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Abstract
The nested distance builds on the Wasserstein distance to quantify the difference of
stochastic processes, including also the evolution of information modelled by filtra-
tions. The Sinkhorn divergence is a relaxation of the Wasserstein distance, which can
be computed considerably faster. For this reason we employ the Sinkhorn divergence
and take advantage of the related (fixed point) iteration algorithm. Furthermore, we
investigate the transition of the entropy throughout the stages of the stochastic process
and provide an entropy-regularized nested distance formulation, including a charac-
terization of its dual. Numerical experiments affirm the computational advantage and
supremacy.

Keywords Nested distance · Optimal transport · Sinkhorn divergence · Entropy

Mathematics Subject Classification 90C08 · 90C15 · 60G07

1 Introduction

The Wasserstein distance, also known as Monge–Kantorovich distance, is used in
optimal transport theory to describe and characterize optimal transitions between prob-
ability measures. They are characterized by the lowest (or cheapest) average costs to
fully transfer a probability measure into another. The costs are most typically propor-
tional to the distance of locations to be connected. Rachev and Rüschendorf (1998)
provide a comprehensive discussion of the Wasserstein distance and Villani (2009)
summarizes the optimal transport theory.

The nested distance generalizes and extends the theory from probability measures
to stochastic processes. It is based on theWasserstein distance and has been introduced
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270 A. Pichler, M. Weinhardt

by Pflug (2009), cf. also Pflug and Pichler (2012). The nested distance quantifies the
distance of stochastic processes and multistage stochastic programs are continuous
with respect to the nested distance. Multistage stochastic programming has applica-
tions in many sectors, e.g., the financial sector (Edirisinghe 2005; Brodt 1983), in
management science or in energy economics (Analui and Pflug 2014; Beltrán et al.
2017; Carpentier et al. 2012, 2015). The prices, demands, etc., are often modeled
as a stochastic process ξ = (ξ0, . . . , ξT ) and the optimal values are rarely obtained
analytically. For the numerical approach the stochastic process is replaced by a finite
valued stochastic scenario process ξ̃ = (ξ̃0, . . . , ξ̃T ), which is a finite tree. Naturally,
the approximation error should be minimized without unnecessarily increasing the
complexity of the computational effort. Kirui et al. (2020) provide a Julia package for
generating scenario trees and scenario lattices for multistage stochastic programming.
Maggioni and Pflug (2019) provide guaranteed bounds and Horejšová et al. (2020)
investigate corresponding reduction techniques.

This paper addresses the Sinkhorn divergence in place of the Wasserstein distance.
This pseudo-distance is also called Sinkhorn distance or Sinkhorn loss. In contrast to
the exact implementation of Bertsekas and Castanon (1989), e.g., Sinkhorn divergence
corresponds to a regularization of the Wasserstein distance, which is strictly convex
and which allows to improve the efficiency of the computation by applying Sinkhorn’s
(fixed-point) iteration procedure. The relaxation itself is similar to the modified objec-
tive of interior-point methods in numerical optimization. A cornerstone is the theorem
by Sinkhorn (1967) that shows both a unique decomposition for non-negative matri-
ces and ensures convergence of the associated iterative scheme. Cuturi (2013) has
shown the potential of the Sinkhorn divergence and made it known to a wider audi-
ence. Nowadays, Sinkhorn divergence is used in statistical applications, cf. Bigot et al.
(2019) and Luise et al. (2018), for image recognition andmachine learning, cf. Kolouri
et al. (2017) and Genevay et al. (2018), among many other applications.

Extending Sinkhorn’s algorithm to multistage stochastic programming has been
proposed recently in Tran (2020, Section 5.2.3, pp. 97–99), where a numerical example
indicating computational advantages is also given. This paper resumes this idea and
assesses the entropy relaxed nested distance from theoretical perspective. We address
its approximating properties and derive its convex conjugate, the dual. Moreover,
numerical tests included confirm the computational advantage regarding the simplicity
of the implementation as well as significant gains in speed.

Outline of the paper The following Sect. 2 introduces the notation and provides the
definitions to discuss the nested distance. Additionally, the importance of the filtration
and the complexity of the computation is shown. Section 3 introduces the Sinkhorn
divergence and derive its dual. In Sect. 4 we regularize the nested distance and show
the equality between two different approaches. Results and comparisons are visualized
and discussed in Sect. 5. Section 6 summarizes and concludes the paper.
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The nested Sinkhorn divergence to learn the nested distance 271

2 Preliminaries

This section recalls the definition of distances generally, of the Wasserstein distance
and nested distance and provides an example to highlight the impact of information
available, which is increasing gradually over time and stages. Throughout, we shall
base our exposition on a probability space (�,F , P).

2.1 Wasserstein distance

TheWasserstein distance is a distance for probability measures. It is the building block
for the process distance, which involves information in addition and its regularized
version, which we address here, the Sinkhorn divergence. The Sinkhorn divergence is
not a distance in itself. To point out the differences we highlight the defining elements.

Definition 2.1 (Distance of measures) Let P be a set of probability measures on �. A
function d : P×P → [0,∞) is called distance, if it satisfies the following conditions:

(i) Nonnegativity: for all P1, P2 ∈ P ,

d(P1, P2) ≥ 0;

(ii) Symmetry: for all P1, P2 ∈ P ,

d(P1, P2) = d(P2, P1);

(iii) Triangle inequality: for all P1, P2 and P3 ∈ P ,

d(P1, P2) ≤ d(P1, P3) + d(P3, P2);

(iv) Definiteness: if d(P1, P2) = 0, then P1 = P2.

Rachev (1991) presents a huge variety of probability metrics. Here, we focus on the
Wasserstein distance, which allows a generalization for stochastic processes. For this
we assume that the sample space � = R

d is equipped with a metric d.

Definition 2.2 (Wasserstein distance) Let P and P̃ be two probability measure on
� endowed with a distance d : � × � → R with finite moment of order r . The
Wasserstein distance of order r ≥ 1 is

dr (P, P̃):= inf
π

∫∫
�×�

d(ξ, ξ̃ )r π(dξ, dξ̃ ),

where the infimum is over all probability measures π on �×� with marginals P and
P̃ , respectively.

