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Abstract

It is common that strategic investment decisions are made at a slow time-scale,
whereas operational decisions are made at a fast time-scale. Hence, the total
number of decision stages may be huge. In this paper, we consider multistage
stochastic optimization problems with two time-scales, and we propose a time
block decomposition scheme to address them numerically. More precisely, i) we
write recursive Bellman-like equations at the slow time-scale and ii), under a suit-
able monotonicity assumption, we propose computable upper and lower bounds
— relying respectively on primal and dual decomposition — for the correspond-
ing slow time-scale Bellman functions. With these functions, we are able to design
policies. We assess the methods tractability and validate their efficiency by solving
a battery management problem where the fast time-scale operational decisions
have an impact on the storage current capacity, hence on the strategic decisions
to renew the battery at the slow time-scale.

1 Introduction, motivation and context

In energy management, it is common that strategic investment decisions (storage ca-
pacities, production units) are made at a slow time-scale, whereas operational decisions
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(storage management, production) are made at a fast time-scale. The total number
of decision stages may be huge, which leads to numerically untractable optimization
problems — for instance, a two-time-scale stochastic optimal problem where fast con-
trolled stochastic dynamics (e.g. a change every fifteen or thirty minutes) affect a
controlled long term stochastic behavior (e.g. a change every day or every week) over
several years. How can we nevertheless provide numerical solutions (policies) to such
problems?

1.1 Literature review

Stochastic Dynamic Programming (SDP) based on the Bellman equation Bellman
(1957) is a standard method to solve a multistage stochastic optimization problem
by time decomposition. This method suffers the so called curses of dimensionality
as introduced in Bellman (1957); Bertsekas (2017); Powell (2007). In particular the
complexity of the most classical implementation of SDP (that discretizes the state
space) is exponential in the number of state variables.

A major contribution to handle a large number of state variables is the well-known
Stochastic Dual Dynamic Programming (SDDP) algorithm Pereira and Pinto (1991).
This method is adapted to problems with linear dynamics and convex costs. Other
similar methods have been developed such as Mixed Integer Dynamic Approximation
Scheme (MIDAS) Philpott et al. (2016) or Stochastic Dual Dynamic Integer Program-
ming (SDDiP) Zou et al. (2018) for nonconvex problems, in particular those displaying
binary variables. The performance of these algorithms is sensitive to the number of
time steps Leclère et al. (2020); Philpott et al. (2016).

Other classical stochastic optimization methods are even more sensitive to the
number of time stages. It is well-known that solving a multistage stochastic optimiza-
tion problem on a scenario tree displays a complexity exponential in the number of
time steps.

Problems displaying a large number of time stages, in particular problems with
multiple time-scales, require to design specific methods. A class of stochastic opti-
mization problems to deal with two time-scales has been introduced in Kaut et al.
(2014) and further formalized in Maggioni et al. (2019). It is called Multi-Horizon
Stochastic Optimization Problems and it frames problems where uncertainty is mod-
eled using multi-horizon scenario trees as rigorously studied in Werner et al. (2013).
Several authors have studied stochastic optimization problems with interdependent
strategic/operational decisions or intrastage/interstage problems Abgottspon and An-
dersson (2016); Abgottspon (2015); Abgottspon and Andersson (2014); Skar et al.
(2016); Pritchard et al. (2005), but most of the time the developed methods to tackle
the difficulties are problem-dependent. In Kaut et al. (2014) the authors present differ-
ent particular cases where the two time-scales (called operational and strategic decision
problems) can be easily decomposed. In Maggioni et al. (2019) a formal definition of a
Multi Horizon Stochastic Program is given and methods to compute bounds are devel-
oped: formal Multi Horizon Stochastic Program is a stochastic optimization problem
with linear cost and dynamics where uncertainties are modeled as multi time-scale
scenario trees.
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1.2 Paper contributions and organization

In this paper, we propose a framework to formally define stochastic optimization
problems naturally displaying two time-scales, that is, a slow time-scale (like days) and
a fast time-scale (like half hours). The ultimate goal is to design tractable algorithms
for such problems with hundreds of thousands of time steps, without requiring a
stationary/infinite horizon assumption (contrarily to Haessig et al. (2015)) and in a
stochastic setting (which extends Heymann and Martinon (2018)).

The paper is organized as follows. In Sect. 2, we outline the setting of a generic
two-time-scale multistage stochastic optimization problem. In Sect. 3, we show how
to write Bellman equations at the slow time-scale (the resulting Dynamic Program-
ming equation is referred to as the Bellman equation by time blocks, and is detailed
in (Carpentier et al., 2023, Sect. 5)). If we suppose slow time-scale stagewise inde-
pendence of the noise process, the corresponding Bellman functions provide both the
optimal cost and optimal policies. If not, we nevertheless are able to derive feasi-
ble policies from the Bellman functions, which is our main objective. Then, under a
monotonicity-inducing assumption, we obtain a more tractable version of the Bell-
man equation, by relaxing the problem dynamics without changing the slow time-scale
Bellman functions. In Sect. 4, we devise two algorithms. The first algorithm, akin to
the so-called price decomposition, gives a lower bound of the slow time-scale Bellman
functions, whereas the second algorithm, based on resource decomposition, gives an
upper bound. This upper bound is relevant, that is, not almost surely equal to +∞,
for monotone multistage stochastic optimization problems. In Sect. 5, we indicate how
to obtain policies, and we discuss optimality. In Sect. 6, we present an application
of the above method to a battery management problem incorporating a very large
number of time steps. We finally discuss how to take advantage of periodicity prop-
erties at the slow time-scale in Appendix A, we give some insights on the numerical
complexity of the decomposition methods in Appendix B, and we prove the desired
monotonicity-inducing assumptions for the battery problem in Appendix C.

2 Two-time-scale stochastic optimization problems

We present a formal definition of a two-time-scale stochastic optimization problem,
that is, with a slow time-scale and a fast time-scale.

2.1 Notations for two time-scales

Given two natural numbers r ≤ s, we use either the notation Jr, sK or the notation r:s
for the set {r, r + 1, . . . , s− 1, s}.

To properly handle two time-scales, we adopt the following notations. For a given
constant time interval ∆t > 0, let M ∈ N

∗ be such that (M +1) is the number of time
steps in the slow time step, e.g. for ∆t = 30 minutes, M +1 = 48, when the slow time
step correspond to a day. A decision-maker has to make decisions on two time-scales
over a given number of slow time steps (D + 1) ∈ N

∗:
1. one type of (say, operational) decision every fast time step m ∈ J0,MK of every

slow time step d ∈ J0, DK,
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2. another type of (say, strategic) decision every slow time step d ∈ J0, DK∪{D+1}.
In our model the time flows between two slow time steps d and d+ 1 as follows:

d, 0 −−−−→
∆t

d, 1 −−−−→
∆t

. . . −−−−→
∆t

d,M −−−−→
∆t

d+ 1, 0

A variable z will have two time indexes zd,m if it changes every fast time step m of
every slow time step d. An index (d,m) belongs to the set

T = J0, DK × J0,MK ∪ {(D+1, 0)} , (1)

which is a totally ordered set when equipped with the following lexicographical
order ⪯:

(d,m) ⪯ (d′,m′) ⇐⇒ (d ≤ d′) or
(
d = d′ and m ≤ m′

)
. (2)

We also use the following notations for describing sequences of variables and sequences
of spaces. For (d,m) and (d,m′) ∈ T, with m ≤ m′:

• the notation zd,m:m′ refers to the sequence of variables
(zd,m, zd,m+1, . . . , zd,m′−1, zd,m′),

• the notation Zd,m:m′ refers to the Cartesian product
∏m′

k=m Zd,k of spaces
{Zd,k}k∈Jm,m′K.

2.2 Two-time-scale multistage stochastic optimization setting

We consider a probability space (Ω,F,P). Random variables are denoted using bold
letters, and we denote by σ(Z) the σ-algebra generated by the random variable Z.

We consider an exogenous noise process W = {Wd}d∈J0,DK at the slow time-scale,
as detailed below. For any d ∈ J0, DK, the random variable Wd consists of a sequence
of random variables {Wd,m}m∈J0,MK at the fast time-scale:

Wd = (Wd,0, . . . ,Wd,m, . . . ,Wd,M ) . (3)

Each random variable Wd,m : Ω → Wd,m takes values in a Borel space1 Wd,m (“uncer-
tainty” space), so that Wd : Ω → Wd takes values in the product space Wd = Wd,0:M .
For any (d,m) ∈ T, we denote by Fd,m the σ-field generated by all noises up to
time (d,m), that is,

Fd,m = σ
(
W0, . . . ,Wd−1,Wd,0, . . . ,Wd,m

)
. (4a)

We also introduce the filtration FJ0,DK at the slow time-scale:

FJ0,DK = {Fd,M}d∈J0,DK =
(
F0,M , . . . ,FD,M

)
. (4b)

In the same vein, we introduce a decision process U = {Ud}d∈J0,DK at the slow
time-scale, where each Ud consists of a sequence {Ud,m}m∈J0,MK of decision variables

1We call Borel space (X,BX) a Borel set X equipped with its Borel σ-field BX ((Bertsekas and Shreve,
1996, Definition 7.7, p. 118)).
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at the fast time-scale:

Ud = (Ud,0, . . . ,Ud,m, . . . ,Ud,M ) . (5)

Each random variable Ud,m : Ω → Ud,m takes values in a Borel space Ud,m (“control”
space), and we denote by Ud the Cartesian product Ud,0:M . We finally introduce a state
process X = {Xd}d∈J0,D+1K at the slow time-scale, where each random variable Xd :
Ω → Xd takes values in a Borel space Xd (“state” space). Note that, unlike processesW
and U, the state process X is defined only at the slow time-scale. Thus, for any d ∈
J0, D+1K, the random variable Xd represents the system state at time (d, 0).

We also consider Borel spaces Yd such that, for each d ∈ J0, D+1K, Xd and Yd are
paired spaces when equipped with a bilinear form ⟨·, ·⟩. In this paper, we assume that
each state space Xd is the vector space R

nd , so that Yd = R
nd , the bilinear form ⟨·, ·⟩

being the standard scalar product.
For each d ∈ J0, DK, we introduce a nonnegative Borel-measurable instantaneous

cost function Ld : Xd × Ud × Wd → [0,+∞] and a Borel-measurable dynamics fd :
Xd×Ud×Wd → Xd+1. Note that both the instantaneous cost Ld and the dynamics fd
depend on all the fast time-scale decision and noise variables constituting the slow
time step d. We also introduce a nonnegative Borel-measurable final cost function
K : XD+1 → [0,+∞].2

With all these ingredients, we write a two-time-scale stochastic optimization
problem

V e(x) = inf
X,U

E

[ D∑

d=0

Ld(Xd,Ud,Wd) +K(XD+1)

]
, (6a)

s.t X0 = x , Xd+1 = fd(Xd,Ud,Wd) , ∀d ∈ J0, DK , (6b)

σ(Ud,m) ⊂ Fd,m , ∀(d,m) ∈ J0, DK × J0,MK . (6c)

The expected cost value in (6) is well defined, as all functions are nonnegative mea-
surable. Constraint (6c) — where σ(Ud,m) is the σ-field generated by the random
variableUd,m — expresses the fact that each decisionUd,m is Fd,m-measurable, that is,
is nonanticipative. The function V e is called the optimal value function of Problem (6).

The notation V e(x) for the optimal value of Problem (6) emphasizes the fact that
the dynamics equations (6b) correspond to equality constraints (as is classical). We
also introduce a relaxation of Problem (6). For this purpose, we consider the following
multistage stochastic optimization problem:

V i(x) = inf
X,U

E

[ D∑

d=0

Ld(Xd,Ud,Wd) +K(XD+1)

]
, (7a)

s.t X0 = x , fd(Xd,Ud,Wd) ≥ Xd+1 , ∀d ∈ J0, DK , (7b)

σ(Ud,m) ⊂ Fd,m , ∀(d,m) ∈ J0, DK × J0,MK , (7c)

2We could also consider either bounded function, or uniformly bounded below function. However, for the
sake of simplicity, we deal in the sequel with nonnegative cost functions Ld and K.
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σ(Xd+1) ⊂ Fd,M , ∀d ∈ J0, DK . (7d)

We have relaxed the dynamic equality constraints (6b) into inequality constraints (7b).
Thus, Problem (7) is less constrained than Problem (6), so that the optimal value
function V i of Problem (7) is less than the optimal value function V e of Problem (6):

V i(x) ≤ V e(x) , ∀x ∈ X0 . (8)

Remark 1 We just consider as explicit constraints the dynamic constraints (6b) and
the nonanticipativity constraints (6c), but other constraints involving the state and the
control can be incorporated in the instantaneous cost Ld and in the final cost K by
means of indicator functions3 as Ld and K can take the value +∞.

Problem (6) seems very similar to a classical discrete time multistage stochastic
optimization problem. But an important difference appears in the nonanticipativity
constraints (6c) that express the fact that the decision vector Ud = (Ud,0, . . . ,Ud,M )
at every slow time step d does not display the same measurability for each component
(information grows every fast time step). This point of view is not referred to in the
literature and is one of the novelty of our approach.

