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Abstract
In this paper the concept of quantile-based optimal portfolio selection is introduced and
a specific portfolio connected to it, the conditional value-of-return (CVoR) portfolio,
is proposed. The CVoR is defined as the mean excess return or the conditional value-
at-risk (CVaR) of the return distribution. The portfolio selection consists solely of
quantile-based risk and return measures. Financial institutions that work in the context
of Basel 4 use CVaR as a risk measure. In this regulatory framework sufficient and
necessary conditions for optimality of the CVoR portfolio are provided under a general
distributional assumption. Moreover, it is shown that the CVoR portfolio is mean-
variance efficient when the returns are assumed to follow an elliptically contoured
distribution. Under this assumption the closed-form expression for the weights and
characteristics of the CVoR portfolio are obtained. Finally, the introduced methods are
illustrated in an empirical study based on monthly data of returns on stocks included
in the S&P index. It is shown that the new portfolio selection strategy outperforms
several alternatives in terms of the final investor wealth.

Keywords Quantile-based return measure · VaR · CVaR · CVoR · Optimal
portfolios · Elliptically contoured distributions

1 Introduction

Since Markowitz (1952) posed the allocation problem of portfolio theory a large
number of extensions have been introduced (see, e.g., Fastrich et al. 2015; Kawas and
Thiele 2017; Bauder et al. 2021). In Markowitz (1952) a portfolio which provided the
smallest risk given an expected return was proposed. Here the variance of the portfolio
was used as a riskmeasure. The use of variance as a riskmeasure has been criticized by
practitioners and researchers in finance.One of the critiques is thatwhen an asset return
is large the variance scales accordingly. An asset with higher return does not need to
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be riskier. The variance also depends on the whole loss distribution which might not
be desirable. This has led to one of many extensions toMarkowitz portfolio theory, the
change of risk measure. One generalisation is that the variance has been replaced by a
quantile-based risk measure (see, e.g., Linsmeier and Pearson 2000; Rockafellar and
Uryasev 2002; Bonaccolto et al. 2018). The twomost commonly used are value-at-risk
(VaR) and conditional value-at-risk (CVaR) which is a consequence of the solvency
2 and basel 3 requirements. In solvency 2 restrictions on insurance companies are
imposed by using the VaR as a risk measure while the recent Basel requirements
enforce financial institutions to transition from VaR to CVaR for measuring risk.

Albeit a quantile-based measure for risk has generally been accepted by academics
and practitioners, the expected return is most commonly taken as a default for the
measure of profit. More recent advancements in portfolio theory such as Yu et al.
(2014) or Jiang et al. (2016), make use of the portfolio mean as a portfolio profit
measure. For the motivation of the applications of other measures of portfolio profit,
an investor is considered who delivers a certain capital or portfolio benchmark, such
as a monthly percentage return. In this case, a large loss (though rare) will heavily
distort the result. This does not imply that the portfolio is not probable to deliver
upon the requirements. It is merely a result from the portfolio return measure, since it
depends on all losses as well as returns. To our knowledge, most practitioners seldom
communicate requirements in terms of average or percentage return but rather w.r.t.
realised returns in relation to benchmarks. From this perspective it is more natural
to communicate aims and targets in terms of probabilities to achieve a certain profit
over some specified time horizon. With this argument the portfolio mean is essentially
replaced by a returnmeasure that is based on quantiles, which is the primarymotivation
for the problem at hand. Ideas such as these have been considered in continuous time,
e.g., He and Zhou (2011), but to our knowledge no portfolios in a static single-period
setting have been investigated. A second motivation to quantile-based return measures
is when the portfolio distribution is complicated, such as a skew or a mixture of
distributions, which has recently gained attention. References such as Adcock (2010)
or Eling (2014) amongst others investigate these phenomenas and find that skewness
seems to be present in return distributions, especially for data in higher frequencies.
If skewness should be accounted for or not is of course for the investor to decide and
can easily be accounted for in the framework proposed in the paper.

Moreover, since the parameters of the data-generating model are usually not known
when a portfolio is to be constructed, one must use their estimates to realise the
positions. As an estimate, the sample mean is known to be poor in terms of stability
and convergence when compared to the quantities used for constructing risk measures,
such as the covariance matrix (see, e.g., Merton 1980; Best and Grauer 1991; Chan
et al. 1999; Bodnar et al. 2017, 2018b, 2019a). Although the investor can use an
improved estimator for the mean vector (cf., Bodnar et al. 2019b), it will still take two
tails of the portfolio return distribution into account and will not answer question why
not to include another return measure in the portfolio selection problem.

Portfolios using quantile-based risk measures in a single-period setting together
with themean as a returnmeasure have been studied in Alexander and Baptista (2002),
Alexander and Baptista (2004) and Yao et al. (2013) to name a few. Alexander and
Baptista (2002) investigated a mean-VaR portfolio selection problem under Gaussian
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returns. The authors used the mean as a return measure while minimizing the risk,
measured by VaR. Alexander and Baptista (2004) then extended their work from
2002 by considering the mean-CVaR portfolio under Gaussian returns. Huang et al.
(2010) considered a robust version of the portfolio selection problem, placing bounds
on the unknown parameters of interest while considering the mean-CVaR portfolio
selection problem. Since Rockafellar and Uryasev (2002) showed that the CVaR has
the property of being coherent (convex) under weak conditions imposed on the asset
return distribution, a number of optimal mean-CVaR portfolios have been suggested
in the literature which do not rely on the precise definition of the portfolio return
distribution in their construction. In particular, the unknown distribution function of
the portfolio return is replaced by the empirical distribution function which depends
on the historical data on asset returns only. Yao et al. (2013) thereafter considered
another nonparametric mean-CVaR portfolio by using kernel density estimators to
approximate the true density of portfolio return.

We introduce the conditional value of return (CVoR) portfolio which is solely
constructed from quantile-based measures. The mean is replaced by a quantile-based
measure which depends on the positive part of the portfolio return distribution. The
risk is constrained by using a quantile-based risk measure. By doing so both tails of
the portfolio return distribution are taken into account. To our knowledge, no such
portfolio selection problem exists in the literature for a single-period setting. The aim
is to show the applicability and flexibility of such a portfolio for investors who are
interested inmaximizing their profitwhile constraining their risk. This is in accordance
with the modern portfolio theory of Markowitz (1952).

