the risk management perspective, instead,
the employed definition of tail conditional expectation is not without consequences.
Indeed, as recently noted by Bernardi et al. ([10], 2017), the TCE= risk measure
suffers the lack of the consistency property since it does not preserve the stochas-
tic ordering induced by the bivariate distribution. This is especially true for high
values of the correlation between variables. The TCE≤ defined in equation (1)
instead preserves the stochastic ordering of the bivariate distribution and it can be
effectively used as measure of risk.

Several reasonings motivate the relevance of the provided formula for the bivari-
ate TCE under the Skew Normal assumption. First, it generalises the concept of
bivariate TCE to a non–Gaussian framework being characterised by the presence of
asymmetry, while collapsing to the usual Gaussian case when the involved random
variables are symmetric. Second, the TCE provides a convenient way to calculate
the CoES risk measure (see, e.g., Adrian and Brunnermeier [2], 2016 and Bernardi
and Catania [9], 2015) by simply plugging–in the marginal Value–at–Risk levels.
More importantly, as far as it concerns the theoretical properties, the TCE satisfies
the sub–additive axiom thereby being a coherent risk measure while the corre-
sponding quantile–based measure (the extension of the VaR, namely, the CoVaR)
is not necessarily coherent, see Acerbi and Tasche ([1], 2002) for a comprehensive
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THE SKEW NORMAL MULTIVARIATE RISK MEASUREMENT FRAMEWORK 3

discussion of the axiomatic theory of risk measures. The coherence property is even
more relevant when mixtures of Skew distributions are involved. The provided for-
mula for TCE easily extends to finite mixture models by adopting the approach of
Bernardi ([8], 2013) and Bernardi et al. ([11], 2017). As the final remark, the TCE
can be effectively exploited to build a network–based systemic risk measure as in
Bernardi et al. ([6], 2016).

The remainder of the paper can be outlined as follows: Section 2 introduces the
statement and the basic notation of the problem. Section 3 collects the procedure
and the main results for the explicit formulation of the conditional expectation and
Section 4 concludes.

2. The bivariate Skew Normal distribution

We are going to carry out the above procedure to determine the tail conditional
expectation when the distribution is Skew Normal (see Azzalini [3], 2005, Azzalini
and Dalla Valle [5], 1996, and Gupta et al. [15], 2004, among other contributions).
For notational convenience, throughout this Section we suppress the symbol (≤)
when referring to the TCE as defined in equation (1). In this case, the probability
density function is more complex. Namely, beginning from the standard Gaussian
unimodal probability density function

Φ(x) =

∫ x

−∞
φ(t)dt =

1√
2π

∫ x

−∞
e−

t2

2 dt,

the expression of the probability density function in the bivariate case is

fSN (x1, x2) = e
− 1

2(1−ρ2)

[
(x1−µ1)2

σ21
+

(x2−µ2)2

σ22
− 2ρ(x1−µ1)(x2−µ2)

σ1σ2

]

× Φ[δ0(x1 − µ1)]Φ[γ1(x2 − µ2)]

2πσ1σ2
√

1− ρ2
[
1
2 −

1
2π arccos

(
δ0γ1σ1σ2ρ√

(1+δ20σ
2
1)(1+γ

2
1)

)] , (2)

where σ1, σ2, ρ have the standard meanings, whereas δ0 and γ1 are asymmetric
parameters. For an extended explanation, see Gupta et al. ([15], 2004). In order
to lighten the notation, call

K = 2πσ1σ2
√

1− ρ2
[

1

2
− 1

2π
arccos

(
δ0γ1σ1σ2ρ√

(1 + δ20σ
2
1)(1 + γ21)

)]
,

the normalising constant of the previous equation (2). The TCE of X1 is (see Gupta
et al. [15], 2004) is defined as:

TCEX1 = E[X1 | X ≤ X] =
E[X11

(
X ≤ X

)
]

P
(
X ≤ X

) , (3)

where 1 (·) denotes the indicator variable, i.e., 1 (x ∈ A) = 1 if and only if x ∈ A and
zero otherwise, while P