3 Time block decomposition, Bellman functions and
monotonicity assumptions

In §3.1, we introduce Bellman functions at the slow time scale, as a way to decompose
a two-time-scale stochastic optimization problem in time blocks. In §3.2, we introduce
assumptions on the data of Problem (6) which allow us to make the link between
the sequence of Bellman functions associated with Problem (6) and the sequence of
Bellman functions associated with Problem (7).

3.1 Time block decomposition and Bellman functions at the
slow time-scale

Stochastic Dynamic Programming, based on Bellman optimality principle, is a classi-
cal way to decompose multistage stochastic optimization problems into multiple but
smaller static optimization problems. In this paragraph, we apply the Bellman recur-
sion by time blocks to decompose the multistage two-time-scale stochastic optimization
Problem (7) into multiple smaller problems that are stochastic optimization problems
over a single slow time step.

We first introduce a sequence {V e
d }d∈J0,D+1K of slow time-scale Bellman functions

associated with Problem (6). These functions are defined by backward induction as
follows. At time D+1, we set V e

D+1 = K, and then, for d ∈ J0, DK and for all x ∈ Xd,
we set

V e
d (x) = inf

Xd+1,Ud

E

[
Ld(x,Ud,Wd) + V e

d+1(Xd+1)
]
, (9a)

3The indicator function δA of a set A is defined as δA(a) = 0 if a ∈ A and δA(a) = +∞ if a /∈ A.

6



277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

s.t Xd+1 = fd(x,Ud,Wd) , (9b)

σ(Ud,m) ⊂ σ(Wd,0:m) , ∀m ∈ J0,MK , (9c)

the expectation in (9a) being taken with respect to the marginal probability of the
random vector Wd. We also introduce a sequence of slow time-scale Bellman functions
{V i

d}d∈J0,D+1K associated with Problem (7). At time D+1, we set V i
D+1 = K, and

then, for d ∈ J0, DK and for all x ∈ Xd, we set

V i
d(x) = inf

Xd+1,Ud

E

[
Ld(x,Ud,Wd) + V i

d+1(Xd+1)
]
, (10a)

s.t fd(x,Ud,Wd) ≥ Xd+1 , (10b)

σ(Ud,m) ⊂ σ(Wd,0:m) , ∀m ∈ J0,MK , (10c)

σ(Xd+1) ⊂ σ(Wd,0:M ) . (10d)

Problem (10) is less constrained than Problem (9) because the (dynamics) equality
constraints (9b) are more binding than the inequality constraints (10b), and also
because (9b) implies the new constraint (10d). Since V e

D+1 = V i
D+1 = K, we obtain

by backward induction that the Bellman functions (10) associated with Problem (7)
are lower bounds to the Bellman functions (9) associated with Problem (6):

V i
d ≤ V e

d , ∀d ∈ J0, D+1K . (11)

3.2 Bellman functions under monotonicity-inducing
assumption

We introduce assumptions on the data of Problem (6) which allow us to make the link
between the sequence of Bellman functions {V e

d }d∈J0,D+1K associated with Problem (6)
and the sequence of Bellman functions {V i

d}d∈J0,D+1K associated with Problem (7).
We first formulate an assumption that we call monotonicity-inducing assumption

as it is the key ingredient to obtain both the monotonicity of the {V e
d }d∈J0,D+1K

Bellman functions and, for d ∈ J0, D+1K, the inequality V i
d ≥ V e

d — the opposite of
inequality (11). It is worth noting that this assumption, which seems an ad hoc trick
for proving that inequality (11) is in fact an equality, is satisfied in the case study
(developed in Sect. 6) which motivates this paper. The fact that this assumption is
satisfied for the case study is shown in Appendix C.
Assumption 1 (Monotonicity-inducing) We assume that the data of Problem (9)
satisfies the following properties.
1. The final cost function K is nonincreasing on its effective domain:

∀(x, x′) ∈ (domK)2 , x ≤ x′ =⇒ K(x) ≥ K(x′) . (12a)

2. For all d ∈ J0, DK, the effective domain of the Bellman function V e
d is induced by

the effective domain of the instantaneous cost function Ld, namely

domV e
d = {x ∈ X | ∃U satisfying (9c) s.t. E[Ld(x,Ud,Wd)] < +∞} . (12b)

7
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3. For all d ∈ J0, DK, for any two states x′ ≥ x both in domV e
d (where the Bellman

function V e
d is given by (9)) and for any (control) random variable Ud satisfy-

ing (9c) and such that E [Ld(x,Ud,Wd)] < +∞, there exists a (control) random

variable Ũd satisfying (9c) such that (almost surely)

fd(x
′, Ũd,Wd) ∈ domV e

d+1 and fd(x
′, Ũd,Wd) ≥ fd(x,Ud,Wd) (12c)

Ld(x
′, Ũd,Wd) ≤ Ld(x,Ud,Wd) . (12d)

Proposition 2 We suppose that monotonicity-inducing Assumption 1 holds true.
Then, for all d ∈ J0, D+1K, the (original) Bellman function V e

d given by backward
induction (9) is nonincreasing on its effective domain, that is,

∀d ∈ J0, D+1K , ∀(x, x′) ∈ domV e
d × domV e

d , x ≤ x′ =⇒ V e
d (x) ≥ V e

d (x
′) .

Proof. The proof is done by backward induction. At time D+1, the Bellman func-
tion V e

D+1 = K is nonincreasing on its effective domain by Condition 1 of Assumption 1.

For d ∈ J0, DK, assume that V e
d+1 is nonincreasing on its effective domain. Let (x, x′) ∈

domV e
d × domV e

d such that x ≤ x′. For any ϵ > 0, let Ud be an ϵ-solution of Problem (9)
starting at state x. We have that

V e
d (x) + ϵ ≥ E

[
Ld(x,Ud,Wd) + V e

d+1

(
fd(x,Ud,Wd)

)]
, (13)

which implies Ld(x,Ud,Wd) < +∞ and fd(x,Ud,Wd) ∈ domV e
d+1, P-a.s.. From Con-

dition 3 of Assumption 1, there exists a random variable Ũd satisfying the measurability
constraint (9c) and satisfying P-a.s. Equations (12c) and (12d). Using the induction as-

sumption and Equation (12c) we obtain that V e
d+1

(
fd(x

′, Ũd,Wd)
)
≤ V e

d+1

(
fd(x,Ud,Wd)

)

almost surely which, combined with Equation (13), implies that the random variable

V e
d+1

(
fd(x

′, Ũd,Wd)
)
is integrable. Using Equation (12d) combined with Equation (13)

we also obtain that the random variable Ld(x
′, Ũd,Wd) is integrable and smaller than

Ld(x,Ud,Wd). We therefore have

V e
d (x) + ϵ ≥ E

[
Ld(x,Ud,Wd) + V e

d+1

(
fd(x,Ud,Wd)

)]
(by (13))

≥ E

[
Ld(x

′, Ũd,Wd) + V e
d+1

(
fd(x

′, Ũd,Wd)
)]

(as shown above)

≥ V e
d

(
x′
)
. (as Ũd satisfies (9c))

This ends the proof. □

We are now able to formulate the main proposition of this section.
Proposition 3 We suppose that monotonicity-inducing Assumption 1 holds true.
Then, for any d ∈ J0, D+1K, the (original) Bellman function V e

d in (9) coincides with
the (relaxed) Bellman function V i

d in (10):

V i
d = V e

d , ∀d ∈ J0, D+1K .

Proof. By Equation (11), we have that V i
d ≤ V e

d for all d ∈ J0, D+1K. To obtain the
reverse inequality, we proceed by backward induction. At time D+1, the two functions V e

D+1

8
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and V i
D+1 are both equal to the function K. Let d be fixed in J0, DK and assume that

V i
d+1 = V e

d+1. For any x ∈ domV i
d and for any ϵ > 0, let (Xd+1,Ud) be an ϵ-optimal solution

of Problem (10). We have that fd(x,Ud,Wd) ≥ Xd+1 by Equation (10b) and

V i
d(x) + ϵ ≥ E

[
Ld(x,Ud,Wd) + V i

d+1(Xd+1)
]
,

= E
[
Ld(x,Ud,Wd) + V e

d+1(Xd+1)
]
, (14)

by the induction assumption. From (14), we deduce that E
[
Ld(x,Ud,Wd)

]
< +∞ and

that Xd+1 ∈ domV e
d+1, P-a.s.. Using Condition 2 of Assumption 1 we obtain that x ∈ domV e

d

and using Condition 3 of Assumption 1 with x′ = x we obtain that there exists a random
variable Ũd satisfying the measurability constraint (9c) and satisfying both Equations (12c)
and (12d). Using Equation (12c) we obtain that, P-a.s.,

fd(x, Ũd,Wd) ≥ fd(x,Ud,Wd) ≥ Xd+1 and fd(x, Ũd,Wd) ∈ domV e
d+1 . (15)

Now, we obtain successively

V i
d(x) + ϵ ≥ E

[
Ld(x,Ud,Wd) + V e

d+1(Xd+1)
]

(by (14))

≥ E
[
Ld(x, Ũd,Wd) + V e

d+1(fd(x, Ũd,Wd))
]

(by (12d), (15) and Proposition 2)

≥ V e
d

(
x
)
. (as Ũd satisfies (9c))

We thus obtain the reverse inequality V i
d ≥ V e

d , hence the result. □

The issue is that performing the backward induction (10) requires to solve a mul-
tistage stochastic optimization problem at the fast time-scale for each d ∈ J0, DK and
for each x ∈ Xd. In the next section, we present two methods to compute bounds of
the Bellman functions V i

d at the slow time-scale, that allow to simplify the backward
induction.

4 Price/resource decomposition of the dynamics in
the Bellman functions

We aim at finding tractable algorithms to numerically solve the backward induc-
tion (10) and obtain the corresponding sequence of Bellman functions {V i

d}d∈J0,D+1K.
Indeed, these Bellman functions are not easily obtained. The main issue is that each
optimization problem (10) is a multistage stochastic optimization problem at the fast
time-scale, that has to be solved for every d ∈ J0, DK and every x ∈ Xd, and each
numerical solving might be in itself hard.

To tackle this issue, we propose in §4.1 and §4.2 to compute respectively lower
and upper bounds of the Bellman functions at the slow time-scale. These Bellman
functions bounds can then be used to design admissible two-time-scale optimization
policies (see Sect. 5). The two algorithms are based on so-called price and resource
decomposition techniques (see (Bertsekas, 1999, Chap. 6) and Carpentier and Cohen
(2017)) applied to Problem (10).

Both algorithms involve the computation of auxiliary functions that gather the
fast time-scale computations, and that are numerically appealing because they allow
to exploit some potential periodicity of two-time-scale problems, as well as parallel
computation. This point is developed in Appendix A.
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4.1 Lower bounds of the Bellman functions

We present lower bounds for the Bellman functions
{
V i
d

}
d∈J0,D+1K

given by

Equation (10). These bounds derive from an algorithm which appears to be connected
to the one developed in Heymann and Martinon (2018), called “adaptive weights al-
gorithm”. We extend the results of Heymann and Martinon (2018) in a stochastic
setting and in a more general framework, as we are not tied to a battery management
problem and as we use a more direct way to reach similar conclusions.

To obtain lower bounds of the sequence {V i
d}d∈J0,D+1K of Bellman functions, we

dualize the dynamic equations (10b) with Lagrange multipliers, and we use weak
duality. The multipliers (called prices here) could be chosen in the class of nonpositive
FJ0,DK-adapted processes but it is enough, to get lower bounds, to stick to deterministic
price processes. Following these lines, we obtain a lower bound as follows.

For each d ∈ J0, DK, we define the function LP
d : Xd × Yd+1 → R ∪ {±∞} by4

LP
d (xd, pd+1) = inf

Ud

E

[
Ld(xd,Ud,Wd) +

〈
pd+1, fd(xd,Ud,Wd)

〉]
, (16a)

s.t. σ(Ud,m) ⊂ σ(Wd,0:m) , ∀m ∈ J0,MK , (16b)

where Ld and fd are respectively the instantaneous cost function and the dynamics of
Problem (6).
Proposition 4 Consider the sequence

{
V P

d

}
d∈J0,D+1K

of Bellman functions which is

defined by V P
D+1 = K and for all d ∈ J0, DK, and for all x ∈ Xd by5

V P
d (x) = sup

pd+1≤0

(
LP
d (x, pd+1)−

(
V P

d+1

)⋆
(pd+1)

)
, (17)

where
(
V P

d+1

)⋆
: Yd+1 → R∪{±∞} is the Fenchel conjugate of V P

d+1 (see Rockafellar

(2015)). Then, the Bellman functions
{
V P

d

}
J0,D+1K

given by Equation (17) are lower

bounds of the corresponding Bellman functions
{
V i
d

}
d∈J0,D+1K

given by Equation (10),

that is,
V P

d ≤ V i
d , ∀d ∈ J0, D+1K . (18)

Proof. We start the proof by a preliminary interchange result. We consider a subset
X of the space of random variables taking values in a Borel space X and a measurable
function φ : X → R ∪ {±∞}. We assume that X contains all the constant random variables.
We prove that

inf
X∈X

E
[
φ(X)

]
= inf

x∈X

φ(x) . (19)

• The ≤ inequality infX∈X E
[
φ(X)

]
≤ infx∈X φ(x) is clear as X contains all the

constant random variables.