Remark 2.3 (Distance versus cost functions) The definition of the Wasserstein dis-
tance presented here starts with a distance d on � and the Wasserstein distance is
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272 A. Pichler, M. Weinhardt

a distance on P in the sense of Definition 2.1 above. We mention that the literature
occasionally develops the theory for cost functions c : X × X → R instead of the
distance d. Also, the results presented below extend to cost functions in place of the
distance on the underlying space.

In a discrete framework, probabilitymeasures are of the form P = ∑n
i=1 pi δξi with

pi ≥ 0 and
∑n

i=1 pi = 1 and the support of P ({ξi : i = 1, 2, . . . , n} ⊂ �) is finite. By
Definition 2.1, the Wasserstein distance dr of two discrete measures P = ∑n

i=1 pi δξi

and P̃ = ∑ñ
j=1 p̃ j δξ̃ j

is the r -th root of the optimal value of

minimize in π

n∑
i=1

ñ∑
j=1

πi j d
r
i j

subject to
ñ∑
j=1

πi j = pi , i = 1, . . . , n,

n∑
i=1

πi j = p̃ j , j = 1, . . . ñ and

πi j ≥ 0, (2.1)

where

di j :=d(ξi , ξ̃ j ) (2.2)

is an n× ñ-matrix collecting all distances. The optimal measure in (2.1) is denoted πW

and called an optimal transport plan. The convex, linear dual of (2.1) is

maximize in λ and μ

n∑
i=1

pi λi +
ñ∑
j=1

p̃ j μ j (2.3a)

subject to λi + μ j ≤ dri j for all i = 1, . . . n and j = 1, . . . ñ. (2.3b)

Remark 2.4 The problem (2.1) can be written as linear optimization problem

minimize in x c
�x

subject to Ax = b,

x ≥ 0,

where x = (π11, π21, . . . , πnñ)
�, c = (d11, d21, . . . , dnñ)�,b = (p1, . . . , pn, p̃1, . . . ,

p̃ñ)� and A is the matrix

A =
(
1ñ ⊗ In
Iñ ⊗ 1n

)
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Fig. 1 Two processes illustrating two different flows of information, cf. Heitsch et al. (2006), Kovacevic
and Pichler (2015). The arcs of the stochastic tree display the transition probabilities

with 1 = (1, . . . , 1); here, ⊗ denotes the Kronecker product.

2.2 The distance of stochastic processes

Be two probability spaces.We now consider two stochastic processes with realizations
ξ , ξ̃ ∈ � and�:=�0 ×�1 ×· · ·×�T . There are many metrics d such that (�, d) is a
metric space. Without loss of generality we may set �t = R for all t ∈ {0, 1, . . . , T }
and employ the �1-distance, i.e., d(ξ, ξ̃ ) = ∑T

t=0 |ξt − ξ̃t |. As in (2.1) above, the
distance matrix di j collects the distances of scenarios for discrete measures, cf. (2.2).

A stochastic process with finitely many states (i.e., outcomes) for t ∈ {0, 1, . . . , T }
is a scenario tree. Scenario trees are frequently employed in optimization under uncer-
tainty to model the random outcome in the evolution of a process which describes the
random price, say, of an underlying asset. They are convenient, because they can be
implemented in computers to assess each individual trajectory as possible realization
of the stochastic process.

The Figs. 1 and 3 depict such scenario tree, they indicate the transition probabilities
in addition.

Remark 2.5 Figure 1 illustrates that the Wasserstein distance does not capture the
different information (knowledge) available at the intermediate stage. Indeed, with
ε > 0, the matrix collecting the distances of the trajectories taken from both trees is

d =
(

ε 2 + ε

2 0

)

and the optimal transport plan for the Wasserstein distance is

π = 1

2

(
1 0
0 1

)
.

The Wasserstein distance, according (2.1), is d = ∑
i, j di j πi j = ε/2, where a small

value for ε indicates that the processes are similar.
However, the information available at stage 1 is very distinct in both trees in Fig. 1.

When observing 2 + ε at stage 1 in the first tree it is certain that the next observation
is 3, and it will be 1 when observing 2. In contrast, the second process does not provide
any certainty whether the result will be 1 or 3 after observing 2 at the first stage.

We conclude from the preceding remark that theWasserstein distance is not suitable
to distinguish stochastic processes with different flows of information. The reason is
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274 A. Pichler, M. Weinhardt

that this approach does not involve conditional probabilities at stages t = 0, 1, . . . , T−
1, but only probabilities at the final stage t = T , where all the information available
at intermediate stages is ignored.

We follow the usual convention and express information, which is accessible, by
corresponding sets. The information available at every stage t includes information
from preceding stages, which have been revealed, but excludes information from later,
future stages. For this reason the sets

A1 × · · · × At × �t+1 × · · · × �T , At ′ ⊂ �t ′ measurable,

encode the information available at stage t , they constitute the σ -algebra Ft (F̃t ,
resp.). The following generalization of the Wasserstein distance takes this flow of
increasing information explicitly into account.We state the definition involvinggeneral
probability measures here, although we work with discrete measures only in what
follows.

Definition 2.6 (The nested distance) The nested distance of order r ≥ 1 of two filtered
probability spaces P = (�, (Ft ), P) and P̃ = (�̃, (F̃t ), P̃) with finite moment of
order r with respect to the distance d : � × �̃ → R is the optimal value of the
optimization problem

minimize in π

(∫∫
�×�̃

d(ξ, ξ̃ )r π(dξ, dξ̃ )

)1/r

(2.4)

subject to π(A × �̃ | Ft ⊗ F̃t ) = P(A | Ft ) a.s. for every A ∈ Ft , t = 1, . . . , T ,

(2.5)

π(� × B | Ft ⊗ F̃t ) = P̃(B | F̃t ) a.s. for every B ∈ F̃t , t = 1, . . . , T ,

(2.6)

where the infimum is among all bivariate probability measures π ∈ P(� × �̃). The
optimal value of (2.1), the nested distance of order r , is denoted by dr (P, P̃).

