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Abstract

Recent advances in natural language processing have contributed to the development

of market sentiment measures through text content analysis in news providers and

social media. The effectiveness of these sentiment variables depends on the imple-

mented techniques and the type of source on which they are based. In this paper, we

investigate the impact of the release of public financial news on the S&P 500. Using

automatic labeling techniques based on either stock index returns or dictionaries, we

apply a classification problem based on long short-term memory neural networks to

extract alternative proxies of investor sentiment. Our findings provide evidence that

there exists an impact of those sentiments in the market on a 20-minute time frame.

We find that dictionary-based sentiment provides meaningful results with respect to

those based on stock index returns, which partly fails in the mapping process between

news and financial returns.
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1 Introduction

Financial and economic news represents one of the main sources of public market knowledge

that exerts an impact on stock prices. This type of information is available both at the

macroeconomic (e.g., the periodic release of economic indicators) and microeconomic (e.g.,

quarterly release on firms’ earnings) levels. For instance, Garcia (2013) studies the effect

of the financial news from the New York Times during the twentieth century and shows

its predictive ability on daily stock returns, particularly during recession periods. Recently,

the availability of social media data from the Google search engine (Costola et al., 2020)

and tweets (Iacopini and Santagiustina, 2021) has provided several insights about investor

psychology and its impact on financial stock returns. Among others, Caporin and Poli

(2017) and Xing et al. (2018) provide interesting surveys on firm-specific news and sentiment;

Caporin and Poli (2017) show that augmented-data models including news variables provide

superior forecasts.

Progress in natural language processing (NLP) has contributed to the development

of market sentiment measures in economics and finance based on text sources like news

providers and social media. For instance, Atkins et al. (2018) construct machine Learning

(ML) models to represent information from news feeds and simple näıve Bayes (NB) classi-

fiers to predict the market direction of movements. Empirical results from stocks and stock

indices in the US market show that the average directional prediction accuracy for volatility

on the arrival of new information is 56%, while that of the asset close price is no better than

random. Souma et al. (2019) define news sentiment based on stock price returns averaged

over one minute immediately after a news article has been released. They analyze the intra-

day Thomson Reuters News Archive and high-frequency DJIA 30 Index from 2003 to 2013

through a combination of deep learning (DL) methodologies and report good forecasting

accuracy of this approach. Vicari and Gaspari (2020) investigate the possibility of trading

on news sentiment through a long short-term memory (LSTM) neural network. They use

this tool to forecast market sentiment using news headlines. The prediction is based on
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the DJIA Index and is obtained by analyzing 25 daily news headlines available from 2008 to

2020. Testing is developed in real-world scenarios. The forecasting accuracy of this approach

is around 58%. Wan et al. (2021) apply convolutional neural network with an LSTM neural

network to extract news sentiment on 87 companies reported on Reuters for a period of

seven years. They investigate the propagation of such sentiment in company networks and

evaluate the associated market movements in terms of stock price and volatility. They also

find significant abnormal market return and volatility in days with high sentiment levels.

However, the effectiveness of these sentiment variables may vary by source.

In light of the above research, it is worth investigating the impact of publicly available

financial news on the stock market immediately after its release. This is the aim of the

present study. Using different automatic labeling techniques based on either stock index

returns or dictionaries, we extract investor sentiments by means of a classification problem

applied to financial news data by adopting LSTM neural networks.

The main contributions of the paper to the current literature are as follows. First,

we analyze high-frequency market reactions to the release of financial news to the public

to assess whether this information is to some degree informative, as privileged and private

financial information generally is. Second, we make use of a novel technique to label financial

news based on broad stock indices. Note that, by construction, the informativeness of these

indices is more generic than that of narrow-based information, say, at the firm level. For

instance, one of the pioneering studies in the field, Groß-Klußmann and Hautsch (2011),

analyses high-frequency market reactions to stock-specific news flow and shows their ability

to predict future prices. By making this choice, we aim to detect the overall reaction at

the market level, which has not, to our knowledge, been previously investigated. Third, we

couple the index-based labeling procedure for financial news with some alternative labeling

techniques based on three dictionaries used widely in the financial literature to compare the

outcomes coming from our stock index-based labeling approach (see Section 3) with those

coming from standard dictionary-based ones. Finally, the obtained sentiment proxies are
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used as exogenous variables on an EGARCH model fitted on S&P 500 Index intraday returns

to check their out-of-sample explanatory power. Our findings show that these sentiments are

significant market predictors in a 20-minute time window after the public release of news.

Operationally, financial news is obtained from Reuters, one of the main information

providers in the market. Specifically, we performed web scraping on Reuters.com, which

is freely available to the public. Each news item is labeled using stock index return- and

dictionary-based approaches. The former classifies news based on S&P 500 Index and VIX

Index log returns, while the latter makes use of dictionaries widely used in the financial

literature: Loughran and Mc Donald’s dictionary (Loughran and McDonald, 2011), Henry’s

dictionary (Henry, 2008) and the Harvard IV-4 General Inquirer dictionary (Harvard Univer-

sity, 1960). These are abbreviated LM, HE, and GI dictionaries, respectively. Then, LSTM

neural networks are used to solve a three-class classification problem.

Our news-based sentiment shows the predictive power of using out-of-sample data, prov-

ing through the EGARCH model the existence of a relationship between news sentiment and

stock returns and volatility. In particular, we find that dictionary-based sentiment provides

meaningful results with respect to those based on stock index returns, which partly fails in

the mapping process between news and financial returns. Indeed, the labeling technique that

classifies news on the basis of stock index movements proved to be questionable as it can be

affected by several forces that might negatively impact the accuracy of the classifier.

The remainder of this paper is organized as follows. Section 2 reviews the main super-

vised ML and dictionary-based techniques for text classification proposed in the literature.

Section 3 presents the classification model and the main pre-processing techniques used to

transform the raw texts into vectors representing the individual words of each news arti-

cle. Section 4 describes the web-scraping approach used to collect data and the automatic

labeling techniques to classify news articles. Section 5 discusses the findings of the LSTM

learning process and reports the results of the classifications for the empirical analysis. Sec-

tion 6 presents the sentiment variables obtained. Section 7 validates the informative content
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of the sentiments obtained using an EGARCH model fitted on the log returns of the S&P

500 Index. The final section concludes.

2 Literature Review

In this section, we discuss the main text classification methods based on supervised ML

techniques and dictionary-based approaches as presented in the literature.