4recall that Yd+1 = Xd+1 = R
nd+1

5As we manipulate functions with values in R = [−∞,+∞], we need to take care with the
addition of extended reals. When not explicitly specified, we adopt by default that + is the
Moreau lower addition ·+ Moreau (1970), which extends the usual addition to extended reals by

(+∞) + (−∞) = (−∞) + (+∞) = −∞. So Equation (17) has to be understood as V P
d (x) =

suppd+1≤0

(

LP
d (x, pd+1) ·+ (−

(

V P
d+1

)⋆(pd+1))
)

.
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• The reverse inequality holds true if infx∈X φ(x) = −∞ since infX∈X E
[
φ(X)

]
≤

infx∈X φ(x). Assume now that infx∈X φ(x) = φ > −∞. Then φ(X) ≥ φ P-a.s. for

all X ∈ X and hence infX∈X E
[
φ(X)

]
≥ φ. Consider an arbitrary ϵ > 0 and Xϵ

such that E
[
φ(Xϵ)

]
≤ infX∈X E

[
φ(X)

]
+ ϵ. We successively obtain infx∈X φ(x) =

E
[
infx∈X φ(x)

]
≤ E

[
φ(Xϵ)

]
≤ infX∈X E

[
φ(X)

]
+ ϵ. Thus, the reverse inequality

infX∈X E
[
φ(X)

]
≥ infx∈X φ(x) follows, hence the equality in (19).

We turn now to the proof of (18), that we do by backward induction. First, we have that
V P

D+1 = K = V i
D+1. Second, consider d ∈ J0, DK and assume that V P

d+1 ≤ V i
d+1. Explicitly

using the Moreau lower addition ·+ (see Footnote 5), we successively have6

V P
d (x) = sup

pd+1≤0

(
LP
d (x, pd+1) ·+ (−

(
V P

d+1

)⋆
(pd+1))

)
(by (17))

= sup
pd+1≤0

(
LP
d (x, pd+1) ·+ inf

xd+1

(
−
〈
pd+1, xd+1

〉
+ V P

d+1(xd+1)
))

(definition of
(
V P

d+1

)⋆
)

≤ sup
pd+1≤0

(
LP
d (x, pd+1) ·+ inf

xd+1

(
−
〈
pd+1, xd+1

〉
+ V i

d+1(xd+1)
))

(induction assumption)

= sup
pd+1≤0

(
LP
d (x, pd+1) ·+ inf

Xd+1

E
[
−
〈
pd+1, Xd+1

〉
+ V i

d+1(Xd+1)
])

(interchange result)

≤ sup
pd+1≤0

inf
Ud

E

[
Ld(xd,Ud,Wd) +

〈
pd+1, fd(x,Ud,Wd)

〉]

·+ inf
Xd+1

E
[
−
〈
pd+1, Xd+1

〉
+ V i

d+1(Xd+1)
]

by substituting (16), and by using subadditivity of the infimum operation with respect to
the Moreau lower addition ·+

= sup
pd+1≤0

inf
Ud,Xd+1

E

[
Ld(xd,Ud,Wd) +

〈
pd+1, fd(x,Ud,Wd)−Xd+1

〉
+ V i

d+1(Xd+1)
]

≤ inf
Ud,Xd+1

sup
pd+1≤0

E

[
Ld(xd,Ud,Wd) +

〈
pd+1, fd(x,Ud,Wd)−Xd+1

〉
+ V i

d+1(Xd+1)
]

≤ inf
Xd+1,Ud

E
[
Ld(x,Ud,Wd) + V i

d+1(Xd+1)
]

s.t fd(x,Ud,Wd) ≥ Xd+1

(by weak duality)

= V i
d(x) .

This ends the proof. □

Remark 5 In the presentation above, we could have defined the
sequence

{
V P

d

}
d∈J0,D+1K

as

V P
d (x) = sup

pd+1∈Yd+1

(
LP
d (x, pd+1)−

(
V P

d+1

)⋆
(pd+1)

)
,

6Here below, we use ·+ to stress that there might be an addition of two conflicting ±∞. When we leave
the notation +, it is because either we sum real numbers or we sum a real number with ±∞ or we sum
elements of [0,+∞].
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that is, by maximizing over the whole space Yd+1 instead of the set of nonpositive
prices. Then, in Proposition 4, we would have obtained the inequalities

V P
d ≤ V e

d , ∀d ∈ J0, D+1K ,

the Bellman functions V e
d replacing the V i

d. We did not do that in order to be coherent
with the computation of the upper bounds in the next section, in which using the
Bellman functions V i

d is mandatory.

4.2 Upper bounds of the Bellman functions

We present upper bounds for the Bellman functions
{
V i
d

}
d∈J0,D+1K

given by

Equation (10). They are obtained using a kind of resource decomposition scheme as-
sociated with the dynamic equations, that is, by requiring that the state at time d+1
be set at a prescribed deterministic value, so that new constraints have to be added.
This is made possible by the fact that we relax the almost sure target equality
constraint (6b) into the inequality constraint (7b).

We define the function LR
d : Xd × Xd+1 → [0,+∞] by

LR
d (xd, rd+1) = inf

Ud

E

[
Ld(xd,Ud,Wd)

]
, (20a)

s.t. fd(xd,Ud,Wd) ≥ rd+1 , (20b)

σ(Ud,m) ⊂ σ(Wd,0:m) , ∀m ∈ J0,MK , (20c)

where Ld and fd are respectively the instantaneous cost function and the dynamics of
Problem (6). Note that the function LR

d can take the value +∞ since Constraint (20b)
may lead to an empty admissibility set. Having replaced the equality constraint (6b) by
the inequality constraint (7b) in Problem (7) makes it possible to have the inequality
constraint (20b) in the definition of the function LR

d . This last inequality ensures that
a random variable is almost surely greater or equal to a deterministic quantity, a much
more easier situation that ensuring the equality between a random variable and a
deterministic quantity.

Proposition 6 Consider the sequence
{
V

R

d

}
d∈J0,D+1K

of Bellman functions defined

inductively by V
R

D+1 = K and for all d ∈ J0, DK and for all x ∈ Xd by

V
R

d (x) = inf
rd+1∈Xd+1

(
LR
d (x, rd+1) + V

R

d+1(rd+1)
)
. (21)

Then, the Bellman functions
{
V

R

d

}
J0,D+1K

given by Equation (21) are upper bounds

of the Bellman functions
{
V i
d

}
d∈J0,D+1K

given by Equation (10), that is,

V i
d ≤ V

R

d , ∀d ∈ J0, D+1K . (22)
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Proof. The proof is done by backward induction. We first have that V
R
D+1 = K = V i

D+1.

Now, consider d ∈ J0, DK and assume that V i
d+1 ≤ V

R
d+1. We successively have

V i
d(x) = inf

Xd+1,Ud

E
[
Ld(x,Ud,Wd) + V i

d+1(Xd+1)
]

s.t fd(x,Ud,Wd) ≥ Xd+1, and (10c)–(10d), (by (10))

≤ inf
rd+1∈Xd+1

inf
Ud

E
[
Ld(x,Ud,Wd)

]
+ V i

d+1(rd+1)

s.t fd(x,Ud,Wd) ≥ rd+1 and (10c)
(by considering only constant r.v. Xd+1)

= inf
rd+1∈Xd+1

(
LR
d (xd, rd+1) + V i

d+1(rd+1)
)

(by (20))

≤ inf
rd+1∈Xd+1

(
LR
d (xd, rd+1) + V

R
d+1(rd+1)

)
(induction assumption)

= V
R
d (x) . (by (21))

This ends the proof. □

5 Mixing time block and price/resource
decomposition of the dynamics in the Bellman
functions

In §5.1, we show how we can design (not necessarily optimal) policies by means of
Bellman functions as obtained in Sect. 3 and Sect. 4. In §5.2, we discuss optimality.

5.1 Computation of policies

We assume that we have at disposal Bellman functions {Ṽd}d∈J0,D+1K obtained either

by resource decomposition (Ṽd = V
R

d ), or by price decomposition (Ṽd = V P
d ). The

computation of the Ṽd’s, that is, the computation of the V
R

d ’s or V
P
d ’s, constitutes the

offline part of the optimization procedure, as described in Algorithms 1 and 2.
Then, for a given slow time step d ∈ J0, DK and a given current state xd ∈ Xd, we

can use Ṽd+1 as an approximation of the Bellman function V e
d+1 in order to state a

new fast-time-scale problem starting at d for computing the decisions to apply at d.
This constitutes the online part of the procedure (in this paper, we do not discuss
conditions ensuring that the control below is indeed a random variable, see Bertsekas
and Shreve (1996)):

U∗
d ∈ argmin

Ud

E

[
Ld(xd,Ud,Wd) + Ṽd+1

(
fd(xd,Ud,Wd)

)]
, (23a)

s.t. σ(Ud,m) ⊂ σ(Wd,0:m) , ∀m ∈ J0,MK . (23b)

This fast-time-scale optimization problem can be solved by any method that provides
an online policy as presented in Bertsekas (2005). The presence of a final cost Ṽd

13
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ensures that the effects of decisions made at the fast time-scale are taken into account
at the slow time-scale.

Nevertheless, it would be time-consuming to produce online policies using the
numerical solving of Problem (23) for every slow time step of the horizon in simulation.
We present in the next two paragraphs how to obtain two-time-scale policies with
prices or resources in a smaller amount of time.

Obtaining a policy using prices.

In the case where we decompose the problem using deterministic prices, we possibly
solve Problem (16) for every couple of initial state and deterministic price (xd, pd+1) ∈
Xd × Yd+1 and for every d ∈ J0, DK. This process produces, for each d ∈ J0, DK and
for each (xd, pd+1) ∈ Xd × Yd+1, an optimal policy πP

d [xd, pd+1] : Wd → Ud and an
optimal value LP

d (xd, pd+1).
At the beginning of a slow time step d in a state xd ∈ Xd, we compute a price pd+1

solving the following optimization problem

pd+1 ∈ argmax
p≤0

(
LP
d (xd, p)−

(
V P

d+1

)⋆
(p)

)
. (24)

Thanks to this deterministic price pd+1, we apply the corresponding policy πP
d [xd, pd+1]

to simulate decisions and states drawing a scenario wd out of the random pro-
cess Wd. The next state xd+1 at the beginning of the slow time step d + 1 is
xd+1 = fd

(
xd, π

P
d [xd, pd+1](wd), wd

)
.

Obtaining a policy using resources.

In the case where we decompose the problem using deterministic resources, we pos-
sibly solve Problem (20) for every couple of initial state and deterministic resource
(xd, xd+1) ∈ Xd × Xd+1 and for every d ∈ J0, DK. This leads, for each d ∈ J0, DK and
for each (xd, xd+1) ∈ Xd ×Xd+1, to an optimal policy πR

d [xd, xd+1] : Wd → Ud and to
an optimal value LR

d (xd, xd+1).
At the beginning of a slow time step d in a state xd ∈ Xd, we compute a resource

(state) xd+1 solving the following optimization problem

xd+1 ∈ argmin
x∈Xd+1

(
LR
d (xd, x) + V

R

d+1(x)
)
, (25)

and we apply the corresponding policy πR
d [xd, xd+1] to simulate decisions and states

drawing a scenario wd out of Wd. The next state xd+1 at the beginning of the slow
time step d+ 1 is then xd+1 = fd

(
xd, π

R
d [xd, xd+1](wd), wd

)
.

5.2 Discussion on optimality

Without any specific assumption (independence, monotonicity), we have obtained by
Propositions 4 and 6 that the price Bellman functions V P

d and the resource Bell-

man functions V
R

d are respectively lower and upper bounds for the Bellman functions

14
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associated with (relaxed) Problem (7):

V P
d ≤ V i

d ≤ V
R

d , ∀d ∈ J0, D+1K . (26)

Then, if monotonicity-inducing Assumption 1 holds true, we have by Proposition 3
that these price Bellman functions and resource Bellman functions are also lower and
upper bounds for the Bellman functions associated with (original) Problem (6):

V P
d ≤ V e

d ≤ V
R

d , ∀d ∈ J0, D+1K . (27)

The link between the optimal value functions V e (resp. V i) and the Bellman func-
tions V e

d (resp. V e
d ) is obtained thanks to a specific independence assumption for the

noise process W.
Assumption 2 (White noise assumption) The sequence of random vec-
tors {Wd}d∈J0,DK is white, that is,

{(
Wd,0, . . . ,Wd,m, . . . ,Wd,M

)}
d∈J0,DK

is a

sequence of D+1 independent random vectors.
Then the Bellman’s principle of optimality applies at the slow time-scale for the opti-
mization problem (6), leading to a Stochastic Dynamic Programming equation at the
slow time-scale.
Remark 7 We do not assume that each random vector Wd = (Wd,0, . . . ,Wd,M ) is
itself composed of independent random variables.
Proposition 8 Under the white noise Assumption 2, the optimal value function V e

(resp. V i) solution of (original) Problem (6) (resp. solution of (relaxed) Problem (7))
coincides with the Bellman function V e

0 at time t = 0 (resp. V i
0) given by Bellman

equations (9) (resp. (10)). More explicitly, we have that

V e(x) = V e
0 (x) and V i(x) = V i

0(x) , ∀x ∈ X0 .

