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Abstract
This paper focuses on  market changes due to exogenous effects. The standard 
implied volatility is shown to be insufficient for a  proper detection and analysis 
of this type of risk. This is mainly because such changes are usually dominated 
by endogenous effects coming from a  specific trading mechanism or natural mar-
ket dynamics. A methodologically unique approach based on artificial options that 
always have a constant time to maturity is proposed and explicitly defined. The key 
principle is to use interpolated volatilities, which can effectively eliminate instabili-
ties due to the natural market dynamics while the changes caused by the exogenous 
causes are preserved. Formal statistical tests for distinguishing significant effects 
are proposed under different theoretical and practical scenarios. Statistical theory, 
computational and algorithmic details, and comprehensive empirical comparisons 
together with a real data illustration are all presented.

Keywords  Implied volatility · Exogenous effects · Artificial options · Constant time 
to maturity · Panel data · Changepoint detection

1  Introduction

It is a well-known fact that the analysis of financial markets relies on  the ability 
to detect all kinds of sudden changes—changepoints—which randomly and repeat-
edly occur in the stock market over time. Some changes are caused by the market 
itself, its natural dynamics, or various trading mechanisms. For instance, consider-
ing some specific financial contract, certain changes may occur due to the specific 
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payoff structure of the contract, either because of a fixed maturity date or because 
the  payoff structure is highly discontinuous, or both. This is also the case when 
studying the price of a fixed maturity bond that always converges to a nominal 
value when approaching its maturity. On the other hand, more important changes 
for practitioners and financial agents are those that are caused by different impulses 
due to human interactions (such as the recent outbreak of COVID-19, President 
Biden’s canceling the permit for the Keystone XL pipeline, or the Russian attack on 
Ukraine). Unfortunately, these two types of changes can not be easily distinguished 
when using common market data and standard theoretical/methodological principles 
for the statistical analysis. Additional steps are needed in order to separate specific 
risk—the natural dynamics of the market—and systemic risk (mainly the changes 
caused by various external causes). Moreover, among these types of risk, we dis-
tinguish between those intrinsically connected with the structure of the financial 
instrument—so called endogenous effects—and those determined by some external 
cause—referred to as exogenous effects.

Focusing on the options market and bearing in mind the exogenous effects that 
are our main interest, we introduce a unique market analysis approach based on arti-
ficial options with a constant time to maturity over time. In general, the price of an 
option contract follows a specific dynamic when approaching the exercise date, and 
this dynamic is typically assumed to follow the hypothesis of the Black and Scholes 
model proposed in Black and Scholes (1973). However, that model postulates nor-
mally distributed returns and also restricts the volatility to be constant with respect 
to strike values. Some modifications to take into account non-normally distributed 
returns are proposed, for instance, in Corrado and Su (1997). In practice, however, 
the market agents adjust the former assumption by changing the latter and, as a 
result, an increasing volatility is quoted for strikes far from the current value of the 
underlying asset. This quoted volatility is known as the implied volatility (IV) and 
its characteristic convex shape is called the volatility smile. The scientific literature 
related to this topic is quite important from both—the statistical and the financial 
viewpoints. Some characteristic mean-reverting behaviour is investigated in Ielpo 
and Guillaume (2010) and various smoothing approaches targeting optimal trading 
strategies are proposed and discussed in Appel (2003), Chong and Ng (2008), and 
Chio (2022). Advanced panel data approaches are adopted in Maciak (2019) while 
the most recent ideas based on neural network models and machine learning tech-
niques are used in, e.g., Jang and Lee (2019). In all these works, as in many others, 
some pre-analysis is performed on the raw observations in order to (a) smooth the 
discrete data or (b) remove the endogenous effects while studying the exogenous 
ones. As far as (a) is concerned, several methods have been proposed to generate 
a continuous IV curve with respect to the quoted strikes (see, for instance, Kahalé 
(2004), Fengler (2005), Benko et  al. (2007), or Homescu (2011) for a complete 
review). Some recent applications of these smoothing techniques can be found in 
Fengler (2012), Glaser and Heider (2012), Fengler and Hin (2015), Ludwig (2015), 
and Kopa et al. (2017), but all of them assume some underlying smoothness of the 
unknown IV surface—which is not the case in our approach.

On the other hand, there are not so many studies regarding (b). Usually, the 
objective of the research is to capture and explain the endogenous dynamics of the 
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IV smiles while removing the exogenous effects. However, it is still important for 
many practical applications to do the opposite: to remove the endogenous features 
that naturally affect the evolution of the IV and are strictly related to the financial 
structure of the option itself, and to rather capture and model the exogenous effects 
contained in the data as unnatural jumps or sudden breaks—changepoints in gen-
eral. The main feature of the evolution of the IV over time is its increasing convexity 
when approaching the maturity date. When the option contract is close to its matu-
rity, this adjustment becomes more important because even small fluctuations in 
the underlying value can cause the option to move suddenly from an in-the-money 
(positive payoff) position to an out-of-the-money (zero payoff) position, having huge 
effects on the price of the option. Therefore, the market agents further adjust the 
model, quoting a more convex IV smile. Alternatively, one could use the jump-diffu-
sion process proposed by Jiang and Tian (2005) or the so-called model-free implied 
volatilities suggested in Britten-Jones and Neuberger (2000), but the corresponding 
theoretical framework is rather more restrictive and empirical calculations tend to be 
more extensive and less intuitive. Nevertheless, in order to study the dynamics of the 
option price one needs to study the dynamics of the IV, and to make inference on the 
external causes affecting the dynamics of the IV one must first (somehow) remove 
the natural dynamics of the market since it is evident that the convexity of the IV 
increases when the time progresses towards the maturity date. One could argue that 
to remove the maturity effect it would be enough to consider options with longer 
maturity. Unfortunately, this is difficult for several reasons: (1) For most of the com-
panies (excluding American blue chips) long maturity options are not quoted; (2) 
Even if they are quoted, the amount of different strikes is very limited and most 
strikes start to be available only at times close to maturity; (3)  In  any case, the 
liquidity of the options is not enough for the options far from maturity.