Within the first research area Medhat et al. (2014) present the NB classifier, which

computes the probability that a document belongs to a given class based on the distribution

of the words in the document and assumes the independence of all its features. The authors

also mention the Bayesian network classifier, which is rarely used because it assumes all

features to be fully dependent and thus requires a complete joint probability distribution to

be specified.

The Maximum Entropy classifier, as explained by Nigam et al. (1999), can be used when a

joint probability distribution is unavailable. According to these authors, uniform distribution

is preferred in these cases and updated using the constraints emerges from the training data.

After selecting some relevant features from the text, they compute the expected frequency

of the features words over the training data and set them as constraints on the conditional

distribution.

Medhat et al. (2014) introduce linear classifiers, such as support vector machines (SVMs)

and artificial neural networks (ANNs). The former separates data into classes, defining

a separating hyperplane that maximizes the normal distance of any data points. ANNs,

meanwhile, are universal function approximators that mimic the functioning of the human

brain and are made up of units called (artificial) neurons. Basically, each neuron receives

a vector of inputs Xi = {xi,1, .., xi,n} and combines them linearly using a vector of weights

A = {a1, .., an} to produce pi = A ·Xi. In the case of binary text classification, the sign of

pi represents the label, positive or negative, to assign to the i-th document. The study we
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present here uses a particular type of ANN, the aforementioned LSTM (see Section 3.2) for

the main technical aspects, only recently been applied to this research field (e.g., Vicari and

Gaspari, 2020; Wan et al., 2021).

Other supervised learning algorithms mentioned by Medhat et al. (2014) are decision tree

classifiers, which follow a recursive approach to create sub-partitions of data based on the

presence of one or more words, and rule-based classifiers, which divide the data defining sets

based on IF-THEN rules: IF some rules are satisfied by a document, THEN that document

can be assigned with the corresponding class label. Rules are defined during the training

phase on the basis of criteria such as support and confidence. The former counts the number

of times a specific rule, for instance the presence of a given word in the text, is satisfied in

the whole training set, while the latter represents the conditional probability of observing a

given label when the rule associated with that label is satisfied.

Yadav et al. (2019) use a supervised ML approach to classify real-time news headlines.

The authors automatically label all headlines based on net buying pressure1 patterns in the

S&P NIFTY Index and then use NB classifiers and SVM for text classification, finding that

the best alignment window for futures markets in India is five minutes.

Atkins et al. (2018) prove that financial news makes a better job in predicting stock mar-

ket volatility than stock returns. To reduce data dimensionality, they use Latent Dirichlet

Allocation, a generative technique that helps divide each document into a set of topics which

are word sets and that are generated on the basis of the words they contain. Instead of

having documents made up of a large number of words, or n-grams2, each document is built

up as a set of topics, thus reducing dimensionality. Specifically, they create a list of topics

for each 60-minute time interval, by assigning a sparse feature vector that counts the number

of times a topic appears in that interval. Then, they label these feature vectors based on

the binary direction of volatility changes during the following time interval. Finally, they

1According to the authors, net buying pressure can be defined as “the difference between the number of
buyer-initiated trades and the number of seller-initiated trades calibrated from the bid-ask quotes”.

2An n-gram is a sequence of n consecutive words.
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perform text classification using the NB classifier and justify this choice by the fact that it

has high empirical performance even under the simplistic assumption that each feature is

independent of the others. In our research, we refine this kind of investigation on the pre-

dictive capabilities of financial news using the sentiment proxies generated by our approach

as exogenous variables in the mean and variance equation of an EGARCH model.

Souma et al. (2019) classify financial and economic news using an NLP ML approach.

They train a recurrent neural network with LSTM units, which is particularly suitable for

capturing long-term dependencies among words in a text. Before feeding the training algo-

rithm, they perform word embedding using global vectors (GloVe) as a word representation

method to convert words to vectors.3 GloVe contains pre-trained word vectors based on

Wikipedia documents. The authors assign labels to each news article based on stock returns

over the next one-minute period and obtain a classification of positive and negative news.

Note that the prominent literature on financial news classification through ML tech-

niques generally considers narrow-based indices (the DJIA 30 and the NIFTY Indexes are

considered in Souma et al., 2019; Yadav et al., 2019, , respectively). Unlike this literature,

here we take into consideration a broad stock index, namely, the S&P 500, to stress the ex-

ploratory capabilities of our approach. In our study, another important role is played by the

techniques of labeling financial news based on dictionaries (see Section 1). In this research

context, among the recent contributions in the literature, Li et al. (2014) first implement

a generic stock price prediction framework, plug in six different models with different an-

alytical approaches, and use GI and LM to construct a sentiment space in which textual

news is projected. They conduct experiments on five years of historical Hong Kong Stock

Exchange prices and news. Their main findings show that at the individual stock, sector,

and index levels, model using sentiment analysis outperform the bag-of-words model in both

validation and testing sets and that there is a minor difference between the models using the

two different dictionaries.

3Embedding consists in assigning a vector to each word in the dictionary such that words with similar
meaning are located close to each other in the vector space.
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Wang et al. (2015) work on sentiment analysis retrieved from SeekingAlpha articles and

StockTwits messages, two social media platforms, and analyze their correlation with S&P 500

Index movements, finding the former has better explanatory power, even though sentiment-

based investment strategies have generally poor performances. They use a dictionary-based

approach for SeekingAlpha analysis, relying on LM, and a supervised ML approach for

StockTwits, using labels assigned directly by users. Their best model is that based on SVM.

Loughran and McDonald (2015) highlight the danger coming from possible misclassifi-

cation when labeling financial words. With particular reference to the Diction platform,

commonly used to assess the tone of business documents in the accounting and finance lit-

erature, they argue that it is inappropriate for gauging the tone of financial disclosures.

