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Chapter 1

Introduction

1.1 On Logistics Problems

Logistics is defined by Eilon and Christofides [1971] as “the provision of goods and

services from a supply point to a demand point”. Despite such a short definition,

logistics systems span a large spectrum of decision-making activities. Examples of

such activities (see Simchi-Levi et al. [2005]) are as follows:

• Truck Routing. A truck must leave a warehouse to deliver products to a set

of retailers. The order in which the retailers are visited will determine how long

the delivery will take and at what time the vehicle can return to the warehouse.

Thus, the vehicle must follow an efficient route.

• Vehicle Fleet Management. A warehouse must supply products to a set of

retailers using a fleet of vehicles of limited capacity. A dispatcher is in charge of

assigning loads to vehicles and determining vehicle routes. Firstly, the dispatcher

must decide how to partition the retailers into groups that can be feasibly served

by a vehicle (i.e., whose total loads fit in a vehicle). Secondly, the dispatcher

must decide what sequence to use so as to minimize the total traveled distance

of the vehicles. Therefore, the warehouse incurs a cost that depends on both

the assignment of the retailers to the vehicles and the routes performed by the

vehicles. Both aspects must be considered simultaneously.

• Network Configuration. Several plants produce products to serve a set of re-

tailers. Due, for example, to changes in demand patterns or in plant production

or in supply costs, the current set of facilities (i.e., plants and warehouses) is

deemed to be inappropriate, and management wants to reorganize the distribu-

tion network. Therefore, the management must choose a set of facility locations

and capacities, determine production levels for each product at each plant, and

1



2 Chapter 1 Introduction

set transportation flows from plants to warehouses and from warehouses to re-

tailers, in such a way that total production, inventory and transportation costs

are minimized and service level requirements are met.

The previous three activities are examples of problems that have been intensively

studied in the field of operations research in the last few decades.

The first problem, indicated as truck routing, is known as traveling salesman problem

(TSP). The TSP is to find a routing of a salesman who starts from a home location,

visits a prescribed set of cities, and returns to the original location, in such a way that

the total distance traveled is minimum and each city is visited exactly once.

A formal definition of the TSP is the following. Let G = (V,E) be a complete undi-

rected graph, where V is the vertex set and E is the edge set. A cost is associated

with each edge e ∈ E. Let H be the family of all Hamiltonian cycles (tours) in graph

G, where each tour of the set H has a cost equal to the sum of the costs of the edges

traversed. The TSP is to find a tour of the set H of minimum cost.

The first work on the TSP is commonly owed to Menger [1932]. Various papers dealing

with the TSP were published in the years following, but Robinson [1949] was the first

to use the name “traveling salesman problem”. An intense study of the TSP started

with the seminal paper by Dantzig et al. [1954]. Since then, numerous survey papers

and books were published on the TSP and its variants (see Lawler et al. [1985], Reinelt

[1994], Gutin and Punnen [2002], and Applegate et al. [2007]). Garey and Johnson

[1979] showed that the TSP is NP-hard.

The fields of applications of TSP go beyond the route planning problem of a trav-

eling salesman and spans over several areas from mathematics to computer science,

from genetics to electronics. Possible applications of the problem are computer wiring

(Lenstra and Rinnooy Kan [1975]), wallpaper cutting (Garfinkel [1977]), dartboard

design (Eiselt and Laporte [1991]), crystallography (Bland and Shallcross [1989]), ma-

chine scheduling problems, cellular manufacturing, arc routing problems, frequency

assignment problems, structuring of matrices, and many more (see Gutin and Punnen

[2002] for an exhaustive coverage).

The second problem, referred to as vehicle fleet management, is an example of ca-

pacitated vehicle routing problem (CVRP), which can be stated as follows. A set of

customers, each with a known location and a known requirement for some commodity,

must be supplied from a single depot by a fleet of capacitated vehicles. The costs for

traveling between each couple of customers and between the depot and each customer

are known. The problem is to design the vehicle routes such that each customer is

served by a single vehicle, the vehicle capacity is not violated in any of the routes, and

the total routing cost is minimized.
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The CVRP can be formally described as follows. Let G = (V ′, E) be an undirected

graph, where V ′ = {0, 1, . . . , n} is the vertex set and E is the edge set. Vertices 1

to n correspond to a set of customers, whereas vertex 0 corresponds to the depot. A

nonnegative cost is associated with each edge e ∈ E and represents the travel cost spent

to travel between the two vertices linked by edge e. A set of m identical vehicles, each

with capacity Q, is available at the depot. A nonnegative demand is associated with

each customer. The CVRP consists of finding a collection of m simple cycles (each

corresponding to a vehicle route) of minimum total cost, defined as the sum of the

costs of the edges belonging to the cycles, such that each cycle visits the depot, each

customer is visited by exactly one cycle, and the sum of the demands of the vertices

visited by a cycle does not exceed the vehicle capacity, Q.

The CVRP was first introduced, as the truck dispatching problem, by Dantzig and

Ramser [1959], who proposed the first mathematical formulation and algorithm ap-

proach for the solution of the problem. The first heuristic approach for the CVRP is

owed to Clarke and Wright [1964], who proposed an effective greedy heuristic. After

these two seminal papers, a lot of effort has been made to model and solve the CVRP

and tens of its variants. A number of books dealing with the CVRP have been pub-

lished, see Eilon and Christofides [1971], Christofides [1985], Golden and Assad [1988],

Fischer [1995], Crainic and Laporte [1998], Toth and Vigo [2002], and Golden et al.

[2008]. Being a generalization of the TSP, the CVRP is an NP-hard problem.

The CVRP models real-life problems encountered in the physical distribution of goods

and appears in many practical situations, such as the collection of mail from mail-

boxes, the pickup of children by school buses, house-call tour by a doctor, preventive

maintenance inspection tours, the delivery of laundry, etc.

The third problem, referred to as network configuration, is commonly known as unca-

pacitated facility location problem (UFL). A set of possible locations at which facilities

(such as warehouses) may be built are given. For each location, the cost incurred

to build the facility is known. The facilities must be built in order to serve a set of

customer locations (such as stores). The cost of serving a customer location from each

possible facility location is given. The problem is to decide the locations at which to

build facilities and to assign each customer to a facility in such a way that the total

cost for building facilities and serving customers is minimum.

The earliest works on the UFL problem date back to the 50’s and 60’s (see Koopmans

and Beckmann [1957], Kuehn and Hamburger [1963], Manne [1964], Efroymson and

Ray [1966]). Since then, several books were published on the UFL and other variants

of location problems, see Love et al. [1988], Mirchandani and Francis [1990], Drezner

[1995], Daskin [1995], Farahani and Hekmatfar [2009], Eiselt and Marianov [2011]. It

can easily be shown that the UFL problem is NP-hard.
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The UFL problem has several applications, such as bank account allocation, clus-

tering analysis, lock-box location, economic lot sizing, machine scheduling, design of

communication networks, and portfolio management. The problem also appears as a

subproblem in several contexts, for example network design, vehicle routing, and, of

course, location theory with additional constraints.

In this thesis, we deal with some variants of the three aforementioned problems (TSP,

VRP, and UFL). We study the mathematical formulations proposed in the literature

and review the state-of-the-art exact algorithms presented so far. Foremost, we propose

new models for some of the problems considered and develop new exact algorithms that

are highly competitive with the other exact algorithms from the literature. The new

algorithms proposed share common ingredients: column generation (see Desaulniers

et al. [2005]), dynamic programming (see Bellman [1957], Bertsekas [1995], Bertsekas

[2000], Art and Mauch [2007]), and state-space relaxation (see Christofides et al. [1981c],

Christofides et al. [1981b]).

1.2 Reasons for Research

In the last few decades, optimization packages, based on operations research and math-

ematical programming techniques, have been used more and more to support manage-

rial decisions in distribution systems. This has been possible for the development of

both computer systems (hardware and software) and modeling and algorithmic tools

to model and solve real-world instances addressed in the field of logistics.

Today’s global markets put enterprises in fierce competition and motivates the contin-

uous evolution of the management of distribution systems.

The study of efficient and innovative methods for supporting managers in taking de-

cisions in all levels (strategic, tactical or operational) is justified by the economical

impact of such problems on the firms’ revenues. LaLonde and Zinszer [1976] estimated

that distribution costs account for around 10% of the all firms’ revenues. The In-

stitute of Logistics and Distribution Management [1985] calculated that distribution

costs represent more than 45% of the total logistics costs, and, in specific cases, like

in the soft drink industry, they represent approximately 70% of the value added costs

of goods (see Golden and Wasil [1987]). Recent studies (Eurostat [2009, 2011]) by

the statistical office of the European Community (EUROSTAT) estimated that 4,140

billion tonnes of goods per kilometer were moved in 2006, 46% of which were on roads

involving 32.2 million vehicles. Therefore, even small savings in distribution costs may

have a relevant global impact.

Another crucial factor that justifies the study of methods to support managerial de-

cisions is the environmental impact of the activity of transporting goods. A total

GHG (i.e., greenhouse gas) emission of 992.3 million tonnes of CO2 was attributable
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to transport in the EU-27 in 2006 (see Eurostat [2009]). Indeed, transport made up

a share of 19% of total GHG emissions in the EU-27 - the second largest after the

energy industries (31%). Not surprisingly, road transport is the principal polluter in

the transport sector, contributing 93.1% to the greenhouse gas emissions. Thus, a

smart and sustainable transport policy all over EU-27 is fundamental to ensure that

the transport systems meet the citizen’s economic, social and environmental needs.

1.3 Contents and Contributions of the Thesis

In this thesis, we deal with five variants of the three problems (TSP, VRP, and UFL)

described in §1.1:

• asymmetric traveling salesman problem,

• traveling salesman problem with time windows,

• vehicle routing problem with time windows,

• multi-trip vehicle routing problem,

• two-echelon capacitated vehicle routing problem.

1.3.1 Asymmetric Traveling Salesman Problem

Many variants of the TSP have been proposed in the literature. Among them, the

asymmetric traveling salesman problem (ATSP) is one of the most studied. The ATSP

generalizes the TSP by dropping the assumption that the travel distance between two

cities is the same in both directions.

Subsuming the TSP as a special case, the ATSP is NP-hard, too.

The ATSP can be formally stated as follows. A complete directed graph G = (V,A) is

given, where V and A are the vertex set and arc set, respectively. A cost is associated

with each arc (i, j) ∈ A. Let H be the family of all tours in G, where each tour has a

cost equal to the sum of the costs of the traversed arcs. The ATSP is to find a tour of

the set H of minimum cost.

There are many important real-life problems that are naturally modeled as ATSPs. In

industrial scheduling, the optimal sequencing of jobs on machines with setup times is

an ATSP: more generally, the optimal ordering of any set of tasks or operations with

sequence dependent changeover costs is an ATSP or one of its generalizations.