There are some rather exploratory approaches discussed in Guhathakurta et al. 
(2010) and Marcaccioli et  al. (2022) to distinguish between exogenous effects 
and endogenous effects as they are generally considered to be of different nature. 
However, unlike the aforementioned papers, we propose a formal statistical/
inferential tool based on removing the endogenous effects caused by the market 
itself while allowing us to focus directly on the exogenous effects—which has not 
been, to the best of our knowledge, done so far. There are some nonparametric 
tests for detecting jumps within a (discrete or continuous) stochastic process of 
asset prices proposed in Lee and Mykland (2008), Ait-Sahalia and Jacod (2009), 
or Fan and Fan (2011) or a simple location model for volatility changes based 
on  a  segmentation (see Brigida and Pratt 2017) but they all focus on a detec-
tion of any changepoints in general. Other alternatives are very popular volatility 
indexes, like DAX Volatility Index and CBOE VIX, (see CBOE (2003) or Kue-
pper (2022) for details) that estimate the implied volatility of options with an 
average expiration of 30 days, but they aggregate multiple put/call options (over 
both the maturities and the strikes), they are computationally more complex, and 
they mainly serve as exploratory tools to assess the overall market sentiment. 
Nevertheless, there can be also used some nonparametric detection approaches 
as suggested in Nystrup et al. (2016) or Füss et al. (2011). However, our primary 
focus—embedded within an option and strike specific interpolation instead—is 
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to provide market agents with a valid stochastic tool to be able to correctly make 
inferences about some rather specific market based on the significance of changes 
occurring due to some particular (well recognized) external stimuli. The corre-
sponding market reaction can be either uncertain and can be explained just by 
some random fluctuation, but some other market changes are more essential and 
typically statistically significant. The method proposed in this paper can properly 
and consistently distinguish between these two possibilities.

The detection of the exogenous effects within the dynamics of the IV smile is 
very important for understanding the sentiment of the market agents since the IV 
captures the expectations of the market about the evolution of the underlying in the 
near future. As the changepoints caused by the exogenous effects have become more 
and more frequent in the last couple of years, a rigorous statistical analysis is needed 
here. The proposed idea moves the market analysis from the hypothesis that the 
implied volatility of the options of a given asset is able to capture the feeling and the 
view of the financial agents about the future changes of the asset itself. The focus on 
the volatility of the artificial options also reduces the inter-day bias, which is further 
diminished using a carefully calibrated interpolation between the implied volatilities 
of the options having consecutive maturities.

The rest of this paper is organized as follows: The principal idea of the paper—the 
interpolated volatility of the artificial options—is introduced in Sect. 2. A detailed 
description of the corresponding interpolation algorithm can be found there as well. 
Some formal mathematical and statistical theory regarding the detection of change-
points is provided in Sect. 3. Some sensitivity analysis, practical illustrations on real 
data, and empirical comparisons based on simulations are discussed in Sect. 4. Final 
remarks and conclusions are summarized in Sect. 5.

2 � Interpolated volatility of artificial options

Let {zitm; i = 1,… ,N; t = 1,… , T; m ∈ 1,… ,M} represent the values of the 
implied volatility for some underlying asset. Here, i stands for the option’s strike 
label, t is the observing day from the follow-up period, and m is the maturity dataset 
index. Such implied volatilities are well known for being non-stationary over time 
mainly due to the specific payoff structure of the market. Therefore, when focus-
ing on the exogenous effects in particular, one needs to firstly deal with this non-
stationarity induced by the trading mechanism. For this purpose, we construct a 
new artificial dataset {Yit; i = 1,… ,N; t = 1,… , T} such that the new data values 
will report, for each strike i and each observing day t, an (artificial) implied volatil-
ity value Yit of an artificial option which always has a constant (over time) time to 
maturity of Tm days. The construction of the artificial option is based on a simple 
(weighted) linear interpolation across different IV datasets m ∈ {1,… ,M} . For each 
day t ∈ {1,… , T} , the observed implied volatilities of the two options having the 
same strike and the corresponding maturities immediately before and immediately 
after the given day t ∈ {1,… , T} are interpolated together. The analytic formula can 
be expressed as
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where mb is the maturity dataset index of the first option expiring before the time 
t + Tm (at the day tb ) and ma is the maturity dataset index of the first option expir-
ing after the time t + Tm (at the day ta ). Computational details are described in the 
Implied Volatility interpolation/Artificial Options—IVintAO Algorithm below. Note 

(1)Yit =

1

(t+Tm)−tb
zitmb

+
1

ta−(t+Tm)
zitma

1

(t+Tm)−tb
+

1

ta−(t+Tm)

,

Algorithm   IVintAO
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that unlike the popular VIX index (CBOE 2003), the interpolation in (1) is: (i) so-
called strike specific; (ii) it does not merge put and call options together; (iii) it still 
provides the typical IV smile for every trading day t ∈ {1,… , T} ; (iv) and, finally, it 
is computationally simpler and, therefore, easier to interpret. The proposed approach 
interpolates the IVs of the options that have the same strikes. For this reason, it is 
needed to consider a follow-up window in which the number of the quoted strikes 
does not change substantially or, at least, the amount of the quoted strikes that are 
available for the whole period is sufficiently large. If there is an interest to analyze 
a longer period, it is possible to split the whole follow-up window into a sequence of 
shorter sub-periods and to run the analysis in each period separately.