Indeed, about 83% of the Diction optimistic words and 70% of the Diction pessimistic words

appearing in a large sample are likely misclassified. They conclude that the LM appears

better at capturing tone in business text than Diction.

Lastly, Mangee (2018) provides evidence that marketplace context matters for under-

standing stock price behavior. To this end, investor sentiment, extracted by reports from

the Wall Street Journal and Bloomberg News outlets, is compared across two dictionaries:

GI and LM. He finds a negative relationship between measures of investor pessimism and

real stock returns and that this relationship is statistically significant only for the context-

specific measures. These results suggest that contextualized investor sentiment is able to

explain medium- to longer-term swings in aggregate stock prices.

In this paper, we continue this line of research on the use of dictionary-based labeling

techniques. In particular, we deepen it by comparing the results from these techniques with

those from our stock index-based labeling approach.
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3 Methodology

In this section, we present the approach underlying our classification problem and the main

pre-processing techniques used to transform the raw text into vectors representing the indi-

vidual words of each article.

3.1 Pre-processing

Before being fed into the neural network, all financial news was pre-processed using the Deep

Learning Toolbox in MATLAB. As for the learning phase, the first step was dividing data

into three sets; namely, Training, Validation, and Testing sets. The Training set was used to

find the optimal weights through backpropagation. Many algorithms, like stochastic gradient

descent and Adam, divide the training set into subsets of observations named mini-batches.

The neural network computes the total loss function at the conclusion of each mini-batch

and updates the parameters, which can be used by the following mini-batch. The Validation

set, which is itself divided into the same number of mini-batches, was used to test the model

with the parameters optimized by the neural network at each mini-batch. The Testing set

was used to test the trained neural network when the learning phase was completed.

In order to perform the learning task, we first divided the data set into two parts. The

first one contains 75% of all articles and represents both Training and Validation sets, while

the second part was used as the (out-of-sample) Testing set. Then, the first part of the data

was divided into Training and Validation sets using the holdout cross-validation technique,

applying the 2/3 : 1/3 ratio rule. After specifying the percentage of data to allocate to each

of these subsets, the holdout cross-validation technique allows for the random selection of

observations. Thus, the Training set represents 50% of all observations, while the Validation

and Testing sets represent 25% each.

Pre-processing is an important phase and can heavily influence the accuracy of text

classification. First, as is standard, documents were tokenized, and punctuation and stop
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words were erased. Then, all words were converted to lower case, to avoid duplication.

Another useful technique to reduce dimensionality is lemmatization, which consists of keeping

only the roots of each word, as in stemming. The difference is that stemming uses general

rules to cut off the final part of a word; for instance, it deletes suffixes like “ing” or “ed,”

while lemmatization is a more complex method that is able to turn each word into its

dictionary form (Heidenreich, 2018). Words like “are” and “is” are transformed into “be,”

for instance. MATLAB provides pre-trained lemmatization tools based on widely available

English dictionaries. To apply lemmatization, part of speech information is needed. This

means words are categorized as nouns, verbs, adjectives, adverbs, and so on. In addition,

words with less than two characters or more than fourteen characters were removed. Lastly,

we removed “{R, r}euters” from the corpus, as it was unlikely to be informative.

Tokens went through encoding, which transformed them into numerical indexes, ex-

pressed by a sparse vector of length equal to the dictionary size and with all zero values but

the one corresponding to the specific word in the vocabulary. In this way, tokens could be

recognized by the classification algorithm.

Another important aspect to consider is document size. Each document is an article that

contains an arbitrary number of words. However, best results could be achieved when the

Training set contained documents of similar length, because infrequent long articles might

have biased the learning phase; therefore, their length had to be reduced. Figure 1 represents

the length of documents that belong to the Training set using a histogram. Most documents

did not exceed 360 words, so this value can be used as an appropriate threshold. All articles

that exceed this limit were truncated, while shorter articles were padded, meaning they were

filled in with zero vectors.

3.2 LSTM neural network

In this section, we describe the six-layer ANN architecture (see Figure 2) that we used to

divide news into three classes: positive, negative, and neutral. After encoding, the next
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Figure 1: Length in words of news articles included in the Training set.

step consisted of word embedding, a very common practice before training a neural network.

Embedding allows for dimensionality reduction and can be useful to nuances the semantic of

words by assigning to each word a vector of real numbers. Among the different alternatives,

we decided to include an embedding layer in the ANNs used to train the model. A different

solution might be using pre-trained word embedding, but in this case, we likely would have

had to rely on an overly generic training set, not specific to the financial context.

The first step of ANN learning is feeding the neural network with sequences of words in

the form of encoding vectors with a length equal to the number of words in the dictionary,

k. Therefore, the first layer was a one-dimensional input layer that took each word of the

sequence and passed it on to an embedding layer, as shown in Figure 2. The Embedding

layer mapped each word to a d-dimensional dense vector, with d < k, and adapted it to the

corpus during the learning phase. The weighting matrix computed by the neural network

for this layer is a d× k matrix.
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Figure 2: ANN’s architecture with LSTM layer.

After the embedding layer, vectors were transferred to the LSTM layer, which learned

long-term dependencies in the documents; these dependencies are comprised of as many

LSTM blocks as there are words in the article under consideration. Each vector is associated

with an LSTM block, which includes multiple LSTM units. The number of hidden units

determines how much information is remembered between time steps. It should be fixed to

an appropriate integer value, so as not to overfit the training data.

The input weights to compute for each LSTM block are defined by a 4u×d matrix, where

u is the number of units of each LSTM block, recalling that an LSTM unit has four layers

(forget gate, input gate, candidate cell and output gate). In addition, each LSTM block has

a 4u×u recurrent weight matrix that must be computed by the neural network at each time

step. Finally, the layer learns also a 4u-dimensional vector of biases.
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When the last final LSTM block is reached, outputs are passed on to a fully connected

layer (FCL) with three activations, matching the number of classes (positive, negative, and

neutral). The number of weights among these two layers is equal to the product of the three

activations and the number of units of the LSTM block u. A weight matrix of size c × u

is involved, where c is the number of classes. This fully connected layer receives as inputs

the results of the activations of the LSTM layer and computes three weighted sums of these

inputs, adjusting the weights together with all the others in the neural network.

