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Abstract
In this paper, after a review of the most common financial strategies and products
that insurance companies use to hedge catastrophic risks, we study an option pricing
model based on processes with jumps where the catastrophic event is captured by a
compoundPoisson processwith negative jumps.Given the importance that catastrophe
equity put options (CatEPuts) have in this context, we introduce a pricing approach
that provides not only a theoretical contribution whose applicability remains confined
to purely numerical examples and experiments, but which can be implemented starting
from real data and applied to the evaluation of real CatEPuts. We propose a calibration
framework based on historical log-returns, market capitalization and option implied
volatilities. The calibrated parameters are then considered to price CatEPuts written
on the stock of the main Italian insurance company over the high volatile period from
January to April 2020. We show that the ratio between plain-vanilla put options and
CatEPuts strictly depends on the shape of the implied volatility smile and it varies
over time.
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1 Introduction

Natural disasters are extreme events with concentrated impact, in space and time,
greatly exceeding human expectations in terms ofmagnitude and frequency and having
profound consequences on the socio-economic system (Turner 1976). Because of
the extent of this damage, natural disasters are associated with catastrophic risks.
Numerous statistics show the greater frequencyof natural disasters. The recent increase
would seem to be caused mainly by two factors: (1) climate change and (2) an increase
in the level of urbanization of the population (Charpentier 2008 and Kunreuther and
Kerjan 2013). As a direct consequence, individuals become aware that they are more
likely to face catastrophic risks and, for this reason, there is a growing need for financial
instruments to cover the damages associated with these natural disasters.

Financial instruments for the management of disaster risk have been widely dis-
cussed in the literature (see Linnerooth-Bayer and Hochrainer-Stigler 2015). Freeman
et al. (2003) and Cardenas et al. (2007) studied how developing countries can trans-
fer part of their public-sector natural catastrophe risk to the international reinsurance
and capital markets. Jongman et al. (2014) presented a model to assess the flood risk
and they discussed the feasibility of flood risk management policies in the European
Union.

In 2017, the economic damage associated with natural disasters worldwide
exceeded 300 billion dollars, of which almost 90% related only to climate events.
In the same year, the incidence of insurance coverage, on a global scale, expressed as
the ratio between the share of the insured damage and total declared damage, however,
rose slightly more than 40%.

In many countries the management of catastrophic risks has always been entrusted
exclusively to the State, which acts as an ex-post guarantor of last resort and therefore
willing to take responsibility for remedying the damage. In any case, the demand for
precautionary measures against natural risks requested from the State by individuals is
marked by a moral hazard problem that induces subjects to request public intervention
ex-post rather than adopting ex-ante prevention measures. This behavior is what has
led to a low diffusion of insurance coverage in the past.

The diffusion of insurance policies covering catastrophic events, in addition to being
infrequent, is also characterized by a problem of adverse selection of policyholders.
Indeed, only those most exposed to the risk of natural disasters have requested these
forms of protection (Bantwal and Kunreuther 2000). This inevitably leads to a signif-
icant increase in insurance premiums and, as a consequence, in the costs of insurance
coverage. It should, therefore, come as no surprise that the end result has been, in
fact, the creation of a vicious circle of excessively high insurance premiums and low
demand for individual coverage and thus, in other words, an insurance market failure
in this particular sector (Akerlof 1970).
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In order to break this vicious circle, several authors (Hudson et al. 2014 andMysiak
and Pérez-Blanco 2016) have also proposed public intervention that will take on a
considerable part of the insurance premiums (e.g., through tax relief and subsidized
loans) to reduce the individual cost of insurance coverage. In particular, Mysiak and
Pérez-Blanco (2016) proposed a classification of the different forms of partnership
between the State and insurance companies on the basis of three aspects: (1) robust or
poor regulation of the insurancemarket by the public operator; (2)mandatory nature of
insurance coverage; (3) possibility that policyholders cover part of the risk (mutuality)
inversely related to the amount of insurance premiums.

At the moment, (a) countries like France, Switzerland, Spain, Chile and New
Zealand are characterized by massive state intervention, by compulsory insurance
coverage with premiums set by law and strong mutuality, (b) countries like Japan and
Turkey see a lower incidence of aspects 2 and 3 and (c) countries like the United
Kingdom and the United States are characterized by a weaker presence of the State
in the sector, and by the non-mandatory nature of insurance coverage with premiums
that are no longer constant, but calculated from time to time according to the level of
risk to be managed.

The reasons for this differentiation in the diffusion of insurance risk management
tools to protect against natural disasters are varied and complex. Among these, regu-
lation, the presence–absence of insurance systems that provide for the participation of
the State, the nature of the catastrophic risks to be insured, and the culture in the field
of preventionmust certainly be included. The current ex-post method of state interven-
tion in the management of catastrophic risk is in any case increasingly unsustainable
as well as economically inconvenient.

In the face of these shortcomings, the need for proper risk management practices
in the field of natural disasters is bound to emerge to reduce the degree of exposure of
families and businesses to these risks (OECD 2010).

In this context, the aforementioned awareness of individuals in facing catastrophic
risks is greater, as is their need to pay something to protect themselves from the result-
ing harmful repercussions. Hence, the timid, constant public demand for insurance
products aimed at covering the risks in question has increased, especially in some coun-
tries of the world. The transfer of catastrophic risk to the insurance industry is now a
widespread practice in certain countries particularly vulnerable to natural risks such as
Japan, New Zealand, California, Turkey, Israel, Mexico, Chile and, among European
countries, in France, Spain, Belgium, Greece, Switzerland, Germany, Netherlands,
Austria and Poland, although with different methods, timings and technical formulas.
It is still a limited phenomenon in Italy, considering the substantial increase in natural
disasters that have occurred in recent years.

The greater availability of data and mathematical models capable of more real-
istically estimating expected damages is strengthening the supply of such products
marketed by insurance intermediaries, due to the possibility of being able to iden-
tify more appropriate risk mitigation strategies underlying new insurance policies for
catastrophic risks offered to meet this growing demand from the public.