For discrete stochastic processes we use trees to model the whole space and fil-
tration. In the stochastic tree, Nt (Ñt , resp.) denotes the set of all nodes at the stage
t . Furthermore, a predecessor m of the node i , not necessarily the immediate pre-
decessor, is indicated by m ≺ i . Here, we may replace the conditional probabilities
in (2.5) and (2.6) by the genuine transition probabilities. The arcs of the tree in Fig. 1
exemplarily display these transition probabilities.
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The nested Sinkhorn divergence to learn the nested distance 275

Algorithm 1: Nested computation of the nested distance dr (P, P̃) of two tree-
processes P and P̃.

Input: for all combinations of leaf nodes i ∈ NT and j ∈ ÑT with predecessors
(i0, i1, . . . , iT−1, i) and ( j0, j1, . . . , jT−1, j) set

drT (i, j) := d
(
(ξ0, ξi1 , . . . , ξi ), (ξ̃0, ξ̃ j1 , . . . , ξ̃ j )

)r
Output: the optimal transport plan at the leaf nodes i ∈ NT and j ∈ ÑT is

π(i, j) = π1(i1, j1 | i0, j0) · · · · · πT−1(i, j | iT−1, jT−1).
for t = T − 1 down to 0 and every combination of inner nodes i ′ ∈ Nt and j ′ ∈ Ñt do

solve the linear programs

minimize in π

∑
i ′∈it+, j ′∈ jt+

π(i ′, j ′ | it , jt ) · drt+1(i
′, j ′)

subject to
∑

j ′∈ jt+
π(i ′, j ′ | it , jt ) = P(i ′ | it ), i ′ ∈ it+,

∑
i ′∈it+

π(i ′, j ′ | it , jt ) = P̃( j ′ | jt ), j ′ ∈ jt+,

π(i ′, j ′ | it , jt ) ≥ 0 (2.9)

and denote its optimal value by drt (it , jt ).

Result: The nested distance is dr (P, P̃):=dr0(0, 0).

The nested distance for stochastic trees is the r -th root of the optimal value of

minimize in π

∑
i, j

πi j · dri j

subject to
∑
j� jt

π(i, j | it , jt ) = P(i | it ), it ≺ i, jt ,

∑
i�it

π(i, j | it , jt ) = P̃( j | jt ), jt ≺ j, it ,

πi j ≥ 0 and
∑
i, j

πi j = 1, (2.7)

where i ∈ NT and j ∈ ÑT are the leaf nodes and it ∈ Nt as well as jt ∈ Ñt are nodes
at the same stage t and P(i | it ):= P(i)

P(it )
is the conditional probability. Analogously,

the conditional probabilities π(i, j | it , jt ) are

π(i, j | it , jt ):= πi j∑
i ′�it , j ′� jt πi ′ j ′

. (2.8)

Remark 2.7 Employing the definition (2.8) for π(i, j | it , jt ) reveals that the prob-
lem (2.7) is indeed a linear program in π (cf. (2.1)).
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276 A. Pichler, M. Weinhardt

2.3 Rapid, nested computation of the process distance

This subsection addresses an advanced approach for solving the linear program (2.7).
We first recall the tower property, which allows an important simplification of the
constraints in (2.4).

Lemma 2.8 To compute the nested distance it is enough to condition on the immedi-
ately following σ -algebra: the conditions

π
(
A × � | Ft ⊗ F̃t

)
for all A ∈ FT

in (2.4) may be replaced by

π
(
A × � | Ft ⊗ F̃t

)
for all A ∈ Ft+1.

Proof The proof is based on the tower property of the expectation and can be found
in Pflug and Pichler (2014, Lemma 2.43). 
�

As a result of the tower property the full problem (2.7) can be calculated faster in a
recursive way and the matrix for the constraints does not have to be stored.We employ
this result in an algorithm below. For further details we refer to Pflug and Pichler (2014,
Chapter 2.10.3). The collection of all direct successors of node it ( jt , resp.) is denoted
by it+ ( jt+, resp.).

3 Sinkhorn divergence

In what follows we consider the entropy-regularization of the Wasserstein dis-
tance (2.1) and characterize its dual. Moreover, we recall Sinkhorn’s algorithm, which
allows and provides a considerably faster implementation. These results are combined
then to accelerate the computation of the nested distance.

3.1 Entropy-regularizedWasserstein distance

Interior point methods add a logarithmic penalty to the objective to force the optimal
solution of themodifiedproblem into the strict interior. TheSinkhorndistance proceeds
similarly. The regularizing term H(x):=−∑

i, j xi j log xi j is added to the cost function
in problem (2.1). This has shown beneficiary in other problem settings as well.

Remark 3.1 The mapping ϕ(y):=y log y is convex and negative for y ∈ (0, 1) with
continuous extensions ϕ(0) = ϕ(1) = 0 so that H(x) ≥ 0, provided that all xi j ∈
[0, 1].
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The nested Sinkhorn divergence to learn the nested distance 277

Definition 3.2 (Sinkhorn divergence) The Sinkhorn divergence is the objectove of the
optimization problem

minimize in π

n∑
i=1

ñ∑
j=1

πi j d
r
i j − 1

λ
H(π) (3.1a)

subject to
ñ∑
j=1

πi j = pi , i = 1, . . . , n,

n∑
i=1

πi j = p̃ j , j = 1, . . . , ñ,

πi j > 0 for all i, j, (3.1b)

where d is a distance or a cost matrix and λ > 0 is a regularization parameter. With
π S being the optimal transport in (3.1a)–(3.1b) we denote the Sinkhorn divergence
by

drS :=
n∑

i=1

ñ∑
j=1

π S
i j d

r
i j

and the Sinkhorn divergence including the entropy by

derS :=
n∑

i=1

ñ∑
j=1

π S
i j d

r
i j − 1

λ
H

(
π S).

Wemay mention here that we avoid the term Sinkhorn distance since for all λ > 0,
theSinkhorndivergencedrS is strictly positive andde

r
S canbenegative for smallλwhich

violates the axioms of a distance given in Definition 2.1 above (particularly (i), (iii)
and (iv)). Strict positivity of drS can be forced by a correction term, the so-called
Sinkhorn loss [see Bigot et al. (2019, Definition 2.3)] or by employing the cost matrix
d · 1p �= p̃ instead.