 For a brief illustration of the main principle of the interpolation defined by 
(1), using Tm = 35 (i.e., artificial options with a constant time to maturity of 35 
days), we use the call options data of Erste Group (see Sect.  4 for more details). 
The first day of the observation period ( t = 1 ) is July 16th, 2018. Thus, the artifi-
cial option will expire at t + 35 , i.e., August 20th, 2018, and the two real options 
that must be considered for the interpolation in (1) are the options with the maturity 
August 17th, 2018 (denoted by mb ) and the maturity September 21st, 2018 (denoted 
by ma ). The distance (in days) between the artificial maturity (August 20th, 2018) 
and the maturity of the first real option is (t + 35) − tb = 3 days and the distance 
between the artificial time to maturity and the maturity of the second real option is 
ta − (t + 35) = 32 days. Therefore, the equation in (1) becomes

where zitmb
 and zitma

 are the corresponding values of the raw implied volatil-
ity obtained from the market ( mb is the index for the maturity dataset expiring on 
August  17th, 2018 and ma is the index for the maturity dataset expiring on  Sep-
tember 21st, 2018). The interpolation procedure is repeated for all available strikes 
i ∈ {1, ...,N} and all trading days t ∈ {1,… , T} from the given observation period. 
The specific choice of Tm = 35 takes into account the fact that a reasonable value 
of Tm should be in between 30 and 40 days. Any Tm < 30 (and t being immediately 
after the expiration of the options of the given month) would make t + Tm smaller 
than the first consecutive maturity and, therefore, tb would obviously not exist. On 
the other hand, any Tm > 40 would generate a proxy too far away from the current 
day, not representing the sentiment of the market effectively while also consider-
ing ta for which several strikes are not quoted yet. However, unlike the VIX index 
which—by default—produces the options with an average 30-day expiration, there 
is some flexibility in (1). Different choices of Tm are addressed in Sect. 4. For illus-
tration, Fig. 1 shows the Black–Scholes implied volatilities of Erste Group and the 
corresponding interpolated volatilities of the artificial options over the same fol-
low-up period around the days of a  possible external stimulus—the tribunal trial 
between Erste Group and Croatia. One effect of the proposed interpolation is obvi-
ous: While the original IV structure (Fig.  1a) is clearly non-stationary over time, 
mainly due to the natural market dynamics driven by the trading mechanism and the 

(2)Yit =

1

3
zitmb

+
1

32
zitma

1

3
+

1

32

,
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option payoff structure (e.g., three spikes corresponding with the maturity dates—
July 20th, August 17th, and September 21st), the IV structure of the artificial options 
visualized in Fig. 1b seems to be relatively stationary, with only minor fluctuations. 
If some fluctuation is systematic at some specific time—which can be particularly 
observed, for instance, between the trading days no. 10 and no. 18—it is believed to 
be, very likely, a result of an exogenous effect.

An analogous pattern can also be recognized in Fig. 1a, but the magnitudes of 
the changes are rather negligible when compared with the overall magnitudes of 
the three main spikes related to the expiration dates. Thus, it is clearly unavoidable 
that one must first somehow smooth the natural market dynamics when a statistical 
analysis of the market changes due to the exogenous effects is of some interest. The 
artificial options constructed in terms of the proposed interpolation in (1) filter the 
natural market dynamics and the related (rather non-essential) effects are effectively 
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(b) Interpolated volatility of the artificial options

Fig. 1   a Strike specific panels of the values of the implied volatility of the Erste Group call options and 
b the corresponding interpolated volatility of the artificial options with a  constant (over time) time to 
maturity of Tm = 35 days. Both panels are given over the same follow-up period of 50 trading days (from 
Monday, July 16th, 2018 to Friday, September 21st, 2018). Three maturities (July 20th, August 17th, and 
September 21st), present within the follow-up period, are represented by the red vertical (dashed) lines
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removed. The remaining volatility—which is supposed to reflect the exogenous 
effects—is, however, not affected and, moreover, the magnitudes of the changes 
become stronger when compared with the overall variability of the volatility of the 
artificial options. Therefore, the statistical analysis performed in terms of a formal 
statistical test will have much more power to detect significant changes related to the 
external causes.

3 � Changepoint tests for exogenous effects

Many different statistical approaches have been proposed in the literature to deal 
with the so-called changepoint problem when detecting significant changes in some 
underlying probabilistic model—see Csörgö and Horváth (1997) for an  overview. 
The approach discussed in this paper is based on a nice property of the proposed 
Implied Volatility interpolation/Artificial Options—IVintAO Algorithm, which takes 
the original non-stationary (and typically skewed) values of the IV and interpolates 
them into a set of volatilities of artificial options which already seem to form a sta-
tionary structure. This is crucial from the theoretical point of view when formulating 
the underlying stochastic model. On the other hand, considering the applicational 
viewpoint and also bearing in mind different arguments of different practitioners, it 
may be appropriate to distinguish three theoretically alternative (but practically very 
similar) scenarios when performing the formal statistical test. We briefly address all 
of them. However, specific details are only given for the last one, which is, as we 
believe, the most appropriate one (explicit arguments to justify this statement will be 
provided later).