Insurance coverage certainly plays an important role from a macroeconomic point
of view, as it can lead to a decrease in the negative effects of natural disasters on
public spending and GDP growth (OECD 2017). The benefits would derive from the
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management of technical and financial risks adopted by insurance companies which,
as is known, calibrate their exposure to overall risk by insuring themselves, in turn,
against those risks - already suitably diversified in advance - that they have taken on
by transferring part of the risk, both through the use of more traditional reinsurance
practices and of new hedging instruments.

In any case, the economic damage caused by catastrophic events requires such
considerable compensation that not even the insurance market can efficiently fulfill.
It is, therefore, necessary to transfer the management of catastrophic risks to the only
market with dimensions greater than insurance: the financial market.

In response to the evolution of the risk landscape, insurance companies have in fact
developed a variety of new tools and techniques that broaden the limits of insurability
through so-called alternative risk transfer (ART) solutions and through the financial
market, within which they proceed with the issue of insurance linked securities (ILS)
(Munich Re 2001). All these instruments are accompanied by high flexibility and risk
diversification prices, in some cases, also in terms of payment timing.

One of these financial instruments that is receiving a particularly increased attention
in recent years is the catastrophe equity put option (CatEPut), i.e. a financial option
that gives an insurance company the right to sell a stock of its share capital to private
investors at a predetermined pricewhen a catastrophic event occurs. For this reason, the
aim of this paper is to introduce a pricing approach that provides not only a theoretical
contribution whose applicability remains confined to purely numerical examples and
experiments, but which can be implemented starting with real data and applied to the
evaluation of real CatEPuts. Specifically, the contribution of the method is twofold.

From a theoretical perspective, we extend the jump-diffusion framework used in
the literature of CatEPut, by modeling the underlying stock price dynamics as a more
general exponential Lévy process with a diffusive component, an infinite activity
jump part, and a finite activity jump term, correlated to the catastrophic loss process.
This modeling assumption introduces dependence between the occurrence of major
disasters and the stock price.

From a practical perspective, we extend the literature on this subject by developing
a calibration procedure based on real data, which make use of (1) time-series of stock
log-returns, (2) the capitalization of the insurance company in search of protection from
catastrophic losses, and (3) risk-neutral information extracted from quoted European
options on the stock. In the empirical analysis we selected Assicurazioni Generali
mainly because it is among the main insurance companies in Europe. This insurance
company is listed on a major stock exchange and there is an active derivatives market
to calibrate the parameters of our model. The study is conducted during the high
volatile period from January to April 2020. From the end of February the smile of
Assicurazioni Generali became a smirk and, in March, the implied volatility of in-the-
money call options was high (i.e. well above 100), indicating that the probability of
the occurrence of a catastrophic event was also high. We assess whether our model is
able to explain such observed pattern. Although in the empirical study we analyzed
onlyAssicurazioniGenerali, similar implied volatility dynamicswere observed among
other insurance companies across Europe.

The paper is structured as follows. In Sect. 2, we review the most common financial
strategies that insurance companies use to hedge the catastrophic risks that they have
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taken on. In Sect. 3, we describe a catastrophe equity put option pricing model analyz-
ing both the real-world and risk-neutral dynamics of the underlying asset. Section 4
is devoted to empirical analysis and provides more information on the data, the cali-
bration approach and the simulation method implemented, together with the results.
Section 5 concludes.

2 Hedging catastrophic risk

This section contains a review of the most common financial strategies that insurance
companies use to hedge the catastrophic risks that they have taken on.

The intensification of the frequency of catastrophic events and public awareness of
the need to provide ex-ante coverage of the risk deriving from them, also considering
the general inadequacy of the response that a State can provide ex-post as a solution to
the problems, has led to an ever growing demand from the public for policies to cover
catastrophic risks. This has stimulated - and continues to stimulate - insurance com-
panies looking for alternative strategies to traditional reinsurance aimed at covering
the risks underlying the policies in question. Among these, insurance securitization,
catastrophic bonds (Cat-Bonds) and CatEPuts must be mentioned.

In this section, we provide a description of these less traditional financial products
that insurance companies are generally using to hedge catastrophic risk. We will also
present a literature review of the main papers that, to the best of our knowledge, have
analyzed CatEPuts pricing models and in Sect. 3 we suggest a possible approach to
deal with these options.

Insurance securitization is a financial instrument that allows the transfer of the risk
taken on by insurance companies to the capital market. By resorting to this instrument,
insurance companies include part or all of the risk of catastrophic events within bonds
subsequently sold to investors. Therefore, the possible default of these securities,
associated with the occurrence of natural events, can no longer damage the other assets
and liabilities of the insurance company, i.e. the originating party that constitutes the
financial support to guarantee the issue of securities placed on the capitals market,
representative of these activities. In particular, the insurance securitization process
consists of the following two elements: (1) the transformation of the underwriting
cash flows into financial securities exchanged on the market and (2) the transfer of
the underwriting risks to the capital markets through the exchange of those securities.
In the face of a certain catastrophe risk, a specialized reinsurance company (Special
Purpose Vehicle - SPV) is set up. The SPV issues debt securities so that the financial
resources obtained are invested by the samecompany in highly rated securities. Persons
who acquire risk protection from the SPV pay a premium that, added to the interest
of the securities in which the financial resources are invested, is paid as interest to the
holders of securities. If the catastrophic event does not occur, at the end of the period,
the SPV reimburses the principal portion of the securities. If it does, the holders of
the securities suffer the relative damage and, consequently, risk the partial or integral
loss of the principal portion of the bonds.

Typically, there are twomain reasons for resorting to the securitization of insurance
risks: (1) a greater coverage–absorption capacity—typical of thefinancialmarket—of
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any financial damage caused by natural disasters (as opposed to insurance companies)
and (2) the opportunity tomake additional investments that allowgreater diversification
of the portfolio. The latter consideration is linked to the fact that exposure to natural
disasters is not necessarly related to the dynamics of financial markets. The insurance
securitization technique of catastrophic risk also produces effects at a macroeconomic
level that increase its attractiveness.On the one hand, in amarket inwhich the securities
are widespread, the securitization and placement of the related bonds redistributes the
risk of catastrophe in individual geographical areas or sectors of activity, diluting their
negative effects on the entire market. On the other hand, it redistributes the economic
and social cost of the catastrophic event over time.