Remark 3.3 The strict inequality constraint (3.1b) is not a restriction. Indeed, the map-
ping ϕ(·) defined in Remark 3.1 has derivative ϕ′(0) = −∞ and thus it follows that
every optimal measure satisfies the strict inequality πi j > 0 for λ > 0.

We have the following inequalities.

Proposition 3.4 (Comparison of Sinkhorn and Wasserstein) It holds that

derS ≤ dr ≤ drS . (3.2)

Proof Recall that π logπ ≤ 0 for all π ∈ (0, 1) and thus it holds that∑n
i=1

∑ñ
j=1 πi j dri j + 1

λ

∑n
i=1

∑ñ
j=1 πi j logπi j ≤ ∑n

i=1
∑ñ

j=1 πi j dri j for all π ∈
(0, 1]n×ñ . It follows that
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278 A. Pichler, M. Weinhardt

min
π

n∑
i=1

ñ∑
j=1

πi j d
r
i j + 1

λ

n∑
i=1

ñ∑
j=1

πi j logπi j ≤ min
π

n∑
i=1

ñ∑
j=1

πi j d
r
i j

and thus the first inequality. The remaining inequality is clear by the definition of the
Wasserstein distance. 
�
Both Sinkhorn divergences drS and de

r
S approximate the Wasserstein distance dr , and

we have convergence for λ → ∞ to dr . The following proposition provides precise
bounds.

Proposition 3.5 For every λ > 0 we have

0 ≤ drS − dr ≤ 1

λ

(
H(π S) − H(πW )

)
(3.3)

and

0 ≤ dr − derS ≤ 1

λ
H(π S) ≤ 1

λ
H(p · p̃�) (3.4)

with p = (p1, . . . , pn) and p̃ = ( p̃1, . . . , p̃ñ), respectively.

Proof The first inequalities follow from (3.2) and from optimality ofπ S in the inequal-
ity

drS − 1

λ
H(π S) ≤ dr − 1

λ
H(πW ).

The latter againwith (3.2) and drS−derS = 1
λ
H

(
π S

)
. Finally, by the log sum inequality,

H(π) ≤ H
(
p · p̃�)

for every measure π with marginals p and p̃. 
�
Remark 3.6 As a consequence of the log sum inequality we obtain as well that
H(π S) ≤ log n+ log ñ. The inequalities (3.3) and (3.4) thus give strict upper bounds
in comparing the Wasserstein distance and the Sinkhorn divergence.

Alternative definitions There exist alternative concepts of the Sinkhorn divergence
which we want to mention here. The first alternative definition involves the Kullback–
Leibler divergence DKL(π | P ⊗ P̃), which is defined as

DKL(π | P ⊗ P̃):= −
n∑

i=1

ñ∑
j=1

πi j log
πi j

pi p̃ j
= H(P) + H(P̃) − H(π),

where the latter equality is justified provided that π has marginal measures P and P̃ .
The Sinkhorn divergence (in the alternative definition) is the r -th root of the optimal
value of
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The nested Sinkhorn divergence to learn the nested distance 279

minimize in π

n∑
i=1

ñ∑
j=1

πi j d
r
i j (3.5a)

subject to
ñ∑
j=1

πi j = pi , i = 1, . . . , n,

n∑
i=1

πi j = p̃ j , j = 1, . . . , ñ,

πi j > 0 and

DKL(π | P ⊗ P̃) ≤ α for all i, j, (3.5b)

where α ≥ 0 is the regularization parameter. For each α in (3.5b) we have by the
duality theory a corresponding λ in (3.1a) such that the optimal values coincide. Let
α > 0 and πKL be the solution to problem (3.5a)–(3.5b) with Lagrange multipliers β

and γ . Then the optimal value of problem (3.5a) equals drS from (3.1a) with

λ = − log(πKL
i j ) + 1

di j + βi + γ j

for any i ∈ {1, . . . , n} and j ∈ {1, . . . , ñ}. For further information and illustration we
refer to Cuturi (2013, Section 3).

A further, possible definition employs a different entropy regularization given by

H̃(π) = −
n∑

i=1

ñ∑
j=1

πi j · (logπi j − 1).

Luise et al. (2018) use this definition for Sinkhorn approximation for learning with
Wasserstein distance and prove an exponential convergence. This definition leads to
a similar matrix decomposition and iterative algorithm as described in the following
sections.

3.2 Dual representation of Sinkhorn

We shall derive Sinkhorn’s algorithm and its extension to the nested distance via
duality. To this end consider the Lagrangian function

L(π;β, γ ) :=
n∑

i=1

ñ∑
j=1

πi j di j + 1

λ

n∑
i=1

ñ∑
j=1

πi j logπi j + β�(p − π · 1)

+( p̃ − 1� · π)�γ (3.6)
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280 A. Pichler, M. Weinhardt

of the problem (3.2). The partial derivatives are

∂L

∂πi j
= 1

λ

(
logπi j + 1

) + di j − βi − γ j = 0, (3.7)

and it follows from (3.7) that the optimal measure has entries

π∗
i j = exp

(−λ(di j − βi − γ j ) − 1
)

= diag
(
exp(λ β − 1/2)

)
· exp(−λ d) · diag

(
exp(λ γ − 1/2)

)
. (3.8)

By inserting π∗
i j in the Lagrangian function L we get the convex dual function

d(β, γ ):= inf
π

L(π;β, γ ) = L(π∗; β, γ )

=
n∑

i=1

ñ∑
j=1

di j · e−λ(di j−βi−γ j )−1 − 1

λ

n∑
i=1

ñ∑
j=1

e−λ(di j−βi−γ j )−1 · (
λ(di j − βi − γ j ) + 1

)

+
n∑

i=1

βi

⎛
⎝pi −

ñ∑
j=1

e−λ(di j−βi−γ j )−1

⎞
⎠ +

ñ∑
j=1

γ j

⎛
⎝ p̃ j −

n∑
i=1

e−λ(di j−βi−γ j )−1

⎞
⎠

=
n∑

i=1

ñ∑
j=1

(
βi + γ j − 1

λ

)
e−λ(di j−βi−γ j )−1 +

n∑
i=1

βi pi +
ñ∑
j=1

γ j p̃ j

−
n∑

i=1

βi

⎛
⎝ ñ∑

j=1

e−λ(di j−βi−γ j )−1

⎞
⎠ −

ñ∑
j=1

γ j

⎛
⎝ n∑
i=1

e−λ(di j−βi−γ j )−1

⎞
⎠

=
n∑

i=1

βi pi +
ñ∑
j=1

γ j p̃ j − 1

λ

n∑
i=1

ñ∑
j=1

e−λ(di j−βi−γ j )−1.