When classification involves only two classes, only one activation is necessary for this

layer and a hyperbolic tangent function (or a sigmoid) pushes its output between −1 and 1.

The closer the value of this function is to −1, the more the document is associated with one

class; the opposite holds true when the value approaches 1. In a three-class classification,

three activations are needed, and their output is passed on to a Softmax function, which

generalizes the sigmoid function for multi-class classification. Broadly speaking, the Softmax

function computes the conditional probability of a class xi, with i = 1, 2, . . . , k, over all

possible classes, as shown by Equation 1:

Softmax(x) =
exp(xi)∑k
j=1 exp(xj)

. (1)

The Softmax function takes values between 0 and 1, and the sum of the probabilities of all

classes is 1,
∑k

j=1 Softmax(xi) = 1.

The final layer is the classification output layer (Karpathy, 2015), which takes the prob-

abilities provided by the Softmax layer and computes a particular type of loss function,

called cross-entropy loss function, for all documents. Loss function is used for classification

tasks and is described by Equation 2.

Loss(yi, ŷi) = −
n∑

i=1

k∑
j=1

yijln(ŷij), (2)

where yij represents the true class distribution of the i-th document and is an indicator
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function that takes value of 1 when the processed i-th document belongs to the j-th class

and zero otherwise. The output of the Softmax layer is ŷij and represents the estimated

probability of the i-th document belonging to the j-th class.

Equation 3 shows an example of the cross-entropy loss function computed in vector form

for the individual i-th document, assuming the i-th document belongs to class number j = 3.

Loss(yi, ŷi) = −


0

0

1


[
ln(ŷi1) ln(ŷi2) ln(ŷi3)

]
= −ln(ŷi3) (3)

In this example, the sparse vector y = [y1, y2, y3] = [0, 0, 1] is multiplied by the logarithm

of the transpose of the dense vector ŷ, ŷT = [ŷ1, ŷ2, ŷ3]
T . As the three classes are mutually

exclusive, only one element of the vector yi has a non-zero value. Therefore, the result of

the equation is simply represented by the last line of Equation 3.

The neural network selects the weights that minimize the loss function for each i-th

document; this implies minimizing the negative log-likelihood of the true j-th class for train-

ing the i-th observation, Loss(yi, ŷi) = −ln(ŷij), which can be interpreted as performing

maximum likelihood estimation to estimate the parameters (see Karpathy, 2015).

4 Data

In order to perform text classification and assess informative power, publicly available finan-

cial news articles related to S&P 500 Index were scraped from Reuters.com.

Web scraping was done using Rvest and Rselenium, two open source packages available in

R. As Reuters web pages are dynamic, a dynamic approach was needed to retrieve the HTML

code. Using Rselenium, we simulated browser activity to load web pages that contained older

news articles and with Rvest we extracted the HTML code that included article headlines

and links to those articles. Then, using those links, we extracted the remaining information.
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Scraping techniques allowed us to download 20,728 news articles that appeared from

March 19 to November 7, 2019, even though only 3276 was used for sentiment analysis, as

explained in the next section. Article headlines and bodies were concatenated to obtain a

unique text source for each article. As an additional step, we converted the time each piece

of news was published to Eastern Time.

As news articles scraped from Reuters are not labeled, we introduced certain automatic

labeling techniques, that are described below: a stock index returns-based approach and a

dictionary-based approach.

4.1 Stock index returns approach

The stock index returns approach classifies news based on the subsequent returns as re-

flected in the S&P 500 Index.First, we have downloaded intraday S&P 500 Index prices from

Bloomberg Terminal, choosing 10-minute and 20-minute time intervals. Then, we computed

log-returns using the closing price of each time interval t, except for the first interval of each

day, from 9:30 to 9:40, where log-returns were computed using the market opening price and

the closing price of that time window.

All news articles were classified into three categories on the basis of the return recorded

in the time interval when they were published. Articles published during time intervals that

registered a “positive return”, higher than the 55th percentile, were labeled positive. Those

included in intervals that scored “negative”, meaning returns below the 45th percentile, were

classified as negative. For returns between the 45th and 55th percentile, articles were labeled

as neutral. Furthermore, we applied a lagged labeling technique, meaning each article was

labeled following index returns over the next time window. The choice of using three classes

with these two percentile cutoffs derives from the attempt to capture only relevant price

variations that are not due to common price fluctuations. In addition, these percentile levels

allow positive and negative news to be almost relatively equally labeled in the data set, with
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neutral news much less frequent.4

Clearly, a labeling approach based on fixed time intervals has the drawback that articles

published at the beginning of each time window have more time to impact stock index

returns, meaning they belong to that specific time interval and are labeled on the basis of

price movements during that time interval, while articles published later in the same time

window are labeled with price movements of that time window even if they only partly

impact them.

In the 10-minute case, we analyzed is 3397 articles (3376 when considering lagged label-

ing), representing news published between 9:30 AM and 4:00 PM. In the 20-minute case, 3276

news articles were available for sentiment analysis (3198 when considering lagged labeling);

they were published between 9:40 AM and 4:00 PM.

This automatic labeling produced the results shown in Table 1, where the number of

negative items labeled on the basis of S&P 500 Index 10-minute (20-minute) returns is 1391

(1516), the number of neutral items is 322 (348), and the number of positive items is 1559

(1537). As shown in the table, similar results are obtained with the lagged labeled technique.

With all classification methods, the number of negative news items is close to that of items.

The number of neutral items is dramatically lower. Using 35th and 65th percentiles leads in

many cases to a more uniform classification, but the overall results are unsatisfactory. The

fact that the number of negative and positive labels are close to each other appears to be a

good starting point to accurately train the network, as it ensures similar levels in learnability

of the two classes.

4.2 Dictionary approach

In this section, we present our second labeling approach, which is based on dictionaries.