TheCVoRportfoliowill also be connected to thework ofMerton (1972)whoproved
that the Markowitz portfolio lies on the efficient frontier, a parabola in the mean-
variance space. Merton also showed that the parabola is completely determined by a
set of three parameters (see, e.g., Bodnar and Schmid 2009; Font 2016; Bodnar et al.
2018a). One of which determines the shape of the parabola and the other two specify
the location of the parabola vertex. The properties of the parameters that constitute the
efficient frontier have been widely investigated under different assumptions. Bodnar
andGupta (2009) derived the parametric form of the efficient frontier under elliptically
distributed asset returns which will be connected to the CVoR portfolio obtained under
the same distributional assumption.

The remainder of the paper is outlined as follows. In Sect. 2 the CVoR portfolio is
presented in its most general form. Here, the implications of using such a portfolio is
discussed. In Sect. 3 a special case of the CVoR portfolio is presented when assuming
that the asset returns follow an elliptically contoured distribution. Under this assump-
tion one can connect the CVoR portfolio to the efficient frontier in the mean-variance
space and give a closed-form solution to the portfolio weights and its characteristics.
A numerical illustration is given in Sect. 4 and the paper ends with a number of closing
remarks in Sect. 5.
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2 The conditional value of return portfolio

In this section the conditional value of return is defined and the corresponding portfolio
selection problem is introduced, which extends the class of quantile-based portfolio
choice problems discussed in Alexander and Baptista (2002), Alexander and Baptista
(2004) and Huang et al. (2010). Let x be p-dimensional vector consisting of the
asset returns with absolutely continuous cumulative distribution function and let w
be the p-dimensional vector of portfolio weights. The portfolio return is defined as
a random variable X = X(w) := w�x for a given set of weights w. Note that X
is affine in w, which can of course be extended to a function f (w, x). The affine
structure is commonly used in practice and we will therefore continue using it. Let
Y = Y (w) := −X be a random variable representing the loss of X . If FZ (·) denotes
the cumulative distribution function for the random variable Z , then the Value-at-
Risk (VaR) is defined as VaRβ(Y (w)) := inf y{FY (y) ≥ β}, β ∈ (0, 1). Another
most commonly used quantile-based risk functional is the Conditional Value-at-Risk
(CVaR). For a continuous random variable the CVaR is defined by

CVaRβ(Y (w)) = E[Y (w)|Y (w) ≥ VaRβ(Y (w))]. (1)

The definition is a special case of (Proposition 6, Rockafellar and Uryasev 2002)
where the authors showed that the the CVaR is a coherent functional for a general loss
distribution (see, e.g., Artzner et al. 1999) and investigated its properties as a function
of the portfolio weights w.

Note that there is nothing in their proofs limiting the interpretation of the random
variable Y (w) as a return/profit instead of a loss. If one does so, then all consecutive
results of Rockafellar and Uryasev (2002) will hold. As a result, one can define the
functional (1) as a return/profit measure instead of a risk. Formally, the Conditional
Value-of-Return (CVoR) is defined by

Definition 1 Let α ∈ (0, 1) and define VoRα(X(w)) := inf y{FX(w)(y) ≥ α} as the
Value-of-Return. The Conditional Value-of-Return (CVoR) is defined as

CVoRα(X(w)) = E[X(w)|X(w) ≥ VoRα(X(w))] (2)

From (2) one can see that the ordinary portfolio return E[X(w)] is a special case
of the CVoR. This follows by taking the limit limα→0 CVoRα(X(w)) = E[X(w)]
(which is an analogy with letting β → 1 for CVaR). The intuition is the same as in the
case of quantile-based risk measures. It excludes information about extreme negative
values in the measure of return since they have been already accounted for in the risk
measure. The confidence level α connects to what the investor can deliver at what
probability but also how much of the distribution that should be excluded. It can be
seen as a hyperparameter of the portfolio selection problem.

Let ρα2(X(w)) denote a quantile-based risk measure at the significance level α2
constructed for the loss distribution of X(w). There may be distributions or quantile-
based risk measures which are independent of the value of α2, which are included in
this notation. In the context of quantile-based risk measures, the significance level α2
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can informally represent a connection to the probability of losses. The interpretation
is simpler in the context of portfolio selection. Consider the following optimization
problem

max
w∈W

CVoRα1(X(w))

ρα2(X(w)) ≤ v0,
(3)

whereα1, α2 ∈ (0, 1) and v0 is the largest loss the investor iswilling to place under risk.
The risk constraint reflects the investors behaviour towards risk. The value of α2 would
indicate that a loss, which happens with probability α2, should not exceed a certain
amount, here denoted v0. The constraint setW := {w : hi (w) = 0, i = 1, ...,m, w ∈
Rp} includes all possible vectors of portfolio weights w which fulfill m constraints
hi (w) = 0, i = 1, ...,m, which might be imposed on the portfolio structure. One
of such constraints which is usually present in portfolio theory is that the sum of the
weights is equal to onew�1−1 = 0, i.e., thewhole investor’swealth is shared between
the selected assets. Other examples of constraints hi (w) = 0 might include position
restrictions, cost models or the specification that the weights should be normalized
appropriately. The optimization problem (3) and its optimal solution will henceforth
be called the CVoR portfolio. The CVoR portfolio can be seen as an extension of the
mean-variance portfolio but with quantile-based measures for both portfolio return
and portfolio risk. By optimizing towards CVoRα1(X(w)) and constraining the risk in
terms of ρα2(X(w)), both tails of the portfolio return distribution are accounted for.

The main idea behind the approach is to separate the influence of the right and left
tails of the portfolio return distribution in the investment decision process. One of the
classical criticism of the variance as a risk measure is that it takes both tails of the
asset return distribution into account, while large positive values of portfolio return
should not be treated as a risk. Since the left tail of the portfolio return distribution
has been used for the determination of the risk, the idea behind the CVoR portfolio is
to use the right tail of the portfolio return distribution to compute the portfolio profit.

It is expected that the CVoR portfolio will have a higher risk than the portfolio
with the smallest VaR (CVaR), which is in line with the modern portfolio theory of
Markowitz where optimal portfolios are determined by maximizing the return for the
given value of variance or my minimizing the variance for the given level of expected
return. A special case of Markowitz’s optimal portfolios is the global minimum vari-
ance portfolio, i.e. the optimal portfolio with the smallest possible variance. Similarly,
the idea behind the CVoR portfolio is to maximize the level of the return under the
constraint imposed on the risk. In the special case, when the investor is fully risk
averse, he/she will choose to invest into the portfolio with the smallest risk measure
presented as the VaR or CVaR. To this end it is noted that if α1, α2 → 1 and CVaR is
chosen as a risk measure in (3), then the optimization problem (3) coincides with the
Markowitz problem.