Proof. The fact that the function V e is equal to the function V e
0 is a consequence

of (Carpentier et al., 2023, Proposition 4.1) where the machinery for establishing a Dynamic
Programming equation in a two-time-scale multistage stochastic optimization setting is de-
veloped. To establish the equality between the functions V i and V i

0 , we proceed as follows.
First, it is easily established that Problem (7) is equivalent to Problem (28) stated below
which involves a new decision process ∆ = {∆d+1}d∈J0,DK, each control variable ∆d+1

taking values in Xd+1:

V i(x) = inf
X,U,∆

E

[ D∑

d=0

Ld(Xd,Ud,Wd) +K(XD+1)

]
, (28a)

s.t X0 = x , Xd+1 = fd(Xd,Ud,Wd)−∆d+1 , ∀d ∈ J0, DK , (28b)

∆d+1 ≥ 0 , ∀d ∈ J0, DK , (28c)

σ(Ud,m) ⊂ Fd,m , ∀(d,m) ∈ J0, DK × J0,MK , (28d)

σ(∆d+1) ⊂ Fd,M , ∀d ∈ J0, DK . (28e)

Second, Problem (28) involves standard equality constraints in the dynamics, so that the

machinery developed in (Carpentier et al., 2023, Proposition 4.1) applies to it. We there-

fore obtain a Dynamic Programming equation associated with Problem (28) involving the
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new decision process ∆. This last Dynamic Programming equation reduces to the Bell-

man equation (10) when replacing the extra nonnegative decision variables by inequality

constraints. □

As an immediate consequence of Propositions 8 and 3, we obtain the following
proposition which is the main result of this section.
Proposition 9 Suppose that both monotonicity-inducing Assumption 1 and white
noise Assumption 2 hold true. Then, the optimal value function V e of Problem (6) can
be computed by solving Problem (7) at the slow time-scale by the Bellman backward
induction (10), that is,

V i(x) = V i
0(x) = V e

0 (x) = V e(x) , ∀x ∈ X0 .

Moreover, if both monotonicity-inducing Assumption 1 and white noise Assump-
tion 2 hold true, we have by Proposition 8 that the price Bellman function V P

0 and the

resource Bellman function V
R

0 at time d = 0 are respectively lower and upper bounds
for the optimal value function of Problem (6):

V P
0 ≤ V e ≤ V

R

0 . (29)

Equation (29) provides an interval in which the optimal value of the original
problem (6) lies. But this interval is valid only under the time-block independence
Assumption 2. This last assumption is generally not satisfied in practical cases, and
we cannot therefore guarantee the quality of the Bellman functions obtained by the
price and resource decomposition algorithms. This being so, the price Bellman func-

tions V P
d and the resource Bellman functions V

R

d always allow to compute admissible
policies for Problem (6), as explained in §5.1.

6 Case study

In this section, we apply the previous theoretical results to a long term aging and
battery renewal management problem. In §6.1, we formulate the problem. In §6.2, we
simplify the intraday problems. In §6.3, we describe the data used for the numerical
experiments. Finally, in §6.4, we sketch how to apply resource and price decomposition
algorithms, and we compare the results given by each of these methods.

6.1 Problem formulation

We consider the following energy storage management problem over 20 years. We
manage the charge and discharge of an battery every time step m of 30 minutes.
A decision of battery replacement is taken every day, so that the number of days
considered in the problem is 20× 365 = 7300. Since the number of time steps during
a day is 24 × 2 = 48, the total number of time steps of the problem is 48 × 7300 =
350,400. The state of charge of the battery has to remain between prescribed bounds
at each time step. We also consider the evolution over time of the amount of remaining

16
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exchangeable energy in the battery (related to the number of cycles remaining), that
is, the health of the battery. Once this variable reaches zero, the battery is considered
unusable. In addition to the battery, the studied system includes a local renewable
energy production unit and a local energy consumption: the net demand (consumption
minus production) at each time step is an exogenous random variable affecting the
system. Finally we pay for the local system energy consumption, that is, net demand
minus energy exchanged with the battery. When this quantity is negative (excess
energy production), the energy surplus is assumed to be wasted. The aim of the
problem is to minimize the energy bill over the whole time horizon by providing an
optimal strategy for the storage charge and the battery renewal.

As we are dealing with the energy storage management problem of a battery over
a very long term (20 years) involving two time scales, we adopt the notations defined
in §2.1. The total number of slow time steps (days) in the time horizon is denoted
by D+1 (D = 20× 365 = 7300), and each slow time interval [d, d+1[ contains M +1
fast time steps (half hour), hence M + 1 = 24× 2 = 48.

At the fast time-scale, the system control is the energy Ud,m transferred in and
out of the battery. We denote the charge of the battery by U+

d,m = max{0,Ud,m},

and the discharge of the battery by U−
d,m = max{0,−Ud,m}. For all time7 (d,m) ∈

J0, DK × J0,M+1K, the state of the battery consists of

• the amount of energy Sd,m in the battery (state of charge), whose dynamics is given
by the simple storage dynamics equation

Sd,m+1 = Sd,m + ρcU+
d,m − ρdU−

d,m , ∀m ∈ J0,MK , (30a)

where ρc and ρd are the charge and discharge coefficients of the battery,
• the amount of remaining exchangeable energy Hd,m (health of the battery), with

Hd,m+1 = Hd,m −U+
d,m −U−

d,m , ∀m ∈ J0,MK , (30b)

so that the battery health decreases with any energy exchange,
• the capacity Cd,m of the battery (assumed to be constant at the fast time-scale)

Cd,m+1 = Cd,m , ∀m ∈ J0,MK . (30c)

These equations at the fast time-scale are gathered as

(Sd,m+1,Hd,m+1,Cd,m+1) = φ
(
Sd,m,Hd,m,Cd,m,Ud,m

)
, ∀(d,m) ∈ J0, DK× J0,MK .

(30d)
At the slow time-scale, that is, for each slow time step d, there exists another con-
trol Bd modeling the possible renewal of the battery at the end of the slow time
step. To take it into account, we add a fictitious time step (d,M+1) between (d,M)

7There is here a slight difference with the notations presented in §2.1: we have added a new time step
(d,M+1) at the end of day d in order to apply the last fast control of day d and the slow control of
day d+1 at distinct time steps, hence the introduction of a fictitious time step — denoted by (d,M+1) —
between (d,M) and (d+1, 0) (see Equation (31) and comments above).
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and (d+1, 0). The dynamics of the battery for this specific time step are

Sd+1,0 =

{
0 if Bd > 0 ,

Sd,M+1 otherwise ,
(31a)

meaning that, when renewed, a new battery is empty,

Hd+1,0 =

{
N(Bd)Bd if Bd > 0 ,

Hd,M+1 otherwise ,
(31b)

meaning that, when renewed, the health of a battery is the product of the new battery
capacity Bd by an integer-valued function N : R+ → N estimated at Bd,

Cd+1,0 =

{
Bd if Bd > 0 ,

Cd,M+1 otherwise ,
(31c)

corresponding to the renewal of the battery. These equations are gathered as:

(Sd+1,0,Hd+1,0,Cd+1,0) = ψ
(
Sd,M+1,Hd,M+1,Cd,M+1,Bd

)
, ∀d ∈ J0, DK . (31d)

We assume that the initial state of the battery is known: (S0,0,H0,0,C0,0) =
(s0, h0, c0).

All the control variables are subject to bound constraints

Ud,m ∈ [U,U ] , Bd ∈ [0, B] , (32a)

(with U < 0 and U > 0), as well as the state variables:

Sd,m ∈ [0, ξCd,m] , Hd,m ∈
[
0,N(Cd,m)Cd,m

]
, Cd,m ∈ [0, B] . (32b)

The amount of remaining exchangeable energy Hd,m has to be nonnegative for the
battery to operate, and the upper bound on the state of charge Sd,m is a fraction ξ ∈
[0, 1] of the capacity Cd,m.

At each fast time step (d,m), a local renewable energy production unit produces
energy and a local demand consumes energy: we denote by Dd,m the net demand
(consumption minus production) and we suppose that it is an exogenous random
variable. The excess energy consumption (Dd,m +U+

d,m −U−
d,m)+ is paid at a given

price πe
d,m, assumed to be deterministic and known, whereas excess energy production

is assumed to be wasted. The price Pb
d of a new battery is supposed to be random, so

that the operating cost Ld during the slow time step d is

M∑

m=0

πe
d,m

(
Dd,m +U+

d,m −U−
d,m

)+
+Pb

dBd . (33)
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The value of battery at the end of the optimization horizon is represented by a cost
function K depending on the state of the battery. Then, the objective function to
be minimized is the expected sum over the time span of the discounted daily costs
(discount factor γ), plus the final cost K. We assume that the effective domain of the
final cost K is R3 and that K is a nonincreasing function. In the numerical application
the final cost K is taken identically equal to 0.

Finally, the optimization problem under consideration is

inf
{Ud,0:M ,Bd}d∈J0,DK

E

[
D∑

d=0

γd
( M∑

m=0

πe
d,m

(
Dd,m +U+

d,m −U−
d,m

)+
+Pb

dBd

)

+K(SD+1,0,HD+1,0,CD+1,0)

]
,

(34a)

subject, for all (d,m) ∈ J0, DK × J0,MK, to state dynamics

(S0,0,H0,0,C0,0) = (s0, h0, c0) , (34b)

(Sd,m+1,Hd,m+1,Cd,m+1) = φ
(
Sd,m,Hd,m,Cd,m,Ud,m

)
, (34c)

(Sd+1,0,Hd+1,0,Cd+1,0) = ψ
(
Sd,M+1,Hd,M+1,Cd,M+1,Bd

)
,
(34d)

to bounds constraints

Sd,m ∈ [0, ξCd,m] , Hd,m ∈
[
0,N(Cd,m)Cd,m

]
, Cd,m ∈ [0, B] ,

(34e)

Ud,m ∈ [U,U ] , Bd ∈ [0, B] , (34f)

and to nonanticipativity constraints

σ(Ud,m) ⊂ σ
(
D0,0, . . . ,Dd,m,P

b
0, . . . ,P

b
d−1

)
, (34g)

σ(Bd) ⊂ σ
(
D0,0, . . . ,Dd,M ,P

b
0, . . . ,P

b
d

)
. (34h)

We denote by Ud the vector of decision variables to be taken during the slow time
step d

Ud =
(
{Ud,m}m∈J0,MK,Bd

)
. (35a)

We also denote by Wd the vector of noise variables occurring during the slow time
step d

Wd =
(
{Dd,m}m∈J0,MK,P

b
d

)
, (35b)

and by Xd the vector of state variables at the beginning of the slow time step d

Xd = (Sd,0,Hd,0,Cd,0) . (35c)
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Problem (34) is amenable to the form (6) given in §2.2, as explained below.

• In the expression of Xd+1 = (Sd+1,0,Hd+1,0,Cd+1,0) given by (34d), replacing the
variable Sd,m recursively from m = M + 1 to m = 1 by using (34c), one obtains a
slow-time-scale dynamics of the form (6b):

(Sd+1,0,Hd+1,0,Cd+1,0) = fd(Sd,0,Hd,0,Cd,0,Ud,0:M ,Bd) , ∀d ∈ J0, DK . (36)

• The cost function of slow time step d in (33) is obviously a function depending onUd

and Wd. The bound constraints on the control (34f) (resp. the bound constraints
on the state (34e)) only depend on Ud (resp. on (Xd,Ud,Wd): indeed, in the
same way we obtained Equation (36), replacing in the right-hand side of (34c) the
state variable Sd,m′ recursively from m′ = m to m′ = 0 by using (34c), we obtain
that the state (Sd,m+1,Hd,m+1,Cd,m+1) is a function of (Sd,0,Hd,0,Cd,0,Ud,0:m)
for all m ∈ J0,MK. These constraints are incorporated in the cost of slow time
step d (see Remark 1), which makes it an extended real-valued function of the form
Ld(Xd,Ud,Wd) as in (6a). The final cost K is, by definition, a function of XD+1.

• Since Bd (resp. Pb
d) represents a control (resp. a noise) at the fictitious time step

between (d,M + 1) and (d + 1, 0), the nonanticipativity constraints (34g) – (34h)
are of the form (6c).

Thus, Problem (34) fits the framework developed in §4 for two-time-scale optimiza-
tion problems. Moreover, Assumption 1 is fulfilled for Problem (34) (see Appendix C),
so that Proposition 3 applies: relaxing the dynamics (36) as inequality constraints
allows to compute price and resource Bellman functions that are lower and upper
bounds for the Bellman functions associated with Problem (34).