LM (Loughran and McDonald, 2011) is one of several finance-specific dictionaries. They

analyzed 10-K documents filed with the SEC between 1994 and 2008 and selected, among

4Before choosing these percentiles, we did some preliminary attempts with 35th and 65th, but the result
was not satisfactory.
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Classification Method Negative Neutral Positive

S&P 500 10 min 1516 322 1559
S&P 500 10 min lag 1527 336 1513
S&P 500 20 min 1391 348 1537
S&P 500 20 min lag 1439 354 1405

Table 1: Automatic labeling of Reuters news.

words that occur in at least 5% of the documents, new terms to improve the GI.

The HE (Henry, 2008) uses words taken from the corpus of earnings press releases.

To account for the context of each word, Henry assesses its directional meaning based on

its relationships with close terms in the same sentence. Specifically, she started with an

initial list of words and examined the three words preceding and following each word in the

documents. She evaluated whether the word is positive and negative on the basis of its

relationship with each of these close terms. Only words labeled either positive or negative

in 80% of occurrences appear in HE.

As explained by Medhat et al. (2014), dictionary-based sentiment analysis consists of

defining a list of words that are associated with a given sentiment state. This list of words

is labeled on the basis of their meanings and expanded using synonyms and antonyms. A

well-known publicly available list of opinion words is what we call the CI: Psychological

Harvard IV-4 Dictionary, which is part of the General Inquirer (Harvard University, 1960)

software for text analysis and classifying words as positive or negative. However, Loughran

and McDonald (2011) note that the GI’s poor performance with positive words is probably

due to their frequent negation and that a negative list would be preferable.

We used all three dictionaries (GI, LM, and HE) to label articles based on the words they

contain. These three dictionaries provide lists of positive and negative words that can be

used to assess whether a document is positive or negative using a simple formula. Specifically,

each article was labeled on the basis of how many positive and negative words it contains

according to each of the three dictionaries.
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Equation 4 shows the formula used to define each label. A “positive” class was attributed

to the i-th article if the difference between the number of positive and negative words it

contains is greater than zero. If this difference is negative, the assigned class is “negative.”

If this formula returns zero, then the class of the i-th article is “neutral.”

classi = p wordsi − n wordsi (4)

where p wordsi and n wordsi indicate the number of positive and negative words, respec-

tively.

As an example, we provide in Table 2 a sample of positive and negative words included

in the three dictionaries.

HE GI LM

Positive Negative Positive Negative Positive Negative
above below abide abandon able abandon
accomplish challenge ability abandonment abundance abandoned
accomplished challenged able abate abundant abandoning
accomplishes challenges abound abdicate acclaimed abandonment
accomplishing challenging absolve abhor accomplish abandonments
accomplishment decline absorbent abject accomplished abandons

Table 2: Sample of words contained in HE, LM, and GI. Source: CRAN. Package ‘SentimentAnal-
ysis’.

This classification produced similar results when comparing LM and GI, as presented in

Figure 3. In both cases, the number of negative items is higher than the number of neutral

and positive items. For the LM dictionary, the number of positive items is almost negligible.

For the HE dictionary, the number of positive articles is greater than the number of negative

articles. HE produced a more uniform classification, even though the number of positive

items is more than twice the number of negative items. Given that the three dictionaries

differ in terms of class distribution, a direct comparison among them provides interesting

results in the sentiment analyses. Once all items were labeled according to each of the three

dictionaries, we implemented and trained the LSTM neural network to predict the class of
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each article.

(a) LM. (b) GI. (c) HE.

Figure 3: Histogram representation of article classes based on LM, GI, and HE.

5 Results

In this section, we present the results of the classification on the basis of the labeling technique

used. The news articles are labeled and pre-processed and represent the inputs to the neural

network for the training phase. Figure 4 shows the word cloud representation of the most

frequent words in the text before and after pre-processing. Note that some of the words that

appear in Figure 4a are excluded by Figure 4b. For example, words like Reuters or x000D

(which is an ASCII non-printable character) appear frequently in the text but are unlikely

to have strong semantic relevance for an article.

5.1 Stock index returns approach

In the case of the stock index returns approach, considering all the possible combinations

among 10- and 20-minute time intervals, non-lagged and lagged labeling and so on, 720

different settings were used to train the network. Preliminary attempts showed that no

combination of parameters performs better than others. Therefore, all combinations are
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(a) Raw data.

(b) Pre-processed data

Figure 4: Word cloud representation of raw training data and pre-processed training data.
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retained, and those that showed the best results selected.

Recall that 10- and 20-minute are used, while news articles are classified on the basis of

S&P 500 returns in the relevant time window or a lagged time window.

The embedding dimension indicates the length of the d-dimensional dense vector used

by the embedding layer. In this respect, we select dimensions of 50, 100, and 150. For

the number of hidden units used by the LSTM blocks, we select 50, 100, 150, and 200.

The gradient threshold represents the value the gradient is not allowed to exceed. To avoid

gradient diverging, which occurs when the Euclidean norm of the gradient becomes greater

than this threshold, the algorithm clips it and returns it to the threshold. The values we

checked as gradient thresholds are 1, 0.1, and 0.01.

The initial learning rate represents the step size used by the learning algorithm at each

iteration to move toward the minimum of the loss function. First, we tried different values of

the initial learning rate; we then decided to use only 0.0001, as we noticed that with larger

values, the algorithm tends to run quickly and leads to unsatisfactory results.

The maximum number of epochs is set to 150. However, the validation patience repre-

sents an early stopping technique that halts the algorithm before approaching the maximum

number of epochs and avoids network over-training. This technique establishes the number

of times the loss function computed on the validation set can be larger than the previous

smallest loss. It implies that the loss function on the validation set must decrease towards

zero and if it increases too much compared to a prefixed threshold. Among the different

combinations, we used 20, 30, 40, 50, and 60 as values for validation patience.

In addition, we set the following two parameters to the respective default valued provided

by MATLAB. The mini-batch size is set to 128 and represents the number of training in-

stances that are analyzed by the algorithm before updating the parameters. The validation

frequency is set to 50 and indicates the number of instances used by the network to validate

the training parameters on the validation set. This implies that the neural network assesses

the accuracy of the model once every 50 instances.
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Table 3 presents the results for the four models according to time window and the presence

of the lagging method. The latter refers to models where classes are defined on the basis of

current (not lagged) or subsequent (lagged) index returns. In order to extract the sentiment

variables for each of the eight classes, we kept the 10 best results in terms of accuracy. In

the table, we report only the best in class for each of the four models. In all cases, accuracy

is very close to 50%, in line with many other similar studies.5

Best Accuracy Time Window Lag

0.50177 10 min No
0.48815 10 min Yes
0.47131 20 min No
0.44556 20 min Yes

Table 3: Results of LSTM neural network applied on articles labeled with the log returns of the
S&P 500 Index. The percentiles used to define positive and negative classes are 45th and
55th, respectively.