Throughout this paper the following assumptions on W and the risk functional ρ

are made to ensure the existence and the uniqueness of the solution of the optimization
problem (3). This places some restrictions on the investor, who needs to verify that
the constraints they use are practically viable.
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Assumption 1 The set W ∪ {w : ρα2(X(w)) ≤ v0} �= ∅.
Assumption 2 The functions hi (w), i = 1, ...,m that constitute W are convex and
differentiable.

Assumption 3 If there exists a gradient of ρα2(X(w)) then it, together with the gradi-
ents of hi (w), i = 1, ...,m are linearly indpendent at any local optimum of (3).

From the results of Rockafellar and Uryasev (2002) necessary and sufficient condi-
tions for the existence of the CVoRportfolio are retrievedwhen ρα2 (X(w)) is chosen to
be the CVaR. These are summarized in Theorem 1, whose proof follows immediately
from the proof of the Karush–Kuhn–Tucker (KKT) conditions presented in Theorems
4.3.7 and 4.3.8 of Bazaraa et al. (2013).

Theorem 1 Let ρα2(X(w)) = CVaRα2(−X(w)) as defined in (1). A portfolio w∗ is a
global solution to (3) if and only if there exists scalars λi , i = 1, 2, ...,m+1 such that

∇ CVoRα1(X(w∗)) + λ1∇ρα2(X(w∗)) +
m+1∑

k=2

λk∇hi (w) = 0 (4)

λ1
(
ρα2(X(w∗)) − v0

) = 0

λ1 ≥ 0 (5)

By construction, the CVoR portfolio inherits sufficient and necessary conditions
under a general continuous return distribution. Not only does it imply an extreme
flexibility in terms of modelling in the context of the CVoR portfolio, but it also gives
great comfort in terms of its economical applicability. If an investor needs to work
in the context of the new Basel requirements, then he/she will choose the CVaR as a
risk measure. The investor can then be sure that the solution and optimum of (3) is the
unique maximum. He/she cannot do any better. This result also gives some indication
to what set of equations should be solved to obtain such a portfolio.

The result of Theorem 1 is not limited to the use of CVaR as a risk measure.
However, the practical relevance of the CVoR portfolio is then lost (to some extent)
because of the Basel requirements. As long as the investors can limit themselves to a
certain class of risk measures, the results of Theorem 1 still apply:

Remark 1 The results of Theorem 1 holds if ρα2(X(w)) is a coherent risk measure.

An example of risk measures that are coherent is the class of spectral risk measures.
For a more thorough introduction to spectral risk measures, see e.g. Acerbi (2002) or
Adam et al. (2008).

In an insurance context, European insurers have to follow the Solvency 2 regula-
tion. The riskmeasure is now chosen to be the Value-at-Risk (VaR). All quantile-based
risk measures are not obviously coherent (convex), see, e.g., Rockafellar and Urya-
sev (2000) and one such example is the VaR. This poses several difficulties for
the construction of the CVoR portfolio under a general return distribution when
ρα2(X(w)) = VaRα2(−X(w)) in (3), since the distribution function FX(w)(x) may
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contain atoms. However, by imposing regularity conditions one may provide some-
what weaker conditions in comparison to Theorem 1. Under these assumptions, a
verification type theorem is presented for the CVoR portfolio using the VaR as a risk
measure.

Theorem 2 LetX denote the class of random variables which are absolutely continu-
ous, have support onRp andwhose cumulative distribution function is quasiconcave1.
Let ρα2(X(w)) = VaRα2(−X(w)) and assume that the return distribution of x belongs
toX . A portfoliow∗ which fulfills theKarush–Kuhn–Tucker conditions of (3) is a global
optimum.

Proof By absolute continuity, the constraint in the optimization problem (3) can be
rewritten as 1 − α2 ≤ FX(w)(v0). By Theorem 4.39 of Shapiro et al. (2009) the
constraint is a quasiconcave function of w and continuous on its whole domain. The
rest of the proof follows from the proof of Theorem 4.3.8 of Bazaraa et al. (2013). �


The sufficient conditions give us some comfort in the applicability of the CVoR
portfolio under Solvency 2. The class of absolutely continuous distributions is large.
Distributions of complicated forms, such as skew, fat tailed or mixture of distributions
are covered. Note that the assumption that the cumulative distribution function of
asset returns is quasiconcave in turn implies that the cumulative distribution function
of the portfolio return is also quasiconcave. An example of quasiconcave distribution
functions is the family of log-concave distribution functions, such as the log-normal
or log-t distribution.

One specific class of distributions that has been widely considered in financial
applications is the elliptically contoured distribution, which is quasiconcave. Some
examples of applications and reviews of the topic are Owen and Rabinovitch (1983),
Hamada and Valdez (2008) and Gupta et al. (2013). In the next section, an analytical
solution to (3) under this flexible class of probability distributions is derived.

3 The CVoR Portfolio for elliptically contoured distribution

3.1 Elliptically contoured distributions

If a random vector y has the following characteristic function

E[exp(it�y)] = exp{iμ�t}φ(t�Dt), for t ∈ Rp,

it is said to have a p-dimensional elliptically contoured distribution with location
parameterμ, dispersion matrixD and the function φ(·) determines a specific family of
elliptical distributions. In the following this general class of multivariate distributions

1 Let r : S → R where S is a convex subset ofRp . The function r is quasiconcave at x∗ ∈ S if

r(λx∗ + (1 − λ)x) ≥ max(r(x∗), r(x))

for each λ ∈ (0, 1) and each x ∈ S.
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is denoted by ECDp(μ,D, φ(·)). If the second moments of y exist, thenμ = E[y] and
� = Var[y] = γ 2D with γ = √−φ′(0)/2. Moreover, assuming that y has a density
fy(·), then

fy(z) = |D|−1/2g((z − μ)�D−1(z − μ)). (6)

where g(·) is the density generator. For the interested reader, the technical conditions
when y actually has a density can be found in Fang and Zhang (1990). In the following
it is assumed that the density exists.

Elliptically contoured distributions constitute a large class of multivariate (and
also matrix-variate) distributions. Some examples of these are the multivariate normal
distribution, the t-distribution and the multivariate Laplace distribution [see, e.g., Fang
andZhang (1990)]. Elliptically contoureddistributions havemanydesirable properties.
One of interest is the following: If Y = (m�y−m�μ)/

√
m�Dm, then the distribution

of Y is independent of the vector ofm [see, Theorem 2.6.3 of Fang and Zhang 1990].
It only depends on the specific family of elliptical distributions y belongs to. The
canonical example of this property is the multivariate normal distribution.

In the next section the closed form solution of the CVoR portfolio choice problems
is derived when the asset returns follow an elliptically contoured distribution.