Bouriaux and MacMinn (2009) discussed the developments of insurance securiti-
zation and assessed the potential for growth in the insurance-linked securities (ILS)
market and in insurance-linked derivatives. In particular, the authors analyzed themoti-
vations of security sponsors and investors to participate in catastrophe linked capital
market, and identified the key components of growth and its impediments. They also
discussed the technical and regulatory issues that could be crucial to market growth. In
this context, they recommended new private and public initiatives aimed at boosting
the use and efficiency of catastrophe linked securities and derivatives.

Cat-Bonds are securities that include a clause relating to the risk of a natural disaster.
This alternative instrument to the reinsurance contract can take two forms, depending
on whether the compensation clause concerns a natural event on which an insurance
contract was previously entered into, or the clause concerns an aggregate index that
measures the damage possibly caused by a specific source of default risk.

When this form is adopted, we are talking about indexed Cat-Bonds. Like rein-
surances, insurance companies transfer part of the risks to the underwriters through
Cat-Bonds; indeed, the clause provides that, upon the occurrence of an event or upon
reaching a certain value of the reference index, the creditor loses the right to receive,
in whole or in part, the lent capital and (or) the agreed interest.

Another possibility that favors the acquisition of this instrument by insurance com-
panies is the delay in payment of the capital and interest due following the occurrence
of the unfavorable natural event. The advantage of Cat-Bonds for issuers is that, in the
face of the catastrophic event, they undertake to pay higher interest rates than those
related to a traditional loan without clause. This is because, in the event of a catas-
trophic event, awrite-down of the security occurs. Therefore, it is expected that a return
higher than the market one will be achieved with a certain probability. Thanks to the
transfer of part of the risk associated with catastrophic events to the financial market,
insurance companies have managed to solve their solvency problems by reducing the
cost of supply services to protect against natural risks.

To allow the transfer of a risk taken on through a bond of this type, the insurance
company enters into a reinsurance contract with a SPV from which it will purchase a
contract that will allow it to partially or totally transfer the risk taken on.

This risk is the same as for catastrophic bonds and the type of hedge reflects the
participation of the underwriters in the losses. In detail, this transfer will involve three
parties: the insurance company, the SPV and the private investor in the capital market.
In other words, the company purchases a financial reinsurance contract from the SPV
“written” (or covered by) a specific bond (the Cat-Bond), while the investor will pur-
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chase this security at a price set by a special organization (Applied Insurance Research,
AIR) composed of professional actuaries, engineers, physicists, meteorologists and
financial analysts. If the event does not occur in the geographical area and in the time
period indicated in the Cat-Bond contract, the private investor will receive the expected
coupons plus the return of the capital (nominal value of the bond corresponding to
the maximum loss suffered associated with the damage). Otherwise, the investor will
have to give up the invested capital, which will be used to cover the damage caused
by the catastrophe.

In the evaluation of Cat-Bonds, the significance and measurability of catastrophic
risk are taken into account, in addition to the evaluation parameters used for corporate
issues. In recent years, Cat-Bonds have met with favorable reception from the market,
due to a strong demand from investors for asset class alternatives unrelated to tradi-
tional ones, which allow the risk-return trade-off to be improved in asset allocation
decisions.

CatEPuts represent another financial product that insurance companies can use to
transfer catastrophic risk to the capital market. Unlike Cat-Bonds, which have a quite
recent history, the first issue of CatEPuts dates back to 1996 on behalf of the RLI
Corporation. Through CatEPuts, insurance companies acquire the right to sell a stock
of their share capital to private investors at a predetermined price in the presence
of a catastrophic event. Therefore, a great advantage associated with this financial-
insurance instrument is the availability of contingent capital injections allowing the
insurance company to see its solvency unaffected as a result of the significant economic
damage causedby a catastrophe. Thanks toCatEPuts, the price of shares in the portfolio
of insurance companies does not decrease and neither does the price of new issues.
This equity fund at a predetermined price represents a buffer that can be used by the
insurance company to recover its capital following the catastrophic event during the
life of the option.

A disadvantage of CatEPuts is that they generate a sort of fragmentation of the
property of the insurance company following the catastrophic event; indeed, the avail-
able equity will increase when the put option is exercised with a consequent reduction
in the capital owned by existing shareholders.

Given the widespread diffusion of CatEPuts in recent years, several contributions
have focused on their pricing. More details are provided for some of the most recent
among them, as it is thought this will facilitate understanding of the path that, starting
in the next section, will lead to our pricing proposal.

Some authors - includingCox andSchwebach (1992), Cummins andGeman (1995),
Chang et al. (1996) - have explored the possibility of structuring a derivatives market
in the insurance sector, concluding, however, that insurance futures actually represent
an alternative secondary market to the reinsurance market.

In particular, Cox and Schwebach (1992) have argued that a European call on an
insurance future is the equivalent of a captive reinsurance or an insurance company
ownedby a non-insurer (parent company), set upwith the specific objective of insuring,
exclusively, in whole or in part, the exposure of the parent company and/or its affiliates
to the various risks with the stop loss clause. Thanks to insurance coverage, the parent
company will be able to protect its capital by limiting its exposure to catastrophic
events up to a predetermined and acceptablemaximum amount. The stop loss coverage
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guarantees the captive against losses that may occur in the aggregate, limiting the
annual retention to a predetermined amount. Insurance futures therefore represent an
alternative secondary market to the reinsurance market.

Chang et al. (1996) used the randomized operational time approach to transform
a compound Poisson process into a pure diffusion process (for its higher tractability)
and led to the pricing formula of catastrophe call options as a risk-neutral Poisson sum
of Black’s call prices in information-time. They also assumed that catastrophe futures
price changes flow subordinated processes with jumps in calendar-time.

