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Abstract We consider the so-called Transportation Problem with Exclu-
sionary Side Constraints (TPESC), which is a generalization of the ordinary
transportation problem. We confirm that the TPESC is NP -hard, and we
analyze the complexity of different special cases. For instance, we show that
in case of a bounded number of suppliers, a pseudo-polynomial time al-
gorithm exists, whereas the case of two demand nodes is already hard to
approximate within a constant factor (unless P = NP ).
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1 Introduction

The ordinary transportation problem is well-known: given a number of sup-
ply nodes each with a certain supply of items, a number of demand nodes
each with a certain demand for items, and a unit transportation cost for
each pair consisting of a supply node and a demand node, send the items
from the supply nodes to the demand nodes at a minimum cost.

In this note we consider the variant where for each demand node a set
of pairs of supply nodes is given such that at most one supply node of
each given pair is allowed to send items to that demand node. Following
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the literature, we refer to this problem as the transportation problem with
exclusionary side constraints (TPESC).

As far as we are aware, this problem has first been introduced by Cao
(1992), who described an application in storage management of contain-
ers. In this application, arriving containers must be positioned in rows of a
storage yard, such that the costs of operations (searching, loading, retriev-
ing) are minimized. Differences in size, ownership, or content may disallow
containers to be stored in the same row, giving rise to exclusionary side
constraints. A branch-and-bound approach was described to solve the prob-
lem. Other branch-and-bound approaches are described and tested in Sun
(2002), while evolutionary algorithms have been proposed and tested by
Cao and Uebe (1995), and Syarif and Gen (2003). These contributions sug-
gest that the problem is NP -hard, although no formal statement of this
result seems to have been made. We confirm this suggestion by providing
an explicit proof, and we study the computational complexity of various
special cases of the problem.

Our interest in this generalization of the transportation problem stems
from an application that occurs in the context of a procurement problem
(see Section 2 and Goossens et al. (2007) for a description).

1.1 Problem Statement

TPESC can be formulated as follows. Let there be a set S of supply nodes,
each with a supply of si, i ∈ S, and a set D of demand nodes, each with
a demand of dj , j ∈ D. For each pair consisting of supply node i ∈ S
and demand node j ∈ D, a unit cost cij ≥ 0 is given. Finally, for each
demand node j ∈ D, a (possibly empty) set of pairs of supply nodes, called
Fj , is given; thus Fj = {(i1, i2)| (i1, i2) ∈ S × S, i1 6= i2}. We assume
that all data are integral. The problem is to send all supply to the demand
nodes at minimum cost, such that each demand node j ∈ D receives items
from at most one supply node for each pair of supply nodes present in Fj .
Obviously, if Fj = ∅ for all j ∈ D, the ordinary transportation problem
arises. Notice that we assume that total supply equals total demand, that
is

∑
i∈S si =

∑
j∈D dj (since otherwise no feasible solution exists). For a

mathematical formulation, we refer to Sun (2002). When we use the phrase
“the feasibility version of TPESC”, we refer to the situation where the
(given) bipartite network between supply nodes and demand nodes is not
necessarily complete, and no costs are specified. Therefore, the question to
answer is whether a feasible solution (using only edges from the network)
exists.
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1.2 Special cases

In this paper, we study three relevant special cases of the transportation
problem with exclusionary side constraints: TPESC with identical exclu-
sionary sets (Section 2), TPESC with a single exclusionary set (Section 3),
and TPESC with a fixed number of supply nodes (Section 4).