3.2 Closed form solution

In this section we will consider the class of elliptically contoured distributions which
are absolutely continuous and for which the second moments exist.

The expected return of the portfolio with weights w is given by E[X(w)] = w�μ

and its variance by Var(X(w)) = w��w. Let dα1 be the α1-percentile of the stan-

dardized portfolio return X
d= (w�x − w�μ)/

√
w�Dw (which is independent of w)

and fX (·) together with FX (·) denote the density and cumulative distribution function
of X , respectively. Throughout this section assume that W = {w : w�1 = 1}. When
using CVaR as a risk measure the optimization problem in (3) can be rewritten as

max
w

w�μ + kα1

√
w��w

s.t . w�1 = 1

− w�μ − k1−α2

√
w��w ≤ v0

(7)

where

kα =
∫∞
dα

x fX (x)dx

(1 − α)γ
, dα = F−1

X (α).

The risk measure CVaR can easily be changed to VaR in this setting. This is simply
done by replacing the constant k1−α2 with d1−α2 in the risk-constraint. For this reason,
the theoretical results are derived when CVaR is used as a risk measure and it is noted
that they hold true with minor modification when VaR is used as a risk measure.
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Since the risk constraint is a convex function of w, there exists a global optimum.
A question is whether or not the risk constraint results in equality. It holds that

Lemma 1 Let wCVoR denote the global optimum of (7). Then it holds that

−w�
CVoRμ − k1−α2

√
w�
CVoR�wCVoR = v0,

the risk constraint of (7) results in equality, i.e., the constraint is active.

Proof Let W = {w : w�1 = 1,−w�μ − k1−α2

√
w��w ≤ v0}, i.e. the set of

weights which fulfills the constraints of (7) and let Wv0 = {w : w�1 = 1,−w�μ −
k1−α2

√
w��w = v0} denote its boundary. It holds that

wCVoR = arg max
w∈W

{
w�μ + kα1

√
w��w

}

= arg max
w∈W

{(
1 − kα1

k1−α2

)
w�μ − kα1

k1−α2

(
−k1−α2

√
w��w − wTμ

)}

where − kα1
k1−α2

> 0 since α1, α2 ∈ (1/2, 1).

Assume that the statement of the lemma does not hold, i.e. there exists v1 < v0
such that for the solution w∗

CVoR of the optimization problem

w∗
CVoR = arg max

w∈W\Wv0

{
w�μ + kα1

√
w��w

}
,

it holds that

−w∗ �
CVoRμ − k1−α2

√
w∗ �
CVoR�w∗

CVoR = v1.

Then, the application of − kα1
k1−α2

> 0 yields

(
1 − kα1

k1−α2

)
w∗ �
CVoRμ − kα1

k1−α2

(
−k1−α2

√
w∗ �
CVoR�w∗

CVoR − w∗ �
CVoRμ

)

=
(
1 − kα1

k1−α2

)
w∗ �
CVoRμ − kα1

k1−α2

v1 <

(
1 − kα1

k1−α2

)
w∗ �
CVoRμ − kα1

k1−α2

v0

≤ max
w∈W

{(
1− kα1

k1−α2

)
w�μ− kα1

k1−α2

v0

}
=
(
1− kα1

k1−α2

)
max
w∈W

{
w�μ

}
− kα1

k1−α2

v0.

Since w�μ is a linear function and W is a bounded set, then maxw∈W
{
w�μ

}

is attained at the boundary of W , that is in Wv0 . Consequently, the solution of
maxw∈W

{
w�μ

}
satisfies the constraint −w�μ − k1−α2

√
w��w = v0 and

max
w∈W\Wv0

{
w�μ + kα1

√
w��w

}
< max

w∈W

{
w�μ + kα1

√
w��w

}
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The last inequality contradicts that the solution of (7) is an interior point of W . �

By Lemma 1 one may impose an equality on the risk constraint in the CVoR

portfolio, which is done throughout the remainder of this section. A consequence of
the equality constraint is that the CVoR portfolio can be attained by considering an
easier optimization problem. Let W denote the constraint set of (7). Then

wCVoR = arg max
w∈W

{
w�μ + kα1

√
w��w

}

= arg max
w∈W

{(
1 − kα1

k1−α2

)
w�μ − kα1

k1−α2

v0

}
= arg max

w∈W

{
w�μ

}
,

where it is used that − kα1
k1−α2

> 0 since α1, α2 ∈ (1/2, 1). Hence, the CVoR portfolio

retrieved from (7) does not depend on kα1 , which can be explained by the symmetry
of the distribution of x. Therefore, if a solution exists to (7) then the same solution can
be obtained by solving

max
w

w�μ

s.t . w�1 = 1

− w�μ − k1−α2

√
w��w = v0.

(8)

The above problem is closely related to the portfolio discussed in Alexander and
Baptista (2002) and Alexander and Baptista (2004). Here, the authors introduced the
mean-VaR and mean-CVaR efficient frontier in the context of an equivalent opti-
mization problem to (8) under the assumptions of normality. The authors considered
minimizing the portfolio CVaR (VaR) with a constraint on the expected return. Under
the assumption of Gaussian returns they showed that the portfolio is mean-variance
efficient. To show that the same holds for the CVoR portfolio, let

wGMV = �−11

1��−11
, RGMV = μ��−11

1��−11
, VGMV = 1

1��−11

be the weight, the expected return and the variance of the global minimum variance
(GMV) portfolio. For each point (R, V ) ∈ R × R+, the efficient frontier in its para-
metric form, is defined as

(RGMV − R)2 = s (V − VGMV ) (9)

where s = μ�Qμ and Q = �−1 − (�−111��−1)/1��−11 is the slope parameter
of the efficient frontier. Note that for the mean-variance efficient frontier to exist it
should hold that μ is not proportional to 1 which is included in Assumption 3. For
all practical purposes this poses no issue, it is merely technical. If the assumption is
false, then the efficient frontier would collapse and become a line in the mean variance
space. The only optimal portfolio is then the GMV portfolio.
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In the next step to derive a closed-form solution it is shown that the CVoR portfolio
is mean-variance efficient under elliptically distributed returns.

Theorem 3 Assume that x ∼ ECDp(μ,�, φ(·)), where rank(�) = p and let wCVoR

denote the CVoR portfolio. If w�
CVoRμ > RGMV and k21−α2

> s, then the CVoR
portfolio is mean-variance efficient.