Chapter 2 surveys the most effective mathematical models and exact algorithms pro-

posed for solving the ATSP to optimality. Starting from the fundamental integer
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linear programming model of Dantzig et al. [1954], classical relaxations (i.e., assign-

ment, shortest spanning r-arborescence, linear programming) are derived. The most

effective branch-and-bound and branch-and-cut exact algorithms from the literature

are described. A review of the polynomial formulations and a theoretical comparison of

their linear relaxations are provided. The 3-node and 2-node transformations of ATSP

instances into symmetric TSP instances are also described. Finally, the considered

exact algorithms are experimentally compared on a set of benchmark instances.

1.3.2 Traveling Salesman Problem with Time Windows

The traveling salesman problem with time windows (TSPTW) is another well-studied

generalization of the TSP, where, other than the travel distance of traveling between

two cities, the travel time is known and each city must be visited within a given time

interval (time window). Throughout the thesis, whenever we talk of TSPTW, we make

no assumptions on the symmetry of travel distances and travel times between cities,

so we always consider the general case of asymmetric TSPTW.

Being a generalization of the TSP, the TSPTW is NP-hard, too. Indeed, finding a

feasible solution of asymmetric TSPTWs is NP-complete (see Savelsbergh [1985]).

The TSPTW is defined on a directed graph G = (V,A). The vertex set V is made

up of n+ 1 vertices 0, 1, . . . , n, where vertex 0 represents the city where the salesman

starts and returns and the other n vertices are the cities to visit. For each arc (i, j)

of the arc set A, the travel distance and the travel time are known. For each vertex

i ∈ V , a time window [ei, li] is given. If the salesman arrives at vertex i before the

beginning of the time window, ei, the visit is postponed until time ei. Let H be the

family of all tours in G, such that each city is visited within its time window. The

TSPTW is to find a tour of the set H of minimum total distance.

The TSPTW has applications in single and multiple vehicle problems. Practical

TSPTWs are encountered in a variety of industrial and service sector applications;

examples include control of stacker cranes in warehouses (see Ascheuer et al. [2001]),

bank deliveries, postal deliveries, and school-bus routing and scheduling.

In Chapter 3, we describe a new exact algorithm for solving the TSPTW. The funda-

mental ingredient of the new exact method is state-space relaxation, which is a general

relaxation procedure, proposed by Christofides et al. [1981b,c], whereby the state-space

associated with a given dynamic programming recursion is relaxed in order to com-

pute valid bounds to the original problem. We propose new tour relaxations, called

ng and ngL, to compute valid lower bounds on the TSPTW, corresponding to the

costs of a problem that seeks a least-cost convex combination of the tours of a given

tour relaxation. An optimal TSPTW integer solution is then found by iteratively run-

ning a dynamic programming algorithm, that limits the number of states to generate
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by using bounding functions based on the different tour relaxations proposed and on

the lower bounds and corresponding dual solutions previously achieved. An extensive

computational analysis on basically all TSPTW benchmark instances (with up to 233

vertices) is reported. The new algorithm is compared with the state-of-the-art exact

algorithms (i.e., two branch-and-cut algorithms, a dynamic programming recursion,

and a constraint-programming-based method). The computational experiments show

that the proposed algorithm solves all but one instance to optimality within short

computing times and outperforms the other exact methods considered.

1.3.3 Vehicle Routing Problem with Time Windows

Real-life routing problems usually include a wide range of operational constraints, so

many variants of the basic CVRP have been proposed in the literature. The most stud-

ied variant of the CVRP is the vehicle routing problem with time windows (VRPTW).

The VRPTW can be formally defined on a directed graph G = (V ′, A), where V ′ =

{0, . . . , n} is the vertex set and A is the arc set. A travel cost and a travel time are

associated with each arc (i, j) ∈ A. A set of m identical vehicles, each with capacity Q,

are available at the depot (represented by vertex 0). A nonnegative demand and a time

window are associated with each customer 1, . . . , n. The VRPTW consists of finding

a collection of m simple circuits (each corresponding to a vehicle route) of minimum

total cost, defined as the sum of the costs of the arcs belonging to the circuits, such

that each circuit visits the depot, each customer is visited by exactly one circuit within

its time window, and the sum of the demands of the vertices visited by a circuit does

not exceed the vehicle capacity, Q.

The VRPTW generalizes not only the CVRP but also the TSPTW, which can be

considered as the single-vehicle version of the VRPTW. Since the CVRP is NP-hard,

by restriction, the VRPTW is also NP-hard.

The VRPTW has numerous applications in distribution management, such as bever-

age/food and newspaper delivery. Time windows naturally arise in problems faced by

business organizations which work on strict time schedules; specific examples of such

problems include bank deliveries, industrial refuse collection, and school-bus routing

and scheduling.

Chapter 4 describes an effective exact method for solving the VRPTW that improves

on the method proposed by Baldacci et al. [2008] for the CVRP. The new algorithm

relies on the set partitioning formulation of the problem and on the state-space re-

laxations introduced for the TSPTW in Chapter 3. The core of the method is the

dual-ascent heuristics developed to find near-optimal dual solutions of the linear relax-

ation of the set partitioning model; these dual solutions and the corresponding lower
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bounds are computed via column generation by solving the pricing problem with dy-

namic programming and state-space relaxations and by solving the master problem

through subgradient optimization. Another main ingredient of the exact method is a

column-and-cut generation algorithm that strengthens the lower bounds achieved by

the dual-ascent heuristics by adding valid inequalities; the pricing problem is solved

with dynamic programming but adopting a new strategy of combining different feasible

dual solutions to limit the state-space graph. An optimal VRPTW integer solution

is finally found by solving, with a general purpose integer programming solver, a re-

stricted master problem generated by taking into account all of the feasible dual so-

lutions computed by the different bounding procedures previously run. We show that

the proposed algorithm can be properly tailored to obtain an effective solution method

for the CVRP. The last part of Chapter 4 compares the performance of our exact

method on both VRPTW and CVRP benchmark instances with the state-of-the-art

exact algorithms (branch-and-cut and branch-and-cut-and-price) from the literature.

The proposed method solves four of the five open Solomon VRPTW instances and

significantly improves the average running times of the state-of-the-art algorithms for

both the VRPTW and the CVRP.

1.3.4 Multi-Trip Vehicle Routing Problem

The multi-trip vehicle routing problem (MTVRP) is a generalization of the CVRP,

where each vehicle is allowed to perform a set of routes, called a schedule, of total

duration not exceeding a maximum driving time.

The MTVRP is defined on an undirected graph G = (V ′, E). The vertex set V ′

is partitioned as V ′ = {0} ∪ V , where vertex 0 represents the depot and the set

V = {1, . . . , n} represents n customers, each one requiring qi units of product from the

depot. A travel cost and a travel time are associated with each edge {i, j} ∈ E. A

fleet of m identical vehicles is located at the depot; each vehicle has capacity Q and

maximum driving time T . The MTVRP calls for the design of a set of m schedules of

minimum total cost such that each customer is visited exactly once by the routes of

the schedules and each schedule does not exceed the maximum driving time.

The reason for studying the MTVRP is that, in many practical applications, the as-

sumption that a vehicle can perform at most a route per day is unrealistic. This is

especially true whenever the vehicle capacity is small with respect to the quantities

requested by customers or whenever the planning period is large. In urban areas, for

example, travel times are rather small, and it is often the case that after performing

short tours vehicles are reloaded and used again. A practical application of MTVRP

is the distribution of perishable goods.

Despite its practical importance, little attention has been given to the MTVRP. Though

a few heuristics have been proposed in the last two decades, no exact algorithm can be
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found in the literature, except for an exact algorithm proposed for an MTVRP with

time windows and unlimited maximum driving time.

In Chapter 5, we present an exact method for solving the MTVRP. The method is based

on two set-partitioning-like formulations. The first formulation has a binary variable

for each feasible route and each vehicle, whereas the second formulation has a binary

variable for each feasible schedule. The linear relaxations of the two formulations and

the relation between them are studied. We propose four column-and-cut generation

bounding procedures to solve the linear relaxations of the two formulations enforced

with valid inequalities derived from the CVRP and with a new class of valid inequalities

specific for the problem. Furthermore, we present a simple though effective method

to improve the lower bounds achieved by the different bounding procedures that is

based on the use of multiple feasible dual solutions. The exact method we propose

executes, in sequence, the four bounding procedures and then finds an optimal MTVRP

solution by solving, with a general purpose integer programming solver, a restricted

master problem containing a reduced set of either routes or schedules belonging to any

optimal solution. The computational results show that the proposed method can solve,

to optimality, MTVRP benchmark instances involving up to 120 customers.

1.3.5 Two-Echelon Capacitated Vehicle Routing Problem

The two-echelon capacitated vehicle routing problem (2E-CVRP) models two-level

distribution systems in which freight arrives at a central depot, is transported to in-

termediate facilities, called satellites, and is finally delivered to customers from the

satellites. Therefore, two distribution levels are involved. The distribution system

takes into account routing costs, handling costs for the operations of unloading and

loading freight at satellites, and fixed costs for using satellites. Limits on the maximum

number of first and second level vehicles to use, on the maximum number of vehicles

to route at each satellite, and on the maximum quantity of freight to handle at each

satellite are imposed. The objective is to minimize the total cost of the system.

The 2E-CVRP concerns both vehicle fleet management and network configuration.

Indeed, the 2E-CVRP subsumes both the CVRP and the UFL, so it is an NP-hard

problem.

A common application of the 2E-CVRP is city logistics (see Taniguchi [2001], Taniguchi

and Thompson [2008]), which is an area of urban study and urban management. The

goal of city logistics is to establish efficient, safe and environmentally friendly urban

freight transport systems. Space in city centers is often limited and must be shared

between private and public passenger transport as well as parking facilities. Other than

producing congestion, pollution and noise, large vehicles usually have low average loads

and perform numerous empty trips. Therefore, officials want to reduce the number of



10 Chapter 1 Introduction

vehicles, especially freight vehicles, in city centers and want to switch from large to

smaller vehicles.

In Chapter 6, we introduce a new mathematical formulation of the 2E-CVRP that is

used to derive both integer and continuous relaxations. We present a new bounding

procedure based on dynamic programming and an exact algorithm that decomposes

the 2E-CVRP into a set of CVRPs with multiple depots and side constraints. The

new algorithm is tested on five sets of instances from the literature and a new set of

instances with up to 100 customers and 6 satellites. Computational results show that

144 out of 153 instances from the literature were solved, 97 of which for the first time.

The comparisons with the state-of-the-art exact methods show that new exact method

compares favorably with the other exact methods from the literature.



Chapter 2

Asymmetric Traveling Salesman

Problem

1

This chapter surveys the most effective mathematical models and exact algorithms pro-

posed for finding the optimal solution of the well-known asymmetric traveling salesman

problem (ATSP). The fundamental integer linear programming (ILP) model proposed

by Dantzig, Fulkerson and Johnson is first presented, its classical (Assignment, Short-

est Spanning r-Arborescence, Linear Programming) relaxations are derived, and the

most effective branch-and-bound and branch-and-cut algorithms are described. The

polynomial ILP formulations proposed for the ATSP are then presented and analyzed.