The transportation problem with identical exclusionary sets arises in a
procurement problem (see Goossens et al. (2007)). Consider a buyer procur-
ing given amounts of different goods from different suppliers. Each of the
suppliers uses a so-called total quantity discount policy to set the prices for
the different goods; more in particular, each supplier distinguishes volume
intervals on the total number of sold items that determine the prices charged
for each individual good. The resulting procurement problem (referred to
as the TQD problem) is to obtain the given amounts of each of the different
goods from the suppliers at minimum cost. Thus, a solution for an instance
of this TQD problem prescribes how much items of each good are ordered
from each supplier. In Chauhan et al. (2005), a PTAS is described for a
special case of the problem involving a single good. Observe that the TQD
problem (as the TPESC) is a generalization of the ordinary transportation
problem. Indeed, by associating a demand node with each good (with its
demand equal to the amount that needs to be bought), and by associating
a supply node with appropriate lower and upper bounds with each volume
interval of each supplier, the TQD problem boils down to selecting supply
nodes (at most one from each supplier) and by finding the right amount of
items of each good to be transported. (In case a supplier can only deliver a
fixed number of items, that is, there is only one supply node for each sup-
plier with coinciding upper and lower bound, the ordinary transportation
problem arises). One important aspect in this generalization of the trans-
portation problem is the fact that for each demand node, a set of supply
nodes is given (namely the nodes corresponding to the intervals of a sin-
gle supplier) from which at most one can be used to actually supply that
demand node; this corresponds to our Fj , j ∈ D sets. Observe that if a sup-
plier uses more than two intervals, this is easily accommodated by having
an element in the exclusionary set for each pair of volume intervals (which
gives rise to a polynomial number of elements in the exclusionary set). Also,
observe that these sets are the same for all demand nodes, in other words,
we are dealing with an instance of TPESC with identical F -sets.

In Section 3, we deal with the problem that arises when exactly one F -
set is nonempty. The following practical application illustrates the relevance
of this special case of TPESC. When a company decides to store its goods,
it basically has the choice between constructing its own private warehouse
and renting a public warehouse. Assuming that there are seasonal changes in
the need for storage space, Ballou (1998) shows that it is advisable to make
use of both options. This leaves the company with the problem of where to
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Table 1. The complexity status of TPESC

TPESC with identical TPESC with TPESC with
exclusionary sets a single a fixed number

exclusionary set of supply nodes
|D| = 2 |D| ≥ 3 |D| ≥ 2 |S| ≥ 2

Weakly NP -hard; Strongly No polynomial-time Weakly NP -hard;
Pseudo-pol. NP -hard constant-factor Pseudo-pol.

time algorithm approximation time algorithm
(unless P = NP )

store what goods, minimizing the total cost. One can imagine that the public
warehouse imposes constraints on what goods can be stored together (e.g.
hazardous materials), whereas these constraints could be non-existing in a
private warehouse, since this warehouse can be built specifically according
to the (safety) needs of the company. This practical application boils down
to a TPESC with only two demand nodes, where only one has a nonempty
F -set (namely the demand node corresponding to the public warehouse).

Finally, in Section 4, we consider a setting of TPESC where the number
of supply nodes is fixed.

1.3 Our results

In this paper, we show that the feasibility version of TPESC is NP -complete.
In fact, the problem is NP -complete already for the smallest nontrivial case,
that is, the case with two demand nodes. Even more specifically, we establish
for each of the three special cases of TPESC its complexity status (we refer
to Garey and Johnson (1979) or Ausiello et al. (1999) for an introduction to
these issues). For the case with identical exclusionary sets, we show that in
case of two demand nodes the feasibility version of TPESC is (weakly) NP -
complete and a pseudo-polynomial time algorithm exists. In case of three
demand nodes, this problem becomes strongly NP -complete (see Section 2).
For the setting with a single exclusionary set, we show that the existence
of a polynomial-time algorithm with a fixed performance ratio would imply
P = NP , even in the case of two demand nodes (see Section 3). Finally, in
Section 4 we present a pseudo-polynomial time algorithm for the case of a
fixed number of supply nodes, and we show that the feasibility version of
TPESC with two supply nodes is already (weakly) NP -complete. Table 1
gives an overview of our results. Our results explain the use of heuristics and
branch-and-bound approaches (Cao 1992, Sun 2002, Cao and Uebe 1995,
Syarif and Gen 2003) for solving large instances of the TPESC.
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2 TPESC with identical exclusionary sets

In this section we focus on the TPESC with identical exclusionary sets. We
first prove that the problem with |D| = 2, that is, the case of two demand
nodes, is weakly NP -complete, then we exhibit a pseudo-polynomial time
algorithm for this case, and finally we show that the problem with |D| = 3
is strongly NP -complete.

2.1 The case |D| = 2

The following theorem shows that the feasibility version of TPESC with
identical exclusionary sets is NP -complete already for the smallest nontriv-
ial case.

Theorem 1. The feasibility version of TPESC with identical exclusionary
sets is NP -complete, even if |D| = 2.