(
X ≤ X

)
is the joint probability that the bivariate random

variable X = (X1, X2) falls below the predetermined threshold X =
(
X1, X2

)
. The

denominator of equation (3) can be easily calculated as the cumulative distribution
function of the bivariate Skew Normal distribution in equation (2), as follows

P
(
X ≤ X

)
=

∫ X2

−∞

∫ X1

−∞
fSN (x1, x2) dx1dx2.
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4 MAURO BERNARDI, ROY CERQUETI, AND ARSEN PALESTINI

As concerns the numerator of equation (3), we have

E[X11
(
X ≤ X

)
] =

∫ X2

−∞

∫ X1

−∞
x1fSN (x1, x2)dx2dx1

=
1

K

∫ X1

−∞
x1

∫ X2

−∞
e
− 1

2(1−ρ2)

[
(x1−µ1)2

σ21
+

(x2−µ2)2

σ22
− 2ρ(x1−µ1)(x2−µ2)

σ1σ2

]

× Φ(γ1(x2 − µ2))dx2Φ(δ0(x1 − µ1))dx1.
(4)

We can exploit a typical change of variables, i.e., tj =
xj − µj
σj

, for j = 1, 2. The

determinant of the related Jacobian matrix is
1

σ1σ2
, which leads to the following

integral

E[X11
(
X ≤ X

)
] =

1

σ1σ2K

∫ X1−µ1
σ1

−∞
(σ1t1 + µ1)Φ(δ0σ1t1)

×

∫ X2−µ2
σ2

−∞
Φ(γ1σ2t2)e

− 1
2(1−ρ2)

[t21+t
2
2−2ρt1t2]dt2

 dt1
= J1 + J2, (5)

where

J1 =
1

σ1σ2K

∫ X1−µ1
σ1

−∞
σ1t1Φ(δ0σ1t1)

×

∫ X2−µ2
σ2

−∞
Φ(γ1σ2t2)e

− 1
2(1−ρ2)

[t21+t
2
2−2ρt1t2]dt2

 dt1
=

1

σ1σ2K

∫ X1−µ1
σ1

−∞
σ1t1Φ(δ0σ1t1)J3dt1 (6)

J2 =
1

σ1σ2K

∫ X1−µ1
σ1

−∞
µ1Φ(δ0σ1t1)

×

∫ X2−µ2
σ2

−∞
Φ(γ1σ2t2)e

− 1
2(1−ρ2)

[t21+t
2
2−2ρt1t2]dt2

 dt1
=

1

σ1σ2K

∫ X1−µ1
σ1

−∞
µ1Φ(δ0σ1t1)J3dt1, (7)

with J3 =
∫ X2−µ2

σ2
−∞ Φ(γ1σ2t2)e

− 1
2(1−ρ2)

[t21+t
2
2−2ρt1t2]dt2 which is a function of t1.

Hereafter, the dependence of the quantities denoted by Jk on the random vari-
ables has been suppressed for notational convenience. Hence, the TCE we intend
to calculate explicitly is decomposed into the sum of the two integrals J1 and J2.
In the next Section we are going to describe the approach to compute them.

3. Calculation of the TCE

The complete calculation of the TCE (4) must be carried out in successive steps.
Our procedure can be outlined as follows:

(i) since both integrals (6) and (7) contain the same integral, which will be
denoted by J3, we focus on the explicit calculation of J3;
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THE SKEW NORMAL MULTIVARIATE RISK MEASUREMENT FRAMEWORK 5

(ii) since J3 can be further decomposed into the sum of 2 integrals, say J4 and
J5, we separately consider them; we recognize that J4 can be calculated,

whereas J5 contains an integral of the kind
∫
yke−y

2

dy, where k is an integer
number;

(iii) the 2 occurrences regarding J5 have to be treated separately: if k is odd,
the integral can be computed; if k is even, J5 contains an integral of the
kind J6 =

∫ a
−∞ Φ(t)dt, where Φ(t) is the cumulative distribution function

of the standard unimodal Gaussian distribution;
(iv) J6 can be approximated by series expansion, consequently the expression

of J3 is accomplished;
(v) finally, J1 and J2 can be calculated by replacing the above formulation of

J3; in this form, some coefficients and integrals appear, but they can be
determined by comparison with the original formulations of J1 and J2.