6.2 Simplifying the intraday problems

We turn now to the computation of the functions LP
d in (16) and LR

d in (20), that
we call intraday functions in this case study. As explained in §4.1, (resp. §4.2), the
intraday functions LP

d (resp. LR
d ) depend on the couple (xd, pd+1) (resp. (xd, rd+1)),

namely the 6-uple (sd, hd, cd, p
s
d+1, p

h
d+1, p

c
d+1) (resp. (sd, hd, cd, sd+1, hd+1, cd+1)) in

the case study under consideration. We use here some characteristics of the problem
to make approximations to alleviate the computation of these intraday functions.

6.2.1 Intraday problem associated with resource decomposition

As explained in §4.2, the aim of the resource decomposition algorithm is to compute,

for all slow time steps d ∈ J0, D+1K, upper bounds V
R

d of the Bellman functions asso-
ciated with Problem (34), which can be put in the form of Problem (6). These upper
bounds are obtained by solving a collection of intraday problems such as (20) for each
slow time step d ∈ J0, DK, and then by solving the Bellman recursion (21). The intra-
day problems have a priori to be solved for every 6-tuple (sd, hd, cd, sd+1, hd+1, cd+1),
that is, the state (sd, hd, cd) at the beginning of the slow time step and the resource tar-
get (sd+1, hd+1, cd+1) at the end of the slow time step. This extremely computationally
demanding task is greatly simplified thanks to the following considerations.
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Resource intraday function reduction.

Since the capacity component Cd,m of the state can only change at the end of a slow
time step (see (30c) and (31c)), it is possible to take the capacity dynamics Cd,m, the
capacity control Bd and the associated bound constraint, and the cost term Pb

dBd,
out of the intraday problem and to take them into account in the Bellman recursion.
To achieve that, resource decomposition is performed by dealing with Equation (30d)
for m =M , instead of Equation (31d). We introduce the two resources sd+1 and hd+1

for the state of charge and the health of the battery8. Then, the intraday problem (20)
becomes

LR
d (sd, hd, cd, sd+1, hd+1) = inf

Ud,0:M

E

[
M∑

m=0

πe
d,m max(0,Dd,m +U+

d,m −U−
d,m)

]
,

(37a)

s.t. (Sd,0,Hd,0) = (sd, hd) , (37b)

with, for all m ∈ J0,MK,

Sd,m+1 = Sd,m + ρcU+
d,m − ρdU−

d,m , (37c)

Hd,m+1 = Hd,m −U+
d,m −U−

d,m , (37d)

Sd,M+1 ≥ sd+1 , Hd,M+1 ≥ hd+1 , (37e)

Ud,m ∈ [U,U ] , (37f)

Sd,m ∈ [0, ξ cd] , Hd,m ∈
[
0,N(cd) cd

]
, (37g)

σ(Ud,m) ⊂ σ
(
Dd,0, . . . ,Dd,m

)
, (37h)

and is parameterized by the 5-tuple (sd, hd, cd, sd+1, hd+1). The sequence

{V
R

d }d∈J0,D+1K of Bellman functions is computed by the following recursion:

V
R

d (sd, hd, cd) = inf
sd+1,hd+1,Bd

E

[
γ
(
LR
d (sd, hd, cd, sd+1, hd+1) +Pb

dBd

)

+ V
R

d+1(Sd+1,0,Hd+1,0,Cd+1,0)
]
, (38a)

s.t. (Sd+1,0,Hd+1,0,Cd+1,0) = ψ
(
sd+1, hd+1, cd,Bd

)
, (38b)

sd+1 ∈ [0, ξ cd] , hd+1 ∈
[
0,N(cd) cd

]
, (38c)

Bd ∈ [0, B] , (38d)

σ(Bd) ⊂ σ
(
Pb

d

)
. (38e)

8We do not associate a resource variable cd+1 with the capacity of the battery since this component of
the state is taken into account in the Bellman recursion.
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In order to further simplify the computation of the intraday functions, we remark
that, in the Bellman recursion (38), we can replace the function LR

d by the function
L̃R
d with

L̃R
d (sd, hd, cd, sd+1, hd+1) = LR

d (sd, hd, cd, sd+1, hd+1)

+ δ[0,N(cd) cd](hd) + δ{hd+1≤hd}(hd, hd+1) + δ[0,N(cd) cd](hd+1) ,

where δA denotes the indicator function of the set A (see Footnote 3 on page 6).
Indeed, the last term δ[0,N(cd) cd](hd+1) is obtained by moving the right-hand side of
Constraint (38c) to the minimized cost LR

d and the two other terms can be added
as it is easily seen that LR

d (sd, hd, cd, sd+1, hd+1) = +∞ when hd+1 > hd or when
hd ̸∈ [0,N(cd) cd]. Then, it is straightforward to prove that

L̃R
d (sd, hd, cd, sd+1, hd+1) = L̃R

d (sd, hd−hd+1, cd, sd+1, 0) . (39)

Indeed, as the health dynamics is linear nonincreasing, any admissible control for Prob-

lem (37) for the ordered pair (hd, hd+1), with hd+1 ≤ hd and (hd, hd+1) ∈
[
0,N(cd) cd

]2
is also admissible for the ordered pair (hd − hd+1, 0) and conversely. Moreover, the
resulting cost is the same since the cost does not depend on the health variable. We
thus obtain Equation (39).

Resource intraday function approximation.

As suggested in Kaut et al. (2014), we decide to neglect the state of charge target at
the slow time-scale. As a matter of fact, the operation of the battery is daily periodic
and such that it is more or less empty at the beginning (and thus at the end) of a
slow time step (day). It is thus reasonable to assume that the battery is empty at the
beginning and at the end of every slow time step, which is a pessimistic but rather
realistic assumption. Combined with Equation (39), we obtain a new function L̂R

d

approximating the original function LR
d , that is

L̂R
d (hd−hd+1, cd) = L̃R

d (0, hd−hd+1, cd, 0, 0) ≈ L̃R
d (sd, hd, cd, sd+1, hd+1) . (40)

The approximated intraday function L̂R
d now only depends on two variables, which

significantly reduces the time needed to compute it. Then, the sequence {V
R

d }d∈J0,D+1K

of Bellman functions in (38) is approximated by the sequence {V̂
R

d }d∈J0,D+1K given by
the following recursion

V̂
R

d (hd, cd) = inf
hd+1,Bd

E

[
γ
(
L̂R
d (hd−hd+1, cd) +Pb

dBd

)
+ V̂

R

d+1

(
ψH,C(hd+1, cd,Bd)

)]
,

(41a)

s.t. hd+1 ∈
[
0,N(cd) cd

]
, (41b)

Bd ∈ [0, B] , (41c)

σ(Bd) ⊂ σ
(
Pb

d

)
, (41d)
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where the new dynamics ψH,C is deduced from ψ in (31) by keeping only the last two
dynamics (31b) and (31c), which do not depend on the state of charge.

As explained in Appendix A, we consider in this study I periodicity classes (I = 4,
that is, one class for each season of the year), so that the computation of the resource
intraday problem is done only for I different days denoted d1, . . . , dI . The complexity
of the associated resource decomposition algorithm is sketched in Appendix B.

6.2.2 Intraday problem associated with price decomposition

As detailed in §4.1, the aim of the price decomposition algorithm is to compute, for all
slow time steps d ∈ J0, D+1K, lower bounds V P

d of the Bellman functions associated
with Problem (34). These lower bounds are obtained by solving a collection of intraday
problems such as (16) for each slow time step d ∈ J0, DK, and then by solving the
Bellman recursion (17). The intraday problems have a priori to be solved for every
6-tuple (sd, hd, cd, p

s
d+1, p

h
d+1, p

c
d+1), that is, the state (sd, hd, cd) at the beginning of

the slow time step and the prices (psd+1, p
h
d+1, p

c
d+1) associated with the dualization of

the equality dynamics equations.

Price intraday function reduction.

As in the resource intraday function reduction, it is possible to take the capacity
dynamics, its associated control and bound constraints as well as the cost term Pb

dBd

out of the intraday problem and to take them into account in the Bellman recursion,
so that the intraday problem does not depend on the price pcd+1 associated with
the capacity dynamics. To achieve that, price decomposition is not performed on
Equation (31d), but on Equation (30d) form =M , which leads to an intraday function
whose arguments are (sd, hd, cd, p

s
d+1, p

h
d+1). But another possible reduction occurs

here: from the health dynamics (30b) summed over the fast time steps of day d, we
derive the inequality

hd −Hd,M+1 −

M∑

m=0

(
U+

d,m +U−
d,m

)
≥ 0 . (42)

Following the framework of §4.1, we dualize this induced constraint by incorporating,
on the one hand, the terms U+

d,m+U−
d,m in the definition of the price intraday function

for m ∈ J0,MK and, on the other hand, the term hd −Hd,M+1 in the computation of
the Bellman functions. Doing so, the intraday function LP

d does not depend anymore
on the health hd, and is defined as

LP
d (sd, cd, p

s
d+1, p

h
d+1) = inf

Ud,0:M

E

[ M∑

m=0

(
πe
d,m max(0,Dd,m +U+

d,m −U−
d,m)

− phd+1

(
U+

d,m +U−
d,m

))
+ psd+1Sd,M+1

]
,

(43a)
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subject to, for all m ∈ J0,MK,

Sd,0 = sd , Sd,m+1 = Sd,m + ρcU+
d,m − ρdU−

d,m , (43b)

Ud,m ∈ [U,U ] , Sd,m ∈ [0, ξcd] , (43c)

σ(Ud,m) ⊂ σ
(
Dd,0, . . . ,Dd,m

)
. (43d)

The associated sequence of Bellman functions {V P
d }d∈J0,D+1K is computed by the

following recursion:

V P
d (sd, hd, cd) = sup

(ps
d+1

,ph
d+1

)≤0

(
LP
d (sd, cd, p

s
d+1, p

h
d+1) + inf

sd,M+1,hd,M+1

inf
Bd

E

[
γPb

dBd

− psd+1sd,M+1 +
(
phd+1

(
hd − hd,M+1

)
+ V P

d+1(Sd+1,0,Hd+1,0,Cd+1,0)
)])

,

(44a)

subject to (Sd+1,0,Hd+1,0,Cd+1,0) = ψ
(
sd,M+1, hd,M+1, cd,Bd

)
, (44b)

Bd ∈ [0, B] , sd,M+1 ∈ [0, ξcd] , hd,M+1 ∈
[
0,N(cd) cd

]
, (44c)

σ(Bd) ⊂ σ
(
Pb

d

)
. (44d)

Price intraday function approximation.

As in the resource decomposition algorithm, it is possible to consider that the state
of charge of the battery has no influence at the slow time-scale. Doing so, we obtain
a new function L̂P

d approximating the original function LP
d , that is,

L̂p
d(cd, p

h
d+1) = LP

d (0, cd, 0, p
h
d+1) ≈ LP

d (sd, cd, p
s
d+1, p

h
d+1) . (45)

The approximated price intraday function L̂P
d only depends on the 2-tuple (cd, p

h
d+1),

which significantly reduces the time needed to compute it. Then, the sequence
{V P

d }d∈J0,D+1K of Bellman functions in (44) is approximated by the sequence

{V̂
P

d }d∈J0,D+1K given by the following recursion:

V̂
P

d (hd, cd) = sup
ph
d+1

≤0

(
L̂P
d (cd, p

h
d+1) + inf

hd,M+1

inf
Bd

E

[
γPb

dBd

+ phd+1

(
hd − hd,M+1

)
+ V̂

P

d+1

(
ψH,C(hd,M+1, cd,Bd)

)])
, (46a)

subject to hd,M+1 ∈
[
0,N(cd) cd

]
, (46b)

Bd ∈ [0, B] , (46c)
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σ(Bd) ⊂ σ
(
Pb

d

)
. (46d)

As explained in Appendix A, we consider in this study I periodicity classes (I = 4),
that is, one class for each season of the year), so that the computation of the price
intraday problem is done only for I different days denoted d1, . . . , dI . The complexity
of the associated price decomposition algorithm is sketched in Appendix B.

6.3 Experimental setup

The data used in the application come from case studies provided by a Schneider
Electric industrial site, equipped with solar panels and a battery, and submitted to
three sources of randomness — namely, solar panels production, electrical demand
and prices of batteries per kWh. We present hereby the different parameters of the
instance under consideration.

• Horizon: 20 years.
• Fast time step: 30 minutes.
• Slow time step: 1 day.
• Number of time steps: 350,400 (= (24× 2)× (20× 365)).
• Battery renewal capacity: between 0 and 1,500 kWh with a increment of 100 kWh.
• Periodicity class: 4 classes, one per trimester of the year.

Data to model the cost of batteries and electricity.

For the prices of batteries, we obtained a yearly forecast over 20 years from Statista9.
We added a Gaussian noise to generate synthetic random batteries prices scenarios.
We display in Figure 1 the scenarios we generated. Three scenarios are highlighted in
Figure 1; they correspond to the three scenarios we comment in the numerical results
in §6.4.

For the price of electricity, we chose a “time of use” tariff defined by three rates:

• an off-peak rate at 0.0255$ between 22:00 and 7:00,
• a shoulder rate at 0.0644$ between 7:00 and 17:00,
• a peak rate at 0.2485$ between 17:00 and 22:00.