Assuming some form of stationarity, the volatility of the artificial options can be 
represented by a formal underlying probabilistic model

for the set of strikes i = 1,… ,N observed within the follow-up period t ∈ {1,… , T} . 
Such model is also known as a panel data model. Parameters �i ∈ ℝ for i = 1,… ,N 
in (3) are the panel specific mean parameters (i.e., the unknown true strike specific 
volatilities) which may change at some unknown time point � ∈ {1,… , T} . The 
location of the changepoint is common for all panels (i.e., the same external cause 
affects the market), however, the panel specific magnitudes of the changepoint, 
�i ∈ ℝ , may differ (i.e., the resulting effect of the change depends on the strike 
value) while also allowing for a situation where only some proportion of the panels 
is subjected to the change (meaning that �i = 0 for some i ∈ {1,… ,N} ). Each panel 
specific mean parameter (for some fixed i ∈ {1,… ,N} ) equals �i before the change 
and it becomes �i + �i after the change. The errors �i = [𝜀i1,… , 𝜀iT ]

⊤ can be seen as 
panel-specific disturbances (explicit theoretical details are provided later).

Statistically speaking, the whole problem of detecting the changepoint within the 
given panels (the panel data model respectively) can be formulated in terms of a sta-
tistical test of the null hypothesis

(3)Yit = 𝜇i + 𝛿i1{t > 𝜏} + 𝜀it,
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against a general alternative

While the formulation of the null and alternative hypothesis is rather simple, par-
ticular details regarding the statistical test itself may differ a lot—depending mainly 
on the theoretical assumptions imposed on the number of the panels N ∈ ℕ and the 
length of the follow-up period T ∈ ℕ.

3.1 � Scenario 1: T → ∞ and N is fixed

A rather simple and straightforward method can be applied when treating the whole 
problem within the context of multivariate time series. The dimensionality is deter-
mined by the number of panels and the follow-up period is assumed to tend to infin-
ity. An  asymptotically consistent statistical test is proposed, for instance, in Hor-
váth et  al. (1999). The test can properly take into account the spatial dependence 
between the panels and, also, the dependence structure over time. On the other hand, 
when analysing market changes due to specific exogenous effects, practitioners usu-
ally focus on short periods before and after the event, and close to the event, that 
is assumed to trigger the change. Therefore, the assumption of T → ∞ is slightly 
impractical. Nevertheless, the test can be still applied and some empirical compari-
sons are also provided in Sect. 4.

3.2 � Scenario 2: T → ∞ and N → ∞

A more complex methodological framework is elaborated, for instance, in Horváth 
and Hušková (2012) and Chan et al. (2013), where both the panels number N ∈ ℕ 
and the observational period length T ∈ ℕ are assumed to tend to infinity (so that 
N∕T2

→ c ≠ 0 ). However, the results rely on the assumption that the individual pan-
els are independent observations while the error terms within the panels form causal 
linear processes. Some limited dependent structure in terms of a common stochastic 
factor among the panels may be assumed but it is, in our opinion, not that realistic 
for the market scenarios considered in  practice. Some finite sample drawbacks of 
this approach can also be seen in the empirical comparisons in Sect. 4. Nevertheless, 
the formal statistical test is very analogous to the third scenario below, which effec-
tively detects exogenous effects assuming the given underlying artificial IV structure.

3.3 � Scenario 3: T is fixed and N → ∞

Bearing in mind the true character of the financial markets, it is reasonable to assume 
that the error vectors �i = [𝜀i1,… , 𝜀iT ]

⊤ are neither independent nor identically dis-
tributed. A strong mixing condition among the panels is postulated to reflect the fact 
that more distant strikes have less dependent implied volatility than the volatilies of 
two strikes close to each other (see Sect. 4.2 for some empirical justification). There 

(4)H0 ∶ � = T ,

(5)H1 ∶ 𝜏 < T ∃k ∈ {1,… ,N} such that 𝛿k ≠ 0.
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is also no specific form of stationarity being assumed within the panels and some het-
eroscedasticity across the panels is also allowed. This accounts for situations where the 
strikes close to the at-the-money position are expected to have smaller volatility. Dif-
ferent approaches under various theoretical assumptions can be used (see, for instance, 
Andrews (1993), Csörgö and Horváth (1997), Horváth et al. (2008), Shao and Zhang 
(2010), and Peštová and Pešta (2018)) but we rely on the approach presented in Maciak 
et al. (2020) where two competitive self-normalized test statistics are defined by

and

where LN(s, t) ∶=
∑N

i=1

∑s

r=1

�
Yir − Yit

�
 and RN(s, t) ∶=

∑N

i=1

∑T

r=s+1

�
Yir − Ỹit

�
 . 

Moreover, Yit denotes the average of the first t observations in panel  i and Ỹit 
is the average of the last T − t observations in panel  i, i.e., Yit =

1

t

∑t

s=1
Yis and 

Ỹit =
1

T−t

∑T

s=t+1
Yis.