Proof The Lagrangian of (8) is defined as

L(w, λ1, λ2) = w�μ + λ1

(
−w�μ − k1−α2

√
w��w − v0

)
+ λ2(w�1 − 1). (10)

Computing the gradient and setting it to the zero vector yields the following system
of equations

⎧
⎪⎪⎨

⎪⎪⎩

μ − λ1

(
μ − kα2

�w√
w��w

)
+ λ21 = 0

−w�μ − k1−α2

√
w��w − v0 = 0

w�1 − 1 = 0.

(11)

Since the Lagrange parameters are arbitrary, let

λ̃1 := λ1 − 1

λ1kα2

√
w��w and λ̃2 := −λ2

√
w��w

λ1kα2

,

where kα2 = −k1−α2 since the distribution of w�x is symmetric around w�μ. Then
the first equation in (11) becomes

w = λ̃2�
−11 + λ̃1�

−1μ (12)

and by using the second and third equations of (11), Eq. (12) can be rewritten as

λ̃21��−11 + λ̃11��−1μ = 1, (13)

λ̃2μ
��−11 + λ̃1μ

��−1μ = kα2

√
w��w − v0. (14)

Let μ0 = w�μ. Since μ0 = kα2

√
w��w − v0, (13) and (14) yield

(
λ̃2

λ̃1

)
=
(
1��−11 1��−1μ

μ��−11 μ��−1μ

)−1 ( 1
kα2

√
w��w − v0

)

= 1

s

(
μ��−1μ

1��−11
− μ0RGMV

μ0 − RGMV

)
, (15)

and

μ��−1μ

1��−11
= μ��−1μ

1��−11
−
(

μ��−11

1��−11

)2

+
(

μ��−11

1��−11

)2

= VGMV s + R2
GMV .
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Hence,

(
λ̃2

λ̃1

)
= 1

s

(
VGMV s + R2

GMV − μ0RGMV

μ0 − RGMV

)

which implies

w = wGMV +
(
(λ̃2 − VGMV )�−11 + λ̃1�

−1μ
)

= wGMV + μ0 − RGMV

s
�−1μ − μ0 − RGMV

s
RGMV�−11.

Since �−11RGMV = �−111��−1μ/1��−11 it can be further simplified to

wCVoR = wGMV + μ0 − RGMV

s
Qμ,

where Q = �−1 − �−111��−1/1��−11. Given that μ0 > RGMV , the portfolio
wCVoR is mean-variance efficient. �


The constraints w�
CVoRμ > RGMV and k21−α2

> s in the statement of Theorem 3
guarantee that the CVoR portfolio lies on the efficient frontier, not only on the mean-
variance parabola. The following theorem provides the closed-form solution to the
CVoR portfolio.

Theorem 4 Assume that x ∼ ECDp(μ,�, φ(·)), where rank(�) = p. Also, assume
that w�

CVoRμ > RGMV , α2 ∈ (1/2, 1), k21−α2
> s and v0 ≥ CVaRα2(X(wgmv)), then

the CVoR portfolio exists and it has the following weights and characteristics

wCVoR = wGMW + η

s
Qμ, (16)

RCVoR = E[Xw] = RGMV + η, (17)

VCVoR = Var[Xw] = w�
CVoR�wCVoR =

(
VGMV + η2

s

)
(18)

E[Xw|Xw > qα1 ] = RGMV + η + kα1

√(
VGMV + η2

s

)
, (19)

where RCVoR, VCVoR is the portfolio return and variance respectively, and

η =
(RGMV + v0)s +

(
k21−α2

s
(
(RGMV + v0)

2 + (s − k21−α2
)VGMV

))1/2

k21−α2
− s

(20)
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Proof By Theorem 3 it holds that

wCVoR = wGMV + μ0 − RGMV

s
Qμ. (21)

The portfolio wCVoR satisfies the CVaR constraint given by (8) and, hence,

− μ0 − k1−α2

√
w�
CVoR�wCVoR = v0 ⇔ w�

CVoR�wCVoR =
(

v0 + μ0

k1−α2

)2

.

(22)

Since wGMV�Qμ = 0 and μ�Q�Qμ = s, Eq. (22) can be further simplified to

(
VGMV + (μ0 − RGMV )2

s

)
=
(

v0 + μ0

k1−α2

)2

. (23)

To solve (23) for μ0, we need to solve a second degree polynom expressed as

a1μ
2
0 − 2a2μ0 + a3 = 0 (24)

where

a1=k21−α2
− s, a2= RGMV k

2
1−α2

+sv0 and a3=VGMV k
2
1−α2

s + R2
GMV k

2
1−α2

− v20s.

Assuming that k21−α2
> s, the solution to (24) is given byμ0 = (a2±

√
a22 − a3a1)/a1

where

a22 − a3a1 = 2k21−α2
RGMV v0s − VGMV k

4
1−α2

s + v20sk
2
1−α2

+ VGMV k
2
1−α2

s2 + R2
GMV k

2
1−α2

s

= k21−α2
s
(
(RGMV + v0)

2 + (s − k21−α2
)VGMV

)
.

Therefore the roots are equal to

μ0 =
k21−α2

RGMV + sv0 ±
(
k21−α2

s
(
(RGMV + v0)

2 + (s − k21−α2
)VGMV

))1/2

k21−α2
− s

.

(25)

Since the aim is to maximize the expected return of the portfolio, the first root is
optimal. Also if μ0 ∈ R, then the following needs to hold

k21−α2
s
(
(RGMV + v0)

2 + (s − k21−α2
)VGMV

)
≥ 0.
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The condition is equivalent to

v0 ≥ −RGMV +
√

(k21−α2
− s)

√
VGMV , (26)

and since
√

(k21−α2
− s) ≤

√
k21−α2

= −k1−α2 , the inequality v0 ≥ CVaRα2(XwGMV )

holds if (26) does. The characteristics RCVoR, VCVoR can be easily calculated by using
the closed-form expression of the portfolio derived CVoR portfolio weights. �


From Theorems 3 and 4 two especially interesting facts arise. When using CVaR
as a risk measure, the CVoR portfolio exists only if k21−α2

> s, and analogously

VaR exists if d21−α2
> s. The same inequality is presented in Bodnar et al. (2012) to

ensure the existence of the minimum CVaR portfolio. Alexander and Baptista (2002)
showed that the inequality d21−α2

> s is the criteria for existence of the minimum VaR
portfolio. Also, the CVoR portfolio puts a constraint on the constant v0 in order for it
to exist. This has many interesting economical interpretations. The investor is never
limited to small confidence levels α2, but he/she is limited in the choice of v0 given
that confidence level. This is intuitively appealing. If an investor wants to pick a large
confidence level, then he or she must be committed to place more capital at risk, i.e.,
a larger v0. The following proposition explains the behaviour of η through the choice
of v0 and α2.