Data to model demand and production.

In order to have a realistic dataset in the model described in §6.1, we use the data
collected on 70 anonymized industrial sites monitored by Schneider Electric. This data
set is openly available.10 We extracted the data of the site numbered 70. For this site,
we display in Figure 2 the half hourly distribution of the net demand (demand minus
solar production) during one day.
Remark 10 (About the probabilistic independence of the data). Both batterie
prices and net demands correspond to realistic data that are given as scenarios, and
there is a priori no independence property for these data. Of course, it is possible
to compute marginal probability distributions from these scenarios: at a given time

9https://www.statista.com/statistics/883118/global-lithium-ion-battery-pack-costs/
10https://zenodo.org/record/5510400
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Figure 1 Scenarios of battery prices over a twenty-year timespan

Figure 2 Daily half hourly distribution of net demand (kWh)

step (d,m), collect all the values Dd,m (the value Pb
d if m = M+1) available from

the scenarios and build a discrete probability distribution from these values. This pro-
cedure gives probability distributions at the half-hourly scale. This way of proceeding
will be implemented to compute the resource and price intraday functions by Dynamic
Programming (see §6.4.1).

6.4 Numerical experiments

The aim of the numerical experiments is to compute and evaluate policies induced
by resource (resp. price) decomposition, that is, first solving an approximation of
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Problem (34) by computing the resource intraday functions L̂R
d in (40) and the associ-

ated resource Bellman functions V̂
R

d in (41) (resp. price intraday functions L̂P
d in (45)

and price Bellman functions V̂
P

d in (46)) after all simplifications presented in §6.2.1

(resp. §6.2.2), and second evaluating the policies induced by the Bellman functions V̂
R

d

and V̂
P

d .

6.4.1 Computation of the resource and price intraday functions

To compute the approximated resource intraday functions L̂R
d as given in Equation (40)

and the approximated price intraday functions L̂P
d as given in Equation (45), we com-

pute the marginal probability distributions of the noises at the fast time-scale as
explained in Remark 10 and we apply the Dynamic Programming algorithm. Indeed,
computing the intraday functions using Stochastic Programming would be very costly
due to the large number of fast time steps inside a slow time step: for example com-
puting a price intraday function (45) would require forming a scenario tree over 48
time steps for every possible (discretized) value of the pair (cd, p

h
d+1) and solving the

associated optimization problem, i.e. a task too expensive in computation time.
We recall that the intraday functions are not computed for all possible days in

the time horizon, but only for a day representing each periodicity class. Here we split
the year of the industrial site data into the four traditional trimesters, each trimester
corresponding to one periodicity class. For each trimester, we model the net demand
at a given half hour of the day by a discrete random variable with a support of size 10.
The probability distribution of each discrete random variable is obtained by clustering,
using k-means algorithm, the net demand realizations in the dataset associated with
the half hour under consideration.

In the case of resource (resp. price) decomposition, we compute the intraday func-

tions L̂R
d (resp. L̂P

d ) for every possible capacity cd and every possible exchangeable
energy hd − hd+1 (resp. every possible price phd+1). In this study, the possible values
of the capacity cd are {0, 100 . . . , 1500} kWh, whereas the possible values of the price
phd+1 are {0, 0.025, 0.05, . . . , 0.2}.

We display in Figure 3 the resource and price intraday functions for each season
(trimester) of a year. Resource intraday functions depend on daily exchangeable energy
and capacity, whereas price intraday functions depend on the price associated with
aging and capacity.

6.4.2 Computation of the resource and price Bellman functions

Once obtained all possible intraday functions L̂R
d and L̂P

d , the Bellman functions V̂
R

d

and V̂
P

d are respectively computed by the Bellman recursions (41) and (46), for d ∈
J0, DK. We display in Figure 4 the resource and price Bellman functions obtained for
the first day of the time horizon. We observe that the resource and price Bellman
functions present approximately the same shape and are just separated by a relatively
small gap. The same observation holds true for all days of the time span. The largest
relative gap between these bounds is 7.90%. The relative gap at the initial state

27



1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288

Figure 3 Resource (left) and price (right) intraday functions for each trimester

Figure 4 Resource and price Bellman functions at day 1

(s0, h0, c0) = (0, 0, 0), that is, the battery no longer works and has to be replaced, is
around 4.84%.

We gather in Table 1 the computing times of the two decomposition algorithms,
namely the total CPU times and the total wall times11 when parallelization is on. The
computation is run on an Intel i7-8850H CPU @ 2.60GHz 6 cores with 16 GB RAM.
Table 1 displays the times needed to compute the intraday functions and the Bell-
man functions. We observe that, whereas the price decomposition algorithm requires a
significantly longer CPU time than the resource decomposition algorithm, the two de-
composition algorithms require a comparable wall time when parallelization is on. The
main reason is that the parallelization of the computation of price Bellman functions

11Wall time measures how much time has passed for executing the code, as if you were looking at the
clock on your wall.
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Price Resource

Intraday functions CPU time 1053 s 2836 s
Value functions CPU time 6221 s 1515 s
Total CPU time 7274 s 4351 s
Intraday functions wall time 267 s 714 s
Value functions wall time 2227 s 1310 s
Total wall time 2494 s 2024 s

Table 1 Computing times of the decomposition methods

decreases more significantly the computing time than the parallelization for resource
Bellman functions. The explanation is that the computation done in parallel is longer
in the price case, hence the CPU time saved is not compensated by too frequent mem-
ory sharings. The price intraday functions are also faster to compute because the price
space is more coarsely discretized than the exchangeable energy space.

Finally, in Table 2, we give the values V̂
R

0 (x0) and V̂
P

0 (x0) of the resource and
price Bellman functions at day d = 0 for the initial state x0 = (s0, h0, c0) = (0, 0, 0).
According to Sect. 4, these values are respectively an upper bound and a lower bound

Price Resource

Lower (price) and upper (resource) bounds 2.14 M$ 2.24 M$

Table 2 Bounds obtained by resource and price decomposition

of the optimal value of Problem (34). Note however that the numerically computed
values given in Table 2 may fail to be upper and lower bounds of the optimal cost of
Problem (34) since the resource and price intraday functions are obtained (i) using
approximations as explained in §6.2.1 and §6.2.2, and (ii) using the marginal prob-
ability distributions of the noises at the fast time-scale (see Remark 10), thus these
intraday functions are optimal only if the noises are independent random variables at
the fast time-scale.

6.4.3 Simulation of the resource and price policies

We present now several simulation results. Table 3 displays the times needed to per-
form a 20 years simulation over one scenario of battery prices and net demands, from
which we deduce the average time needed to compute a decision at each time step.

Price Resource

Average time to simulate a scenario 6.19 s 5.22 s
Average time to compute a decision 17.7 µs 14.9 µs

Table 3 Computing times of simulation
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Simulation using scenarios.

We draw 1, 000 “true” scenarios of battery prices and net demands over 20 years, that
is, scenarios extracted from the realistic data of the problem. There is thus no more
independence assumption available for these scenarios. Then, as explained in §5.1,
we simulate the charge and renewal decisions that are made when using the intraday
functions and the Bellman functions obtained by resource and price decomposition,
in order to compare the performances of both methods. All simulations start from the
initial state (s0, h0, c0) = (0, 0, 0). The average costs of these scenarios are given in
Table 4. The comparison of the average costs shows that both decomposition methods

Price Resource

Average cost over 1, 000 true scenarios 2.83 M$ 2.86 M$

Table 4 Average simulation costs using original scenarios

provide comparable performances. However, the price decomposition outperforms the
resource decomposition by achieving on average 1.05% of additional economic savings.
This slightly superior performance of the price decomposition is observed on every
simulation scenario.

We also note that the average costs are 20% to 25% higher than the corresponding
values of the Bellman functions at the initial day for the initial state given in Table 2.
This is a somewhat surprising result since the values in Table 2 are lower (price) and
upper (resource) bounds of the optimal value of the problem, provided that the white
noise Assumption 2 is fulfilled. But, as explained at the end of §6.4.2, the intraday
functions have been computed by dynamic programming, and thus the values obtained
are optimal only if the noises are independent at the fast time-scale. The computation
of the price and resource Bellman functions makes use of these intraday functions and
moreover are optimal only if the battery prices are day by day independent. However,
the simulations are made with scenarios where the net demands and the prices are
likely to be strongly correlated, hence the discrepancies.

Analysis of some scenarios.

We select three scenarios (the colored scenarios in Figure 1) among the 1, 000 sce-
narios of battery prices and net demands over 20 years that we used in the previous
paragraph, and we analyse the behavior of the policies induced by resource and
price decompositions. We recall that all simulations start from the initial state
(s0, h0, c0) = (0, 0, 0), that is, the battery no longer works and has to be replaced.
Figure 5 displays the health (or exchangeable energy in kWh) of the batteries at the
end of each day for the three scenarios, and Table 5 gives the associated simulation
costs. In the first simulation, price and resource decompositions lead to significantly
different renewal decisions and different costs. A small battery, (100 kWh, that is, 400
kWh of exchangeable energy12) is purchased at day d = 0 for both price and resource
decomposition. But at day d = 2328, another small battery is purchased in resource

12The integer function N in Equation (31b) is such that N(100) = N(1500) = 4.
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Figure 5 Three simulations of the evolution of the battery health over 20 years

decomposition, whereas a large battery (1, 500 kWh, that is, 6 MWh of exchangeable
energy) is purchased in price decomposition. Then, over the remaining time horizon,
there is one battery renewal in price decomposition and two renewals in resource de-
composition, hence a lower cost for price decomposition. In the second simulation,
resource and price decompositions produce very similar health trajectories and costs.
This is even clearer for the third simulation for which the health trajectories and the
costs are almost identical. The third simulation shows a case where battery prices are
high, hence only small batteries, that is, 100 kWh, are purchased. Price decomposi-

Scenario 1 Scenario 2 Scenario 3

Total cost (resource) 2.757 M$ 2.825 M$ 3.200 M$

Total cost (price) 2.722 M$ 2.820 M$ 3.199 M$

Table 5 Simulation results along three scenarios

tion outperforms resource decomposition on the three scenarios, but only by 1.27 %
on Scenario 1 while the renewal decisions are significantly different. Our interpretation
is that, in Scenario 1, it is almost as rewarding to buy either a big battery or a small
battery taking into account the investment. Moreover, it seems that resource decom-
position slightly underestimates the benefits of using a large battery compared to a
small one. Indeed, we present in Figure 6 the resource and price Bellman functions of
the day d = 2328 (first battery renewal in Scenario 1), when the health of the bat-
tery is fixed to the value H associated with a large battery renewal (1,500 kWh), that

is, V̂
R

2328(H, ·) in (41) and V̂
P

2328(H, ·) in (46). We observe that the resource Bellman
function is significantly higher than the price Bellman function.
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Figure 6 Bellman function of first renewal day of Scenario 1 for health fixed at 100 %

7 Conclusion

We have introduced the formal definition of a two-time-scale stochastic optimization
problem. The motivation for two-time-scale modeling originated from a battery man-
agement problem over a long term horizon (20 years) with decisions being made every
30 minutes (charge/discharge). We have presented two algorithmic methods to com-
pute daily Bellman functions to solve these generic problems — with an important
number of time steps and decisions on different time-scales — when they display mono-
tonicity properties. Both methods rely on a Bellman equation applied at the slow
time-scale, producing Bellman functions at this scale.

Our first method, called resource decomposition algorithm, is a primal decomposi-
tion of the daily Bellman equation that requires to compute the value of a multistage
stochastic optimization problem parameterized by a stochastic resource. Some mono-
tonicity properties here make it possible to relax the coupling constraint and to replace
the stochastic resource by a deterministic one, yielding an upper bound for the slow
time-scale Bellman functions. Instead of this simplification, we could have turned the
almost sure coupling constraint into a constraint in expectation. It would be interesting
to compare this with our approach.

We address a similar and related difficulty in our price decomposition algorithm.
It requires the computation of the value of a stochastic optimization problem parame-
terized by a stochastic price. Once again we replace it by a deterministic price, which
is equivalent to dualize an expectation target constraint. This makes the previous en-
hancement proposal even more relevant. Our algorithm produces a lower bound for
the slow time-scale Bellman functions that reveals to produce better results in sim-
ulation than the ones obtained by using the resource Bellman functions (we already
have observed this numerical favorable phenomenon in Carpentier et al. (2020)).
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Finally, we have shown with a realistic numerical application that these methods
make it possible to compute design and control policies for problems with a very large
number of time steps. But they could also be used for single-time-scale problems that
exhibit monotonicity, periodicity and a large number of time steps.