Dassios and Jang (2003) used the Cox process (or a doubly stochastic Poisson pro-
cess) to model the claim arrival process for catastrophic events and to value stop-loss
reinsurance contracts for catastrophic events and catastrophe insurance derivatives.
Their main hypothesis is that there is an absence of arbitrage opportunities in the mar-
ket to obtain the gross premium for stop-loss reinsurance contracts and arbitrage-free
prices for insurance derivatives (this condition can be obtained through an equiva-
lent martingale probability measure in the pricing models). When pricing catastrophe
linked financial options, it is prudent to develop a model that takes into account both
the formation of value and any losses.

Cox et al. (2004) were the first to investigate such a model for pricing catastrophe
linkedfinancial options, in particular double trigger put option and a property insurance
with a retention which is a function of a commodity price. The double trigger is
associated with two main conditions: the underlying equity must be below the strike
price and, in addition, a specified catastrophic event must have occurred affecting the
insured firm. Jaimungal and Wang (2006) extended the work of Cox et al. (2004)
by introducing a framework with stochastic interest rates and losses generated by a
compoundPoisson process. Bymodeling the stock price as a geometric jump-diffusion
process correlated to the loss process, they obtained explicit formulas for the price of
the CatEPut option and for its hedging parameters. A further extension allowing for
floating strike prices was proposed by Wang (2020).

Subsequently, Chang and Hung (2009) analyzed the pricing of CatEPuts under the
assumptions of both fixed and stochastic interest rates when the price of the underly-
ing asset follows an exponential jump-diffusion process with negative exponentially
distributed jumps.

Lin and Wang (2009) used the discounted expected penalty function, formalized
for the first time as part of the studies on pricing models in the derivatives market by
Gerber and Shiu (1998), for the pricing of American CatEPuts. It is their opinion that
the use of this discounted penalty function can lead to a more precise evaluation of a
CatEPut.

Chang et al. (2010), using no-arbitrage martingale pricing methodology, dealt with
the pricing of Asian catastrophe options with the uncertainties regarding arrival times
and related losses within a doubly binomial framework. They performed a stochastic
time change from calendar time to claim time and obtained a more efficient esti-
mate of the price of the catastrophe option as a binomial sum of claim time binomial
Asian option prices managing to provide a better estimate of the probability of the
catastrophic event occurring.

Braun (2011) proposed a two-stage contingent claims approach to price catastrophe
swaps, which distinguishes between the main risk drivers ex-ante as well as during
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the loss re-estimation phase and additionally incorporates counterparty default risk.
Catastrophe occurrence is modeled as a Cox process with mean-reverting Ornstein-
Uhlenbeck intensity.

Jiang et al. (2013) introduced a catastrophe option pricing model that considers
the risk of default of the counterparty that can only manifest itself when the option
expires. The prices of the underlying assets are modeled through a jump-diffusion
process related to the counterparty loss process and collateral assets. Their conclusion
is that counterparty risk significantly affects the option price.

Wang (2016b) proposed a CatEPut assessment model where the counterparty
default risk can occur at any time before the expiry date of the option. In particu-
lar, the underlying stock price dynamics is affected by catastrophic losses, generated
by a Cox process with log-normal intensity, and the assets of the option issuer follow
a geometric Brownian motion.

Wang (2016a) suggested a new class of CatEPuts, with payoff depending on the
ratio between realized and target variance over the life of the option, where the target
variance represents the insurance company expectation of the future realized variance.
The author claimed that this kind of options could help insurance companies to raise
more equity capital when a large number of catastrophic events occur during the life
of the option.

Recently, Bi et al. (2019) proposed a model assuming that catastrophic events and
non-catastrophic events both follow Markov modulated Poisson processes and they
defined a pricing formula for CatEPuts allowing for correlated jump risk and default
risk.

3 Catastrophe put option pricingmodel

In this section we describe our pricing model. We assume that the underlying stock
price dynamics is an exponential Lévy process with a diffusive component, an infinite
activity jump part, and a finite activity jump term, correlated to the catastrophic loss
process. This construction allows to make the stock price process sensitive to the
occurrence of major disasters. We follow the framework originally proposed by Cox
et al. (2004), Jaimungal and Wang (2006) and Chang and Hung (2009).

A catastrope equity put option with maturity T has payoff

P̆T = max [K − ST ; 0] 1LT >ϒ, (3.1)

where ST is the stock price, LT is the total loss of the insureds due only to catastrophic
events during the life of the option, and K is the strike at which the issuer has to buy
the underlying stock if the total loss due to catastrophe is bigger than the level ϒ .
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3.1 Real-world dynamics

Let S = (St )t≥0 be the stock price process of the insurance company that wants to
protect itself from cumulated losses caused by the occurrence of catastrophic events

St = S0 exp (Rt ) , (3.2)

where R = (Rt )t≥0 is the log-return process under the real-world probability measure
P . Define the log-return process of the underlying asset R = (Rt )t≥0 as

Rt = μt + J̃t
= μt + [Jt − tψJ (−i)] ,

(3.3)

where J = (Jt )t≥0 is a P-Lévy process, ψJ (−i) is its characteristic exponent evalu-
ated at −i , and i is the imaginary unit.
Since

E
[
exp(Jt )

] = exp [tψJ (−i)] ,

the process J̃ = ( J̃t )t≥0 is a P-martingale, the P-expectation of the stock price can
be written as

E[St ] = S0E
[
exp (Rt )

]

= S0 exp (μt) .

Then, we model the process J = (Jt )t≥0 under the measure P as

Jt = δWt + Xt − qLt , (3.4)

where

• W = (Wt )t≥0 is a standard Brownian motion;
• X = (Xt )t≥0 = (BGt )t≥0 is a pure jump Lévy process built by time changing a
generalized Brownian motion B = (Bt )t≥0:

Bt = θ t + σ W̃t ,

with an independent subordinator G = (Gt )t≥0 such that Gt ∼ �(αt, β), and
where W̃ = (W̃t )t≥0 is a standard Brownian motion independent from both W =
(Wt )t≥0 and G = (Gt )t≥0; thus, the process X = (Xt )t≥0 can be represented as

Xt = BGt = θGt + σ W̃Gt ;
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• L = (Lt )t≥0 is a compound Poisson process

Lt =
Nt∑

j=1

Y j ,

where N = (Nt )t≥0 is a Poisson process with jump intensity λ and Y j -s are
independent and identically distributed �(γ, η) random variables representing the
jumps size;

• W = (Wt )t≥0, X = (Xt )t≥0, and L = (Lt )t≥0 are mutually independent pro-
cesses;

• q is a conversion factor that represents the percentage drop in the share value price
per unit of catastophic loss;

• δ, σ , α, β, λ, γ and η are positive constants, and θ ∈ R.