Proof. We prove the theorem by presenting a reduction from Even-Odd
Partitioning (EOP) to TPESC. EOP is proved to be NP -complete in Garey
et al. (1988).
EOP Input: n pairs of positive integers (x2i−1, x2i), i = 1, . . . , n.
Question: does there exist a partition of {1, . . . , 2n} into disjoint subsets A
and B with |A ∩ {2i − 1, 2i}| = |B ∩ {2i − 1, 2i}| = 1 for i = 1, . . . , n, and
with

∑
i∈A xi =

∑
i∈B xi?

For each integer in the input of EOP, we construct a supply node with
supply equal to the value of the integer, that is, we set S = {1, 2, . . . , 2n}
with si = xi for i = 1, . . . , 2n. There are two demand nodes, each having
demand d1 = d2 = 1

2

∑2n
i=1 xi. We set F1 = F2 = {(x2i−1, x2i)| i = 1, . . . , n},

implying that at most one supply node per pair is allowed to send items to
that demand node. Each supply node is connected to each demand node.
This completes the description of the instance of TPESC.

A yes-answer to the EOP instance directly corresponds to a feasible
solution of the TPESC instance. Also, by observing the fact that the two
demand nodes have identical exclusionary constraints, it is clear that in any
feasible solution of the TPESC instance, each supply node sends its entire
supply to precisely one of the demand nodes which in turn corresponds to
a yes-answer of the EOP instance. ut

Of course, this result does not rule out the existence of a pseudo-polynomial
time algorithm for TPESC with common exclusionary sets and two demand
nodes. In the remainder of this section, we present such an algorithm. First
we show how we can formulate TPESC with common exclusionary sets as a
generalization of the change making problem. Then, we modify a dynamic
program for the change making problem to solve this generalization.
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We first construct a graph G = (V, E). There is a node in G for each
supply node in the TPESC instance. For each exclusionary constraint in
F , let there be an edge between the pair of supply nodes involved in the
exclusionary constraint. The resulting graph can be partitioned into a num-
ber of connected components (Vk, Ek), k = 1, . . . , c, such that there is no
exclusionary constraint between any two vertices in different sets Vk.

We now sketch a preprocessing phase in which we find out whether there
is no contradiction caused by the exclusionary constraints. If, for instance,
there is an exclusionary constraint for supply nodes 1 and 2, for supply
nodes 1 and 3, and for supply nodes 2 and 3, it follows that not all supply
can be sent, and hence no feasible solution exists. Thus, if the vertices of
each component can be colored using two colors (say red and blue) such
that vertices joined by an edge receive a different color, then there is a
way to distribute the supply over the demand nodes without violating the
exclusionary constraints. This is accomplished by sending the supply of the
supply nodes with the same color to a single demand node. Further, observe
that a feasible way of sending all supply to the demand nodes amounts to
a 2-coloring of G. It follows that verifying 2-coloredness of G determines
whether the exclusionary sets allow a feasible way of sending all supply
from the supply nodes to the demand nodes.

From this phase, we can assume that each component has red nodes and
blue nodes. Let us assume without loss of generality that the supply of the
red nodes (say ared

k ) is at least as large as the supply of the blue nodes
(ablue

k ), or ared
k > ablue

k . As observed earlier, the fact that the two demand
nodes have identical exclusionary constraints, and that total supply equals
total demand, implies that in any feasible solution, each supply node sends
its entire supply to precisely one of the demand nodes. Thus, there are two
ways of distributing the supply of each component: either the red nodes
send their supply to demand node 1, and the blue nodes send their supply
to demand node 2, or vice versa. The two corresponding costs are denoted
by pred

k and pblue
k . We model these two possibilities with a binary variable

xk, which is 1 if the red nodes of component k supply demand node 1,
and the blue nodes supply demand node 2, and 0 vice versa. Let us define
ak = ared

k − ablue
k , pk = pred

k − pblue
k , and B = d1 −

∑c
k=1 ablue

k . We can now
formulate TPESC with identical exclusionary sets and two demand nodes
as follows:

minimize
c∑

k=1

pkxk (1)

subject to
c∑

k=1

akxk = B (2)

xk ∈ {0, 1} for k = 1, . . . , c. (3)



The transportation problem with exclusionary side constraints 7

Notice that the definitions above imply that ak ≥ 0. In fact, we can
eliminate those variables xk which have as coefficient ak = 0 (since, in an
optimal solution we set, in case ak = 0: xk = 1 if pk ≤ 0, else we set xk = 0).
Thus, henceforth we will assume that ak ≥ 1. Furthermore, we assume that
B ≥ 0, since no solution exists if B < 0.