The dual problem thus is

maximize in β,γ

n∑
i=1

βi pi +
ñ∑
j=1

γ j p̃ j − 1

λ

n∑
i=1

ñ∑
j=1

e−λ(di j−βi−γ j )−1

subject to β ∈ R
n, γ ∈ R

ñ .

Due to
∑

i, j e
−λ(di j−βi−γ j )−1 = 1 we may write the latter problem as

maximize in β,γ

n∑
i=1

βi pi +
ñ∑
j=1

γ j p̃ j (3.9a)

subject to
n∑

i=1

ñ∑
j=1

e−λ(di j−βi−γ j )−1 = 1 and β ∈ R
n, γ ∈ R

ñ . (3.9b)
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Remark 3.7 We deduce from (3.9b) that −λ
(
di j − βi − γ j

) − 1 ≤ 0, or

βi + γ j ≤ di j + 1

λ
for all i, j (3.10)

provided that λ > 0. It is thus apparent that (3.9a)–(3.9b) is a relaxation of prob-
lem (2.3a)–(2.3b) together with the constraint (3.10). As well, observe that both
problems coincide for λ → ∞ in (3.9b).

3.3 Sinkhorn’s algorithm

To derive Sinkhorn’s algorithm we consider the Lagrangian function (3.6) again, but
now for the remaining variables. Similar to π∗ in (3.8), the gradients are

∂L

∂βi
= pi −

ñ∑
j=1

πi j = pi −
ñ∑
j=1

e−λ(di j−βi−γ j )−1 = 0

and

∂L

∂γ j
= p̃ j −

n∑
i=1

πi j = p̃ j −
n∑

i=1

e−λ(di j−βi−γ j )−1 = 0

so that the equations

βi = 1

λ
log

(
pi∑ñ

j=1 e
−λ(di j−γ j )−1

)
and γ j = 1

λ
log

(
p̃ j∑n

i=1 e
−λ(di j−βi )−1

)

follow. To avoid the logarithm introduce β̃i :=eλβi−1/2 and γ̃ j :=eλ γ j−1/2 and rewrite
the latter equations as

β̃i = pi∑ñ
j=1 e

−λ di j γ̃ j

and γ̃ j = p̃ j∑n
i=1 β̃i e−λ di j

, (3.11)

while the optimal transition plan (3.8) is

π∗
i j = β̃i · e−λ di j · γ̃ j .

The simple starting point of Sinkhorn’s iteration is that (3.11) can be used to deter-
mine β̃ and γ̃ alternately. Indeed, Sinkhorn’s theorem (cf. Sinkhorn 1967; Sinkhorn
and Knopp 1967) for the matrix decomposition ensures that iterating (3.11) converges
and the vectors β̃ and γ̃ are unique up to a scalar. Algorithm 2 summarizes the indi-
vidual steps again.

123



282 A. Pichler, M. Weinhardt

Algorithm 2: Sinkhorn’s iteration

Input: distance matrix dr ∈ R
n×ñ
≥0 , probability vectors p ∈ R

n≥0, p̃ ∈ R
ñ≥0, regularization

parameter λ > 0, stopping criterion and a starting value γ̃ = (γ̃1, . . . , γ̃ñ)

Output: β̃, γ̃ for diag(β̃) · e−λ dr · diag(γ̃ )

set

ki j := exp
( − λ dri j

)
. (3.12)

while stopping criterion is not satisfied do
for i = 1 to n do

β̃i ← pi∑ñ
j=1 ki j γ̃ j

for j = 1 to ñ do

γ̃ j ← p̃ j∑n
i=1 β̃i ki j

Result: The matrix π∗
i j = β̃i e

−λ dri j γ̃ j = β̃i ki j γ̃ j solves the relaxed Wasserstein
problem (3.1a)–(3.1b).

Remark 3.8 (Central path)Wewant to emphasize that for changing the regularization
parameter λ it is note necessary to recompute all powers in (3.12). Indeed, increasing
λ to 2 · λ, for example, corresponds to raising all entries in the matrix (3.12) to the
power 2, etc.

Remark 3.9 (Softmax) The expression (3.11) resembles to what is known as theGibbs
measure and to the softmax in data science.

Remark 3.10 (Historical remark) In the literature, this approach is also known as
matrix scaling (cf. Rote and Zachariasen 2007), RAS (cf. Bachem and Korte 1979)
as well as Iterative Proportional Fitting (cf. Rüschendorf 1995). Kruithof (1937) used
the method for the first time in telephone forecasting. The importance of this iteration
scheme for data science was probably observed in Cuturi (2013, Algorithm 1) for the
first time.

Remark 3.11 We may refer to Altschuler et al. (2017) for a performance analysis
including speed and convergence of the Sinkhorn algorithm. For a discussion of numer-
ical stability of the algorithm we refer to Peyré and Cuturi (2019, Section 4.4).