More precisely, the process X = (Xt )t≥0 is a variance gamma (VG) process (see
Schoutens 2003 and Bianchi et al. 2019 and reference therein).

By considering (3.3) and (3.4), the physical log-return process can be written as

Rt = mPt + δWt + Xt − qLt , (3.5)

with characteristic function (see the Appendix)

ψRt (u) = exp

{[

iumP − 1

2
δ2u2 + λ

((
1 + iuq

η

)−γ

− 1

)]

t

}

×
[
1 − 1

β

(
iuθ − 1

2
u2σ 2

)]−αt

,

(3.6)

where

mP = μ − 1

2
δ2 + α ln

[
1 − 1

β

(
θ + 1

2
σ 2

)]
− λ

[(
1 + q

η

)−γ

− 1

]

.

Thus, the stock log-return process R = (Rt )t≥0 is decomposed into a linear com-
bination of three independent Lévy processes:

• a Lévy process with infinite variation and continuous trajectories, that is, the arith-
metic Brownian motion B̃ = (B̃t )t≥0: B̃t = mPt + δWt ;

• a pure jumpLévyproceswithfinite variation and infinite activity (i.e.with infinitely
jumps in every finite time interval), that is, the VG process X = (Xt )t≥0;

• a pure jump Lévy process with finite variation and finite activity, that is, the com-
pound Poisson process L = (Lt )t≥0, which represents the total loss process due
to catastrophic events.

We refer to this model having a Brownian, a VG, and a compound Poisson compo-
nent as BVG Poisson model.
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Since every linear combination of Lévy processes is still a Lévy process, then the
log-return of the stock is a Lévy process. The component X = (Xt )t≥0 makes the
dynamics of the stock price process more consistent with the empirical behavior of
market prices compared to jump-diffusion models. In jump diffusion models used in
the pricing of CatEPuts, the underlying asset price exhibits continuous trajectories
characterized by rare points of discontinuity caused by negative jumps due to the
occurrence of catastrophic events. Thus, a jump on the price occurs only in case of a
loss due to a catastrophe. As a consequence, in this kind of models the stock log-return
distribution shows always a negative asymmetry. Furthermore, the only source of fat
tails is the risk of catastrophic losses. However, in the real-world market prices evolve
in continuous time through many small jumps and a smaller number of big jumps.
The occurrence of big jumps can have several sources not attributable to catastrophic
events. Additionally, although rarer than negative, positive huge jumps can occur too.
The addition of the component X = (Xt )t≥0 in the log-return process allows to get
a realistic asset price dynamics and a flexible infinitely divisible distribution able to
capture different sources of asymmetries and fat tails characterizing the empirical
log-return distribution.

3.2 Risk neutral dynamics

Assuming the existence of a riskless asset providing a continuously compounded rate
of return, it is possible to show that a geometric Lévy model is arbitrage free and,
therefore, that there exists an equivalent martingale measure. However, exponential
Lévy option pricingmodels different fromgeometricBrownianmotion are incomplete.
Thus, the equivalent martingale measure is not unique. Since the real-world log-return
process contains a Gaussian component, among the possible equivalent martingale
measures, we can select the mean-correcting martingale one (see Schoutens 2003),
which is simply obtained by changing only the drift parameter mP to ensure that the
discounted underlying price process is a martingale under the risk neutral measure Q,
leaving all other parameters and processes not affected by the measure change. More
precisely, to get the Q-dynamics of the log-return, mQ has to be chosen in such a way
that

EQ[St ] = S0 exp
(
mQt

)
EQ [

exp(Jt )
]

= S0 exp
[(

mQ + ψJ (−i)
)
t
]

= S0 exp [(r − d) t] ,

that is, it is enough to set

mQ = r − d − ψJ (−i). (3.7)

Equivalently, to emphasize the correction of the P-drift, it is possible to rewrite (3.7)
as
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mQ = mP + r − d − μ,

where r and d represent the continuos risk-free rate and the continuos dividend yield
of the stock, respectively. Thus, the risk neutral log-return process R = (Rt )t≥0 can
written as

Rt = [r − d − ψJ (−i)] t + Jt ,

and the Q-characteristic exponent as

ψ
Q
R (u) = iumQ − 1

2
δ2u2 + λ

[(
1 + iuq

η

)−γ

− 1

]

−α ln

[
1 − 1

β

(
iuθ − 1

2
u2σ 2

)]
, (3.8)

from which it is immediate to get the Q-characteristic function as

φ
Q
Rt

(u) = exp
[
tψQ

R (u)
]
. (3.9)

Equation (3.9) plays a crucial rule in the pricing of CatEPuts because it will be used
to calibrate risk neutral log-return parameters to European market option prices on the
underlying stock following the procedure described in Sect. 4.2. Then, these param-
eters will be necessary to implement the CatEPuts pricing algorithm illustrated in
Sect. 4.3.

4 Empirical analysis

4.1 Data

In this subsection we describe the data used in the empirical analysis. We considered
the main Italian insurance company, that is Assicurazioni Generali (ticker I:G). We
obtained from Thomson Reuters Datastream daily dividend-adjusted closing prices
from January 2nd, 2019 to April 15, 2020 and market capitalization from January
2nd, 2020 to April 15, 2020. Furthermore, implied volatilities were extracted from
European call and put options written on the selected stock during the high volatility
period from January 2nd, 2020 to April 15, 2020 with one month maturity and with
moneyness between 80% and 120%. As risk-free interest rate we took the one-month
Euribor rate for the calibration and the interest rate swap with maturity one year for the
simulation study. Since we considered dividend adjusted closing prices, we assumed
that d = 0. By an empirical test it follows that under this assumption on dividends
the put-call parity continues to be fulfilled. We selected a single option maturity since
as observed by Carr et al. (2007) and Guillaume (2012), Lévy processes are suited to
replicate option prices for one single maturity, but are generally not able to reproduce
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Fig. 1 On the left panel, we report the implied volatility calibration error (ARPE) computed accross all
moneyness, the estimated KS distance and the average between the two error measures. On the right panel
we report market and model at-the-money implied volatilities. The calibration was conducted for each
trading day between January 2, 2020 to April 15, 2020

quoted option prices for the whole set of quoted maturities with sufficient precision,
particularly during high volatility periods.