This problem is a generalization of the change making problem (see
Martello and Toth (1990)), since there is a cost pk associated to each vari-
able xk. Furthermore, there are bounds equal to 1 on the variables. Wright
(1975) developed a dynamic program for the change-making problem. The
following modified version of this algorithm, to which we refer as algorithm
DP, provides an optimal solution for formulation (1)-(3).

Let fq(z) be the optimal solution value of a sub-instance of (1)-(3),
consisting of components 1, . . . , q and a right-hand side of z, with 1 ≤ q ≤ c
and 0 ≤ z ≤ B. If no solution exists for a combination of values q and z,
then fq(z) = ∞. It is clear that

f1(z) =





0 if z = 0;
p1 if z = a1;
∞ if z 6= a1.

Now, fq(z) can be computed by considering increasing values of q from
2 to c and, for each q, increasing values of z from 0 to B as

fq(z) =
{

fq−1(z) if z = 0, 1, . . . , aq − 1;
min(fq−1(z), fq−1(z − aq) + pq) if z = aq, . . . , B.

The optimal solution value of formulation (1)-(3) is then given by fc(B).
The time complexity of algorithm DP is O(cB), which proves that TPESC
with two demand nodes with identical exclusionary constraints can be solved
in pseudo-polynomial time. We have shown the following:

Theorem 2. Algorithm DP is a pseudo-polynomial time algorithm for TPESC
with identical exclusionary constraints and two demand nodes.

2.2 The case |D| > 3

We now argue that it is unlikely that algorithm DP can be extended to
the case of three demand nodes by showing that TPESC with identical
exclusionary sets and three demand nodes is strongly NP -hard.

Theorem 3. The feasibility version of TPESC with identical exclusionary
sets is strongly NP -complete, even if |D| = 3.
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Proof. We prove the theorem by presenting a reduction from Graph
3-colorability (see Garey and Johnson (1979)) to TPESC.
Graph 3-colorability Input: a graph G = (V,E).
Question: is G 3-colorable, that is, does there exist a coloring of the vertices
of G such that two vertices connected by an edge in E receive different
colors, and such that no more than three different colors are used?

We build an instance of TPESC by having a supply node for every
vertex of V , and a single dummy node d. Thus S = V ∪ {d}. Each supply
node corresponding to a vertex of G has sj = 1, j ∈ S \ {d}, the supply
corresponding to the dummy node equals sd = 2|V |. There are three demand
nodes, each having demand dj = |V |. Let the two endpoints of an edge e ∈ E
be denoted by ve and we. For each edge e in E there is a pair of supply
nodes in F :

F = {(ve, we)| e ∈ E}.
Further, each supply node is connected to each demand node. This com-
pletes the description of an instance of TPESC.

Suppose that G admits a 3-coloring. We associate a different color with
each of the three demand nodes. Next, we send the unit supply of each
supply node corresponding to a vertex v ∈ V to the appropriate demand
node (the one with v’s color in the coloring). We use the supply from the
dummy node to satisfy all demand from the demand nodes exactly. Observe
that we have satisfied the exclusionary constraints, and hence we have a
feasible solution to TPESC.

Suppose there is a feasible solution for TPESC. Consider the supply
nodes ve and we associated to edge e. Due to the choice for F , it follows
that the supply of each of these supply nodes is sent to a different demand
node. Thus, the supply of supply nodes that correspond to adjacent vertices
in G, goes to different demand nodes. Since there are three demand nodes,
we have found a 3-coloring. ut

3 TPESC with a single exclusionary set

In this section we deal with the special case of TPESC where exactly one
F -set is nonempty. We show that this special case is already hard to ap-
proximate, even for two demand nodes.

Theorem 4. TPESC with a single exclusionary set does not admit a polynomial-
time constant-factor approximation algorithm unless P = NP , even if |D| =
2.

Proof. We prove the theorem by presenting a reduction from Indepen-
dent Set (IS) to TPESC.
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Independent Set Input: a graph G = (V, E) and an integer K ≤ |V |.
Question: does there exist an independent set of cardinality at least K, that
is, a subset V ′ ⊆ V with |V ′| ≥ K, such that no two vertices in V ′ are joined
by an edge in E?