4 Entropic transitions

This section extends the preceding sections and combines the Sinkhorn divergence and
the nested distance by incorporating the regularized entropy 1

λ
H(π) to the recursive

nested distance Algorithm 1 and investigates its properties and consequences. We
characterize the nested Sinkhorn divergence first. The main result is used to exploit
duality.
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4.1 Nested Sinkhorn divergence

Let de(t) be the matrix of incremental divergences of sub-trees at stage t . Analogously
to (2.9) we consider the conditional version of the problem (3.1a) and denote by βit jt
and γ jt it the pair of optimal Lagrange parameters associated with the problem

minimize inπ

∑
i ′∈it+, j ′∈ jt+

π(i ′, j ′ | it , jt ) · de(t+1)(i ′, j ′)

+ 1

λ
π(i ′, j ′ | it , jt ) · logπ(i ′, j ′ | it , jt )

subject to
∑
j ′∈ jt+

π(i ′, j ′ | it , jt ) = P(i ′ | it ), i ′ ∈ it+,

∑
i ′∈it+

π(i ′, j ′ | it , jt ) = P̃( j ′ | jt ), j ′ ∈ jt+,

π(i ′, j ′ | it , jt ) > 0, (4.1)

where π(i ′, j ′|it , jt ) = exp
(
−λ

(
de(t+1)

it jt
− βit jt − γ jt it

) − 1
)
. The optimal value is

the new divergence de(t)(it , jt ). Computing the nested distance recursively from t =
T − 1 down to 0 we get

πi j = π1(i1, j1 | i0, j0) · . . . · πT−1(i, j | iT−1, jT−1)

= e
−λ(de(1)i0 j0

−βi0 j0−γ j0i0 )−1 · . . . · e−λ(de(T )
iT−1 jT−1

−βiT−1 jT−1−γ jT−1iT−1 )−1

= exp

(
−T − λ

T−1∑
t=0

de(t+1)
it jt

− βit jt − γ jt it

)
, (4.2)

where i ∈ NT and j ∈ ÑT are the leaf nodes with predecessors (i0, i1, . . . , iT−1, i)
and ( j0, j1, . . . , jT−1, j). As above introduce

β̃it jt := exp
(
λ βit j j − 1/2

)
and γ̃ jt it := exp

(
λ γ jt it − 1/2

)
.

Combining the components it follows that

πi j = exp

(
−T − λ

T−1∑
t=0

de(t+1)
it jt

− βit jt − γ jt it

)

=
T−1∏
t=0

β̃it jt exp
(
−λ de(t+1)

it jt

)
γ̃ jt it ,

where the product is the entry-wise product (Hadamard product).
The following theorem summarizes the relation of the nested distance with the

Sinkhorn divergence.
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Theorem 4.1 (Entropic relaxation of the nested distance) The recursive solution (4.1)
((4.2), resp.) coincides with the optimal transport plan given by

minimize in π

n∑
i=1

ñ∑
j=1

πi j · dri j + 1

λ
πi j · log (

πi j
)

subject to
∑
j� jt+

π(i, j | it , jt ) = P(i | it ), it ≺ i, jt ,

∑
i�it+

π(i, j | it , jt ) = P̃( j | jt ), jt ≺ j, it ,

πi j > 0 and
∑
i, j

πi j = 1. (4.3)

Proof First define π := ∏T
t=1 πt , where πt is the conditional transition probability, i.e.,

the solution at stage t and the matrices are multiplied element-wise (the Hadamard
product) as in equation (4.2) above. It follows that

dr · π + 1

λ
π logπ = dr ·

T∏
t=1

πt + 1

λ
·

T∏
t=1

πt log

(
T∏
t=1

πt

)

= dr ·
T∏
t=1

πt + 1

λ
·

T∏
t=1

πt ·
T∑
t=1

logπt . (4.4)

Observe that πt (A) = E(1A | Ft ⊗ F̃t ) (cf. Lemma (2.8)). Denote the r -distance
of subtrees at stage t by dert . By linearity of the conditional expectation we have
with (4.4) at the last stage

deT−1 = E

[
derT + 1

λ
logπT

∣∣∣FT−1 ⊗ F̃T−1

]1/r

and from calculation in backward recursive way

deT−2 = E

[
derT−1 + 1

λ
logπT−1

∣∣∣FT−2 ⊗ F̃T−2

]1/r

= E

[
E

[
derT + 1

λ
logπT

∣∣∣FT−1 ⊗ F̃T−1

]
+ 1

λ
logπT−1

∣∣∣FT−2 ⊗ F̃T−2

]1/r

= E

[
E

[
derT + 1

λ
logπT + 1

λ
logπT−1

∣∣∣FT−1 ⊗ F̃T−1

] ∣∣∣FT−2 ⊗ F̃T−2

]1/r

,
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where we have used the tower property of the conditional expectation in (4.5). By
induction and the definition of dert at stage t , it follows finally that

de0 = E

[
der1 + 1

λ
logπ1

∣∣∣F0 ⊗ F̃0

]1/r

= E

[
E

[
. . .E

[
derT + 1

λ
logπT

∣∣∣FT−1 ⊗ F̃T−1

]
. . .

∣∣∣F1 ⊗ F̃1

]
+ 1

λ
logπ1

∣∣∣F0 ⊗ F̃0

]1/r

= E

[
E

[
. . .E

[
derT + 1

λ

T∑
t=1

logπt

∣∣∣FT−1 ⊗ F̃T−1

]
. . .

∣∣∣F1 ⊗ F̃1

] ∣∣∣F0 ⊗ F̃0

]1/r

(4.5)

= E

[
derT + 1

λ

T∑
t=1

logπt

∣∣∣F0 ⊗ F̃0

]1/r

= E

[
derT + 1

λ

T∑
t=1

logπt

]1/r

, (4.6)

where we have used the tower property of the conditional expectation again in (4.5).
The assertion (4.3) of the theorem thus follows. 
�

Remark 4.2 The optimization problem in Theorem 4.1 considers all constraints as
the full nested problem (2.7), only the objective differs. For this reason the optimal
solution of (4.3) is feasible for the problem (2.7) and vice versa.

Notice as well that the tower property can be used in a forward calculation.

Similarly to Proposition 3.5 we have the following extension to the nested Sinkhorn
divergence.

Corollary 4.3 For the nested distance and the nested Sinkhorn divergence, the same
inequalities as in Proposition 3.5 apply, i.e.,

0 ≤ drS − dr ≤ 1

λ

(
H(π S) − H(πW )

)
and 0 ≤ dr − derS ≤ 1

λ
H(π S)

≤ 1

λ
H(p · p�),

where π S (πW , resp.) is the optimal transport plan from (4.3) ((2.7), resp.) with
discrete, unconditional probabilities p and p̃ at the final stage T .