Proposition 1 Assume that RCVoR > RGMV , v0 ≥ CVaRα2(X(wGMV )), α2 ∈
(1/2, 1), and k21−α2

> s. Then η is increasing in v0. If additionally k21−α2
> max{s, 2},

then η is decreasing in α2.

Proof First, it is noted that η is a composite function of the quantile function k21−α2
=

k2α2 which is increasing in α2. Further, η can be seen as a function of k = k21−α2
where

k has support {k > max{s, 2}} and the support of v is {v ≥ −RGMV + √
kVGMV }

given by

η(k, v) = g1(v) + √
g2(k, v)

g3(k)
,

where g1(v) = (RGMV + v)s ≥ √
kVGMV ≥ 0, g2(k, v) = ks((RGMV + v)2 − (k −

s)VGMV ) ≥ 0 and g3(k) = k − s ≥ 0 for all k and v from their supports.
It holds that η is increasing in v, since both g1(v) and g2(k, v) are increasing in v.

Moreover, it holds that g′
3(k) = 1,

∂g2(k, v)

∂k
= s((RGMV + v)2 − (k − s)VGMV ) − ksVGMV ≤ 0

and, hence,

∂η(k, v)

∂k
= − g′

3(k)

(g3(k))2

(
g1(v) +√g2(k, v)

)
+ 1

2g3(k)
√
g2(k, v)

∂g2(k, v)

∂k
< 0,

which proves the proposition. �
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Note that the constraint k21−α2
> max{s, 2} is equally conservative as k21−α2

> s for

all practical purposes. Since k21−α2
≥ d21−α2

and if the normal distribution is assumed,

then as long as α2 ≥ 0.95 then d21−α2
≥ (1.96)2 > 2. This proposition implies that the

characteristics of the CVoR portfolio are strictly increasing functions of v0 through
their dependence of η. An investor will accept more return and risk by increasing the
value of v0. In the context of the CVoR portfolio, a risk-averse investor might choose
v0 to be equal to the CVaR (or VaR) for the GMV portfolio for a given α2. He/she
might even be interested in placing less money at risk, thus decreasing their v0. The
constraint on the constant v0 in Theorem 4 can be replaced by a more tight one. The
investor can choose smaller values of v0 and still have that the CVoR portfolio exists.
This is displayed in the remark below.

Remark 2 Assume that x ∼ ECDp(μ,�, φ(·)), where rank(�) = p, and assume
that w�

CVoRμ > RGMV together with α2 ∈ (1/2, 1) such that k21−α2
> s. If

v0 ≥ −RGMV +
√

(k21−α2
− s)

√
VGMV (27)

then the CVoR portfolio exists.

The inequality follows immediately from the proof of Theorem 4. The CVoR port-
folio exists under a tighter constraint on v0, but the economical implications are
somewhat lost. There is a possibility to choose less capital at risk when construct-
ing the CVoR portfolio. Note that the constraint k21−α2

> s appears once again. One
can now show that if equality holds in (27) then under this assumption, the constant

η takes on the explicit form of
√
VGMV /(k21−α2

− s)s and the weights and the char-
acteristics of the CVoR portfolio change thereafter. Under this assumption, increasing
the confidence level α2 towards one implies that the CVoR portfolio tends towards the
GMV portfolio for both CVaR and VaR as a risk measure.

4 Numerical illustration

In this section the performance of the CVoR portfolio is investigated under different
circumstances and assumptions. Since the parameters of the data-generating process
are unknown quantities in practical applications, they have to be first estimated before
theCVoRportfolio is constructed. Thiswill introduce an additional uncertainty into the
considered optimal portfolio choice problem, so-called estimation error. Although the
incorporation of the estimation error into the optimization problem when an optimal
portfolio is constructed is itself an important topic of research, it is neglected in the
discussed numerical illustration and is left for future research. Throughout this section,
the only restriction imposed on the portfolio weights is that their sum is equal to one,
i.e.,W = {w : w�1 = 1}.

By convexity, the optimality of the CVoR portfolio choice problem is easily attained
under weak assumptions imposed on the return distribution by standard optimization
algorithms. In the context of the Basel requirements, the optimization problem can be
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solved for any distribution function. As discussed in Rockafellar and Uryasev (2002),
if one believes that the true distribution function of the portfolio return can be accu-
rately approximated by its sample counterpart, namely by the empirical cumulative
distribution function (ECDF), then the portfolio allocation problem (3) becomes a lin-
ear programming problem. Moreover, it is also possible to show a similar results for
the CVoR portfolio using the CVaR as a risk measure and approximating the unknown
distribution function of the portfolio return by the corresponding ECDF which is
constructed by employing a sample x1, x2, ..., xn of asset return vectors. Then, the
application of Theorem 10 in Rockafellar and Uryasev (2002) leads to

CVoRα(X1(w), X2(w), ..., Xn(w)) = min
q

{
q + 1

(1 − α)n

n∑

k=1

[Xk(w) − q]+
}

.

(28)

The risk measure (or our return measure) now depends on the sample Xi (w) = x�
1 w,

i = 1, ..., n only. By using (28) one can rewrite (3) and arrive at a linear programming
problem, whose result is presented in Lemma 2 given in the appendix.

ByTheorem2 there is still a guarantee on the optimality of theCVoRportfolio under
Solvency 2, using the VaR as a risk measure. The regularity conditions constrain the
random variables to absolutely continuous return distributions, implying that their
densities exist. An optimal portfolio w may then be found using algorithms such as
gradient ascent or Newton’smethod (ch. 8.2, Bazaraa et al. 2013) from the Lagrangian.
However, this relies on the fact that a large number of integrals can be evaluated, since
the portfolio return distribution is determined by a (potentially large) convolution of the
asset return distributions. The evaluation of the objective function may be costly and
time-consuming. A great deal of attention has been devoted to these types of problems
which are usually referred to as chance-constrained problems in the literature (with
their corresponding sample counterpart). Since these problems rely on a very different
set of algorithms, outside of the scope of this paper, the readers are referred to, e.g.,
Jünger et al. (2009), Boukouvala et al. (2016) or Xie and Ahmed (2018) for recent
advancements and an overview of how to solve these types of problems.

The data used in this empirical illustration consist of monthly returns from 80
randomly chosen stocks from an incomplete S&P500 asset universe of size 394. The
range of data is from the 1st of January, 2000 to the 1st of January, 2021. The universe
is incomplete due to the fact that not all 500 stocks were included in the S&P500 index
during the last 20 years.