As can be easily inferred, this procedure needs to be separated in several steps, due
to the complications which will occur during the computation. The starting point
is the integral in square brackets appearing in both (6) and (7). Call it J3, defined
as

J3 =

∫ X2−µ2
σ2

−∞
Φ(γ1σ2t2)e

− t
2
1+t22−2ρt1t2

2(1−ρ2) dt2. (8)

A simple transformation leads to

J3 = e−
t21
2

∫ X2−µ2
σ2

−∞
Φ(γ1σ2t2)e

− (t2−ρt1)2

2(1−ρ2) dt2. (9)

The integral in (9) can be approximated by using a series expansion of the Gaussian
function Φ. Standard mathematical analysis theory establishes that

Φ(γ1σ2t2) =
1

2
+

1

π

[
+∞∑
n=0

(−1)n(γ1σ2t2)2n+1

n!(2n+ 1)

]
. (10)

Plugging (10) into (9) yields:

J3 = e−
t21
2

∫ X2−µ2
σ2

−∞
e
− (t2−ρt1)2

2(1−ρ2)

{
1

2
+

1

π

[
+∞∑
n=0

(−1)n(γ1σ2t2)2n+1

n!(2n+ 1)

]}
dt2

= e−
t21
2

[1

2

∫ X2−µ2
σ2

−∞
e
− (t2−ρt1)2

2(1−ρ2) dt2

+
1

π

+∞∑
n=0

(−1)n(γ1σ2)2n+1

n!(2n+ 1)

∫ X2−µ2
σ2

−∞
t2n+1
2 e

− (t2−ρt1)2

2(1−ρ2) dt2

]
= e−

t21
2

[1

2
J4 +

1

π

+∞∑
n=0

(−1)n(γ1σ2)2n+1

n!(2n+ 1)
J5

]
, (11)

where

J4 =

∫ X2−µ2
σ2

−∞
e
− (t2−ρt1)2

2(1−ρ2) dt2 (12)

J5 =

∫ X2−µ2
σ2

−∞
t2n+1
2 e

− (t2−ρt1)2

2(1−ρ2) dt2. (13)
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6 MAURO BERNARDI, ROY CERQUETI, AND ARSEN PALESTINI

Integrals J4 and J5 appearing in (11) can be treated by 2 different changes of
variables. First, consider J4. By setting

z =
t2 − ρt1√

1− ρ2
,

we have

J4 =
√

1− ρ2
∫ X2−µ2

σ2

√
1−ρ2

− ρt1√
1−ρ2

−∞
e−

z2

2 dz

=
√

1− ρ2Φ

(
X2 − µ2

σ2
√

1− ρ2
− ρt1√

1− ρ2

)
. (14)

On the other hand, J5 needs another change of variable. Call

y =
t2 − ρt1√
2(1− ρ2)

,

consequently we have

J5 =
√

2(1− ρ)2
∫ X2−µ2

σ2

√
2(1−ρ2)

− ρt1√
2(1−ρ2)

−∞
(y
√

2(1− ρ2) + ρt1)2n+1e−y
2

dy

=
√

2(1− ρ)2
∫ X2−µ2

σ2

√
2(1−ρ2)

− ρt1√
2(1−ρ2)

−∞
e−y

2

×

{
2n+1∑
k=0

(
2n+ 1

k

)
[y
√

2(1− ρ2)]k(ρt1)2n+1−k

}
dy

=
√

2(1− ρ)2
2n+1∑
k=0

(
2n+ 1

k

)
[
√

2(1− ρ2)]k(ρt1)2n+1−k

×
∫ X2−µ2

σ2

√
2(1−ρ2)

− ρt1√
2(1−ρ2)

−∞
yke−y

2

dy. (15)

In order to simplify the notation, call

α = α1 + α2t1 =
X2 − µ2

σ2
√

2(1− ρ2)
− ρt1√

2(1− ρ2)
. (16)

The integral in the right–hand side of (15) can be solved by distinguishing the cases
of k even or odd.