Under some standard regularity conditions and the assumptions listed below, the sta-
tistical test based on the test statistics in (6) or (7) can be proved to be consistent. The 
distribution of the test statistics under the null hypothesis in (4) is given by the next 
theorem. For further theoretical and technical details, we refer to Maciak et al. (2020).

Assumption A  The random error vectors �i = [𝜀i1,… , 𝜀iT ]
⊤ , for i = 1,… ,N 

form a zero mean �-mixing sequence such that the mixing coefficients �(i) sat-
isfy 

∑∞

i=1
(𝛼(i))𝛾∕(2+𝛾) < ∞ for some 𝛾 > 0 and also 

∑
i∈ℕ 𝔼�𝜀i,t�2+𝛾 < ∞ for all 

t ∈ {1,… , T}.

Assumption B  Suppose there is a positive definite matrix � such that

Theorem  1  Suppose that Assumptions (A) and (B) hold. Then, under the null 
hypothesis in (4),

(6)QN(T) = max
t=1,…,T−1

|LN(t, T)|
max
s=1,…,t

|LN(s, t)| + max
s=t,…,T−1

|RN(s, t)|

(7)SN(T) =

T−1�
t=1

L
2
N
(t, T)

∑t

s=1
L
2
N
(s, t) +

∑T−1

s=t
R

2
N
(s, t)

∧ = lim
N→∞

1

N
�ar

⎧⎪⎨⎪⎩

N�
i=1

�
1�

s=1

𝜀is,… ,

T�
s=1

𝜀is

�⊤⎫⎪⎬⎪⎭
.
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for Zt = XT − Xt , where [X1,… ,XT ]
⊤ is a multivariate normal random vector with 

zero mean and covariance matrix �.

Practically speaking, the test can be easily performed using the asymptotic distri-
bution stated in the theorem above. Monte Carlo simulations or bootstrap approaches 
can be used as an alternative to mimic the distribution of interest and obtain the corre-
sponding quantiles. Once the null hypothesis in (4) is rejected, practitioners and finan-
cial agents are usually interested in having a consistent estimate of the changepoint’s 
location � ∈ {1,… , T − 1} . A  simple and straightforward estimator is proposed in 
Pešta et al. (2020) which, unlike many other changepoint estimators suggested in the 
literature, does not suffer from any of the usual boundary issues when the true change-
point is located at the beginning or at the end of the follow-up period. The estimator for 
� ∈ {1,… , T} is defined by

where

Further theoretical details can be found in Pešta et al. (2020). One could argue that 
the underlying assumption of just one changepoint within the given follow-up period 
in the model in (3) is not realistic, as market changes usually occur frequently and 
multiple “shocks” are typically observed within a consecutive series. However, the 
proposed statistical test in Scenario 3 does not require that T → ∞ and, moreover, 
the follow-up period T ∈ ℕ can even be arbitrarily short (as short as 2–3 days). 
Therefore, with regard to the  practical applicability of the proposed method, the 
market agents can just focus on any follow-up period around some specific external 
cause and if some significant change is detected by (6) or (7), the follow-up period 
can be split into two parts—before and after the change, and the whole mechanism 
is applied to both disjoint intervals again. On the other hand, if no changepoint is 
detected in some particular follow-up period, no further splitting is needed.
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4 � Empirical investigations

In this section we tackle some finite sample particularities which may be considered 
important for practitioners and, also, we illustrate the proposed method using an exam-
ple of real data. The empirical performance of various changepoint scenarios is investi-
gated via an extensive simulation study.

4.1 � Erste Group call options

The real data—the Black–Scholes model implied volatilities for the call options of 
Erste Group quoted in the EUREX Deutschland market—were downloaded from 
Thomson Reuters Datastream. A follow-up period of 50 tradings days is considered1 
starting on Monday, July 16th, 2018, ending on Friday, September 21st, 2018. The 
follow-up period is long enough to implicitly include some changes due to the natu-
ral market dynamics when approaching any of the three maturity dates (there are 
three consecutive maturities explicitly included in the follow-up period—July 20th, 
August  17th, and September  21st—to demonstrate the role of the proposed inter-
polation) and, also, possibly some changes caused by external causes because the 
company underwent a tribunal trial (Erste Group against Croatia, ARB 17/49), 
which is still a pending dispute at that time. The first tribunal meeting took place 
on  August  10th, 2018, and the first procedural order was issued on August  20th, 
2018. Both events are typically considered to be important enough to have a serious 
impact on the market of the underlying asset and both dates are, therefore, intention-
ally included in the considered follow-up period. There are 11 strike specific panels 
equidistantly spanning from 30 Euros to 40 Euros (with a step of 1 Euro). The num-
ber of panels is limited in this example by the fact that the strikes must be quoted 
in all three maturity datasets but we rather consider this to be a technical issue that 
could be overcome in practice.

The raw IV values for the call options of Erste Group and the corresponding 
interpolated volatilities of the artificial options (for Tm = 35 ) are both presented in 
Fig. 1. Three maturity dates (July 20th, August 17th, and September 21st) implicitly 
present within the given observation period are visualized by the red vertical lines. 
The changes in the IV caused by the natural market dynamics are clearly visible in 
the top panel (Fig. 1a), while the panel below (Fig. 1b) provides more insight about 
the IV smile as it adapts to miscellaneous exogenous effects after the so called “get-
ting-close-to-maturity" effect is removed by the proposed interpolation.