For each vertex j ∈ V we construct a supply node with supply sj = 1;
there is an additional supply node q with supply sq = K. There are two
demand nodes; the first one has demand d1 = K, the second one has demand
d2 = |V |. The cost of the edge between supply node q and the first demand
node equals c > 0, all other edges have cost 0. The first demand node has
a set of exclusionary constraints F1 = {(k, l)| k, l ∈ V ∧ (k, l) ∈ E}. The
second demand node has no exclusionary constraints, that is, F2 = ∅.

We now show that the existence of a polynomial-time algorithm with a
constant performance ratio for TPESC would imply P = NP .

Suppose that the instance of IS has a yes-answer, that is, there exists
an independent set V ′ of cardinality at least K. In this case, given the
construction of F1, there exist K supply nodes corresponding to nodes from
the set V ′ that satisfy the exclusionary constraints. It is now easy to see that
a solution where the supply of these nodes is sent to the first demand node
and where the other nodes supply the second demand node, is a feasible
solution to TPESC that has zero cost.

In case that the instance of TPESC admits a zero cost solution, appar-
ently the edge between supply node q and the first demand node is not
used. Hence, the demand of this node is fulfilled by K supply nodes that
correspond vertices in G that form an independent set of size K.

Thus a polynomial-time algorithm with a constant performance ratio
for TPESC would find a zero cost solution if one exists, and hence would
be able to distinguish between the yes-instances and the no-instances of IS.
ut

4 TPESC with a fixed number of supply nodes

In this section we show that if the number of supply nodes is not part of
the input, a pseudo-polynomial time algorithm exists to solve the problem.
Observe that this contrasts with the case of a fixed number of demand nodes
(in particular Theorem 4), where the case of two demand nodes renders a
problem that does not allow a polynomial-time algorithm with a constant
performance ratio (unless P = NP ).

Theorem 5. TPESC with a fixed number of supply nodes can be solved by
a pseudo-polynomial time algorithm.

Proof. We prove the theorem by presenting a dynamic programming
algorithm for TPESC with a fixed number of supply nodes. To facilitate
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the exposition, let m = |S|, n = |D|, and let L be the largest number in the
input. As a state in the dynamic program, we use (f1, f2, . . . , fm) where fi

denotes the amount of items sent by supply node i to all demand nodes.
Observe that the number of states is bounded by (L + 1)m. Further we
define Hj , 1 ≤ j ≤ n, as the set of states that can be reached after having
fulfilled the demand of the demand nodes 1, 2, . . . , j, and we start with H0 =
(0, 0, . . . , 0). In iteration j, we deal with demand node j that has demand dj ,
1 ≤ j ≤ n. We enumerate all possible integral ways of distributing demand
dj over the m supply nodes. Notice that we use here the fact that if a
solution exists, there exists one with integral flows. Let us define Ej as the
set of m-vectors that correspond to a feasible way of distributing demand
dj over the m supply nodes. In the absence of exclusionary constraints, i.e.,
if Fj = ∅, then

|Ej | =
(

dj + m− 1
m− 1

)
.

By enumerating all
(

dj + m− 1
m− 1

)
potential ways of distributing demand

dj over the m supply nodes, and next verifying, for each way, whether it is
feasible with respect to the exclusionary constraints (whose number |Fj | is

bounded by
(

m
2

)
), we can find in O(m2(dj + m)m), the set Ej . Now, we

can compute Hj as follows:

Hj = {f + g| f ∈ Hj−1, g ∈ Ej}.

States in which a value fi exceeds si are omitted since they cannot lead to a
feasible solution. Finally, we need to inspect whether (s1, s2, . . . , sm) ∈ Hn.
If so, a solution is found, else no solution exists. The complexity of this
algorithm is O(n ·Lm ·m2(L + m)m), which, in case of a fixed m leads to a
pseudo-polynomial time algorithm. Notice that when arbitrary costs cij are
given, we can, by keeping track of the cost of an element of Ej , compute
the cost of a state, thereby finding the cost of an optimal solution. ut

It is not hard to see that Theorem 5 is best possible in the sense that one
easily verifies that the existence of a polynomial-time algorithm for TPESC
even with two supply nodes would imply P = NP . Indeed, the well-known
Partition problem is easily seen to be a special case of the feasibility version
of TPESC with two supply nodes.
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