4.2 Calibration

To estimate risk neutral parameterswe use both log-returns andEuropean option prices
on the stock representing the undelying asset of the CatEPut. Looking at equation (3.8)
it is evident that it is impossible to estimate the parameters q and η separately. Since

Y ∼ � (γ, η), then qY ∼ �
(
γ,

η
q

)
. Defining η̃ = η/q, the risk neutral log-return

characteristic function becomes

φ
Q
Rt

(u) = exp

{[

iumQ − 1

2
δ2u2 + λ

((
1 + iu

η̃

)−γ

− 1

)]

t

}

×
[
1 − 1

β

(
iuθ − 1

2
u2σ 2

)]−αt

.

Then, we calibrate the set of risk neutral parameters

�̂Q = (δ, θ, σ, α, β, λ, η̃, γ ) (4.1)

minimizing the distance between model and market implied volatilities (see Chap-
ter 11 in Bianchi et al. 2019) and such that the real-world parameters minimize the
Kolmogorov-Smirnov distance of stock log-returns (see also Tassinari and Bianchi
2014 and Bianchi and Tassinari 2020). More precisely, on the catastrophe put option
evaluation day, model parameters are calibrated by minimizing the average relative
percentage error (ARPE) under Q and the Kolmogorov-Smirnov distance (KS) under
P , that is

min
�Q

(
ARPE(�Q) + K S(�P )

)
, (4.2)
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Fig. 2 Calibration errors on January 2, 2020 and March 18, 2020

where

ARPE(�Q) = 1

number of observations

∑

Tn

∑

Km

|iV olmarket
TnKm

− iV olmodel
TnKm

(�Q)|
iV olmarket

TnKm

,

(4.3)

in which iV olmarket
TnKm

(iV olmodel
TnKm

) denotes the market (model) implied volatility of

the option with maturity Tn and strike Km , and �Q is the vector of the risk neutral
parameters. Furthermore, K S(�P ) in (4.2) indicates the KS distance given the set of
parameters �P derived from the risk-neutral parameters �Q by means of the mean-
correcting martingale measure. This calibration approach is more robust since at each
step considers also observed log-returns. The calibration conducted using only option
implied data may be problematic. Here the numerical errors are controlled by con-
struction. The algorithm is implemented by following the pricing method for standard
vanilla options proposed in Carr and Madan (1999) and the fast Fourier transform
needed to find the KS distance (see also Chapter 11 in Bianchi et al. 2019).

In the left panel of Fig. 1we report the daily timeseries of theARPE, theKS distance
and their average value of the calibration conducted between January 2, 2020 to April
15, 2020. In the right panel of Fig. 1 the daily timeseries of the market and model
at-the-money implied volatility over the same observation period is represented. The
calibration error in fitting the one-month volatility smile is on average around 6% and
the KS test rejects the null hypothesis only in a few cases (the p-value is on average
almost 0.7). In Fig. 2 we show the calibration errors at two different trading dates.
While the first date is selected during a calm period (January 2, 2020), the second is
selected during a stress period (March 18, 2020). The shapes of the implied volatilities
smile are different at the two calibration date: this is also reflected on the values of the
estimated risk-neutral parameters as shown in Fig. 3 as well as in the simulated path
shown in Sect. 4.3.

In Fig. 3we show the timeseries of the estimated parameters.Note that the parameter
λ represents the annual expected number of catastrophic events. To reduce the number
of parameters in the optimization problem, at each calibration date we assumed δ equal
to themonthly standard deviation estimated on the timeseries of last 250 observed daily
log-returns. The Gaussian part of the the process is kept fixed during the calibration
phase. Additionally, to mitigate the risk that big negative jumps due to the occurrence
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Fig. 3 Risk-neutral estimated parameters. The calibration was conducted on a daily basis for each trading
day between January 2, 2020 to April 15, 2020

of cathastrophes are captured by both the VG and the compound Poisson component,
we fix θ equal to zero, that is we consider a symmetric VG component and, as shown
in Sect. 3.1, the skewness of the price process is driven only by the compound Poisson
part. By following the results in Sect. 3.1, we set

mP = ω + λ
γ

η
,

whereω is the annualized empiricalmean computed over the 250 last daily log-returns.
While the knowledge q is irrelevant and only the value of η̃ matters to evaluate

European option, to price a catastrophic put option q is fundamental because it allows
to infer η from η̃. Following the approach proposed in Jaimungal and Wang (2006)
and applied in the related literature (see Chang and Hung 2009 and Burnecki et al.
2019), the trigger level of losses is assumed to be a multiple ν of the expected loss
size conditional on the occurrence of a catastrophic event, that is

ϒ = νE [L] = ν
γ

η
. (4.4)

The parameter ν is the trigger ratio level, which represents the ratio of the trigger level
to the expected loss amount conditional on the occurrence of a catastrophic event.

In the application, we set ν = 1 and ϒ as a portion p of the market value of the
company capital seeking protection on the day of issue of the catastrophe options, that
is

ϒ = pCs, s ≤ 0, (4.5)

where Cs represents the market capitalization of the company at time s. In the appli-
cation without loss of generality we set s = 0. By considering equations (4.4) and
(4.5) we can write
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Fig. 4 Simulated trajectories of the Gaussian, VG and compound Poisson component and the overall price
process over a five-year horizon (1250 trading days) based on the risk-neutral parameters estimated on
January 2, 2020 and March 18, 2020

η = γ

pCs
, (4.6)

and, since

qE [L] = γ

η̃
,

we obtain

q = γ

η̃pCs
. (4.7)

In the empirical study in Sect. 4.3, we consider p equal to 0.25 and, on the basis of the
estimated parameters on the market capitalization Cs of the company at the valuation
date s, we compute the value of q. It should be noted that the choice of the parameter
p influences the definition of catastrophic events.