In Fig. 1 a boxplot of the monthly log-returns on each stock is displayed. Although
it is hard to asses the univariate distribution of the asset returns visually, they seem to
be roughly symmetric. There are some very large losses as well as returns in the stocks
CCL andMGN. However, there is no reason to doubt these values and they will not be
removed from the sample. The first four sample moments of each asset return, namely
the sample mean, sample variance, sample skewness and sample (excess) kurtosis are
computed and shown in Fig. 2. A large portion of the means are positive, so one could
expect the portfolios to make a profit over the considered period of 20 years. Most of
the variances are small, as it is usually observed for asset returns in empirical studies.
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Fig. 1 Boxplot of the monthly log-returns

Fig. 2 Histogram containing moments for each univariate asset return series

One very rarely see movements larger than a few percent in monthly returns unless
there has been a structural break. In the second row the skewness for the univariate
asset returns is displayed whose values are concentrated in the interval from −1 to 0
showing the presence of small negative skewness in the univariate distribution of asset
returns. This is in line with finance theory, namely with the observation that loses tend
to be larger than gains, since loses tend to be more “unexpected”. We also observe that
the computed kurtosis coefficients belong to the interval from 0 to 5 indicating the
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Fig. 3 Location of the CVoR portfolio together with the benchmark portfolios on the efficient frontier

presence of heavy tails in the univariate distributions of the asset returns. In order to test
the symmetry of the multivariate distribution, Mardia’s test statistic for multivariate
skewness and kurtosis is computed. Both tests result in p-values close to 0 and as
such they reject the hypotheses that the skewness and the (excess) kurtosis in the
multivariate distribution are zero.

The performance of the suggested CVoR portfolio will be computed for different
risk measures (VaR, CVaR) at significance level α2 = 0.99 and compared to a number
of benchmark portfolios. These portfolios are the equally weighted (EW) portfolio,
global minimum variance (GMV) portfolio, maximum Sharpe ratio (SR) portfolio
and minimum VaR/CVaR (minVaR/minCVaR) portfolios computed at significance
level α2 = 0.99. Since all portfolios depend on different parameters, the absence of
dependency on a parameter is denoted by “-” in the table and figures.

The portfolios are constructed using a moving window approach. That is, the port-
folio weights are estimated using the past 180 observation and held for the next period
(month). The out-of-sample portfolio return is thereafter computed and then the new
portfolio weights are estimated, excluding the first observation in our time window but
including the latest one. Following this setup we compute 61 out-of-sample returns of
each portfolio considered in the study.

In Fig. 3 the efficient frontier is displayed for the randomly chosen 80 stocks
based on the first 180 observations. Since the number of portfolios is large, they
are grouped by “Portfolio” and “Type” in the legend of the figure. Three considered
portfolios lie below the efficient frontier. These portfolios are the EW portfolio and the
CVoRportfolios obtained following the nonparametric approachwithout imposing any
assumptions on the distribution of the asset returns. These findings are not surprising
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Fig. 4 Development of the investor wealth for the considered optimal portfolios. The significance level
used in the computation of VaR is set to α2 = 0.99

since there is no theoretical justification for either of these portfolios to be mean-
variance efficient. Moreover, the portfolios derived by minimizing risk measures are
located close to the vertex of the efficient frontier which is the GMV portfolio. In the
figure, the influence of the assumption of a parametric distribution imposed on the asset
returns is documented as well. The t-distribution with five degrees of freedom leads
to mean-variance optimal portfolios with the largest expected return and variance.

InFig. 4 the development of investmentwealth obtained after selecting the described
portfolio strategies is presented. The results in the figure are grouped by their objective
(e.g., minimum risk) and the distributional assumption imposed on the asset return
distribution. The best portfolio with the best performance during the considered time
period should result in the largest wealth at its end. From the beginning of 2016 to the
middle of 2018, all considered benchmark portfolios seem to outperform the CVoR
portfolios. However, starting from the middle of 2018, the CVoR portfolios take off
and consistently outperform the benchmark portfolios. The only exception seems to
be the SR portfolio which shows the second best result at the end of the investment
period slightly outperforming the CVoR portfolio constructed under the assumption
of the Laplace distribution.

Due to the presence of negative skewness in the univariate distributions of the asset
returns documented in Fig. 2, one might expect that the two nonparametric CVoR
portfolios which does not impose any distributional assumption on the asset returns
might bemost profitable in terms ofwealth out of theCVoRportfolios. However, as it is
shown in Fig. 4, this portfolio is ranked on the fourth place being worse than the CVoR
portfolios constructed under the assumption that the asset returns are multivariate t-
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distributedwith five degrees of freedom and under the assumption that the asset returns
follow a multivariate Laplace distribution.

In Table 1 several performance measures of the considered portfolios are displayed.
The list of portfolios is more exhaustive since the figure is already crowded. These
metrics are calculated according to their respective sample counterparts. The out-of-
sample CVoR is calculated using α1 = 0.5.

As it can be seen in Table 1, the variances of the constructed portfolios are smaller
than those presented in Fig. 2 which is explained by the effect of diversification [see,
Markowitz 1952]. It is interesting that the optimal portfolio that maximizes the Sharpe
ratio does not show the best performance with respect to the criteria based on the
maximization of the out-of-sample Sharpe ratio. This finding is explained by extreme
impreciseness present in the estimated weights of the SR portfolio (cf., Schmid and
Zabolotskyy 2008). From the figure describing the wealth, it is noted that holding
of the CVoR portfolio with v0 = 0.08 computed under the assumption of the t-
distribution results in the highest wealth at the end of the investment period. That is
not the case when comparison of portfolios is performed in terms of the Sharpe ratio.
In this case the minimum CVaR portfolio computed under the assumption of the t-
distribution shows the best performance. This should not be surprising since the large
cumulation ofwealth in Fig. 4 implies a larger variancewhich reduces the Sharpe ratio.
Furthermore, the larger variance is a consequence of the fact that the CVoR portfolio
assumes that the investor has a larger risk appetite.

An important quantity, which Fig. 4 does not convey, is the turnover defined by
[see, e.g., Golosnoy et al. 2019]

Turnover =
t1∑

t=t0+1

p∑

i=1

|wPort
i;t − wPort

i;t−1|,

where t0 and t1 are the initial and the last time of the rolling window estimation and the
abbreviation ”Port” is one the portfolios specified in the first column of Table 1 where
the results are displayed. The CVoR portfolios obtained without imposing assumption
on the asset return distribution demonstrate the highest turnover. Any profit or return
obtained by these portfolios would have been completely consumed by the turnover.
The portfolio with the third highest turnover is the portfolio which shows the best
performance in terms of the investor wealth in Fig. 4. This is one explanation to why
the portfolio can possess such a good performance in terms of wealth. It reacts rapidly
to market movements, but does not cope with the fact that reacting to such movements
is costly. This is of course not surprising since the transaction costs are not included
in the optimization problem. The portfolio with the smallest turnover is the equally
weighted, since it is never reweighted, while the GMV portfolio is ranked on the
second place with respect to this performance measure.