Applying the changepoint test on the raw IV values (from Fig.  1a), both test 
statistics, (6) and (7), detect a significant changepoint (max-type test statistics 
QN(T) = 1.0897 with the corresponding critical value 0.8204 and the p-value 
0.0059; sum-type test statistic SN(T) = 3.0476 , critical value 2.1747, p-value 
0.0144). The changepoint estimated in terms of (8) yields �̂N = 4 which is July 20th, 

1  Various options markets of different companies over a whole range of follow-up periods were consid-
ered with more-or-less analogous results and conclusions. The Erste Group case is taken as an illustrative 
example.
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2018. This perfectly corresponds with the first maturity date. Thus, the detected 
changepoint is clearly related with the natural stock market dynamics. Applying the 
same testing procedure on both sides of the estimated location of the changepoint, 
another significant change (on the right side of �̂N ) is detected by both test statistics. 
The estimated location of the changepoint is August 17th, 2018, which again cor-
responds with the maturity date. No other changes are found to be significant. Thus, 
both detected (significant) changes are clearly due to the natural market dynamics 
(see also Fig. 3a for an illustration of the actual performance of the test statistics).

On the other hand, using the interpolated volatilities of the artificial options 
instead, the results become different and more informative. Again, both test statis-
tics detect a significant changepoint (max-type test statistic QN(T) = 3.0171 with 
the corresponding critical value 1.6541 and the p-value 0.0001; sum-type test sta-
tistic SN(T) = 7.9775 , critical value 7.4855, p-value 0.0230) but the location of 
the changepoint is different: �̂N = 10 (July 30th, 2018). This changepoint is mostly 
caused by some external event.

This becomes even more evident when repeating the whole testing procedure 
again considering either the side on the right of the previously detected changepoint 
or the left side. Another significant changepoint is detected by both test statistics 
(max-type test statistics QN(T) = 0.5820 , critical value 0.4932, p-value 0.0016; 
sum-type test statistics SN(T) = 4.9291 , critical value 4.8702, p-value 0.0494) while 
the estimated location of the changepoint is �̂N∶2 = 16 (August 8th, 2018). Finally, 
one more significant changepoint can be detected (with the test based on QN(T) , 
with the corresponding p-value 0.0470) on August 23rd, 2018 ( ̂�N∶3 = 29 ) and no 
other significant changepoints are detected any more (see Fig. 2).

Looking back at important dates of the ongoing dispute between Erste Group 
and Croatia (ARB17/49), two out of three detected changepoints are immediately 
linked with specific events of the tribunal trial. While the first changepoint ( ̂�N = 10 , 
July 30th, 2018) is most likely also somehow related to the dispute, there seem to 
be no doubts regarding the other two changepoints. One ( ̂�N∶2 = 17 , August  8th, 
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2018) reflects a sudden increase of uncertainty just before the first tribunal meeting 
and the other ( ̂�N∶3 = 29 , August 20th, 2013) occurs right after the first procedural 
order when the situation at the market stabilized due to the positive outcome of the 
meeting.

Thus, unlike the raw IV values, where the only significant changepoints are 
related to the natural market dynamics—i.e., some volatility spikes when approach-
ing the maturity dates—the interpolated volatility allows detecting significant 
changes which are clearly related to some more interesting exogenous effects instead. 
The interpolated volatility of the artificial options with a constant (over time) time 
to maturity is indeed a useful tool for the analysis of the exogenous effects due to 
external causes which are otherwise practically undetectable, as they are hidden by 
the more marked changes created by the natural market dynamics.

4.2 � Sensitivity analysis & residual inspection

Firstly, we briefly address some sensitivity issues related to different choices of 
the artificial time to maturity, Tm ∈ ℕ . As already mentioned, the specific choice 
of Tm = 35 takes into account the fact that any reasonable value should be in 
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between 30 and 40 days. Moreover, the choice of Tm = 35 reduces the number 
of situations where no interpolation can be performed. For example, consider-
ing August 13th, 2018 and Tm = 35 , the artificial option will expire on Septem-
ber 17th, 2018. Thus, the option expiring right before this artificial time to matu-
rity is the one expiring on August 16th, 2018 and the option expiring right after 
expires on September 20th, 2018. Both dates are sufficiently far from the artificial 
time to maturity to allow very effective interpolation. On the one hand, if Tm = 39 , 
the artificial option would expire on September 21st, 2018 and the option expir-
ing before has the maturity September 20th, 2018, and the one expiring after has 
the maturity October 18th; in this way, we do not use the front contract expiring 
on August 16th which would still be very informative and we include the contract 
expiring on October 18th that is too far from the current date. On the other hand, 
if Tm ≤ 30 , and the current day is immediately after the expiration of an option, 
there is a high probability that the artificial option would expire before the matu-
rity of the front contract making impossible to perform any interpolation.

The three specific choices Tm ∈ {30, 35, 40} have been particularly chosen 
for illustrative purposes. However, in general, small values of Tm seem to unders-
mooth the natural market dynamics (see Fig. 4), but the most important structural 
breaks are still nicely preserved (significant changepoints are detected for trading 
days no. 10, 16, and 23). Larger values of Tm seem to oversmooth the natural market 
dynamics (see Fig. 5) with only two significant changepoints being detected (trad-
ing days nos. 10 and 19). However, the overall conclusions made with respect to 
the exogenous effects  are very similar for all three choices of Tm ∈ {30, 35, 40} . 
The first changepoint is always detected at the same location—no matter what is the 
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underlying time to maturity of the artificial options. The other changepoints depend 
on the amount of smoothness introduced by the interpolation algorithm. Thus, there 
is a typical statistical trade-off when determining the value of Tm for constructing 
the artificial options and the value of Tm = 35 seems to provide the best empirical 
results.