5.2 Dictionary approach

To train the network with the dictionary-based approach, we tested different parameter

settings. After a preliminary investigation, our network was built using 200 hidden units of

LSTM blocks and 100 epochs. The other values are 100 for the embedding dimension, 0.1 for

the gradient threshold, 0.001 for the initial learning rate, and 10 for the validation patience.

Table 4 shows the results of the training process for the three dictionary-based labeling

techniques. The columns represent the accuracy of the model, the dictionary used for la-

beling, the embedding dimension, the number of units in each LSTM block, the gradient

threshold, the number of epochs, the initial learning rate, and the validation patience used

as early stopping technique.

The best result is obtained for LM, with an accuracy of 0.92462 on the testing set. This

result is not so surprising when looking at Figure 3. Indeed, LM contains the highest relative

5Full results are available upon request to the authors.
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Accuracy Label

0.92462 LM dictionary
0.79034 GI dictionary
0.65135 HE dictionary

Table 4: Results of LSTM neural network applied to articles labeled with dictionary-based tech-
niques.

number of negative words. On the one hand, positive words lead to poor performances. As

noted in Loughran and McDonald (2011), the reason is that positive words are often followed

or preceded by negations, which clearly change the meaning of the statement. On the other

hand, almost all articles were classified as negative and, so the results may be biased. When

it comes to GI and HE, accuracy decreases to 0.79034 and 0.65135, respectively, though both

of them better than the random guess of 0.50.

6 Sentiment variables

In this section, we present the sentiment variables produced on the basis of the presented

analysis. These variables are based on the classification of financial news belonging to the

testing set. The out-of-sample test includes observations from October 1 to November 7,

2019. In the case of the stock index returns approach, we built eight types of sentiment

variables, corresponding to the eight classification models presented in the previous sections.

For the dictionary-based approach, there are six sentiment variables that depend solely on

the dictionary and time window used.

6.1 Stock index returns approach

Table 5 presents the four sentiment variables built on the basis of the classification methods

presented in Table 3. As already mentioned, for each labeling technique we selected the ten

most accurate results. Therefore, each of these eight sentiment variables is a synthesis of a

list of ten variables.
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Sentiment variable Time Window Lag

Ssp10 10 min no
Ssp10lag 10 min yes
Ssp20 20 min no
Ssp20lag 20 min yes

Table 5: Sentiment variables based on LSTM neural network applied to articles labeled with S&P
500 Index log returns.

After all financial news items in the testing set were classified by applying the parameters

obtained through the training process, the flow of items was divided into time intervals of

10 or 20 minutes based on their publication time; they were then aggregated to build the

sentiment variables. Given that each article was assigned a value of 1 if positive, −1 if

negative, and 0 if neutral, sentiment variables are defined as the sum of all news items n

published during time interval t, as described by Equation 5:

St =
∑
i

newst,i, (5)

where

newst,i =


+1, if the news article is classified as positive.

0, if the news article is classified as neutral.

−1, if the news article is classified as negative.

The sentiment variables Ssp10 and Ssp20 are obtained by classifying news articles using

the model that associates them with 10-minute and 20-minute log returns computed on the

S&P 500 Index, respectively. Similarly, Ssp10lag and Ssp20lag are the sentiments obtained

with subsequent 10-minute and 20-minute log returns, respectively, meaning with returns

registered within the following 10-minute and 20-minute time interval.

As an example, Figure 5 shows the time series for one of the sentiment variables. Specif-

ically, it refers to the most accurate sentiment variable built using the model that tracks the

S&P 500 Index returns with 20-minute time intervals, Ssp20.
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Figure 5: Time series of Ssp20 which has the highest accuracy.

6.2 Dictionary approach

We built sentiment variables to test the ability of dictionary-based classifications to explain

the S&P 500 Index performances. These sentiment variables are built on the basis of news

published within 10-minute and 20-minute time intervals, analogously to the variables pre-

sented in the previous section, and are based entirely on data related to the Testing set.

Table 6 presents six sentiment variables built aggregating all articles that were published

within each interval. The aggregation method is the one presented in Equation 5.

The variables are SLM10, which is based on LM and 10-minute time intervals, SGI10,

based on GI with 10-minute time intervals and SHE10, which is based on HE with 10-minute

time intervals. SLM20, SGI20 and SHE20, analogously, are based on 20-minute time intervals.

Sentiment Variable Dictionary Time Window

SLM10 LM 10 min
SGI10 GI 10 min
SHE10 HE 10 min
SLM20 LM 20 min
SGI20 GI 20 min
SHE20 HE 20 min

Table 6: Sentiment variables based on LSTM neural network applied to articles labeled with HE,
GI, and LM.

25

Electronic copy available at: https://ssrn.com/abstract=3937901



Finally, Figure 6 shows the time series for the three sentiment variables based on 20-

minute time intervals, SLM20, SGI20 and SHE20.

7 The EGARCH model and sentiment variables

In this section, we test whether the obtained out-of-sample news-based sentiment variables

are informative in explaining the returns and volatility of the S&P 500 Index. We model

the conditional volatility of stock index returns using an EGARCH model by including the

sentiment variables into the mean and variance equations. The EGARCH model allows

us to model conditional heteroscedasticity by introducing asymmetry between negative and

positive shocks in volatility. Clearly, the aim is to analyze whether the obtained sentiment

indicators represent meaningful predictors of market returns.

To account for skewness and fat tails in the log returns distribution, we adopt an

EGARCH(1,1) specification using a skewed Student’s t-distribution for innovations.