Proof The proof follows the lines of the proof of the Propositions 3.4 and 3.5. 
�

Moreover, we have the following general inequality that allows an error bound
depending on the total T of stages.
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Corollary 4.4 Let m (m̃, resp.) be the maximum number of immediate successors in
the process P (P̃, resp.), i.e., m = max {|i + |: i ∈ Nt , t = 1, . . . , T − 1}. It holds
that

derS − dr ≤ logm + log m̃

λ
· T , (4.7)

where T is the total number of stages.

Proof Recall from Remark 3.6 that H(π S) ≤ log(n ñ) = log n + log ñ for every con-
ditional probability measures, where n and ñ are the number of immediate successors
in both trees. The result follows with n ≤ mT (ñ ≤ m̃T , resp.) and log n ≤ T logm
and the nested program (4.1). 
�

4.2 Nested Sinkhorn duality

The nested distance is of importance in stochastic optimization because of its dual,
which is characterized by the Kantorovich–Rubinstein theorem, cf. (2.3a)–(2.3b)
above. The nested distance allows for a characterization by duality as well. Here
we develop the duality for the nested Sinkhorn divergence. In line with Theorem 4.1
we need to consider the problem

minimize in π

(∫∫ (
d(ξ, ξ̃ )r + 1

λ
logπ(ξ, ξ̃ )

)
π(dξ, dξ̃ )

)1/r

subject to π(A × �̃ | Ft ⊗ F̃t ) = P(A | Ft ), A ∈ Ft , t = 1, . . . , T ,

(4.8a)

π(� × B | Ft ⊗ F̃t ) = P̃(B | F̃t ), B ∈ F̃t , t = 1, . . . , T .

(4.8b)

However, we first reformulate the problem (3.9a)–(3.9b). By translating the dual vari-
ables, ˆβ:= − β + Eβ and ˆγ := − γ + Ẽγ , and defining M0:= − Eβ − Ẽγ we have
the alternative representation

maximize in M0 M0

subject to E β̂ = 0, Ẽγ̂ = 0,∑
ξ,ξ̃

exp
(
−λ

(
d(ξ, ξ̃ )r − β̂(ξ) − γ̂ (ξ̃ ) − M0

)
− 1

)
= 1,

β̂ ∈ R
n, γ̂ ∈ R

ñ .

To establish the dual representation of the nested distance we introduce the projections

projt : L1(FT ⊗ F̃T ) → L1(Ft ⊗ F̃T )

β̂ ⊗ γ̂ �→ E(β̂ | Ft ) ⊗ γ̂
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and

˜projt : L1(FT ⊗ F̃T ) → L1(FT ⊗ F̃t )

β̂ ⊗ γ̂ �→ β̂ ⊗ E(γ̂ | F̃t ),

where β ⊗ γ is the function defined by
(
β ⊗ γ

)
(ξ, η):=β(ξ) · γ (η) and where we

note that the conditional expectation is a random variable itself.
We recall the following characterization of the measurability constraints (4.8a)–

(4.8b) and refer to Pflug and Pichler (2014, Proposition 2.48) for its proof.

Proposition 4.5 The measure π satisfies the marginal condition

π(A × �̃ | Ft ⊗ F̃t ) = P(A | Ft ) a.s. for all A ∈ �

if and only if

Eπ β = Eπ projt β for all β measurable with respect to FT ⊗ F̃T .

Moreover, projt (β) = Eπ (β | Ft ⊗ F̃T ) if π has marginal P.

Theorem 4.6 The infimum or the nested distance including the entropy der (P, P̃) of
problem (4.3) equals the supremum of all numbers M0 such that

e−λ(d(ξ,ξ̃ )r−MT (ξ,ξ̃ ))−1 ∈ P(� × �̃), (ξ, ξ̃ ) ∈ � × �̃,

where P(� × �̃) is a set of probability measures on (� × �̃) and Mt is an R-valued
process on � × �̃ of the form

Mt = M0 +
t∑

s=1

β̂s + γ̂s (4.9)

and the functions β̂t , measurable with respect to Ft ⊗ F̃t−1, and γ̂t , measurable with
respect to Ft−1 ⊗ F̃t , satisfy projt−1(β̂t ) = 0 and ˜projt−1(γ̂t ) = 0.

Proof With Proposition 4.5 rewrite the dual problem as

inf
π>0

sup
M0, ft ,gt

Eπ

[
dr + 1

λ
logπ

]
+ M0 · (1 − Eπ 1)+

−
T−1∑
s=0

(
Eπ fs+1 − Eπ projs( fs+1)

) −
T−1∑
s=0

(
Eπ gs+1 − Eπ

˜projs(gs+1)
)
,
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where the second line encodes the measurability constraints. By the minmax theorem
(cf. Sion 1958) this is equivalent to

sup
M0, ft ,gt

M0 + inf
π>0

Eπ

[
dr + 1

λ
logπ − M0 · 1

−
T−1∑
s=0

( fs+1 − projs( fs+1)) −
T−1∑
s=0

(gs+1 − ˜projs(gs+1))
]
.

The integral exists and the minimum is obtained by a probability measure

π = exp

⎛
⎝−λ

⎛
⎝dr −

T−1∑
s=0

( fs+1 − projs( fs+1)) −
T−1∑
s=0

(gs+1 − ˜projs(gs+1) − M0

⎞
⎠ − 1

⎞
⎠ .

Set ˆβs := fs −projs−1( fs) and ˆγs :=gs − ˜projs−1(gs). Consequently, the problem reads

maximize in M0 M0

subject to exp

[
−λ

(
dr −

T∑
s=1

β̂s −
T∑

s=1

γ̂s − M0

)
− 1

]
∈ P(� × �̃)

projt−1(β̂t ) = 0, ˜projt−1(γ̂t ) = 0,

and thus the assertion. 
�
The following corollary links the optimal probability measure and the stochastic

process (4.9) for the optimal components β̂ and γ̂ .

Corollary 4.7 The process Mt in (4.9), for which the supremum is attained, is a mar-
tingale with respect to the optimal measure π .