The considered algorithms and formulations are finally experimentally compared on a

set of benchmark instances.

2.1 Introduction

Let G = (V,A) be a complete digraph, where V = {1, . . . , n} is the vertex set and

A = {(i, j) : i, j ∈ V } the arc set, and let cij be a cost associated with arc (i, j) ∈ A
(with cii = +∞, for i ∈ V ). A Hamiltonian circuit (tour) of graph G is a circuit that

visits each vertex of the vertex set V exactly once. The asymmetric traveling salesman

problem (ATSP) is to find a Hamiltonian circuit G∗ = (V,A∗) of graph G whose cost∑
(i,j)∈A∗ cij is minimum. If the considered graph G is undirected, the corresponding

problem is denoted as symmetric traveling salesman problem (STSP).

The ATSP is known to beNP-hard in the strong sense and has been intensively studied

in the last six decades. In this chapter, we consider and experimentally compare the

most effective integer linear programming (ILP) models and exact algorithms proposed

1This chapter is based on Roberti and Toth [2012]

11
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for solving the ATSP. Previous surveys on the subject were presented by Balas and Toth

[1985], Fischetti et al. [2004], Öncan et al. [2009], D’Ambrosio et al. [2010]. Several

books dealing with the STSP and its variations have been published; among them,

we mention those by Lawler et al. [1985], Reinelt [1994], Gutin and Punnen [2002],

Applegate et al. [2007].

2.2 The Dantzig-Fulkerson-Johnson Formulation and its

Relaxations

Dantzig et al. [1954] proposed the following ILP model (hereafter DFJ) with n2 binary

variables xij

(DFJ) min
n∑
i=1

n∑
j=1

cijxij (2.1)

s.t.

n∑
i=1

xij = 1, j = 1, . . . , n, (2.2)

n∑
j=1

xij = 1, i = 1, . . . , n, (2.3)

∑
i∈S

∑
j∈S

xij ≤ |S| − 1, S ⊂ V : S 6= ∅, (2.4)

xij ∈ {0, 1}, (i, j) ∈ A, (2.5)

where variable xij is equal to 1 if and only if arc (i, j) ∈ A is in the optimal tour. Con-

straints (2.2) and (2.3) impose that the in-degree and out-degree, respectively, of each

vertex is equal to one, whereas constraints (2.4) are subtour elimination constraints

(SECs) and impose that no partial circuit exists.

Moreover, it is well-known that one can halve the number of SECs (2.4) by replacing

them with ∑
i∈S

∑
j∈S

xij ≤ |S| − 1, S ⊂ V \ {r} : S 6= ∅,

where r is any vertex of vertex set V .

Because of constraints (2.2) and (2.3), constraints (2.4) can be equivalently written as

connectivity constraints ∑
i∈S

∑
j∈V \S

xij ≥ 1, S ⊂ V : S 6= ∅. (2.6)
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Also in this case, one can halve the number of connectivity constraints (2.6) by replac-

ing them with ∑
i∈S

∑
j∈V \S

xij ≥ 1, S ⊂ V : r ∈ S (2.7)

or with ∑
i∈S

∑
j∈V \S

xij ≥ 1, S ⊂ V : S 6= ∅, r /∈ S (2.8)

where r ∈ V is any fixed vertex.

A valid lower bound on the ATSP can be obtained by optimally solving the linear

programming (LP) relaxation of the previous models (2.1)-(2.5) or (2.1)-(2.3) plus

constraints (2.5) and (2.7), obtained by replacing constraints (2.5) with constraints

xij ≥ 0, (i, j) ∈ A. (2.9)

Although the considered ILP models require an exponential number of SECs or connec-

tivity constraints, their LP relaxations can be efficiently solved in polynomial time by

using the effective polynomial separation procedure proposed by Padberg and Rinaldi

[1990a] for the STSP.

Additional lower bounds can be obtained by considering the different substructures

of the ATSP, each associated with a subset of constraints defining a well-structured

relaxation.

Constraints (2.2), (2.3) and (2.9), with objective function (2.1), define the well-known

min-sum assignment problem (AP). Such a problem always has an integer optimal so-

lution and requires the finding of a minimum-cost collection of vertex-disjoint subtours

visiting all vertices of graph G. Relaxation AP can be solved in O(n3) time (see, e.g.

Lawler [1976], and Carpaneto and Toth [1987] for an efficient implementation).

Constraints (2.2), (2.7) and (2.9), with objective function (2.1), define the well-known

shortest spanning r-arborescence problem (r-SAP). Such a problem always has an inte-

ger optimal solution and corresponds to finding a minimum-cost spanning subdigraph

Ḡ = (V, Ā) of graph G such that (i) the in-degree of each vertex is exactly one, and (ii)

each vertex can be reached from the root vertex r. Relaxation r-SAP can be solved

in O(n2) time by finding the shortest spanning arborescence rooted at vertex r (see,

e.g. Edmonds [1967], Tarjan [1977], and Fischetti and Toth [1993] for an efficient

implementation) and adding the minimum-cost arc entering vertex r.

A third substructure, corresponding to constraints (2.3), (2.8) and (2.9), with objec-

tive function (2.1), defines the shortest spanning r-antiarborescence problem (r-SAAP).

Such a problem can easily be transformed into an r-SAP by simply transposing the

input cost matrix, so it can be solved in O(n2) time. Different choices of the root vertex
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r generally produce different values of the lower bounds corresponding to relaxations r-

SAP and r-SAAP. Moreover, these relaxations can be strengthened by considering the

associated Lagrangean relaxations, obtained by embedding, in a Lagrangean fashion,

the relaxed constraints (2.3) for r-SAP, and (2.2) for r-SAAP, in the objective func-

tion (2.1). Near-optimal Lagrangean multipliers, leading to good lower bounds, can be

obtained by applying the well-known subgradient optimization procedure proposed by

Held and Karp [1970] and Held and Karp [1971] for the STSP.

The lower bounds corresponding to relaxations AP, r-SAP and r-SAAP can also be

improved (see Fischetti and Toth [1992]) by combining the associated substructures

with the additive approach introduced by Fischetti and Toth [1989].

2.3 Review of Polynomial Formulations

In this section, we consider the papers presenting polynomial formulations for the

ATSP. For each paper, we focus on the formulation producing the tightest LP-relaxation

lower bound. Unlike the exact algorithms described in §2.4, the polynomial formula-

tions can be directly solved by a general-purpose ILP solver. Classifications and com-

parisons of the polynomial formulations for the ATSP have been recently presented in

Öncan et al. [2009] and Godinho et al. [2011].

The earliest polynomial formulation (i.e., formulation requiring a number of constraints

polynomial in the number of vertices n) of the ATSP is owed to Miller et al. [1960]

(hereafter MTZ) and is given by (2.1)-(2.3), (2.5) plus the following (n−1)2 constraints

to break subtours

ui − uj + (n− 1)xij ≤ n− 2, i, j = 2, . . . , n, (2.10)

where ui, i = 2, . . . , n, is an arbitrary real number representing the order of vertex i in

the optimal tour. Miller et al. originally proposed their formulation with no bounds

on variables ui. Later on, simple bounds (e.g., 1 ≤ ui ≤ n − 1, i = 2, . . . , n) were

introduced to restrict the range of variables ui. This does not affect the LP bound

of MTZ and, in our computational experiments, has shown to increase the computing

time, so we leave variables ui unrestricted.

Gavish and Graves [1978] proposed another formulation (hereafter GG) having LP re-

laxation stronger than that of MTZ (see Wong [1980] and Padberg and Sung [1991]) but

weaker than that of DFJ (see Gouveia [1995]). Formulation GG is a single-commodity

flow formulation where subtours are broken by introducing n2 − n nonnegative vari-

ables gij , i = 2, . . . , n, j = 1, . . . , n. Formulation GG consists of constraints (2.1)-(2.3),
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(2.5) and the following constraints

n∑
j=1

gij −
n∑
j=2

gji = 1, i = 2, . . . , n, (2.11)

0 ≤ gij ≤ (n− 1)xij , i = 2, . . . , n, j = 1, . . . , n, (2.12)

where variables gij can be interpreted as the number of arcs on the path from vertex

1 to arc (i, j) in the optimal tour (see Gouveia and Pires [1999]).

For fixed values of the variables xij , constraints (2.11) and (2.12) form a network flow

problem, so variables gij take integer values. Langevin et al. [1990] showed that the LP

relaxation of GG is equivalent to that of the two-commodity flow formulation proposed

by Finke et al. [1984] - hereafter FCG.

Fox et al. [1980] proposed three formulations for the time-dependent traveling salesman

problem that are valid for the ATSP, as well. These formulations present n3 binary

variables, rijk, that are equal to 1 if and only if arc (i, j) ∈ A is in position k in

the optimal tour. The first formulation (therein P1) has 4n constraints, whereas the

second formulation (hereafter P1b) has 3n constraints and is obtained from the first

one by dropping a set of n constraints. Thus, the LP relaxation of the first formulation

is stronger than that of the second one; Gouveia and Voß [1995] showed that the LP

relaxations of both formulations are stronger than that of GG. The third formulation

proposed by Fox et al. (therein P2) has n+1 constraints and is obtained from the first

formulation by surrogating the first 3n constraints. Öncan et al. [2009] showed that the

LP relaxation of the third formulation is weaker than that of the second one, whereas

Padberg and Sung [1991] proved that the LP relaxation of the third formulation is also

weaker than that of DFJ. We have not reported the three formulations because, in our

computational experiments, they proved to be ineffective in solving the ATSP.

The first multi-commodity flow (MCF) formulation was proposed by Wong [1980] (here-

after WONG). WONG considers 2n − 2 commodities and introduces 2n3 − 2n2 non-

negative continuous variables and 4n3 − 2n2 − 2n constraints. This formulation was

later modified by Langevin [1988] and by Loulou [1988] to obtain two additional MCF

formulations which provide LP relaxations equivalent to that of WONG.

Another MCF formulation with only n−1 commodities was proposed by Claus [1984].

This formulation (hereafter CLAUS) introduces n3 − n2 nonnegative continuous vari-

ables wkij , i, j = 1, . . . , n, k = 2, . . . , n, and 2n3 − n2 − n constraints, and consists of
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constraints (2.1)-(2.3), (2.5) plus the following constraints to break subtours

n∑
j=1

wkij −
n∑
j=1

wkji = 0, i, k = 2, . . . , n : i 6= k,

n∑
j=2

wk1j −
n∑
j=2

wkj1 = −1, k = 2, . . . , n,

n∑
j=1

wiij −
n∑
j=1

wiji = 1, i = 2, . . . , n,

0 ≤ wkij ≤ xij , i, j = 1, . . . , n, k = 2, . . . , n,

where variable wkij is equal to 1 if and only if the commodity going from vertex 1 to

vertex k flows on arc (i, j). Langevin et al. [1990] proved that the LP relaxation of

CLAUS is equivalent to that of WONG, whereas Padberg and Sung [1991] proved that

the LP relaxation of CLAUS is equivalent to that of DFJ, as well.