A Periodicity classes

To compute the upper bound Bellman functions
{
V

R

d

}
J0,D+1K

given by Equation (21)

(respectively the lower bound Bellman functions
{
V P

d

}
d∈J0,D+1K

given by

Equation (17)), we need to compute the value of the fast-scale optimization prob-
lems LR

d (xd, rd+1) defined by (20) (respectively LP
d (xd, pd+1) defined by (16)), for

all d ∈ J0, DK and for all couples (xd, rd+1) ∈ Xd × Xd+1 (respectively for all cou-
ples (xd, pd+1) ∈ Xd×Yd+1 with pd+1 ≤ 0). The computational cost can be significant
as we need to solve a stochastic optimization problem for every couple (xd, rd+1) ∈
Xd × Xd+1, for every couple (xd, pd+1) ∈ Xd × Yd+1 and for every d in J0, DK. We
present a simplification exploiting a possible periodicity at the fast time-scale.
Proposition 11 Let I ⊂ J0, DK be a nonempty subset. Assume that there exists two
sets XI and UI such that, for any d ∈ I, we have Xd = XI and Ud = UI. Moreover,
assume that there exists two mappings LI and fI such that, for any d ∈ I, Ld =
LI and fd = fI. Finally assume that the random vectors {Wd}d∈I are independent
and identically distributed. Then, there exists two functions LR

I
and LP

I
such that the

functions LR
d defined by (20) and LP

d defined by (16) satisfy

LR
d = LR

I
and LP

d = LP
I
, ∀d ∈ I . (47)

Proof. The proof is an immediate consequence of the assumptions made on the

functions Ld and fd and on Wd for d ∈ I. □

The nonempty set I in Proposition 11 is called a periodicity class. We denote by I
the number of periodicity classes of Problem (6) and by (I1, . . . , II) the periodicity
classes (possibly reduced to singletons), that is, the sets of slow time indices that
satisfy (47).
Remark 12 A periodicity property often appears in long term energy management
problems with renewable energies, due to yearly seasonality of natural processes such
as solar production. In this case, I < D+1 and it is enough to solve only I problems at
the fast time-scale. When there is no periodicity, I = D+1 and the periodicity classes
are singletons. In this case, all the fast time-scale problems have to be computed.

The ways to obtain the upper bound and lower bound Bellman functions are
presented in Algorithm 1 and Algorithm 2. They allow to efficiently compute fast-time-
scale problems and upper and lower bounds for the Bellman functions using resource
and price decompositions.
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Algorithm 1 Two-time-scale Dynamic Programming with deterministic resources
and periodicity classes

Data: Periodicity classes (I1, . . . , II)

Result: Upper bound Bellman functions
{
V

R

d

}
d∈J0,D+1K

Initialization: V
R

D+1 = K
for i = 1, . . . , I do

Choose a di ∈ Ii

for (x, r) ∈ Xdi
× Xdi+1 do

Compute LR
Ii
(x, r) = LR

di
(x, r) and set LR

d (x, r) = LR
Ii
(x, r) for all d ∈ Ii

end

end
for d = D,D − 1, . . . , 0 do

for xd ∈ Xd do

Solve V
R

d (xd) = infrd+1
LR
d (xd, rd+1) + V

R

d+1(rd+1)
end

end

Algorithm 2 Two-time-scale Dynamic Programming with deterministic prices and
periodicity classes

Data: Periodicity classes (I1, . . . , II)
Result: Lover bound Bellman functions

{
V P

d

}
d∈J0,D+1K

Initialization: V P
D+1 = K

for i = 1, . . . , I do
Choose a di ∈ Ii

for (x, p) ∈ Xdi
× Ydi+1, p ≤ 0 do

Compute LP
Ii
(x, p) = LP

di
(x, p) and set LP

d (x, p) = LP
Ii
(x, p) for all d ∈ Ii

end

end
for d = D,D − 1, . . . , 0 do

for xd ∈ Xd do

Solve V P
d (x) = suppd+1≤0 L

P
d (x, pd+1)−

(
V P

d+1

)⋆
(pd+1)

end

end

Remark 13 The interest of Algorithm 1 (resp. 2) is that we can solve the I fast-
time-scale problems (20) (resp. (16)) in parallel and then distribute the numerical
solving of these problems across slow time steps. Moreover, we can theoretically ap-
ply any stochastic optimization method to solve the fast-time-scale problems. Without
stagewise independence assumption at the fast time-scale, we may use Stochastic Pro-
gramming techniques (for example scenario trees and Progressive Hedging Rockafellar
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and Wets (1991)) to solve the fast-time-scale problems. With a stagewise independence
assumption at the fast time-scale, we may apply Stochastic Dynamic Programming or
Stochastic Dual Dynamic Programming.

B Complexity of the decomposition algorithms

We compute the complexity of the resource and price decomposition Algorithms 1
and 2 in Appendix A, in terms of number of operations required to implement them,
and we compare them to a brute force use of Dynamic Programming.

We denote by N s
x (resp. N s

u and N s
w) the dimension of the space of state (resp.

control and noise) variables that change only at the slow time-scale. We denote by N sf
x

(resp. Nff
x ) the dimension of the space of state variables that change at the fast time-

scale with an influence at the slow time-scale (resp. without influence at the slow
time-scale), and by N f

u (resp. N f
w) the dimension of the space of control (resp. noise)

noise variables that change at the fast time-scale. In numerical applications, we stick
to the battery problem under consideration in the paper:

• N s
x = 1 (capacity Cd), N

sf
x = 1 (health Hd,m), Nff

x = 1 (state of charge Sd,m),
• N s

u = 1 (renewal Bd), N
f
u = 1 (charge/discharge Ud,m)

• N s
w = 1 (price Pb

d), N
f
w = 1 (net demand Dd,m).

We compute the intraday functions L̂R
d and L̂P

d by Dynamic Programming. To make
things simple, we assume that each one-dimensional variable is discretized in 10 val-
ues, and that each elementary minimization is conducted by exhaustive search in the
control space. We finally assume that the number D + 1 of slow time steps and the
number M + 1 of fast time steps in a slow time step are rather large, whereas the
number I of periodicity classes is rather small.

We first compute the complexity of solving Problem (34) by Dynamic Pro-
gramming. Taking into account that the dimension of the state at each time step
is Nff

x + N sf
x + N s

x and that the last fictitious time step at the fast time-scale only
involves the control Bd and the noise Pb

d, whereas the M + 1 previous steps involve
the control (U+

d,m,U
+
d,m) and the noise Dd,m, the number of elementary operations

required to solve the problem is:

(D + 1)
(
10N

ff
x +Nsf

x +Ns
x+Ns

u+Ns
w + (M + 1)

(
10N

ff
x +Nsf

x +Ns
x+N f

u+N f
w

))
(48)

≈ D
(
105 +M105

)

≈ DM105 .

B.1 Resource decomposition algorithm

We now compute the complexity of the resource decomposition Algorithm 1, which
depends on the complexity of the intraday problem numerical solving, and on the way
the Bellman recursion is solved.

• We first have to solve the intraday problem, that is, we compute the optimal value
of the intraday problem for each possible value of the initial state (sd, hd, cd) and

35



1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656

each possible value of the final resource target (sd+1, hd+1, cd+1). We apply the
simplifications introduced in §6.2.1.

– A first simplification arises when separating the slow and fast time-scales, that is,
the slow components of the problem (state, control and noise) are no more taken
into account in the computation of the optimal value of the intraday problem,
which leads to Problem (37).

– A second simplification is based on the assumption that the fast component of
the state does not influence the slow dynamics and thus can be set to zero at the
beginning and at the end of each slow time step.

– The last simplification is that the resource intraday functions only depends on
the health difference during a slow time step.

The resulting intraday problem L̂R
d (∆hd, cd) = LR

d (0,∆hd, cd, 0, 0) in Equation (40)
is solved by Dynamic Programming involving all fast components of the problem,
and has to be computed for all possible values of the capacity cd (the health dif-
ference ∆hd is part of the initial state of the problem and thus the associated
complexity is taken into account by Dynamic Programming). The complexity of

computing the value L̂R
d for a given value of cd is (M + 1)10N

ff
x +Nsf

x +N f
u+N f

w , and
the whole complexity of computing all values of all intraday functions is

I(M + 1)10N
s
x10N

ff
x +Nsf

x +N f
u+N f

w ≈ IM105 , (49)

where we recall that I is the number of classes of periodicity of the problem.
• Having at disposal all possible functions L̂R

d in (39), we compute the Bellman value

functions V̂
R

d given by Equation (41). The complexity associated with that recursion
is

(D + 1)10N
sf
x +Ns

x+Nsf
x +Ns

u+Ns
w ≈ D105 . (50)

We are now able to compare the complexity (49)–(50) with the complexity (48) of
brute force Dynamic Programming. The resource decomposition algorithm is relevant
if the following ratio is small

R
R =

IM105 +D105

DM105
≪ 1 ,

or equivalently

R
R =

I

D
+

1

M
≪ 1 . (51)

Let us consider the relevance condition (51) in three different situations, with a
number I of periodicity classes equal to 4.
1. Horizon: 20 years, fast time step: 1/2 hour, slow time step: 1 day.

Then, we have (D;M) = (7,300; 48) and the ratio in (51) is RR ≈ 1/50.
2. Horizon: 20 years, fast time step: 1/2 hour, slow time step: 1 week.

Then, we have (D;M) = (1,040; 336) and the ratio in (51) is RR ≈ 1/150.
3. Horizon: 20 years, fast time step: 1/2 hour, slow time step: 1 month.

Then, we have (D;M) = (240; 1,440) and the ratio in (51) is RR ≈ 1/60.
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This illustrates that the ratio R
R is minimal when the two quantities D and IM are

of the same order of magnitude,13 in which case the condition I ≪ D ensures large
computer time savings.

In conclusion, the fact that the resource decomposition algorithm is such that the
intraday functions can be computed offline and that the number of these functions is
much less than the number of slow time steps makes the method very appealing from
the computer time point of view.
Remark 14 It is interesting to compare this complexity result with the one obtained by
only separating the slow and fast time-scales, that is, when implementing the resource
decomposition algorithm by computing all possible values of the intraday problem (37)
and then by computing the Bellman functions using (38). The computation by Dynamic
Programming of LR

d (sd, hd, cd, sd+1, hd+1) for a given 3-tuple (cd, sd+1, hd+1) requires

(M +1)10N
ff
x +Nsf

x +N f
u+N f

w , so that the whole complexity of computing the values of all
intraday functions is

I(M + 1)10N
s
x+N ff

x +Nsf
x 10N

ff
x +Nsf

x +N f
u+N f

w ≈ IM107 .

The complexity of the Bellman recursion (38) is

(D + 1)10N
ff
x +Nsf

x +Ns
x+N ff

x +Nsf
x +Ns

u+Ns
w ≈ D107 ,

so that relevance Condition (51) for the method to be interesting becomes

102
( I
D

+
1

M

)
≪ 1 ,

a less favorable condition than the one obtained where simplifications are taken into
account.

B.2 Price decomposition algorithm

We consider now the computation of the intraday problem arising from the price de-
composition Algorithm 2 and the associated Bellman recursion. Taking into account
all simplifications introduced in §6.2.2, the resulting intraday function L̂P

d (cd, p
h
d+1) =

LP
d (0, cd, 0, p

h
d+1) given by (43) is solved by Dynamic Programming involving all fast

components of the problem, and has to be computed for all possible values of the capac-
ity cd and of the multiplier phd+1. The complexity of computing the value L̂P

d (cd, p
h
d+1)

for a given couple (cd, p
h
d+1) is (M + 1)10N

ff
x +N f

u+N f
w , and the whole complexity of

computing all values of all intraday functions is

I(M + 1)10N
s
x+Nsf

x 10N
ff
x +N f

u+N f
w ≈ IM105 . (52)

13The solution (D∗,M∗) of the optimization problem minD,M
I
D

+ 1
M

subject to DM = α is such
that D∗ = IM∗.
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Then we compute the Bellman function V̂
P

d (hd, cd) given by Equation (46). The
complexity associated with the Bellman recursion is

(D + 1)10N
sf
x +Ns

x+Nsf
x +Nsf

x +Ns
u+Ns

w ≈ D106 . (53)

Comparing the whole complexity of the price decomposition algorithm with the com-
plexity (48) of Dynamic Programming, we conclude that the resource decomposition
algorithm is relevant if the following ratio is small

R
P =

IM105 +D106

DM105
≪ 1 ,

or, equivalently, if

R
P =

I

D
+

10

M
≪ 1 . (54)

Compared with the relevance condition (51) obtained for the resource decomposition
algorithm, we conclude that the price decomposition algorithm is more demanding
than the resource decomposition algorithm.

C Monotonicity-inducing assumption holds true in
the battery management problem

Following the notations introduced in Sect. 6, we specialize in §C.1 the Bellman
equation (9) to the case of the battery management. In §C.2, we prove that the
monotonicity-inducing assumption 1 is fulfilled for the battery management problem.