Proof The proof of Pflug and Pichler (2014, Theorem 2.49) applies with minor adap-
tions only. 
�

5 Numerical results

The nested Sinkhorn divergence drS aswell as de
r
S depend on the regularization param-

eter λ. We discuss this dependency, the error, speed of convergence and numerical
issues in comparison to the non-regularized nested distance dr .

We compareAlgorithms 1 and 2with respect to the nested distance dr and the nested
Sinkhorn divergence with and without the entropy 1

λ
H(π S) as well as the required

computational time for two finite valued stochastic scenario processes visualized in
Fig. 3.

Figure 2 displays the results. We see that the regularized nested distance drS (green)
and derS (red) converge to the nested distance d

r for increasing λ. In contrast to drS , the
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(b)(a)

Fig. 2 Results from computation of an arbitrary chosen processes given in Fig. 3 with d(ξi , ξ̃ j ) = |ξi − ξ̃ j |
and r = 1

Fig. 3 Two arbitrary chosen processes with height T = 3
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Table 1 Average distance and divergence with corresponding computational time in seconds on i5-3210M
CPU

Stages Wasserstein Sinkhorn Difference Time

T dr Time drS derS Time dr − derS Acceleration

1 1.8 0.06 s 1.81 1.75 0.006s 0.06 10×
2 5.1 0.13 s 5.12 4.97 0.022s 0.14 5.8×
3 5.8 0.50 s 5.81 5.66 0.062s 0.15 8.1×
4 7.3 1.54 s 7.32 7.08 0.368s 0.24 4.2×
5 10.1 10.29 s 10.05 9.72 2.873s 0.35 3.6×
All states and probabilities are generated randomly. The regularization parameter is λ = 20 and r = 1

regularized nested distance including the entropy converges slower to dr . The reason
is that for larger λ the weight of the entropy in the cost function in (3.1a) decreases
and the entropy of π S and πW coincide (cf. (4.7)). Computing the distances with
Sinkhorn’s algorithm in recursive way, in contrast to solving the linear problem for
theWasserstein distance, is about six times faster. In addition, the required time for the
regularized nested distance with and without the entropy varies much less by contrast
with the computational time for the nested distance. Furthermore, the differences
between dr and drS and derS , respectively, is rapidly decreasing and insignificant for
λ > 20. Moreover, the time displayed in Fig. 2b does not depend on the regularization
parameter λ.

The following two examples illustrate the computational accelerations.

Example 5.1 We now fix λ = 20 and vary the stages T ∈ {1, 2, 3, 4, 5}. The first finite
tree has the branching structure [1 2 3 2 3 4] and the second tree has a simpler structure
[1 2 2 1 3 2] (i.e., the first tree has 144 leaf nodes and the second tree 24). All states
and probabilities in the trees are generated randomly.

Table 1 summarizes the results collected. We notice that the Sinkhorn algorithm
is up to 10 times faster compared with the usual Wasserstein distance, although the
speed advantage decreases for larger trees. The Sinkhorn algorithm also leads to small
errors which increase marginally for trees with more stages.

Example 5.2 To provide an additional performance comparison we fix λ = 20 and
vary T ∈ {1, 2, 3, 4, 5, 6}. The first finite tree has the structure [1 4 5 3 4 4 6] and the
second tree [1 2 2 1 3 2 3]. This means that the first tree has 5760 leaf nodes while
the second tree has only 72. All states and probabilities in the trees are generated
randomly. Table 2 summarizes the results are summarized

Additionally, we tried to improve the speed by modifying the recursive algorithm.
Instead of computing once from T − 1 down to 0 we computed from T − 1 down to 0
several times to achieve a convergence in the optimal transport plan π S . This approach
has no advantages.

Remark 5.3 The entries ki j of the matrix (3.12) are small for di j �= 0, particularly
for λ � 1 (i.e., λ large) and r � 1. In this case, the entries of the vectors β̃ and γ̃
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Table 2 Average distance and divergence (cf. Table 1)

Stages Wasserstein Sinkhorn Difference Time

T dr Time drS derS Time dr − derS Acceleration

1 2.3 0.05 s 2.3 2.2 0.008s 0.09 5.8x

2 5.6 0.2 s 5.6 5.4 0.060s 0.19 3.2x

3 6.3 1.4 s 6.3 6.1 0.233s 0.22 5.8x

4 7.7 6.2 s 7.7 7.4 0.202s 0.33 3.1x

5 11.4 58s 11.3 10.8 17.16 s 0.58 3.4x

6 13.4 717s 10.2 9.7 347.5 s 3.75 2.0x

Table 3 The nested distance and
divergence for two trees with 3
stages and leaves and
branching 2. The regularization
parameter is λ = 10

Stages Wasserstein Sinkhorn

Order r dr drS der

1 0.8615 0.8737 0.6194

2 1.0532 1.0554 0.9348

3 1.2021 1.2026 1.1454

4 1.3188 1.3189 1.2925

5 1.4134 1.4134 1.4014

in Algorithm 2 can grow extraordinary high. For this reason, rescaling the vectors
is necessary. Further, an adequate balance between λ, modelling the approximation
quality, and acceleration desired is crucial in real applications. See also Remark 3.11
for the same issue.

Example 5.4 Table 3 investigates the approximation quality for varying orders r . The
trees compared have 3 stages and each node branches into two directions. For large
r � 1 it is important to recall Remark 5.3 here, but on the other side the approximation
quality improves for increasing order r .

6 Summary

Stochastic processes with information evolving in finitely many stages and finitely
many states are encoded in stochastic trees. The nested distance, which builds on the
Wasserstein distance, allows distinguishing stochastic processes and stochastic trees.

In this paper we regularize the Wasserstein distance by employing the Sinkhorn
divergence. This approach extends to multiple stages and allows introducing a nested
Sinkhorn divergence for stochastic processes. We elaborate its properties and describe
the accelerations, which can be achieved in this way.

In conclusion, we can summarize that the Sinkhorn divergence offers a good trade-
off between the regularization error and the speed advantage. Further work should
focus on defining a (nested) distance for neuronal networks and extending the imple-

123



292 A. Pichler, M. Weinhardt

mentation of Sinkhorn divergence in the Julia package for faster tree generation and
computation.
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