Formulation MTZ was strengthened by Desrochers and Laporte [1990], who proposed

formulation DL having LP relaxation stronger than that of MTZ and obtained from

MTZ by replacing constraints (2.10) with the following n2 − 1 lifted constraints

ui − uj + (n− 1)xij + (n− 3)xji ≤ n− 2, i, j = 2, . . . , n, (2.13)

− ui + (n− 3)xi1 +
n∑
j=2

xji ≤ −1, i = 2, . . . , n, (2.14)

ui + (n− 3)x1i +

n∑
j=2

xij ≤ n− 1, i = 2, . . . , n. (2.15)

Gouveia and Pires [1999] presented four formulations (therein called RMTZ, L1RMTZ,

L2RMTZ, and L3RMTZ). The LP relaxations of all of these formulations are stronger

than that of MTZ. Here, we present formulation L3RMTZ (hereafter GP), whose LP

relaxation is stronger than those of L1RMTZ and L2RMTZ, which in turn are stronger

than that of RMTZ. Gouveia and Pires [1999] also showed that the LP relaxations of

formulations L1RMTZ and L2MTZ are weaker than those of MCF formulations, such

as WONG and CLAUS. Formulation GP introduces (n − 1)2 additional nonnegative

continuous variables vij , i, j = 2, . . . , n, that are equal to 1 if and only if vertex i is in

the path from vertex 1 to vertex j. Formulation GP consists of constraints (2.1)-(2.3),

(2.5) plus the following 2n3 − 10n2 + 18n− 10 constraints to break subtours

xij − vij ≤ 0, i, j = 2, . . . , n,

xij + vji ≤ 1, i, j = 2, . . . , n,

xji + xij + vki − vkj ≤ 1, i, j, k = 2, . . . , n : i 6= j 6= k,

xkj + xik + xij + vki − vkj ≤ 1, i, j, k = 2, . . . , n : i 6= j 6= k.
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Gouveia and Pires [2001] presented other formulations, among them a polynomial

formulation (therein MCF+) whose LP relaxation is stronger than those of CLAUS

and GP. As the LP relaxation of MCF+ is weaker than that of formulation SST (which

will be introduced later in this section), as shown by Öncan et al. [2009], and MCF+

has more constraints than SST, we do not report a detailed description of MCF+.

Sherali and Driscoll [2002] strengthened formulation DL by applying a reformulation-

linearization technique and by introducing (n− 1)2 additional nonnegative continuous

variables yij , i, j = 2, . . . , n, where variable yij represents the order of arc (i, j) in

the optimal tour. The resulting formulation (hereafter SD) replaces constraints (2.13),

(2.14) and (2.15) with the following 4n2 − 4n constraints

n∑
j=2

yij + (n− 1)xi1 − ui = 0, i = 2, . . . , n,

n∑
i=2

yij − uj = −1, j = 2, . . . , n,

xij − yij ≤ 0, i, j = 2, . . . , n,

yij − (n− 2)xij ≤ 0, i, j = 2, . . . , n,

uj + (n− 2)xij + (n− 1)xji − yij − yji ≤ n− 1, i, j = 2, . . . , n,

yij + yji − uj − xji ≤ −1, i, j = 2, . . . , n,

− x1j + (n− 3)xj1 − uj ≤ −2, j = 2, . . . , n,

(n− 3)x1j − xj1 + uj ≤ n− 2, j = 2, . . . , n.

Recently, Öncan et al. [2009] showed that the LP relaxation of SD is also stronger than

that of GG.

Sarin et al. [2005] studied the asymmetric traveling salesman problem with and without

precedence constraints and proposed five polynomial formulations (therein ATSPxy,

L1ATSPxy, SL1ATSPxy, L2ATSPxy and ML1ATSPxy) for the ATSP, whose LP relax-

ations are stronger than that of RMTZ. Moreover, Sarin et al. [2005] showed that the

LP relaxation of L1ATSPxy is stronger than that of SL1ATSPxy whose LP relaxation

is stronger than that of ATSPxy; the LP relaxations of L1ATSPxy and L2ATSPxy

are also stronger than those of formulations L1RMTZ and L2RMTZ by Gouveia and

Pires [1999], respectively. Here we report formulation L2ATSPxy (hereafter SSB) only,

which, in our computational experiments, was shown to be the best performer. For-

mulation SSB introduces (n− 1)2 nonnegative continuous variables dij , i, j = 2, . . . , n,

and n3 − n2 − n + 1 constraints, and consists of constraints (2.1)-(2.3), (2.5) and the
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following constraints to break subtours

dij − xij ≥ 0, i, j = 2, . . . , n, (2.16)

dij + dji = 1, i, j = 2, . . . , n : i 6= j, (2.17)

x1j + xj1 ≤ 1, j = 2, . . . , n, (2.18)

xij + djk + xkj + dki + xik ≤ 2, i, j, k = 2, . . . , n. (2.19)

Although variable dij , i, j = 2, . . . , n, is continuous, it has a binary connotation and

is equal to 1 if and only if vertex i precedes (not necessarily immediately) vertex j

in the optimal tour. Godinho et al. [2011] noticed that the meaning of variables dij

is basically the same of variables vij introduced in formulation GP. An analysis of all

the formulations involving variables xij and vij (or dij) can be found in Gouveia and

Pesneau [2006].

Sherali et al. [2006] proposed several polynomial formulations. Here, we present formu-

lation SST (therein ATSP6) only, which uses (n−1)3 nonnegative continuous variables

tkij , i, j, k = 2, . . . , n, and consists of (2.1)-(2.3), (2.5), (2.17) and the following con-

straints

dij + xji + djk + dki ≤ 2, i, j, k = 2, . . . , n,

dij − x1i ≥ 0, i, j = 2, . . . , n,

dji − xi1 ≥ 0, i, j = 2, . . . , n,

0 ≤ tkij ≤ xik, i, j, k = 2, . . . , n : i 6= j 6= k,

xij +

n∑
k=2; k 6=j

tkij = dij , i, j = 2, . . . , n,

x1k +

n∑
i=2; i 6=j

tkij = dkj , k, j = 2, . . . , n,

where tkij is equal to 1 if and only if, in the optimal tour, arc (i, k) is used and vertex k

precedes vertex j. Godinho et al. [2011] pointed out that variables tkij can be interpreted

in the same way as the flow variables wkij used in formulation CLAUS. Öncan et al.

[2009] showed that the LP relaxation of SST is stronger than those of MCF+, whereas

Sherali et al. [2006] proved that the LP relaxation of SST is stronger than that of

L1ATSPxy.

In Figure 2.1, we summarize the relationships among the linear relaxations of the

polynomial formulations reviewed in this section. A link going from formulation A to

formulation B means that the LP relaxation of B is stronger than that of A, whereas

a dashed line connecting two formulations means that the relative LP relaxations are

equivalent.
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A B B is stronger than A

A B A and B are equivalent

MTZ

GG

DFJ

FCG

P1b

P1

P2

Langevin Loulou

WONG CLAUS

DL

SD

RMTZ

L1RMTZL2RMTZ

GP

MCF+

SST

ATSPxy

SL1ATSPxy

L1ATSPxyL2ATSPxy

Figure 2.1: Relations among the linear relaxations of the polynomial formulations
and of formulation DFJ

2.4 Exact Algorithms

Many branch-and-bound algorithms have been proposed to find the optimal solution

of the ATSP. After the seminal paper by Little et al. [1963], where for the first time the

term “branch-and-bound” was coined, other algorithms were proposed by Bellmore and

Malone [1971], Garfinkel [1973], Smith et al. [1977], Carpaneto and Toth [1980], Balas

and Christofides [1981], Miller and Pekny [1989], Pekny and Miller [1992], Fischetti

and Toth [1992], Carpaneto et al. [1995]. In the following, two of the most effective

branch-and-bound algorithms for the ATSP (i.e., those proposed by Carpaneto et al.

[1995] and Fischetti and Toth [1992]), are briefly reviewed. The algorithm proposed by

Pekny and Miller [1992] exhibits, on the whole, a performance comparable with that

of the approach described in Carpaneto et al..

The algorithm proposed by Carpaneto et al. [1995] is a lowest-first branch-and-bound

method based on the AP relaxation and the subtour elimination branching scheme. At

the root node of the decision tree, the AP relaxation of the original problem is solved,

the patching heuristic algorithm proposed by Karp [1979] is applied to determine an

initial tour of cost z∗, and a reduction procedure based on the AP reduced costs, c′ij ,

is executed to transform the original complete graph into a sparse one (by setting

xij = 0 if V (AP ) + c′ij ≥ z∗, where V (AP ) is the value of the optimal solution of the

AP relaxation). At each of the other nodes of the decision tree, the AP relaxation

of the subproblem associated with the considered node is solved, through an effective

parametric technique, in O(n2) time. If V (AP ) ≥ z∗, the node is fathomed. Otherwise,

if the AP solution contains no subtour (i.e., a feasible solution has been found) the

best solution thus far is updated, z∗ is set equal to V (AP ), and the node is fathomed.

If neither of the two previous cases occur, the subtour elimination branching scheme
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proposed by Carpaneto and Toth [1980] is applied: the subtour S of the AP solution

having the minimum number, say h, of not “imposed” arcs is selected, and h descending

nodes are generated so as to forbid, by “imposing” and “excluding” proper arc subsets,

subtour S for each descending node.

The algorithm proposed by Fischetti and Toth [1992] is a lowest-first branch-and-bound

method based on the branching scheme introduced by Carpaneto and Toth [1980], and,

at each node of the decision tree, computes the corresponding lower bound by applying

the additive approach combining the AP, r-SAP, and r-SAAP relaxations.

More recently, two effective branch-and-cut algorithms for the ATSP have been pro-

posed by Fischetti and Toth [1997] and Fischetti et al. [2003].

The algorithm proposed by Fischetti and Toth [1997] is based on the DFJ model

(2.1)-(2.5) and exploits additional classes of facet-inducing inequalities for the ATSP

polytope that proved to be of crucial importance for the solution of some real-world

instances.

An ATSP inequality αx ≤ α0 is called symmetric when αij = αji for each arc (i, j) ∈ A.

Symmetric inequalities can be thought of as derived from valid inequalities for the STSP

defined on the complete undirected graph G′ = (V,E). Indeed, let ye be equal to 1 if

edge e ∈ E belongs to the optimal STSP solution, ye = 0 otherwise. Every inequality∑
e∈E αeye ≤ α0 valid for the STSP can be transformed into a valid ATSP inequality

by simply replacing ye with xij + xji for all edges e = {i, j} ∈ E. This produces the

symmetric inequality αx ≤ α0, where αij = αji = α(i,j) for all couples of vertices

i, j ∈ V , i 6= j. Conversely, every symmetric ATSP inequality αx ≤ α0 corresponds to

the valid STSP inequality
∑
{i,j}∈E αijy(i,j) ≤ α0. The above correspondence implies

that every separation algorithm for the STSP can be used, as a “black box”, for

the ATSP, as well. Several exact/heuristic separation algorithms for the STSP have

been proposed in recent years, all of which can be used for the ATSP. Only two such

separation tools are used in Fischetti and Toth [1997], namely (i) the Padberg and

Rinaldi [1990a] exact algorithm for SECs; and (ii) the simplest heuristic scheme for

2-matching constraints, i.e., for combs with 2-node teeth, where each component H of

the graph induced by the edges e ∈ E with fractional y∗e is heuristically considered,

in turn, as the handle of the comb. Having fixed H, the most violated 2-matching

constraint with handle H is easily found by sorting the edges having one extreme node

in H and the other extreme node in V \ H by non increasing y∗e , and by taking the

first k such edges to act as teeth, for k = 1, 3, 5, . . .