4.3 Simulation

To price a CatEPut it is necessay to determine its discounted expected risk neutral
payoff

P̆0 = exp(−rT )EQ [
max [K − ST ; 0] 1LT >ϒ

]
.
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Fig. 5 Monte Carlo prices of at-the-money put and cat put options with one-year maturity between January
2, 2020 to April 15, 2020

To reach this task,we compute the option price bymeans ofMonteCarlo simulation

P̆0 � exp(−rT )

{
1

MC

MC∑

k=1

max
[
K − Ŝ(k)

T ; 0
]
1
L̂(k)
T >ϒ

}

, (4.8)

where MC is the numbers of scenarios (50,000 in our empirical exercise), Ŝ(k)
T and

L̂(k)
T are the simulated values of the underlying stock and of the total catastrophic loss,

respectively, at the option maturity, in the k-th scenario, under the probability measure
Q.

In particular, to implement equation (4.8), repeat the following steps for k =
1, 2, ..., MC :

• sample a random number z(k) out of a standard normal random variable Z ;
• sample a random number g(k) out of an independent gamma random variable

GT ∼ �(αT , β);
• sample a random number z̃(k) out of a standard normal random variable Z̃ , inde-
pendent from both Z and GT ;

• sample a random number n(k) out of an independent Poisson random variable
NT ∼ Poiss(λT );

• sample n(k) independent random numbers v
(k)
j out of an independent gamma ran-

dom variable V ∼ �(γ, η);
• compute

R̂(k)
T = mQT + δz(k)

√
T + θg(k) + σ

√
g(k) z̃(k) − q

n(k)∑

j=0

v
(k)
j ,

Ŝ(k)
T = exp

[
R̂(k)
T

]
,

L̂(k)
T =

n(k)∑

j=0

v
(k)
j ,
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Fig. 6 Monte Carlo prices of put and cat put options with one-year maturity with moneyness between 0.25
to 3 on January 2, 2020 and March 18, 2020

and

max
[
K − Ŝ(k)

T ; 0
]
1
L̂(k)
T >ϒ

.

Then, compute P̆0 as the average value of the simulated option payoffs and discount
it using the risk-free rate.

In Fig. 4 we report possible trajectories of the stock price process at two dates.
While the first date is selected during a calm period (January 2, 2020), the second is
selected during a stress period (March 18, 2020). It is evident the difference in terms
of jumps of the compound Poisson component.

On the basis of the risk-neutral parameters estimated in Sect. 4.2, on each trading
day between January 2, 2020 toApril 15, 2020we evaluate the price of put andCatEPut
options with maturity one year and moneyness between 0.25 and 3. In Fig. 5 we report
for both types of option the timeseries between January 2, 2020 to April 15, 2020 of
the at-the-money prices. In Fig. 6 we show the behavior on March 18, 2020 of the
prices of these two options for different moneyness levels. Additionally, we report the
ratio of their prices in order to show the differences among them.

It is interesting to note that the price of the CatEPut increases as the volatility
increases. This is a consequence of the trigger event probability that is bigger when
the volatility is higher. The ratio between at-the-money put and at-the-money CatEPut
sharply decreases from an average value around 5 in the first two months of 2020 to
an average value below 2 starting from the end of February, a period from which the
smile of Assicurazioni Generali became a smirk and the implied volatility of in-the-
money call options was above 100 in March 2020. This means that the option market
started quoting a stressed future stock behavior for both the insurance company and
the Italian equity market as a whole.
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In the third week of February, outbreaks of COVID-19 occured in Veneto and
Lombardy regions. In the same period it happened a drastic increase in the inten-
sity of the catastrophic risk (see the behavior of λ in Fig. 3) which produced a fairly
sudden reduction in the gap between the prices of the put options and the correspond-
ing CatEPuts (see Fig. 5). A moderate difference between the prices of put options
and CatEPuts emerged around mid-March, induced by a reduction in the intensity
of the catastrophic risk, which remained high if compared with the average over the
first month and half of the year. Probably, this effect was caused by the economic
support packages announced by the Italian Government in that period. However, on
March 20, the Prime Ministerial Decree was signed, containing new rules for the
containment of the contagion throughout the national territory, which provides for
the closure of non-essential (non-strategic) production activities. On March 25, fur-
ther economic activities–not included in the first Prime Ministerial Decree of March
20–were suspended. Simultaneously, a progressive increase in the λ parameter was
registered and the price of the CatEPut converged to that of the corresponding put. As
already observed in Sect. 4, the choice of the parameter p affects the CatEPuts price
behavior, because it directly influences the definition of catastrophic events. Even if
in the empirical study we analyzed only Assicurazioni Generali, by considering their
implied volatility dynamics, similar results may hold for other insurance companies
across Europe.

5 Conclusions

The purpose of thiswork is twofold. Firstwe provide a detailed description of strategies
and products to manage catastrophic risks and review the literature on this topic.
Second, we propose a CatEPut pricing model that considers information coming from
both the stock and the option market.

From a theoretical perspective, the model extends the jump-diffusion framework
used in the literature of CatEPuts, by modeling the underlying stock price dynamics as
a more general Lévy process with a diffusive component, an infinite activity jump part,
and a finite activity jump term, correlated to the catastrophic loss process. The model
produces more realistic stock price patterns compared to jump-diffusion models. The
log-return distribution is infinitely divisible and allows for asymmetries and heavy
tails. The sources of non-normality are a process with infinitely many jumps (i.e. the
variance gamma component) and a process with a finite number of large jumps (i.e.
the compound Poisson component) in every finite time interval.

From a practical perspective, we extend the literature on this subject by developing
a calibration procedure based on real data, which makes use of (1) time-series of stock
log-returns, (2) the capitalization of the insurance company in search of protection from
catastrophic losses, and (3) risk-neutral information extracted from quoted European
options on the stock.