C.1 Reformulation of Bellman Equation for the battery
management problem

We consider the subset of R3 defined by

X =
{
(s, h, c) ∈ R

3
∣∣ s ∈ [0, ξc] , h ∈

[
0,N(c) c

]
, c ∈ [0, B]

}
. (55)

For all d ∈ J0, DK, we consider the composed state dynamics defined by

fd
(
(s, h, c), ud,0:M , bd

)
= ψ

(
φ◦
d,M

(
(s, h, c), ud,0:M

)
, bd

)
, (56)

where φ◦
d,0 = φ and for m ∈ J0,M−1K

φ◦
d,m+1 :

(
(s, h, c), ud,0:m+1

)
7→ φ

(
φ◦
d,m

(
(s, h, c), ud,0:m

)
, ud,m+1

)
, (57)
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with φ and ψ being defined by (30d) and (31d) in §6.1, namely

φ :
(
(s, h, c), ud,m

)
7→



s+ ρcu+d,m − ρdu−d,m
h− u+d,m − u−d,m

c


 , (58)

and

ψ : ((s, h, c), bd) 7→




s1{0}(bd)
h1{0}(bd) +N(bd)bd1]0,+∞[(bd)

c1{0}(bd) + bd1]0,+∞[(bd)


 . (59)

Finally, for all d ∈ J0, DK, the instantaneous cost functions Ld in (33) is14

Ld :
(
xd,0, ud,0:M , bd, w

1
d,0:M , w

2
d

)
7→

M∑

m=0

ℓd,m
(
φ◦
d,m−1

(
xd,0, ud,0:m−1

)
, ud,m, w

1
d,m

)

+ w2
dbd + δ[0,B](bd) , (60)

with

ℓd,m :
(
xd,m, ud,m, w

1
d,m

)
7→ γdπd,m(w1

d,m + u+d,m − u−d,m) + δX(xd,m) + δ[U,U ](ud,m) ,

(61)
where w1

d,m is the net demand at time (d,m) and where w2
d is the battery price.

For each d ∈ J0, DK, we introduce the Bellman operator Bd defined by

BdV (x) = min
(λd,0:M ,θd)∈Λd×Θd

∫ (
Ld(x, λd,0:M , µd, w

1
d,0:M , w

2
d) (62)

+ V
(
fd(x, λd,0:M , θd)

))
P( d(w1

d,0:M , w
2
d)) , (63)

where, in the minimization, we incorporate the nonanticipative contraints, that is, for
each m ∈ J0,MK, λd,m is a measurable function of w1

d,0:m (encoded in Λd) and θd is a

measurable function of (w1
d,0:m, w

2
d) (encoded in Θd).

C.2 A proof that monotonicity-inducing Assumption 1 is
satisfied

The main result of this appendix is Proposition 15.
Proposition 15 Consider the optimization problem (34) described in Sect. 6. The
data of the associated Bellman functions (9) satisfy monotonicity-inducing Assump-
tion 1.

Proof. As a consequence of the reformulation in §C.1, the Bellman functions
(V e

d )d∈J0,D+1K which are solution of the Bellman equation (9) for the case study of Sect. 6 are

also solution of the Bellman backward induction defined by VD+1 = K and for all d ∈ J0, DK
by Vd = BdVd+1, where the operator Bd is defined by (63).

14by convention, φ◦
d,−1 is such that φ◦

d,−1(xd,0, ud,0:m−1) = xd,0.
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As a first result, we prove by backward induction that, for all d ∈ J0, DK we have that

domVd = X, where the set X is defined in Equation (55). Let d ∈ J0, DK and assume that

X ⊂ domVd+1. From the special form of the cost function ℓd,m in Equation (61), the effective

domain of Vd is included in the set X. Let x ∈ X be given, and consider the null control,

that is, ud,m = 0, for all m ∈ J0,MK and bd = 0. The associated cost Ld in Equation (60) is

finite and fd(x, ud,0:M , bd) = x ∈ X. We thus have that Vd+1(fd(x, ud,0:M , bd) = Vd+1(x) <

+∞ by induction assumption. We have obtained that x ∈ domVd. By assumption, we have

X ⊂ domVD+1 = R
3 (see Section 6), hence domVd = X for all d ∈ J0, DK. This proves that

Condition 2 of Assumption 1 is fulfilled. Condition 1 of Assumption 1 is satisfied since we

have assumed that the final cost function K is identically equal to 0. Finally, Condition 3 of

Assumption 1 is satisfied thanks to the two lemmas 18 and 19 given below. □

To prove the two postponed lemmas 18 and 19, we start by a technical result
involving the instantaneous dynamics φ in (58) defined at the fast time scale.
Lemma 16 Consider two states x and x′ both in the subset X as defined in
Equation (55) and such that x′ ≥ x and consider a control u ∈ [U,U ] (with U < 0)
such that φ

(
x, u

)
∈ X, where φ is given by Equation (58). Then, there exists a control

u′ ∈ [U,U ] satisfying the two following conditions.
1. The control u′ is in [U,U ], and u′ is either equal to u, or u′ satisfy 0 ≤ u′ < u

and is given as a feedback on the state variable x′;15

2. The control u′ is such that φ
(
x′, u′

)
∈ X and φ

(
x′, u′

)
≥ φ

(
x, u

)
.

Proof. As x′ = (s′, h′, c′) ≥ x = (s, h, c) we immediately have that φ((s′, h′, c′), u) ≥
φ((s, h, c), u). Now, we consider two cases. First, if φ((s′, h′, c′), u) ∈ X, then the two con-
ditions of the Lemma are immediately satisfied with u′ = u. Second, we assume that
φ((s′, h′, c′), u) ̸∈ X, that is s′ + ρcu+ − ρdu− ̸∈ [0, ξ c′] or h′ − u+ − u− ̸∈

[
0,N(c′) c′

]

or c′ ̸∈ [0, B]. We notice that c′ ̸∈ [0, B] is not possible since we have assumed that
(s′, h′, c′) ∈ Xt. Moreover the assertion h′−u+−u− ̸∈

[
0,N(c′) c′

]
is also not possible as we

have

0 ≤ h− u+ − u− (by assumption φ(x, u) ∈ X)

≤ h′ − u+ − u− (as h ≤ h′)

≤ N(c′) c′ . (as h′ ∈
[
0,N(c′) c′

]
and u+ + u− ≥ 0)

Thus we have that s′ + ρcu+ − ρdu− /∈ [0, ξ c′]. As the lower bound is satisfied since we
have that s′ + ρcu+ − ρdu− ≥ s+ ρcu+ − ρdu− ≥ 0, we must have the following inequality
s′ + ρcu+ − ρdu− > ξ c′. which combined with the fact that s′ ∈ [0, ξ c′] implies that the
control u must be positive (u− = 0). We therefore end with s′ + ρcu > ξ c′. We define a new
control u′ defined by

u′ =
ξc′ − s′

ρc
< u .

This control u′ is nonnegative and less than u and therefore satisfies u′ ∈ [U,U ] (as U < 0).
This gives Condition 1 of the Lemma.

Now we have that φ((s′, h′), u′, w) ∈ X as we have s′ + ρcu′+ − ρdu′− = ξ c′ ∈ [0, ξ c′]
and 0 ≤ h′ − u+ − u− ≤ h′ − u′+ − u′− ≤ N(c′) c′ and we easily obtain that

15implying that u′ can only differ from u when u is positive.
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φ((s′, h′, c′), u′) =




ξ c′

h′ − u′+ − u′−

c′


 ≥



s+ ρcu+ − ρdu−

h− u+ − u−

c


 = φ((s, h, c), u) , (64)

which gives Condition 2 of the Lemma, and ends the proof. □

We now give a lemma involving the full dynamics fd defined at the slow time scale.
Definition 17 Consider the set X defined by Equation (55). We say that a given
ordered pair of controls (ud,0:M , bd) is X-preserving for the state x if, for all m ∈
J0,MK, we have φ◦

d,m

(
x, ud,0:m

)
∈ X and fd

(
x, ud,0:M , bd

)
∈ X.

Lemma 18 Consider two initial states x′d,0 ≥ xd,0 both in X and assume that the
controls (ud,0:M , bd) are X-preserving for xd,0 and such that for all m ∈ J0,MK, ud,m ∈
[U,U ]. Then, there exists controls u′d,0:M satisfying the two following conditions.

1. For all m ∈ J0,MK, the control u′d,m is in [U,U ] and u′d,m is either equal to ud,m
or is given as a feedback on the state variable x′d,m = φ◦

d,m−1(x
′
d,0, u

′
d,0:m−1) and

satisfy 0 ≤ u′d,m < ud,m;16

2. The controls (u′d,0:M , bd) are X-preserving for x′d,0 and such that

fd
(
x′d,0, u

′
d,0:M , bd

)
≥ fd

(
xd,0, ud,0:M , bd

)
.

Proof. We consider two states xd,0 and x′d,0 both in X and such that x′d,0 ≥ xd,0 and
we assume that the controls (ud,0:M , bd) are X-preserving for xd,0.

We start by proving an auxiliary result. We prove by induction that for all m ∈ J0,MK
there exists controls u′d,0:m such that

φ◦
d,m(x′d,0, u

′
d,0:m) ≥ φ◦

d,m(xd,0, ud,0:m) and φ◦
d,m(x′d,0, u

′
d,0:m) ∈ X . (65)

First, for m = 0, we have that φ◦
d,0 = φ and the existence of u′d,0 satisfying Equation (65)

follows from Lemma 16.
Second, we assume that Equation (65) is satisfied for m and we prove that it is satisfied

for m+1 as follows. Consider xd,m+1 = φ◦
d,m(xd,0, ud,0:m) and x′d,m+1 = φ◦

d,m(x′d,0, u
′
d,0:m).

By induction assumption we have that both xd,m+1 and x′d,m+1 are in X and they are such

that x′d,m+1 ≥ xd,m+1. Now using Equation (57), we have that

φ◦
d,m+1(xd,0, ud,0:m+1) = φ

(
φ◦
d,m

(
xd,0, ud,0:m

)
, ud,m+1

)
= φ(xd,m+1, ud,m+1),

and similarly φ◦
d,m+1

(
x′d,0, (u

′
d,0:m, ud,m+1)

)
= φ(x′d,m+1, ud,m+1). Using again Lemma 16,

we obtain a new control u′d,m+1 such that φ(x′d,m+1, u
′
d,m+1) ≥ φ(xd,m+1, ud,m+1) and

φ(x′d,m+1, u
′
d,m+1) ∈ X. Now, the sequence u′d,0:m+1 = (u′d,0:m, u′d,m+1) gives the induction

assumption for m+1. This ends the proof of the auxiliary result.
We now turn to the proof of the Lemma. We consider the controls u′d,0:M given by the

auxiliary result and then use the control bd. Using the auxiliary result, we obtain that, φ◦
d,m(

x′d,0, u
′
d,0:m) ∈ X for all m ∈ J0,MK. Thus it remains to prove that

fd(x
′
d,0, u

′
d,0:M , bd) ≥ fd(xd,0, ud,0:M , bd) and fd(x

′
d,0, u

′
d,0:M , bd) ∈ X . (66)

For that purpose, we consider two cases. First, if bd = 0, we have that fd(·, ·, bd) = φ◦
d,M

(
·, ·

)

and thus Equation (66) also follows from the auxiliary result. Second, if bd > 0 we obtain

16implying that u′
d,m can only differ from ud,m when ud,m is positive.
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immediately that have that fd(x
′, ud,0:M , bd) = ft(x, ud,0:M , bd) = (0,N(bd)bd, bd) ∈ X

which also gives Equation (66).

The last assertions of the lemma follow easily as the controls u′d,0:M are build through

successive use of Lemma 16 which provide an explicit value for each u′d,m controls satisfying

the requested properties listed in the lemma. □

In the following lemma 19 we show that the controls u′d,0:M given by Lemma 18
induce a monotonicity property on the cost Ld.
Lemma 19 Let d ∈ J0, DK and consider the cost function Ld given by Equation (60).
Consider two states x′0,d ≥ x0,d both in X and controls (ud,0:M , bd) which are X-

preserving for xd,0 and such that, for all m ∈ J0,MK, ud,m ∈ [U,U ] and bd ∈ [0, B].
Then, the controls (u′d,0:M , bd) given by Lemma 18 are such that

∀(w1
d,0:M , w

2
d) , Ld

(
xd,0, ud,0:M , bd, w

1
d,0:M , w

2
d

)
≥ Ld

(
x′d,0, u

′
d,0:M , bd, w

1
d,0:M , w

2
d

)
.

(67)
Proof. We successively have

Ld

(
xd,0, ud,0:M , bd, w

1
d,0:M , w2

d

)

=
M∑

m=0

γdπd,m(w1
d,m + u+d,m − u−d,m) + δX

(
φ◦
d,m

(
xd,0, ud,0:m−1

))
+ δ[U,U ](ud,m) + w2

dbd + δ[0,B](bd)

=

M∑

m=0

γdπd,m(w1
d,m + u+d,m − u−d,m) + w2

dbd

(as ud,0:M is X-preserving for xd,0 and ud,m ∈ [U,U ] and bd ∈ [0, B])

≤

M∑

m=0

γdπd,m(w1
d,m + (u′d,m)+ − (u′d,m)−) + w2

dbd

(as when u′d,m ̸= ud,m we have 0 ≤ u′d,m ≤ ud,m by Lemma 16)

= Ld

(
x′d,0, u

′
d,0:M , bd, w

1
d,0:M , w2

d

)
.

(as u′d,0:M is X-preserving for x′d,0 and u′d,m ∈ [U,U ] and bd ∈ [0, B])

This ends the proof. □
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