Equations 6 and 7 describe the EGARCH(1,1) model, where xt is the index log-return,

ht is the volatility of the index log-return and St is the sentiment variable at time t:

xt = µ+ λmSt + εt, εt ≡ h
1
2 zt, zt ∼ Skew Student′s t (6)

and

log ht = ω + αzt−1 + β log ht−1 + γ(|zt−1| − E(|zt−1|)) + λvSt. (7)

The EGARCH parameters are defined as follows: µ (the constant in the mean equa-

tion), ω (the constant in the variance equation), α (the ARCH coefficient), β (the GARCH

coefficient) and γ (the leverage coefficient). Finally, λm and λv are the coefficients for the

sentiment variable St in the mean and variance equations, respectively.

Below, we present the results for the sentiment variables built using the stock index re-

turns approach and the dictionary approach. First, we include only the results obtained
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using 20-minute time intervals, since the 10-minute time intervals did not produce any sig-

nificant results.6 This finding provides an interesting insight into the time propagation of

public news and thus, the reaction of market participants. No impact of public news release

was not detected in the first 10 minutes, which suggests that the information is discounted

by the market on a larger time window. We stress here that this is an aggregated reaction

since we are analyzing the response at the market level and not at the single-firm level.

Second, we show that the sentiment based on the stock index returns approach is partic-

ularly sensitive to the initial settings and thus can lead to different results in the EGARCH

estimates. Conversely, the sentiment based on the dictionary approach provides quite similar

results for all the three dictionaries. Figure 7 shows the out-of-sample time series of the S&P

500 Index intraday log returns from October 1 to November 7, 2019, using 20-minute time

intervals (560 observations).

Figure 7: The plot of S&P 500 Index log returns with 20-minute time intervals from October 1 to
November 7, 2019. Source: Data from Bloomberg.

7.1 Stock index returns approach

In this section, we present the results obtained by using as inputs in the mean and variance

equations of the EGARCH(1,1) model fitted on the S&P 500 Index log returns, as presented

6Full results are available upon request to the authors.
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in Table 5. We recall that each of these sentiment variables represents a list of ten variables,

built using the ten most accurate classification results. We consider Ssp20, which is based

on the classification that links news published within a given 20-minute time interval to

index returns within the subsequent time interval, and Ssp20lag. Our findings show that the

sentiment proxies built with the stock index returns approach have meaningful explanatory

capabilities in four cases. Table 7 shows the estimates for the EGARCH(1,1) model using

the ten versions of the sentiment variable Ssp20 on the returns of the S&P 500 Index. Four

of ten regressions have λm statistically different from zero (columns 2, 3, 4 and 9 in the

table). In these cases, the impact on returns is relatively small and close to zero (i.e, lower

than 10−4) and is negative in two cases and positive in one. The coefficient in the volatility

equation, λv, is negative and significant in three cases (columns 2, 3, and 9) and exhibits a

larger magnitude with respect to the mean equation. This negative relationship implies that

a higher value in the sentiment is associated with a lowering of volatility. Given that the

sentiment builds on the returns, news items are mapped on positive and negative returns,

so an increase in the sentiment underlines a positive news item that is related to positive

returns. Table 8 includes the lagged versions of the sentiments Ssp20lag as defined in Section

3. In the mean equation, λm is significant seven of ten cases (columns 1, 4, 5, 6, 7, 9, and

10). As for Ssp20, the magnitude is close to zero and is positive in three of seven cases.

Despite providing some interesting results, we conclude that the sentiment based on stock

index returns does not represent a reliable approach for distinguishing between positive and

negative news. In our view, this is due to the mapping process between news and financial

returns. In the chosen methodology, the classification among positive, negative, and neutral

news is performed through a direct match between the time release of each news items and the

market price movements recorded in a subsequent time window. Clearly, price movements

in the stock index are the result of several market forces and factors that could impact the

accuracy of the classifier through spurious associations in the learning process.
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7.2 Dictionary approach

Below, we present the analysis of the three sentiment variables based on positive and negative

words in GI, LM, and HE. As for the sentiment variables built under the stock index returns

approach, the sentiment variables presented in Table 6 are tested to prove their explanatory

power. In this case, we also found that significant results in the 20-minute time intervals

and not in the 10-minute time frames.

Table 9 shows the three estimated regressions where SLM20, SGI20 and SHE20 are intro-

duced as exogenous variables in the mean and variance equations of the EGARCH(1,1) fitted

on the S&P 500 Index returns as included in Figure 7. Analogously, Table 10 includes the

estimates for the sentiments lagged by one period S(1)LM20, S(1)GI20, and S(1)HE20.

In both tables, all coefficients are always significantly different from zero at the 1%

significance level. Table 9 shows that the sign for λm, is positive for all three dictionaries.

As expected, this implies that sentiment is positively related to market returns. Conversely,

λv is negative in all three dictionaries, indicating that higher sentiment values associated

with a lowering of volatility.

When considering the lagged version of the sentiment, as described in Table 9, λm remains

positive only for SLM20, which is the sentiment variable built under the classification based on

LM. For GI and HE, the sign becomes negative, indicating that a change in the relationship

when the sentiment is lagged that could reflect a reversion toward the mean. Conversely, the

estimated coefficient of the sentiment in the variance equation, λv, is negative, confirming

the previous findings for SLM20, SGI20, and SHE20. Overall, the results from the dictionary

approach are clearly more stable since they provide similar results with all three dictionaries.