(i) k is an odd number. This means that there exists an integer h such that
k = 2h+ 1. By making the change of variable t = y2, we obtain that∫

y2h+1e−y
2

dy =
1

2

∫
the−tdt.

By iterating the integration by parts and replacing the variable t with y2

at the end of the procedure, we have:∫ α

−∞
y2h+1e−y

2

dy

= −e−y
2

×
[
y2h + hy2(h−1) + h(h− 1)y2(h−2) + · · ·+ h!(y2 + 1)

] ∣∣∣α
−∞

= −e−α
2

×
[
α2h + hα2(h−1) + h(h− 1)α2(h−2) + · · ·+ h!(α2 + 1)

]
. (17)
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(ii) k is an even number. We can state that there exists an integer h such that
k = 2h. Even in this case integration by parts is necessary. After iterating
it, the involved integral becomes:

∫ α

−∞
y2he−y

2

dy

= −y
2h−1e−y

2

2
− 2h− 1

22
y2h−3e−y

2

− (2h− 1)(2h− 3)

23
y2h−5e−y

2

− · · · −
√
π(2h− 1) · (2h− 3) · · · 5 · 3

2h
Φ

(
y√
2

) ∣∣∣α
−∞

−
√
π(2h− 1) · (2h− 3) · · · 5 · 3

2h

∫ α√
2

−∞
Φ(t)dt. (18)

Now, call J6 =
∫ α√

2

−∞ Φ(t)dt. Standard integration results yield

J6 =

∫ α√
2

−∞
Φ(t)dt

= [xΦ(x) + φ(x)]
∣∣∣ α√2

−∞

=
α√
2

Φ

(
α√
2

)
+ φ

(
α√
2

)
− lim
z→−∞

(zΦ(z) + φ(z))

=
α√
2

Φ

(
α√
2

)
+ φ

(
α√
2

)
, (19)

since limz→−∞ (zΦ(z) + φ(z)) = 0. By plugging (19) into (18) we obtain:

∫ α

−∞
y2he−y

2

dy = −α
2h−1e−α

2

2
− 2h− 1

22
α2h−3e−α

2

− (2h− 1)(2h− 3)

23
α2h−5e−α

2

− · · · −
√
π(2h− 1) · (2h− 3) · · · 5 · 3

2h
Φ

(
α√
2

)
−
√
π(2h− 1) · · · (2h− 3) · · · 5 · 3

2h

×
[
α√
2

Φ

(
α√
2

)
+ φ

(
α√
2

)]
. (20)

Now, the expressions (17) (for odd values of k) and (20) (for even values of k) have
to be inserted into (15). By distinguishing the odd and even cases, integral J5 turns
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out to be:

J5 =
√

2(1− ρ)2
n∑
h=0

(
2n+ 1

2h

)
[
√

2(1− ρ2)]2h(ρt1)2n+1−2h
∫ α

−∞
y2he−y

2

dy

+
√

2(1− ρ)2
n∑
h=0

(
2n+ 1

2h+ 1

)
[
√

2(1− ρ2)]2h+1(ρt1)2n−2h
∫ α

−∞
y2h+1e−y

2

dy

=
√

2(1− ρ)2
n∑
h=0

{(
2n+ 1

2h

)
[
√

2(1− ρ2)]2h(ρt1)2n+1−2h

×

{
−α

2h−1e−α
2

2
− 2h− 1

4
α2h−3e−α

2

− (2h− 1)(2h− 3)

23
α2h−5e−α

2

− · · · −
√
π(2h− 1) · (2h− 3) · · · 5 · 3

2h
Φ

(
α√
2

)
−
√
π(2h− 1) · (2h− 3) · 5 · 3

2h

[
α√
2

Φ

(
α√
2

)
+ φ

(
α√
2

)]}}
+
√

2(1− ρ)2
n∑
h=0

(
2n+ 1

2h+ 1

)
[
√

2(1− ρ2)]2h+1(ρt1)2n−2h

×
[
−e−α

2
{
α2h + hα2(h−1) + h(h− 1)α2(h−2) + · · ·+ h!(α2 + 1)

}]
.