5 Summary

In this paper an entirely quantile-based optimal portfolio choice problem is introduced.
It takes both tails of the return distribution into account. The resulting optimal portfo-
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lios are obtained under general distributional assumptions on the asset returns. Both
sufficient and necessary conditions for the existence of the optimal portfolio, called
the CvoR portfolio, are provided under different risk measures. A special empha-
sis is placed on the use of risk measures which are demanded by current Basel and
Solvency regulations. For instance, the insurance companies have to follow the Sol-
vency 2 regulations and restrictions, and because of that they might prefer to use
quantile-based return measures, like the CVoR, as a complement to quantile-based
risk measures. In such a way, non-overlapping information presented in the portfo-
lio return distribution is used to specify the risk and the profit of the portfolio. The
resulting CVoR portfolio is shown to be very flexible and it provides good theoreti-
cal results as well as a straightforward implementation of numerical procedures. The
empirical illustration also demonstrates a good performance of the CVoR portfolio
in comparison to the considered benchmark portfolios based on several performance
measures.

The results of the empirical application relies on the true underlying return dis-
tribution which is not known. The model parameters in the data-generating process
are estimated by their sample counterparts, which are then used instead of unknown
population quantities. In doing so, estimation error is introduced in the decision pro-
cess which is, however, not accounted for in the derived theoretical results. Also,
the investigation of temporal independence in the underlying data-generating process
has been neglected in the empirical application. This was done in order to avoid that
the numerical illustration would loose its focus on the main results of the current
paper.

The introduced quantile-based portfolio selection problem is not restricted to the
usage of the CVoR but other quantile-based returnmeasures could be used. The topic is
not treated in the paper and it is left for future research.As theCVoR is amodification of
the CVaR and the CVaR is a special case of spectral risk measures, one can incorporate
a modification of spectral risk measures into the portfolio selection problem. The use
of these would imply a great deal of flexibility for investors which can then also rely
on nice theoretical properties of the optimization problem.
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6 Appendix

Let In = diag(1, 1, , ..., 1) of dimension n × n, 0n denote a column vector of length
n with zeros and 1n be a vector filled with ones of length n. Let the column vector xk
indicate the kth observation and X, a matrix of size p × n, the full sample.

Lemma 2 Let X(w) = w�x,w = u−v, γ = γ1 −γ2, ξ = ξ1 − ξ2 and let ηk, θk ≥ 0,
k = 1, ..., n such that−(u−v)�xk−(γ1−γ2)−ηk ≤ 0and (u−v)�xk−(ξ1−ξ2)−θk ≤
0, and let z = (u1, u2, ...u p, v1, v2, ..., vp, γ1, γ2, ξ1, ξ2, η1, η2, ..., ηn, θ1, θ2, ..., θn)

�.
By approximating the distribution function of the portfolio return by its sample coun-
terpart, the optimization problem (3) can be rewritten as

min
z

c�z

s.t . Az − b ≤ 0

z ≥ 0

(29)

where c =
(
0�
2p 1 −1 0 0 1

(1−α1)n
1�
n 0�

n

)�
, b = (1 −1 v0 02n

)�
and

A =

⎛

⎜⎜⎜⎜⎝

1�
p −1�

p 0 0 0 0 0�
n 0�

n
−1�

p 1�
p 0 0 0 0 0�

n 0�
n

0�
p 0�

p 0 0 1 −1 1
(1−α2)n

1�
n 0�

n

−X X −1n 1n 0 0 −In 0n0�
n

X −X 0 0 −1n 1n 0n0�
n −In

⎞

⎟⎟⎟⎟⎠

Proof of Lemma 2 By using Eq. (28) together with some abuse of notation (3) can be
rewritten as

max
w

min
γ

{
γ + 1

(1 − α1)N

N∑

k=1

[w�xk − γ ]+
}

s.t . w�1 = 1

min
ξ

{
ξ + 1

(1 − α2)N

N∑

k=1

[−w�xk − ξ ]+
}

≤ v0.

(30)

By Theorem 16 of Rockafellar and Uryasev (2002) (30) can further be written as

max
w

min
γ,ξ

{
γ + 1

(1 − α1)N

N∑

k=1

[w�xk − γ ]+
}

s.t . w�1 = 1
{

ξ + 1

(1 − α2)N

N∑

k=1

[−w�xk − ξ ]+
}

≤ v0,

(31)
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We start by optimizing over −w instead of w such that the objective only con-
tains minimization procedures. Since all linear programming problems assume that
the elements of the decision vector have positive support the following variables are
introduced. Let w = u − v where u takes care of the positive part and v takes care
of the negative if ui , vi ≥ 0, i = 1, 2, ..., p. The same operations are performed for
γ and ξ by introducing γ = γ1 − γ2 and ξ = ξ1 − ξ2 where γ1, γ2, ξ1, ξ2 ≥ 0. For
each observation k = 1, ..., n, introduce the auxiliary variables ηk, θk ≥ 0 such that
−(u − v)�xk − (γ1 − γ2) − ηk ≤ 0 and (u − v)�xk − (ξ1 − ξ2) − θk ≤ 0. Hence,

min
z

{
q1 − q2 + 1

(1 − α1)n

n∑

k=1

ηk

}

s.t . (u − v)�1 + 1 ≤ 0

− (u − v)�1 − 1 ≤ 0

ξ1 − ξ2 + 1

(1 − α2)n

n∑

k=1

θk ≤ v0,

− (u − v)�xk − (γ1 − γ2) − ηk ≤ 0

(u − v)�xk − (ξ1 − ξ2) − θk ≤ 0

u1, u2, ...u p, v1, v2, ..., vp, γ1, γ2, ξ1, ξ2, η1, η2, ..., ηn, θ1, θ2, ..., θn ≥ 0

(32)

where z = (u1, u2, ...u p, v1, v2, ..., vp, γ1, γ2, ξ1, ξ2, η1, η2, ..., ηn, θ1, θ2, ..., θn)

which is a linear programming problem. Note that the constraint that the weights
should sum to one is transformed into two inequalities. By introducing the matrix and
vectors A,b and c, the lemma follows. �
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