In addition, Fischetti and Toth [1997] considered the D+
k and D−k inequalities proposed

by Grötschel and Padberg [1985] and the odd close alternative trail (odd CAT) in-

equalities proposed by Balas [1989] (and analyzed by Fischetti [1991]). The separation

problem for the classes of the D+
k and D−k inequalities is a combinatorial optimization

problem that can be effectively solved in practice by an implicit enumeration scheme
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enhanced by suitable pruning conditions (see Fischetti and Toth [1997]). As for the

detection of violated odd CAT inequalities, Balas [1989] showed that these inequalities

correspond to odd cycles in an auxiliary undirected “incompatibility” graph. An ef-

fective heuristic separation algorithm, based on the computation of a minimum-weight

odd cycle going through a given edge, was proposed by Fischetti and Toth [1997]. In

addition, clique lifting (see Fischetti and Balas [1993]) and shrinking (see Padberg and

Rinaldi [1990b]) procedures are applied to simplify the considered separation problems.

A detailed analysis of the polyhedral structure of the ATSP can be found in Balas and

Toth [1985].

Pricing is an important ingredient of branch-and-cut codes because it allows one to

effectively handle LP relaxations involving a huge number of variables. In order to

keep the size of the LP relaxation as small as possible, the following pricing scheme

is commonly used. We determine a (small) core set of arcs, say Ã, and decide to

temporarily fix xij = 0 for each arc (i, j) ∈ A \ Ã. We then solve the corresponding

restricted LP problem, compute the associated LP reduced costs c̄ij and check whether

c̄ij ≥ 0 for all (i, j) ∈ A \ Ã. If this is the case, then the LP relaxation has been solved

to optimality. Otherwise, the current core set Ã is enlarged by adding (some of) the

arcs with negative reduced cost, and the whole procedure is iterated.

Fischetti and Toth [1997] proposed an improved pricing technique, called AP pricing,

in which the pricing condition is strengthened by exploiting the fact that any feasible

solution of the current LP relaxation cannot arbitrarily select the arcs of negative

reduced cost because the degree equations - among other constraints - must be fulfilled.

The exact algorithm proposed by Fischetti and Toth [1997] is a lowest-first branch-

and-cut method. At each node of the branching tree, the LP relaxation is initialized

by taking all of the constraints of the last LP solved at the father node (for the root

node, only the degree equations are taken). As for the variables, one retrieves, from a

scratch file, the optimal basis associated with the last LP solved at the father node and

initializes the core variable set, Ã, by taking the arcs belonging to this basis (for the

root node, Ã contains the 2n−1 variables in the optimal AP basis found by solving AP

on the original costs cij). In addition, Ã contains all the arcs of the best known ATSP

solution. Starting with the above advanced basis, one iteratively solves the current LP

relaxation, applies the AP pricing procedure and repeats if needed.

On exit of the pricing loop, the separation algorithms are applied to find, if any, ATSP

inequalities that cut off the current LP optimal solution x∗. When violated cuts are

found, one adds them to the current LP relaxation and repeats.

When separation fails and x∗ is integer, the current best ATSP solution is updated,

and a backtracking step occurs. If x∗ is fractional, the current LP basis is saved in a

file, and one branches on the variable xij with 0 < x∗ij < 1 that maximizes the score

σ(i, j) = cij min{x∗ij , 1 − x∗ij}. As a heuristic rule, a large priority is given to the
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variables with 0.4 ≤ x∗ij ≤ 0.6 (if any) so as to produce a significant change in both

descending nodes.

This branching scheme has been enhanced by Fischetti et al. [2003] through the frac-

tional persistency mechanism proposed by Fischetti et al. [2001] for the solution of

crew scheduling and vehicle scheduling problems. The corresponding branch-and-cut

algorithm will be denoted as FLT in §2.6.

2.5 Transformation of ATSP Instances into STSP Instances

Any code for the ATSP can be invoked to solve STSP instances. In fact, the reverse

also stands by means of the following two transformations.

• The 3-node transformation proposed by Karp [1972]. A complete undirected

graph with 3n vertices is obtained from the original complete directed one by

adding two copies, n+ i and 2n+ i, of each vertex i ∈ V , and by (i) setting to 0

the cost of edges {i, n+ i} and {n+ i, 2n+ i} for each vertex i ∈ V , (ii) setting

the cost of edge {2n + i, j} to cij , for each couple of vertices i, j ∈ V , and (iii)

setting to +∞ the costs of all remaining edges;

• The 2-node transformation proposed by Jonker and Volgenant [1983] (see also

Jünger et al. [1995]). A complete undirected graph with 2n vertices is obtained

from the original complete directed one by adding a copy, n + i, of each vertex

i ∈ V , and by (i) setting to 0 the cost of the edge {i, n + i} for each vertex

i ∈ V , (ii) setting the cost of edge {n + i, j} to cij + M , for each couple of

vertices i, j ∈ V , where M is a sufficiently large positive value, and (iii) setting

to +∞ the costs of all the remaining edges. The transformation value nM must

be subtracted from the STSP optimal cost.

The most effective branch-and-cut algorithm for the STSP is currently the one by

Applegate et al. [2007], and the corresponding code (Concorde by Applegate et al.

[1999]), is publicly available. In Fischetti et al. [2004], this code was used to test

the effectiveness of the approach based on the ATSP-to-STSP transformation. The

code has been used with default parameters. The results have shown that the 2-node

transformation is, in general, more effective than the 3-node one.

2.6 Computational Results

As a testbed for our computational experiments, we took the 27 ATSP instances col-

lected in the TSPLIB by Reinelt [1991] and 5 real-world instances provided by Balas

[2000]. All instances have integer nonnegative costs.
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Table 2.1: Computing times for solving the LP relaxations of 8 polynomial formu-
lations by using the primal, dual or barrier method

Primal Dual Barrier

Formulation Solved TLP Solved TLP Solved TLP

MTZ 10 0.16 10 0.03 10 16.30

GG 10 0.25 10 0.56 10 0.14

CLAUS 3 1,018.11 10 353.84 10 95.05

DL 10 0.30 10 0.05 10 17.23

GP 10 48.01 10 3.48 10 232.78

SD 10 7.45 10 5.10 10 0.75

SSB 9 360.49 10 6.68 10 103.59

SST 0 1,200.00 1 1,128.43 3 1,004.75

Tables 2.1 and 2.2 report on the computational performance of eight polynomial for-

mulations (namely, MTZ, GG, CLAUS, DL, GP, SD, SSB, and SST) for the ATSP,

described in §2.3, on 10 small-size instances from the TSPLIB (namely, instances ftv33,

ftv35, ftv38, ftv44, ftv47, ftv55, ftv64, ftv70, ft70, and ft53), which is the set of in-

stances used in the computational study of Öncan et al. [2009]. The computational

results reported in Tables 2.1 and 2.2 were obtained on an Intel Core2 Duo@2.26 GHz

by running CPLEX11.2 as LP and ILP solver. All computing times reported in the

tables are expressed in seconds.

In Table 2.1, we compare, on the ten considered instances, the performance of the eight

polynomial formulations for computing the corresponding LP relaxations by using three

different LP methods (namely Primal, Dual and Barrier). For each method and each

formulation, Table 2.1 reports the number of LP-bounds computed within the time

limit of 1, 200 seconds (column Solved) and the average computing time (column TLP ).

In the computation of the average computing time, we considered a computing time

of 1, 200 seconds whenever the LP relaxation of an instance could not be computed

within the time limit or the instance could not be run due to exceeded memory limits

for CPLEX.

Table 2.1 shows that, for a given formulation, the computing time may significantly

vary by using different LP methods. The dual method turned out to be the best

performing method when solving MTZ, DL, GP, and SSB, whereas the barrier method

was the best performing one when solving GG, CLAUS, SD, and SST. All formulations

but SST could solve the LP relaxation of all 10 instances within the time limit imposed.

Table 2.2 reports, for each of the eight formulations and each of the ten instances,

the percentage gap (computed with respect to the optimal solution value) left after

solving the LP relaxation (column LP ), the percentage gap left at the root note of

the search tree of CPLEX (column Rt), and the computing times for solving the LP

relaxation (column TLP ), the root node (column TRt), and the ILP formulation itself

(column TILP ). For each formulation, we used the LP-method that turned out to be
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the best one in the experiments summarized in Table 2.1. The time limit for solving

the ILP formulation was set equal to 1, 800 seconds. In the rows labeled “Avg”,

Table 2.2 reports average values and, in parenthesis, the number of instances solved to

optimality within the time limit. In the computation of the average computing times,

we considered a computing time equal to 1, 200 or 1, 800 seconds whenever the LP

model or the ILP model, respectively, could not be solved within the time limit. For

formulation SST the averages refer to the first three instances since the remaining ones

could not be run due to exceeded memory limits for CPLEX.

As to the LP-bounds, Table 2.2 shows that SST obtains tight lower bounds but re-

quires larger computing times than the other formulations. Moreover, SST was able to

provide the lower bounds, within the time limit, on only 3 of the 10 instances consid-

ered. Among the other formulations, the one that provides the tightest LP-bounds is

CLAUS, followed by SSB and GP. The other four formulations (i.e., MTZ, GG, DL and

SD) obtain, on average, worse LP-bounds than the previous ones but within shorter

computing times (less than a second on average). GG was the only formulation able

to solve, to optimality, all of the 10 instances within the time limit imposed, whereas

MTZ, DL and SD could solve, to optimality, all but one of the instances. By consid-

ering the results reported in Table 2.2, we can conclude that, for what concerns the

overall computing time, the most effective formulations are MTZ, GG and DL.

The results reported in Table 2.2 show that formulations MTZ, GG, and DL are the

best formulations to be directly used within CPLEX. This is probably due to two

main reasons: (i) the limited number of constraints required to break subtours allows

CPLEX to compute the LP-bounds effectively, and (ii) the large variety of cuts embed-

ded in CPLEX lead to root lower bounds competitive with those that can be obtained

with other formulations having stronger LP-bounds but within much shorter comput-

ing times. We stress that the computational analysis reported in Table 2.2 is aimed

at comparing the suitability of each formulation to be directly solved with CPLEX.