In the second part, we briefly provide some empirical investigation of the model 
based residuals for the Erste Group call options—used for the practical illustration 
in the previous section—in order to justify the theoretical assumptions postulated 
for Scenario  3 in Sect.  3. Crucial assumptions involve non-independent and non-
identically distributed error terms which form a specific string mixing sequence—
which can also be concluded from the estimated correlations in Table  1 and the 
partial auto-correlation plot in Fig. 6c. On the other hand, some heteroscedasticity 
among the strike specific panels is obvious again from Table 1 or, alternatively, from 
Fig. 6a). The assumptions postulated in Scenario 3 indeed seem to reflect the under-
lying stochastic nature of the market (interpolated) volatilites.

4.3 � Simulation study

Finally, we empirically compare different testing approaches explicitly mentioned 
in Sect. 3. Three specific scenarios are considered: a) The follow-up period T ∈ ℕ 
tends to infinity but the number of panels N ∈ ℕ is kept fixed and the statistical test 
proposed in Horváth et al. (1999) is applied; b) Both the follow-up period as well as 

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

In
te

rp
ol

at
ed

 v
ol

at
ilit

y
Maturity: 20/07/2018 Maturity: 17/08/2018 Maturity: 21/09/2018

τN:1 = 10 τN:2 = 19

0 10 20 30 40 50

−0
.1

0
0.

00
0.

10

Time development [in days]

Vo
la

til
ity

 D
iff

er
en

ce

Fig. 5   Artificial call option volatilities of Erste Group for a constant (over time) time to maturity of 
Tm = 40 days (top panel) and strike specific differences when compared with the artificial call options 
with the reference time to maturity of Tm = 35 days (bottom panel). The maturities are given by red 
dashed lines, two detected changepoints in blue



1 3

Using interpolated implied volatility for analysing exogenous… Page 17 of 21     25 

the number of panels tend to infinity and the test proposed in Horváth and Hušková 
(2012) is used; c) Eventually, the number of panels is assumed to tend to infinity 
while the follow-up period is fixed. Either the statistical test based on the test statis-
tic in (6) or that based on the test statistic in (7) is performed and all the results are 
compared.

In order to closely mimic the example with real data discussed above, relatively 
small values are considered for the length of the follow-up period and the number 
of panels (namely, T ,N ∈ {10, 20, 50} ). The error terms in the underlying model 
(3) are either independent and normally distributed with zero mean and unit vari-
ance (a benchmark setup denoted by D1 ), or they form a dependent auto-regressive 
time series of order one (with the dependence coefficient � = 0.8 and a burn out 
period of length 100) denoted by D2 , and, finally, block resampled residuals (with 
a block length of four) taken from the Erste Group data are used to mimic the true 
(unknown) dependence structure—denoted by D3.

Table 1   Residual based empirical estimates for the strike specific standard errors (over time) and the 
corresponding volatility correlations between two given strikes. The volatility of two distant strikes is 
clearly less dependent than the volatility of two strikes close to each other

Strike(s) Standard Correlations

(in EUR) Errors 31 32 33 34 35 36 37 38 39 40

30 0.0136 0.90 0.76 0.71 0.58 0.51 0.41 0.30 0.25 0.22 0.18
31 0.0112 0.93 0.90 0.80 0.71 0.59 0.45 0.39 0.33 0.28
32 0.0089 0.95 0.86 0.79 0.67 0.53 0.47 0.41 0.38
33 0.0072 0.95 0.89 0.78 0.64 0.56 0.46 0.39
34 0.0047 0.97 0.91 0.81 0.73 0.61 0.52
35 0.0045 0.97 0.89 0.81 0.68 0.58
36 0.0052 0.97 0.91 0.78 0.67
37 0.0058 0.98 0.88 0.77
38 0.0071 0.94 0.86
39 0.0083 0.94
40 0.0109
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Fig. 6   Strike specific standard error estimates with the minimum attained around the at-the-money posi-
tion (left panel) and the corresponding auto-correlation and partial auto-correlation functions for the time 
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The empirical levels of the statistical tests performing under the null hypothesis 
of no changepoint in the model (3) are collected over 1000 Monte Carlo runs in 
Table 2 (considering the theoretical level � = 0.05 ). Regarding the empirical power 
of the tests, the following alternative hypothesis is considered: a common change-
point location is placed after the first third of the follow-up period and the corre-
sponding panel-specific changepoint magnitudes are generated randomly from the 
uniform distribution over the interval (0, �) , for 𝜃 > 0 , so that the signal-to-noise 
ratio equals one. The empirical performance of the tests under the alternative 
hypothesis (again over 1000 Monte Carlo runs) is presented in Table 3.