8 Conclusion

This paper contributes to the financial literature by providing some alternative proxies to

estimate news sentiment, which is not directly observable and measurable. We provide evi-
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SLM20 SGI20 SHE20

µ -0.00007 *** -0.00004 *** -0.00004 ***
(0.00000) (0.00000) (0.00000)

λm 0.00000 *** 0.00002 *** 0.00002 ***
(0.00000) (0.00000) (0.00000)

ω -0.06525 *** -0.05202 *** -0.03938 ***
(0.00000) (0.00000) (0.00000)

α -0.09822 *** -0.11002 *** -0.10142 ***
(0.00213) (0.00013) (0.00003)

β 0.99702 *** 0.99688 *** 0.99607 ***
(0.00003) (0.00002) (0.00008)

γ -0.01549 *** -0.02554 *** -0.03491 ***
(0.00012) (0.00001) (0.00000)

λv -0.03881 *** -0.02676 *** -0.04122 ***
(0.00000) (0.00000) (0.00001)

Skew 0.91906 *** 0.93127 *** 0.95008 ***
(0.04482) (0.06511) (0.04773)

Shape 4.16196 *** 4.35039 *** 4.01090 ***
(0.02944) (0.02753) (0.00147)

Table 9: SLM20, SGI20, and SHE20 as exogenous variables in the mean and variance equations of
EGARCH(1,1) model with skewed Student’s conditional t-distribution fitted on S&P 500
Index intraday log returns with 20-minute time intervals.
Statistical significance at the 1% (***), 5% (**), 10% (*) levels.
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S(1)LM20 S(1)GI20 S(1)HE20

µ -0.00004 *** -0.00008 *** -0.00004 ***
(0.00000) (0.00000) (0.00000)

λm 0.00005 *** -0.00002 *** -0.00001 ***
(0.00000) (0.00000) (0.00000)

ω -0.06916 *** -0.06338 *** -0.07427 ***
(0.00000) (0.00000) (0.00000)

α -0.10050 *** -0.11082 *** -0.13714 ***
(0.00007) (0.00019) (0.00006)

β 0.99721 *** 0.99590 *** 0.99379 ***
(0.00008) (0.00000) (0.00003)

γ -0.02730 *** -0.02281 *** -0.04008 ***
(0.00013) (0.00014) (0.00008)

λv -0.04682 *** -0.02376 *** -0.02212 ***
(0.00000) (0.00005) (0.00003)

Skew 0.93598 *** 0.92352 *** 0.94147 ***
(0.07001) (0.04582) (0.01926)

Shape 4.01275 *** 3.96098 *** 3.38238 ***
(0.00291) (0.08599) (0.00151)

Table 10: S(1)LM20, S(1)GI20, and S(1)HE20 as exogenous lagged variables in the mean and
variance equations of the EGARCH(1,1) model with skewed Student’s conditional t-
distribution fitted on S&P 500 Index intraday log returns with 20-minute time intervals.
Statistical significance at the 1% (***), 5% (**), 10% (*) levels.
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dence that even publicly available news is informative and can explain short-lived movements

in a broad index such as the S&P 500. Indeed, despite the relatively short time frame of

our sample, our sentiment variables prove to be effective in explaining S&P 500 Index log

returns and volatility, even when introduced as lagged variables. We also contribute to the

literature by providing an alternative use of three widely used dictionaries (LM, HE, and GI)

showing that the explanatory power of the sentiment is invariant to their use. Our findings

show that the dictionary-based approach provides more reliable results with respect to the

sentiment based on stock index returns approach. Finally, we show that the predictive power

on the stock index is found in the 20-minute interval after a news article becomes publicly

available.

Future research might focus on improving the accuracy of the classification models, using

different ML tools and pre-processing techniques (such as the GloVe embeddings by Stand-

ford), improving the significance of all sentiment variables, and explaining the sign of the

coefficients. To improve results, instead of considering fixed time intervals, articles might be

labeled using index log returns computed over the 20-minute time interval that starts from

the exact moment the article is published. Improvements might also come from the use of

different financial news sources, which can be finance-specific, generic, or even news aggre-

gators. With respect to dictionary-based automatic labeling, more complex equations than

in Equation 4 can be used to improve classification accuracy. Even if the dictionaries used in

this analysis are widely used in financial literature, other dictionaries can be used. Focusing

on a less broad index or even an individual sector or stock might also be an interesting

research path.
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A Stock index returns approach using the VIX

In this appendix, we replicate the stock index returns approach using the VIX as the matching

variable. The VIX is considered a superior predictor of historical volatility since it is based

on option prices that reflect the future expectations of market participants (see, for instance,

Jiang and Tian, 2005).

Due to shock asymmetry, volatility is usually higher when the S&P 500 Index returns are

negative and might be lower when the S&P 500 Index returns are positive. Following the

analysis in the main text, we do not impose any asymmetry in the weighting structure and

therefore, process news for the VIX following the same method as for returns. As discussed

in the paper, news articles were classified as positive in case of log returns higher than the

55th percentile, negative in case of log returns lower than the 45th percentile, and neutral

otherwise. The results are presented in Table A.1. The period considered and number of

articles analyzed were the same as for stock returns. Table A.2 shows the accuracy of the

results for the four models according to the time windows and the presence of the lagging

method. Finally, Table A.3 shows the four sentiment variables built on the basis of the

classification methods presented in Table A.2.

Classification Method Negative Neutral Positive
VIX 20 min 1468 271 1537
VIX 20 min lag 1448 276 1474
VIX 10 min 1516 202 1679
VIX 10 min lag 1524 206 1646

Table A.1: Automatic labeling of Reuters news.

Best Accuracy Label Time Window Lag
0.4823 VIX index 20 min No
0.48936 VIX index 20 min Yes
0.48999 VIX index 10 min No
0.51422 VIX index 10 min Yes

Table A.2: Results of LSTM neural network applied to articles labeled with the log difference of
the VIX Index.

The estimates for the EGARCH model are presented in Tables A.4 and A.5 for Svix20

and Svix20lag, respectively. In both cases, we found similar evidence as for the sentiment built

on the S&P 500. For instance, λm is significant and very close to zero in both Svix20 and

Svix20lag in seven and nine of the ten cases, respectively. In addition, in this case, there is a

discordant sign among the different versions of the sentiment, confirming that the approach
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Sentiment Variable Label Time Window Lag
Svx20 VIX 20 min no
Svx20lag VIX 20 min yes
Svx10 VIX 10 min no
Sxv10lag VIX 10 min yes

Table A.3: Sentiment variables based on LSTM neural network applied on articles labeled with
the log difference of the VIX Index.

based on stock index returns is highly sensitive to the initial settings. Analogously, λm is

significant in six and nine of ten cases for Svix20 and Svix20lag, respectively. As the tables

shows, the coefficient exhibits different signs according to the different versions of sentiment.

Also in the paper, we conclude that stock index returns do not represent a reliable approach

since it fails in the mapping process between news and financial returns.
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