Therefore, any conclusion that can be drawn from the results reported in Table 2.2

cannot consider the fitness of each polynomial formulation as the starting point for

more complicated exact algorithms for solving the ATSP. We also stress that, for each

class of formulations, we report only the results obtained by the formulation providing,

on average, the tightest LP-bounds because the other formulations (i.e., those appear-

ing in Figure 2.1 but neglected in this section) were computationally outperformed by

at least one of the eight formulations considered in this study.

In Table 2.3, we compare, of the 27 ATSP instances from TSPLIB and the 5 in-

stances provided by Balas, the performance of (a) the branch-and-bound algorithm by

Carpaneto et al. [1995] (hereafter CDT) described in §2.4, (b) the branch-and-bound

algorithm based on the additive bounding procedure by Fischetti and Toth [1992]

(hereafter FT) described in §2.4, (c) the branch-and-cut algorithm by Fischetti et al.

[2003] (hereafter FLT) described in §2.4, (d) the branch-and-cut algorithm (hereafter
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Concorde) solving the STSP instances obtained from the transformation described in

§2.5, and (e) the polynomial formulations MTZ, GG and DL (see §2.3). For each in-

stance and each algorithm, we report the percentage gap of the corresponding lower

bound, or the value of the LP relaxation of the considered formulation, computed at

the root node of the decision tree (column LB) and the computing time for solving the

instance to optimality (column T ). The rows labeled “Avg” report average values and,

in parenthesis, the number of instances solved to optimality within the corresponding

time limit.

Different time limits were imposed on the algorithms: 1, 000 seconds for CDT and FT,

10, 000 seconds for FLT and Concorde, 1, 800 seconds for MTZ, GG and DL. For this

reason, in the computation of the average computing time, only the instances solved to

optimality within the imposed time limit are considered. The rows labeled “Avg 1,000

sec” report the average computing time and, in parenthesis, the number of instances

solved to optimality within the time limit of 1,000 seconds (a computing time equal to

1,000 seconds is considered when this time limit is reached).

The computational results reported for CDT, FT, FLT and Concorde are taken from

Fischetti et al. [2004] and were obtained on a Digital Alpha 533 MHz with CPLEX6.5.3

as LP solver, whereas the computational results relative to formulations MTZ, GG and

DL were obtained on an Intel Core2 Duo@2.26 GHz by running CPLEX11.2. We have

experimentally found that the latter machine is approximately 10-12 times faster than

that used by Fischetti et al.; therefore, the computing times reported for MTZ, GG

and DL were multiplied by 10 in order to have a fair comparison.

Table 2.3 shows that FLT and Concorde were the only two exact methods able to solve,

within the imposed time limit, all of the 32 instances to optimality and are clearly better

performing than the other 5 exact methods considered. Although, on the considered

instances, Concorde generally obtains better lower bounds at the root node, FLT is

always faster. Formulations MTZ, GG and DL proved not to be competitive with

either FLT or Concorde because they solved only 20, 11 and 19 instances, respectively,

and, on the solved instances, their computing times are always much longer. As for the

branch-and-bound algorithms CDT and FT, for which a time limit of 1,000 seconds was

imposed, it can be noted that they dominate, with regards to the instances solved to

optimality within this time limit and the computing times, the polynomial formulations

MTZ, GG and DL. By considering the values of the lower bounds at the root node,

Table 2.3 shows that: (i) the lower bound of CDT (given by the value of the AP

relaxation) is only slightly worse than that of MTZ (i.e., the addition of constraints

(2.10) to the AP relaxation only marginally improves the corresponding LP relaxation);

(ii) the lower bound of FT (corresponding to the additive bounding procedure) is always

better that those of MTZ and GG, and globally better than that of DL.
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Table 2.2: Performance of 8 polynomial formulations on 10 ATSP instances from the TSPLIB

MTZ GG CLAUS DL

Inst LP TLP Rt TRt TILP LP TLP Rt TRt TILP LP TLP Rt TRt TILP LP TLP Rt TRt TILP

ftv33 7.64 0.02 2.77 0.22 4.91 7.03 0.06 0.78 0.83 5.51 0.00 7.20 0.00 9.44 14.88 5.35 0.03 4.58 0.11 3.40

ftv35 6.12 0.02 4.15 0.09 6.27 5.59 0.06 0.63 3.51 11.93 1.06 9.17 1.00 19.02 79.36 4.04 0.05 3.58 0.16 5.23

ftv38 5.87 0.02 2.91 0.14 9.02 5.44 0.08 0.80 2.29 21.46 1.02 12.50 0.96 31.01 74.88 3.45 0.03 3.14 0.17 5.71

ftv44 5.55 0.02 2.68 0.14 16.40 5.18 0.10 1.74 2.47 18.02 1.74 23.71 1.27 77.38 tl 2.43 0.03 2.10 0.20 3.17

ftv47 6.77 0.02 2.39 0.28 36.04 6.54 0.11 1.84 1.83 58.27 1.54 37.43 1.52 256.06 tl 2.83 0.06 2.08 0.23 12.00

ftv55 10.55 0.03 3.89 0.27 43.74 10.31 0.16 4.97 1.19 91.16 1.49 87.38 1.43 324.61 tl 6.05 0.06 3.89 0.39 19.48

ftv64 6.31 0.05 4.21 0.28 114.50 5.84 0.22 4.00 1.98 322.56 1.71 182.06 1.63 1,368.27 tl 4.24 0.06 4.03 0.67 32.53

ftv70 9.26 0.05 3.94 0.59 168.70 8.75 0.27 7.06 2.51 1,125.57 2.10 285.50 1.99 tl tl 4.69 0.06 4.05 0.87 52.40

ft70 1.77 0.06 1.16 0.64 tl 1.10 0.25 0.85 3.74 326.07 0.05 237.47 0.04 1,500.99 tl 0.88 0.08 0.64 0.89 65.22

ft53 14.04 0.05 10.88 0.44 312.38 12.45 0.14 0.00 3.65 37.95 0.00 68.13 0.00 255.02 265.67 12.93 0.05 10.97 0.38 tl

Avg 7.39 0.03 3.90 0.31 251.20 6.82 0.14 2.27 2.40 201.85 1.07 95.05 0.98 564.18 1,123.48 4.69 0.05 3.91 0.41 199.91

(9) (10) (4) (9)

GP SD SSB SST

Inst LP TLP Rt TRt TILP LP TLP Rt TRt TILP LP TLP Rt TRt TILP LP TLP Rt TRt TILP

ftv33 0.00 0.85 0.00 1.97 8.21 4.78 0.25 4.53 0.61 26.91 0.00 0.41 0.00 0.71 0.77 0.00 277.58 0.00 496.90 496.90

ftv35 1.29 0.85 1.29 3.32 914.01 3.90 0.28 3.35 0.70 49.75 1.09 0.46 1.02 2.64 14.88 0.65 632.53 0.65 tl tl

ftv38 1.24 1.32 1.24 5.38 tl 3.26 0.39 3.15 1.22 81.67 1.05 0.65 0.98 2.48 31.50 0.64 737.40 0.64 tl tl

ftv44 1.84 1.58 1.26 8.24 tl 2.43 0.44 2.03 0.97 97.31 1.74 0.88 0.92 21.36 91.24 - - - - -

ftv47 1.86 1.63 1.53 6.27 tl 2.75 0.72 2.71 1.51 109.82 1.86 2.52 1.54 32.08 1,247.54 - - - - -

ftv55 2.33 3.85 1.12 83.12 tl 5.89 0.53 5.62 4.18 1,105.22 2.33 2.80 1.41 261.42 999.26 - - - - -

ftv64 3.30 6.64 2.99 189.60 tl 4.00 0.84 3.68 4.79 309.85 2.88 14.92 2.70 691.29 tl - - - - -

ftv70 3.73 8.11 3.37 53.06 tl 4.64 2.22 4.45 6.99 525.08 3.12 27.54 2.63 476.80 tl - - - - -

ft70 1.15 7.24 1.09 44.94 tl 0.80 1.36 0.74 7.46 236.81 0.55 14.66 0.48 38.21 tl - - - - -

ft53 10.69 2.75 9.33 16.73 tl 11.39 0.48 11.26 1.47 tl 10.63 1.94 9.22 8.18 tl - - - - -

Avg 2.74 3.48 2.32 41.26 1,532.22 4.38 0.75 4.15 2.99 434.24 2.53 6.68 2.09 153.51 958.52 0.43 549.17 0.43 1,365.63 1,365.63

(2) (9) (6) (1)
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Table 2.3: Comparison between branch-and-bound algorithms, branch-and-cut algorithms and polynomial formulations

CDT FT FLT Concorde MTZ GG DL

Inst LB T LB T LB T LB T LB T LB T LB T

br17 100.00 3.6 0.00 0.0 0.00 0.0 0.00 0.2 94.23 10.9 68.91 8.2 43.59 34.6

ft53 14.11 tl 1.56 0.2 0.00 0.1 0.00 0.6 14.04 3,123.8 12.45 379.5 12.93 tl

ft70 1.80 0.4 0.57 0.3 0.02 0.2 0.01 3.2 1.77 tl 1.10 3,260.7 0.88 652.2

ftv33 7.85 0.0 3.73 0.1 0.00 0.0 0.00 0.3 7.64 49.1 7.03 55.1 5.35 34.0

ftv35 6.25 0.0 3.53 0.2 0.88 0.4 0.68 9.0 6.12 62.7 5.59 119.3 4.04 52.3

ftv38 6.01 0.0 3.01 0.3 0.85 0.6 0.52 14.5 5.87 90.2 5.44 214.6 3.45 57.1

ftv44 5.70 0.0 4.46 0.1 0.37 0.5 0.12 9.1 5.55 164.0 5.18 180.2 2.43 31.7

ftv47 6.98 0.1 3.49 0.4 1.01 0.5 0.62 23.4 6.77 360.4 6.54 582.7 2.83 120.0

ftv55 10.76 1.1 6.59 1.5 0.81 1.4 0.44 9.0 10.55 437.4 10.31 911.6 6.05 194.8

ftv64 6.42 0.8 4.89 1.3 1.36 2.6 0.33 20.8 6.31 1,145.0 5.84 3,225.6 4.24 325.3

ftv70 9.44 3.3 6.92 3.7 0.92 1.1 0.26 17.8 9.26 1,687.0 8.75 11,255.7 4.69 524.0

ftv90 6.33 0.7 3.17 2.5 0.25 0.5 0.06 14.7 6.24 340.4 6.21 tl 1.72 498.1

ftv100 6.60 16.6 3.91 29.6 0.39 2.2 0.00 12.6 6.53 1,083.1 6.49 tl 3.11 1,237.5

ftv110 5.87 5.0 4.49 38.4 0.77 7.4 0.05 25.6 5.81 5,964.9 5.71 tl 2.41 tl

ftv120 6.51 50.1 5.77 99.4 0.97 13.1 0.28 54.4 6.44 8,755.0 6.32 tl 2.18 tl

ftv130 4.46 6.4 3.77 16.6 0.35 1.6 0.00 16.6 4.42 1,938.2 4.34 tl 1.31 600.7

ftv140 4.92 13.9 4.26 38.8 0.25 2.1 0.00 25.6 4.87 1,127.6 4.85 tl 1.41 287.3

ftv150 3.91 3.1 3.03 17.0 0.27 2.6 0.00 27.0 3.87 920.6 3.86 tl 1.31 402.7

ftv160 4.58 93.8 4.03 316.2 0.67 3.8 0.30 55.7 4.55 12,731.4 4.54 tl 2.35 6,000.6