Recall that all statistical tests used in this section (and also mentioned in Sect. 3) 
are asymptotic tests. The theoretical critical level � = 0.05 should be achieved 
asymptotically (either for T → ∞ , or N → ∞ , or both). Considering rather small 

Table 2   Empirical levels of four statistical tests (for � = 0.05 ) described in Sect. 3 applied to three differ-
ent scenarios with respect to the length of the follow-up period T ∈ ℕ and the number of panels N ∈ ℕ . 
The results are collected over 1000 Monte Carlo runs

Simulation setup T → ∞ T → ∞ T fixed ∧ N → ∞

D T N N fixed N → ∞ Q
N
(T) S

N
(T)

D1 10/20/50 10 0.20 0.12 0.10 0.06 0.06 0.01 0.10 0.10 0.08 0.10 0.09 0.07
20 0.09 0.08 0.05 0.06 0.02 0.00 0.08 0.07 0.07 0.07 0.07 0.06
50 0.10 0.09 0.05 0.05 0.03 0.01 0.07 0.06 0.05 0.07 0.06 0.05

D2 10/20/50 10 0.03 0.00 0.01 0.07 0.07 0.03 0.21 0.19 0.19 0.20 0.19 0.17
20 0.08 0.01 0.01 0.08 0.07 0.06 0.13 0.13 0.12 0.14 0.13 0.11
50 0.10 0.07 0.03 0.08 0.06 0.09 0.10 0.09 0.07 0.09 0.08 0.06

D3 10/20/50 10 0.06 0.04 0.04 0.07 0.02 0.01 0.18 0.15 0.15 0.17 0.15 0.15
20 0.08 0.08 0.07 0.06 0.02 0.01 0.12 0.10 0.10 0.10 0.10 0.09
50 0.09 0.09 0.07 0.04 0.03 0.01 0.09 0.07 0.06 0.07 0.06 0.05

Table 3   Empirical powers of four statistical tests described in Sect. 3 applied to three different scenarios 
with respect to the length of the follow-up period T ∈ ℕ and the number of panels N ∈ ℕ . The results are 
collected over 1000 Monte Carlo runs

Simulation setup T → ∞ T → ∞ T fixed ∧ N → ∞

D T N N fixed N → ∞ Q
N
(T) S

N
(T)

D1 10/20/50 10 0.24 0.65 1.00 0.94 0.90 0.81 0.97 0.99 0.99 0.96 0.98 0.98
20 0.95 0.99 1.00 0.99 0.97 0.58 0.99 1.00 1.00 0.99 1.00 1.00
50 0.99 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00

D2 10/20/50 10 0.40 0.60 1.00 0.99 0.99 0.99 0.48 0.58 0.61 0.47 0.56 0.56
20 0.73 0.73 1.00 0.99 1.00 1.00 0.70 0.75 0.79 0.71 0.72 0.72
50 0.75 0.86 1.00 1.00 1.00 1.00 0.91 0.98 0.99 0.89 0.94 0.97

D3 10/20/50 10 0.70 0.88 1.00 0.60 0.52 0.36 0.77 0.86 0.88 0.78 0.83 0.83
20 0.72 0.82 1.00 0.76 0.54 0.20 0.91 0.97 0.99 0.90 0.94 0.97
50 0.87 1.00 1.00 0.96 0.89 0.29 0.99 1.00 1.00 0.99 1.00 1.00
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values for T ∈ ℕ and N ∈ ℕ , the probability of a type one error is usually larger than 
expected but it seems to properly converge to the nominal level (at different rates 
in different scenarios). On the other hand, the empirical powers of the tests seem 
to be the best for the test statistics defined in (6) and (7), especially when consider-
ing rather short follow-up periods, small numbers of panels, and some dependence 
within the panels.

5 � Conclusion

The implied volatility serves as a very common and popular tool for analys-
ing options markets but there are also some obvious limitations. For instance, 
the natural behaviour of the IV smiles usually generates changes of considerably 
higher magnitudes than those being observed when the market adapts to some 
sudden external impulses. Therefore, when analysing the IV smiles automatically, 
most of the detected changes are very likely to be only related to the underlying 
market dynamics and any detection of exogenous effects is almost impossible. 
However, practitioners and financial agents are typically interested in all kinds 
of external events that may or may not affect the riskiness (or the price) of the 
underlying asset. Therefore, we have proposed a whole methodological approach 
aiming explicitly and exclusively at the analysis of the market reactions to exter-
nal, exogenous effects. The key contribution of our paper is four-fold: First, the 
artificial options with a constant time to maturity over time are introduced as the 
key tool for the analysis of exogenous effects; Second, the standard implied vola-
tility is shown to be insufficient for a proper detection of the exogenous effects 
and the implied volatility of the artificial options is empirically proved to be an 
underappreciated surrogate able to eliminate the natural market dynamics while 
conveniently preserving all exogenous effects; Third, the implied volatility of 
the artificial options is constructed in a  simple and straightforward way using a 
(weighted) linear interpolation of the raw implied volatilities while introducing 
only a very mild aggregation of the existing information (almost no information 
loss); Finally, as a direct consequence, the changes due to the exogenous causes 
are emphasized and a formal consistent statistical test is proposed as a valid infer-
ential tool to detect statistically significant market changes which can be usually 
directly linked by market experts to some specific external (usually man-made 
and well-recognized) event. Thus, the proposed method allows an  effective and 
efficient analysis of market behaviour when focusing on the changes caused by 
the external causes rather than the natural market dynamics itself. The presented 
approach is simple and the analysis can be performed within a  fully automatic 
(data-driven) procedure. The artificial options are easily constructed using the 
standard IV values available in various financial databases and the IVintAO 
Algorithm explicitly described in this paper.
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