(21)

Although the approximated expression of J5 is particularly complex, it can be
finally employed to accomplish a suitable form for J3. Integrals J4 and J5 are going
to be inserted into J3, subsequently J3 will be inserted into J1.

In other words, (14) and (15) are plugged into (11), which is plugged into (6).
The expression of α in (16) must be considered as well. At the end of this tedious
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and long process, and for a sufficiently large value of Γ, we obtain:

J1 =
1

σ2K

∫ X1−µ1
σ1

−∞
t1Φ(δ0σ1t1)

{
e−

t21
2

√
1− ρ2

2
Φ

(
X2 − µ2

σ2
√

1− ρ2
− ρt1√

1− ρ2

)

+
e−

t21
2

π

+∞∑
n=0

(−1)n(γ1σ2)2n+1

n!(2n+ 1)

×

(√
2(1− ρ)2

n∑
h=0

(
2n+ 1

2h

)
[
√

2(1− ρ2)]2h(ρt1)2n+1−2h

×
{
−1

2
(α1 + α2t1)2h−1e−(α1+α2t1)

2

− 2h− 1

22
(α1 + α2t1)2h−3e−(α1+α2t1)

2

− (2h− 1) (2h− 3)

23
(α1 + α2t1)2h−5e−(α1+α2t1)

2

− · · · −
√
π(2h− 1) · (2h− 3) · · · 5 · 3

2h
Φ

(
α1 + α2t1√

2

)
−
√
π(2h− 1) · (2h− 3) · · · 5 · 3

2h

[
α1 + α2t1√

2
Φ

(
α1 + α2t1√

2

)
+φ

(
α1 + α2t1√

2

)]}
+
√

2(1− ρ)2
n∑
h=0

(
2n+ 1

2h+ 1

)
[
√

2(1− ρ2)]2h+1(ρt1)2n−2h

×
[
−e−(α1+α2t1)

2
{

(α1 + α2t1)2h + h(α1 + α2t1)2(h−1)

+ h(h− 1)(α1 + α2t1)2(h−2) + · · ·+ h![(α1 + α2t1)2 + 1]
}])}

dt1,
(22)

which reduces to

J1 =
1

σ2K

∫ X1−µ1
σ1

−∞
t1Φ(α3t1)

{
e−

t21
2

√
1− ρ2

2
Φ (α4 + α5t1)

+
e−

t21
2

π

+∞∑
n=0

α
(n)
6

(
n∑
h=0

α
(n,h)
7 t2n+1−2h

1

{
e−(α1+α2t1)

2
h−1∑
s=1

α
(h)
8 (α1 + α2t1)α

(h)
9

+ α9Φ

(
α1 + α2t1√

2

)
−
[
(α10 + α11t1) Φ

(
α1 + α2t1√

2

)
+ φ

(
α1 + α2t1√

2

)]}
+

n∑
h=0

α
(n)
12 t

2n−2h
1 e−(α1+α2t1)

2
h∑
s=0

α
(h,s)
13 (α1 + α2t1)2h−2s

)}
dt1, (23)
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where the α’s are constants that can be determined by comparing the two terms of
the equality in (23). By rearranging terms, (23) is equal to:

J1 =
1

σ2K


√

1− ρ2
2

∫ X1−µ1
σ1

−∞
t1Φ(α3t1)e−

t21
2 Φ (α4 + α5t1) dt1

+
1

π

+∞∑
n=0

α
(n)
6

 n∑
h=0

α
(n,h)
7

h−1∑
s=1

α
(h)
8

∫ X1−µ1
σ1

−∞
Φ(α3t1)t2n+2−2h

1

× e−(α1+α2t1)
2− t

2
1
2 (α1 + α2t1)2h−2s+1dt1

+α9

∫ X1−µ1
σ1

−∞
e−

t21
2 t2n+2−2h

1 Φ(α3t1)Φ

(
α1 + α2t1√

2

)
dt1

−
∫ X1−µ1

σ1

−∞
e−

t21
2 t2n+2−2h

1 Φ(α3t1) (α10 + α11t1) Φ

(
α1 + α2t1√

2

)
dt1

+

∫ X1−µ1
σ1

−∞
e−

t21
2 t2n+2−2h

1 Φ(α3t1)φ

(
α1 + α2t1√

2

)
dt1

+

n∑
h=0

α
(n)
12

h∑
s=0

α
(h,s)
13

∫ X1−µ1
σ1

−∞
t1e−

t21
2 Φ(α3t1)t2n−2h1

×e−(α1+α2t1)
2

(α1 + α2t1)2h−2sdt1

]}
=

1

σ2K

{√
1− ρ2

2
· J7 +

1

π

+∞∑
n=0

α
(n)
6

[
n∑
h=0

α
(n,h)
7

(
h−1∑
s=1

α
(h)
8 · J8+

+α9 · J9 − J10 + J11) +

n∑
h=0

α
(n)
12

h∑
s=0

α
(h,s)
13 · J12

]}
, (24)

where the definition of the integrals Jk can be easily derived by comparing the left-
and right-hand sides of equation (24). We treat separately integrals Jk:

J7 =

∫ X1−µ1
σ1

−∞
t1Φ(α3t1)e−

t21
2 Φ (α4 + α5t1) dt1.

We can use the expansion of the Gaussian in (10) and then the standard formula
for the power of the binomials. After this, we rewrite J7 as follows:

J7 =

∫ X1−µ1
σ1

−∞
t1e−

t21
2

{
1

2
+

1

π

[
+∞∑
n=0

(−1)n(α3t1)2n+1

n!(2n+ 1)

]}

×

{
1

2
+

1

π

[
+∞∑
n=0

(−1)n(α4 + α5t1)2n+1

n!(2n+ 1)

]}
dt1

=

∫ X1−µ1
σ1

−∞
t1e−

t21
2

{
1

2
+

1

π

[
+∞∑
n=0

(−1)n(α3t1)2n+1

n!(2n+ 1)

]}

×

{
1

2
+

1

π

[
+∞∑
n=0

(−1)n
∑2n+1
s=0

(
2n+1
s

)
αs4(α5t1)2n+1−s

n!(2n+ 1)

]}
dt1. (25)
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The integral in (25) is fully solved when a solution is provided to the following four
integrals:

J7α =

∫ X1−µ1
σ1

−∞
tα1 e−

t21
2 dt1, α = 1, 2n+ 2, 2n+ 2− s, 4n+ 3− s. (26)

If α = 1, integration is elementary, yielding:

J7 = −e−
Z2

1
2 , (27)

where Z1 =
(
X1−µ1

σ1

)
. The cases α = 2n+2, 2n+2−s, 4n+3−s have been already

treated above. Note that α = 2n+2 is even whereas α = 2n+2−s (α = 4n+3−s)
is even when s is even (s is odd) and odd otherwise. When α is even, the integral
J7α can be approximated as in (20). When α is odd, then the integral J7α is as in
(17). Also J8 can be properly treated by using the series expansion of the Gaussian
in (10) and the binomial expansion. Recall that

J8 =

∫ X1−µ1
σ1

−∞
Φ(α3t1)t2n+2−2h

1 e−(α1+α2t1)
2− t

2
1
2 (α1 + α2t1)2h−2s+1dt1

We have

J8 =

∫ X1−µ1
σ1

−∞
t2n+2−2h
1 e−

t21
2 −(α1+α2t1)

2

{
1

2
+

1

π

[
+∞∑
n=0

(−1)n(α3t1)2n+1

n!(2n+ 1)

]}

×

[
2h−2s+1∑
r=0

(
2h− 2s+ 1

r

)
αr1(α2t1)2h−2s+1−r

]
dt1. (28)

Consider the exponential function in (28). The exponent can be rewritten as follows:

− t
2
1

2
− (α1 + α2t1)2 = −

t1√1

2
+ α2

2 +
α1α2√
1
2 + α2

2

2

− α2
1

(
1− α2

2
1
2 + α2

2

)
. (29)

By substituting (29) into (28) one gets:

J8 = e
−α2

1

(
1− α2

2
1
2
+α2

2

) ∫ X1−µ1
σ1

−∞
t2n+2−2h
1 e

−
[
t1
√

1
2+α

2
2+

α1α2√
1
2
+α2

2

]2

×

(
1

2
+

1

π

[
+∞∑
n=0

(−1)n(α3t1)2n+1

n!(2n+ 1)

])

×

[
2h−2s+1∑
r=0

(
2h− 2s+ 1

r

)
αr1(α2t1)2h−2s+1−r

]
dt1. (30)

Now an intuitive change of variable can be made:

u = t1

√
1

2
+ α2

2 +
α1α2√
1
2 + α2

2

, (31)

which entails

t1 =
u√

1
2 + α2

2

− α1α2
1
2 + α2

2

. (32)
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By substituting (31) and (32) into (30) we obtain:

J8 =
e
−α2

1

(
1− α2

2
1
2
+α2

2

)
√

1
2 + α2

2

∫ (X1−µ1)
√

1/2+α2
2

σ1
+

α1α2
1/2+α2

2

−∞

 u√
1
2 + α2

2

− α1α2
1
2 + α2

2

2n+2−2h

× e−u
2


1

2
+

1

π


+∞∑
n=0

(−1)n
(
α3

[
u√

1
2+α

2
2

− α1α2
1
2+α

2
2

])2n+1

n!(2n+ 1)




×

2h−2s+1∑
r=0

(
2h− 2s+ 1

r

)
αr1

α2

 u√
1
2 + α2

2

− α1α2
1
2 + α2

2

2h−2s+1−r
 du.

(33)

Hence, integral J8 is analogous to J7, therefore it can be solved through the same
strategy.

Integrals J9, . . . , J12 can be computed in a similar way as well. In particular, the
adoptions of the expansion of the Gaussian and of the binomial powers lead to the
fact that J9 and J10 can be directly treated analogously to J7. Contrary to that,
the computation of J11 and J12 first requires a suitable change of variable (31), and
so its procedure is akin to the one adopted for studying J8. We are going to omit
the tedious details1.

The argument developed above can be adopted in a straightforward way to
compute the integral J2, and J2 can be written by adapting formula (24). The
integral J2 can be approximated by taking a sufficiently high value of K > 0.
Namely, we have:

J2 =
1

σ2K

{√
1− ρ2

2
· J̃7 +

1

π

+∞∑
n=0

α
(n)
6

[
n∑
h=0

α
(n,h)
7

(
h−1∑
s=1

α
(h)
8 · J̃8

+α9 · J̃9 − J̃10 + J̃11

)
+

n∑
h=0

α
(n)
12

h∑
s=0

α
(h,s)
13 · J̃12

]}
, (34)

where J̃m can be obtained by Jm by multiplying the integrand by the factor t−11 , for
each m = 7, 8, . . . , 12. The integrals to be solved for J2 belong to the same family
of those already treated for J1. The only new integral occurs in the formulation of
J̃7, which now includes also

J̃70 =

∫ X1−µ1
σ1

−∞
e−

t21
2 dt1 = Φ

(
X1 − µ1

σ1

)√
2π.

4. Conclusions and further developments

This paper is entirely devoted to the complex calculation of the TCE of a random
vector which is composed of bivariate Skew Normal random variables. We out-
lined the whole procedure and developed most steps in an extended form. From
the risk management perspective it is worth noting that the provided risk measure
can be effectively used to assess the systemic risk contributions of different insti-
tutions belonging to a given market extending the SCoVaR measure introduced by
Bernardi et al. ([6], 2016). Furthermore, the provided risk measure enjoys the con-
sistency property since it preserves the stochastic ordering induced by the bivariate
distribution.

1However, all calculations are available for the interested readers upon request to the authors.
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