ftv170 4.50 tl 4.14 tl 0.87 4.1 0.40 41.9 4.48 tl 4.47 tl 2.05 tl

kro124p 6.22 tl 2.73 135.7 0.04 1.0 0.00 9.9 6.13 2,296.6 5.47 tl 3.46 2,316.8

p43 97.37 tl 0.37 tl 0.16 9.3 0.16 22.7 97.34 tl 85.23 tl 96.16 tl

rbg323 0.00 0.1 0.00 0.3 0.00 0.4 0.00 23.9 0.00 tl 0.00 tl 0.00 8,481.1

rbg358 0.00 0.1 0.00 0.5 0.00 0.5 0.00 29.3 0.00 tl 0.00 tl 0.00 tl

rbg403 0.00 0.1 0.00 1.0 0.00 1.3 0.00 49.3 0.00 tl 0.00 tl 0.00 tl

rbg443 0.00 0.1 0.00 1.2 0.00 1.4 0.00 34.5 0.00 tl 0.00 tl 0.00 tl

ry48p 13.21 tl 2.94 20.3 0.53 0.8 0.35 22.9 12.88 1,316.0 11.17 tl 4.25 3,417.3

balas84 14.07 tl 5.53 986.6 1.01 15.7 1.01 78.0 13.98 tl 12.34 tl 9.67 tl

balas108 25.00 tl 9.87 tl 1.97 89.0 2.63 1,416.0 24.80 tl 18.14 tl 19.50 tl

balas120 21.68 tl 13.29 tl 1.05 1,276.3 1.05 7,186.9 21.43 tl 18.58 tl 16.86 tl

balas160 19.40 tl 11.34 tl 1.26 671.1 1.26 7,848.0 19.18 tl 16.16 tl 18.83 tl

balas200 15.63 tl 8.68 tl 1.24 1,712.8 0.74 2,294.2 15.55 tl 12.86 tl 15.31 tl

Avg 13.61 9.06 4.06 65.85 0.57 119.51 0.35 606.18 13.33 2,180.21 11.37 1,835.75 9.14 1,329.90

(22) (26) (32) (32) (20) (11) (19)

Avg - 318.7 - 241.0 - 88.6 - 145.4 - 794.9 - 826.6 - 681.7

1, 000 sec (22) (26) (30) (28) (9) (8) (14)





Chapter 3

Traveling Salesman Problem

with Time Windows

1

The traveling salesman problem with time windows (TSPTW) is the problem of finding,

in a weighted digraph, a least-cost tour starting from a selected vertex, visiting each

vertex of the graph exactly once within a given time window, and returning to the

starting vertex. This chapter introduces new tour relaxations to compute valid lower

bounds on the TSPTW. The optimal integer TSPTW solution is computed with a

dynamic programming algorithm that uses bounding functions based on the different

tour relaxations and the dual solutions obtained. An extensive computational analysis

on basically all TSPTW instances (involving up to 233 vertices) from the literature is

reported. The results show that the proposed algorithm solves all but one instances

and outperforms all exact methods published in the literature so far.

3.1 Introduction

The traveling salesman problem with time windows (TSPTW) is defined on a digraph

G = (V ′, A), where V ′ is the vertex set and A is the arc set. The vertex set V ′ is

equal to V ∪ {p, q}, where the set V contains n vertices 1, 2, . . . , n, and vertices p

and q are two special vertices. We indicate with Γi ⊆ V ′ the set of successors (i.e.,

Γi = {j ∈ V ′ : (i, j) ∈ A}) and with Γ−1
i ⊆ V ′ the set of predecessors (i.e., Γ−1

i = {j ∈
V ′ : (j, i) ∈ A}) of vertex i ∈ V ′ in graph G. We assume that Γ−1

p = Γq = ∅ and

(p, q) /∈ A.

A time window [ei, li] is associated with each vertex i ∈ V ′, where ei and li represent

the earliest and latest time to visit vertex i, respectively. A travel cost dij and a travel

1This chapter is based on Baldacci et al. [2011b]

29
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time tij are associated with each arc (i, j) ∈ A; the travel time tij includes the service

time at vertex i. Travel times tij and time windows [ei, li] are assumed integer values.

A salesman tour is a path in G that starts from vertex p at time ep, visits each vertex

i ∈ V within its time window, and ends at vertex q before time lq. The salesman is

allowed to arrive at a vertex i ∈ V before time ei, but, in this case, the service of vertex

i is postponed until time ei. Hereafter, we assume that graph G contains at least one

salesman tour. The cost of a salesman tour is the sum of the travel costs of the arcs

traversed. The TSPTW consists of finding a minimum-cost salesman tour.

The problem is NP-hard because it generalizes the classical traveling salesman problem

(TSP). Even finding a feasible solution is NP-complete (see Savelsbergh [1985]).

The TSPTW has many practical applications, such as in single and multiple vehicle

problems, control of stacker cranes in warehouses, bank deliveries, and postal deliveries.

3.2 Literature Review

The first exact algorithms are due to Christofides et al. [1981a] and Baker [1983]. They

proposed branch-and-bound methods to solve a variant of the problem where the to-

tal schedule time must be minimized. The algorithm of Christofides et al. [1981a]

was based on the technique introduced by Christofides et al. [1981c] called state-space

relaxation (SSR), whereby the state-space associated with a given dynamic program-

ming (DP) recursion is relaxed into a space of smaller cardinality in such a way that

the solution of the relaxed recursion provides a lower bound to the original problem.

Christofides et al. [1981a] and Baker [1983] reported solutions of TSPTW instances

with up to 50 vertices.

Langevin et al. [1993] proposed a branch-and-bound algorithm based on a two-commodity

flow formulation and reported solutions of instances with up to 60 vertices.

Algorithms based on DP were proposed by Dumas et al. [1995], Mingozzi et al. [1997],

Balas and Simonetti [2001], and Li [2009]. Dumas et al. [1995] described a DP algo-

rithm that applies sophisticated elimination tests to reduce the state-space and the

number of state transitions; they reported the solutions of instances involving up to

200 vertices. Mingozzi et al. [1997] presented a DP algorithm for the TSP with time

windows and precedence constraints based on the SSR technique and presented com-

putational results for instances with up to 120 vertices. Balas and Simonetti [2001]

considered a special case of the TSPTW where, for some initial ordering of the vertices,

vertex i precedes vertex j if j ≥ i+k (for some value k > 0), and described a DP algo-

rithm that is linear in the number of vertices and exponential in k. Li [2009] presented

a DP algorithm based on a bi-directional resource-bounded label correcting algorithm
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(see Righini and Salani [2006]); Li reported the solutions of instances involving up to

233 vertices and solved a number of open instances to optimality.

Branch-and-cut methods for the TSPTW were proposed by Ascheuer et al. [2001] and,

recently, by Dash et al. [2012]. Ascheuer et al. [2001] described heuristic algorithms

and branch-and-cut methods to solve a real-world application, called stacker crane

optimization, that can be modeled as TSPTW. The cutting plane algorithms described

by Ascheuer et al. [2001] use three alternative integer programming formulations of

the TSPTW and are based on the formulations and polyhedral analysis presented in

Ascheuer et al. [2000]. Ascheuer et al. [2001] reported computational results for real-

world instances with up to 233 vertices, showing that most TSPTW instances with up

to 70 vertices can be solved to optimality by any of the three models. Dash et al. [2012]

introduced an extended formulation for the TSPTW based on partitioning the time

windows into sub-windows, called buckets; they described a branch-and-cut algorithm

that uses the valid inequalities described in Ascheuer et al. [2000, 2001] and new valid

inequalities specific for the bucket formulation. Dash et al. reported the solutions of

instances with up to 233 vertices and solved a number of open instances.

Focacci et al. [2002] proposed a hybrid approach for solving the TSPTW merging

constraint programming algorithms and optimization techniques to compute bounds

on the optimal solution value. Their algorithm solved instances with up to 69 vertices.

Heuristic algorithms were proposed, among others, by Gendreau et al. [1998], Wolfler

Calvo [2000], Ohlmann and Thomas [2007], López Ibáñez and Blum [2010], and da

Silva and Urrutia [2010].

3.3 An Exact Algorithm for the TSPTW

We assume that matrix tij satisfies the triangle inequality, so the time windows and

the arc set A can be reduced by using the reduction rules described by Dash et al.

[2012] and summarized in the following.

We denote by ~G = (V ′, ~A) the precedence digraph, where arc (i, j) ∈ ~A indicates that

vertex i ∈ V ′ must precede vertex j ∈ V ′ in any salesman tour. The arc set ~A is

obtained by (i) setting ~A = Γp ∪ Γ−1
q and adding arc (i, j) ∈ A to ~A for any couple

of vertices i, j ∈ V such that ej + tji > li; (ii) adding, to ~A, any arc (i, j) ∈ A if

there exists a vertex k ∈ V \ {i, j} such that both arcs (i, k) and (k, j) belong to ~A.

The latter operation is repeated until no more arcs are added to ~A. Then, for any arc

(i, j) ∈ ~A, the arc (j, i) is removed from the arc set A of graph G because it cannot

belong to any salesman tour.

We indicate with ~Γi ⊆ V ′, i ∈ V ′, the set of successors and with ~Γ−1
i ⊆ V ′, i ∈ V ′, the

set of predecessors of vertex i ∈ V ′ in graph ~G. With each arc (i, j) ∈ A, we associate
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a time ~tij , which represents a lower bound on the minimum time spent between the

visits to vertices i and j in any salesman tour, computed as the cost of the longest

path in ~G from vertex i to vertex j using travel time tij as cost of arc (i, j) ∈ ~A. We

assume ~tii = 0, i ∈ V .

A forward path F = (p, i1, . . . , ik = σF ) is an elementary path that starts from vertex

p at time ep, visits vertices V (F ) = {p, i1, . . . , ik} within their time windows, and ends

at vertex σF at time tF ∈ [eσF , lσF ]. The cost, c(F ), of a forward path F is the sum of

the costs of the traversed arcs. Let f(S, t, i) be the cost of a least-cost forward path F

that visits the set of vertices S ⊆ V ′ and ends at vertex i ∈ S at time t ∈ [ei, li]. The

cost z∗ of a TSPTW optimal solution is given by

z∗ = min
t∈[eq ,lq ]

{f(V ′, t, q)}.

Let Ω(t, j, i), j, i ∈ V ′, t ∈ [ei, li], be the set of departure times from vertex j to arrive

at vertex i at time t if j is visited immediately before i. The set Ω(t, j, i) is defined as

Ω(t, j, i) =

{
t′ : t′ ∈ [ej ,min{lj , t− tji}]}, if t = ei,

t− tji : t− tji ∈ [ej , lj ], if t ∈ (ei, li].