We conduct an empirical analysis on one of themajor European insurance company
(i.e. Assicurazioni Generali) from January to April 2020, a period in which the implied
volatilities of in-the-money call options were high (i.e. well above 100), indicating that
the probability of the occurrence of a catastrophic event was also high. The proposed
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model is flexible enough to be able to explain observed stock log-returns and one-
month option implied volatilities in both calm and stressed periods. Finally, we show
that the ratio between plain-vanilla put and CatEPuts strictly depends on the shape of
the implied volatility smile and it varies over time.
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Appendix

In this Appendix, we show how to get the characteristic function (3.6) and we provide
the main cumulants of the log-return process.

Characteristic function

The stock log-return has been defined as

Rt = mPt + δWt + Xt − qLt .

Since R = (Rt )t≥0 is a linear combination of three independent processes, its charac-
teristic function can be computed as

φRt (u) = exp
(
iumPt

)
φδWt (u)φXt (u)φ−qLt (u),

and, therefore as

φRt (u) = exp
(
iumPt

)
φWt (δu)φXt (u)φLt (−qu). (5.1)

Since W = (Wt )t≥0 is a standard Brownian motion then

φWt (δu) = exp

(
−1

2
u2δ2t

)
. (5.2)

The process X = (Xt )t≥0 is a VG process and since it has been defined by changing
the physical time with a gamma stochastic time (i.e. with a gamma subordinator), its
P-characteristic function can be derived as

φXt (u) = exp [tψX (u)] = exp [tlG(ψB(u))] , u ∈ R,

where lG(ψB(u)) denotes the composition of the Laplace exponent of the subordinator
G = (Gt )t≥0 with the characteristic exponent of the generalized Brownian motion
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B = (Bt )t≥0. Since

lG(s) = −α ln

(
1 − s

β

)
, s < β,

and

ψB(u) = iuθ − 1

2
u2σ 2,

the characteristic function of the process X = (Xt )t≥0 is given by

φXt (u) =
[
1 − 1

β

(
iuθ − 1

2
u2σ 2

)]−αt

. (5.3)

Taking into account that

φLt (u) =
∞∑

j=0

(λt) j exp(−λt)

j ! [φY (u)] j ,

the characteristic function of a compoud Poisson process L = (Lt )t≥0 can be com-
puted as

φLt (u) = exp [λt(φY (u) − 1)] .

Since

φY (u) =
(
1 − iu

η

)−γ

,

the P-characteristic function of the total loss process L = (Lt )t≥0 is

φLt (u) = exp

{

λ

[(
1 − iu

η

)−γ

− 1

]

t

}

,

and, thus we obtain

φLt (−qu) = exp

{

λ

[(
1 + iuq

η

)−γ

− 1

]

t

}

. (5.4)

Due to independence of the processes W = (Wt )t≥0, X = (Xt )t≥0, and L =
(Lt )t≥0, the characteristic exponent of J = (Jt )t≥0 can be written as

ψJ (u) = ψδW (u) + ψX (u) + ψ−qL(u),
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and therefore computed as

ψJ (u) = ψW (δu) + ψX (u) + ψL(−qu). (5.5)

By considering (3.4) and (5.5), we get

mP = μ − ψJ (−i) = μ − ψW (−iδ) − ψX (−i) − ψL(iq), (5.6)

with

ψW (−iδ) = 1

2
δ2,

ψX (−i) = −α ln

[
1 − 1

β

(
θ + 1

2
σ 2

)]
,

and

ψL(iq) = λ

[(
1 + q

η

)−γ

− 1

]

.

Substituting equations (5.2), (5.3), (5.4), and (5.6) into (5.1) we get the characteristic
function (3.6).

Cumulants

From the cumulant characteristic function of Rt

ψRt (u) =
{

iumP − 1

2
δ2u2 + λ

[(
1 + iuq

η

)−γ

− 1

]

− α ln

[
1 − 1

β

(
iuθ − 1

2
u2σ 2

)]}

t,

it is possible to derive the first four cumulants of the log-return distribution on time
intervals of lenght t :

c1 [Rt ] = E [Rt ] =
[
mP + θ

α

β
− λq

γ

η

]
t,

c2 [Rt ] = var [Rt ] =
[
δ2 +

(
θ2 + βσ 2

) α

β2 + λq2
γ (γ + 1)

η2

]
t,

c3 [Rt ] = E [Rt − E [Rt ]]
3 =

[
θ

(
2θ2 + 3βσ 2

) α

β3 − λq3
γ (γ + 1) (γ + 2)

η3

]
t .

c4 [Rt ] = E [Rt − E [Rt ]]
4 − 3var2 [Rt ]

= 3

[(
2θ4 + 4βθ2σ 2 + β2σ 4

) α

β4 + λq4
γ (γ + 1) (γ + 2) (γ + 3)

η4

]
t .

The third and the fourth cumulants contain information about the asymmetry and the
heaviness of the tails of the log-return distribution. The skewness is generated by two
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independent sources: the variance gamma process and the compound Poisson process.
The impact of the first source depends on the sign of the parameter θ . Specifically, the
contribution to the skewness of the log-return distribution is positive, negative, or null
if θ is positive, negative, or null, respectively. The impact of the second source is always
negative. Thismeans that ourmodel is able to generate a distribution negatively skewed
if θ ≤ 0 or if θ > 0 and θ

(
2θ2 + 3βσ 2

)
α
β3 < λq3 γ (γ+1)(γ+2)

η3
, positively skewed if

θ > 0 and θ
(
2θ2 + 3βσ 2

)
α
β3 > λq3 γ (γ+1)(γ+2)

η3
, symmetric if θ

(
2θ2 + 3βσ 2

)
α
β3 =

λq3 γ (γ+1)(γ+2)
η3

. The fourth cumulant is strictly positive and heavy tails are generated
by the joint effect of a process with infinitely many jumps (i.e. the variance gamma
process) and of a process with a finite number of jumps (i.e. the compound Poisson
process) in every finite time interval.
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