Functions f(S, t, i) can be computed with DP on a graph GF = (F ,AF ) as follows.

The vertex set F represents the states of the DP recursion and is defined as

F = {(S, t, i) : S ⊆ V ′, i ∈ S, t ∈ [ei, li]}.

The arc set AF represents the transitions of the DP recursion and is defined as

AF = {((S′, t′, j), (S, t, i)) : (S′, t′, j), (S, t, i) ∈ F , S′ = S\{i}, t′ ∈ Ω(t, j, i), j ∈ Γ−1
i ∩S}.

A possible DP recursion for computing functions f(S, t, i) is

f(S, t, i) = min
(S′,t′,j)∈F : ((S′,t′,j),(S,t,i))∈AF

{f(S′, t′, j) + dji}, (S, t, i) ∈ F . (3.1)

It is required to initialize f({p}, ep, p) = 0 and f({p}, t, p) =∞, for each t ∈ (ep, lp].

The size of the path set F can be reduced by removing any state (S, t, i) ∈ F that

cannot lead to any optimal TSPTW solution according to the following rules.

Dominance 1. Let (S, t, i), (S, t′, i) ∈ F be two states such that f(S, t, i) ≥ f(S, t′, i)

and t > t′, then (S, t, i) is dominated by (S, t′, i).

Fathoming 1. Any state (S, t, i) ∈ F cannot lead to any feasible solution if (i) there

exists a vertex j ∈ V ′ \ S such that t+ ~tij > lj or (ii) ~Γ−1
i 6⊆ S.

Fathoming 2. Let zUB be an upper bound on the TSPTW, and let b(S, t, i) be a lower

bound on the cost of a least-cost path that starts from vertex i ∈ S at time t ∈ [ei, li],

visits each vertex in V ′ \ S within its time window, and ends at vertex q before time
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lq. Any state (S, t, i) such that f(S, t, i) + b(S, t, i) ≥ zUB cannot lead to any optimal

solution.

In §3.6, we describe three methods for computing bounding functions b(S, t, i) based

on three SSRs of recursion (3.1) and on a valid lower bound LB described in §3.5.

To avoid the a priori computation of an upper bound zUB, we use an iterative algorithm

where, at iteration h, recursion (3.1) is computed and Fathoming 2 is applied using a

not necessarily valid upper bound zhUB. The exact algorithm can be outlined as follows.

Step 1. Compute a lower bound LB as described in §3.5, and set z0
UB = LB. Initialize

h = 1, θ = max{d10−3LBe, 1}, and z1
UB = dLBe+ θ.

Step 2. Compute DP recursion (3.1) by using the bounding functions b(S, t, i) de-

scribed in §3.6 and zhUB instead of zUB in Fathoming 2.

Step 3. There are two possible cases.

i) No state (V ′, t, q), with t ∈ [eq, lq], was generated (this happens if z∗ >

zhUB). Set h = h+ 1, zhUB = zh−1
UB + θ, and go to Step 2.

ii) At least a state (V ′, t, q), with t ∈ [eq, lq], was generated. The optimal

TSPTW solution cost is z∗ = mint∈[eq ,lq ]{f(V ′, t, q)}.

The algorithm can terminate prematurely at iteration h, while computing recursion

(3.1) at Step 2, if the number of generated states exceeds the computer memory avail-

able. In this case, zh−1
UB represents a valid lower bound on the TSPTW.

3.4 Relaxations of the TSPTW

We describe three relaxations of salesman tours, called t-tour, ng-tour and ngL-tour

relaxations, that are used to compute valid lower bounds on the TSPTW and bounding

functions b(S, t, i) used by Fathoming 2.

3.4.1 The t-Tour Relaxation

The t-tour relaxation was introduced by Christofides et al. [1981c]. This relaxation

provides function f(t, i) that corresponds to the cost of a least-cost nonnecessarily

elementary path, called (t, i)-path, that starts from vertex p at time ep, visits a set

of vertices (without two-vertex loops) within their time windows, and ends at vertex

i ∈ V ′ at time t ∈ [ei, li]. The DP recursion for computing functions f(t, i) is described

in Christofides et al. A t-tour is the (t∗, q)-path such that f(t∗, q) = mint∈[eq ,lq ]{f(t, q)}.
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3.4.2 The ng-Tour Relaxation

In general, the t-tour relaxation does not provide any detailed knowledge of the path

of cost f(t, i), so additional conditions to ensure that such path provides a feasible

solution to the original problem cannot be imposed. To alleviate this drawback, we

introduce the ng-path relaxation that consists of partitioning the set of all possible

(t, i)-paths ending at vertex i ∈ V ′ at time t ∈ [ei, li] according to a mapping function

that associates with each (t, i)-path a subset of the visited vertices depending on the

order in which they are visited. The subset of vertices associated with each ng-path is

used in the DP recursion to impose partial elementarity. The ng-tour relaxation can

be described as follows.

Let Ni ⊆ V ′ be a set of selected vertices for vertex i ∈ V ′ (according to some criterion)

such that i ∈ Ni and |Ni| ≤ ∆(Ni), where ∆(Ni) is a parameter. The sets Ni allow

us to associate, with each forward path F = (p, i1, . . . , ik = σF ), the set ΠF ⊆ V (F )

containing vertex ik and every vertex ir ∈ V (F ), r = 1, .., k − 1, that belongs to all

sets Nir+1 , . . . , Nik associated with the vertices ir+1, . . . , ik visited after ir in path F .

Formally, the set ΠF is defined as

ΠF = {ir ∈ V (F ) \ {ik} : ir ∈
k⋂

s=r+1

Nis}
⋃
{ik}.

A forward ng-path (NG, t, i) is a nonnecessarily elementary path F = (p, i1, . . . , ik−1,

ik = i) that starts from vertex p at time ep, visits a set of vertices (each once or more)

within their time windows, ends at vertex i ∈ V ′ at time t ∈ [ei, li], and such that

NG = ΠF and i /∈ ΠF ′ , where F ′ = (p, i1, . . . , ik−1) is an ng-path.

Notice that an ng-path can contain a loop (ir = j, ir+1, . . . , ir+s = j) for s ≥ 2 if and

only if there exists at least one index k such that 2 ≤ k ≤ s− 1 and j /∈ Nir+k .

An example of ng-path is the following. Consider path F = (p, 1, 2, 3, 4, 1). The

corresponding path F ′ is F ′ = (p, 1, 2, 3, 4). Suppose that sets Ni, i = 1, 2, 3, 4, are

defined as N1 = {1, 3, 4}, N2 = {1, 2, 5}, N3 = {1, 3, 4}, N4 = {2, 3, 4}. The set ΠF ′

contains vertices 3 and 4 only because 1 /∈ N2 ∩ N3 ∩ N4 and 2 /∈ N3 ∩ N4 whereas

3 ∈ N4 and 4 is the last vertex visited by path F ′. Being elementary, path F ′ is clearly

an ng-path. Thus, because 1 /∈ ΠF ′ , path F is an ng-path. Moreover, the set ΠF

contains vertices 1, 3 and 4 only because 2 /∈ N3 ∩ N4 ∩ N1 whereas 3 ∈ N4 ∩ N1,

4 ∈ N1 and 1 is the last vertex visited by path F ; this means that path F can be

propagated towards all vertices but 1, 3 and 4.

We denote by f(NG, t, i) the cost of a least-cost forward ng-path (NG, t, i). Any

(NG, t, q)-path ending at vertex q at time t ∈ [eq, lq] is called ng-tour.



Chapter 3 Traveling Salesman Problem with Time Windows 35

A valid lower bound LB on the TSPTW is given by

LB = min
t∈[eq ,lq ], NG⊆Nq

{f(NG, t, q)} ≤ z∗. (3.2)

Functions f(NG, t, i) can be computed with DP on a graph ĜF = (F̂ , ÂF ). The vertex

set F̂ represents the states of the DP recursion and is defined as

F̂ = {(NG, t, i) : i ∈ V ′, t ∈ [ei, li], ∀NG ⊆ Ni s.t. NG 3 i}.

The arc set ÂF represents the transitions of the DP recursion and is defined as

ÂF = {((NG′, t′, j), (NG, t, i)) : (NG′, t′, j), (NG, t, i) ∈ F̂ ,

j ∈ Γ−1
i , t′ ∈ Ω(t, j, i), ∀NG′ ⊆ Nj s.t. NG′ 3 j and NG′ ∩Ni = NG \ {i}}.

A possible DP recursion for computing functions f(NG, t, i) is

f(NG, t, i) = min
(NG′,t′,j)∈F̂ : ((NG′,t′,j),(NG,t,i))∈ÂF

{f(NG′, t′, j) + dji}, (NG, t, i) ∈ F̂ .

(3.3)

Notice that the condition NG′ ∩Ni = NG \ {i} in the definition of ÂF imposes that

functions f(NG, t, i) are computed by propagating functions f(NG′, t′, j) such that

i /∈ NG′. Moreover, notice that the following inequality holds for each forward path F

c(F ) ≥ min
NG⊆V (F )∩NσF

{f(NG, tF , σF )}.

It is required to initialize f({p}, ep, p) = 0 and f({p}, t, p) =∞, for each t ∈ (ep, lp].

An optimal ng-tour is the ng-path (NG∗, t∗, q) such that

f(NG∗, t∗, q) = min
(NG,t,q)∈F̂

{f(NG, t, q)}. (3.4)

The size of the state set F̂ can be reduced by removing, via the following dominance

rule, any state that cannot lead to an optimal ng-tour.

Dominance 2. Let (NG, t, i), (NG′, t′, i) ∈ F̂ such that f(NG, t, i) ≥ f(NG′, t′, i),

NG ⊇ NG′, t > t′. State (NG, t, i) is dominated by (NG′, t′, i).

Notice that a stronger version of Dominance 2 can be obtained by replacing the con-

dition t < t′ with t ≤ t′. However, we found it to be computationally convenient to

apply Dominance 2 instead of this stronger version.

The decremental state-space relaxation introduced by Righini and Salani [2008] and

the partial elementarity relaxation introduced by Desaulniers et al. [2008] are special
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cases of the ng-path relaxation. These relaxations can be obtained by setting Ni = V̂ ,

for each vertex i ∈ V ′, where V̂ ⊆ V ′ is a selected set of vertices.

Choosing the sets Ni of selected vertices. Lower bound LB computed by expres-

sion (3.2) depends on the sets Ni, i ∈ V ′. If Ni = V ′, for each vertex i ∈ V ′, functions

f(NG, t, i) provide the costs of least-cost elementary paths and the optimal ng-tour

provided by expression (3.4) corresponds to an optimal TSPTW solution.

The computational results of §3.7 were obtained by defining the sets Ni, i ∈ V ′, as

follows. We set Np = {p} and Nq = {q}, and define Ti = {j ∈ Γi ∩ Γ−1
i : tij =

0 or tji = 0}, for each vertex i ∈ V (notice that the set Ti contains vertex i). First,

we set Ni = Ti, for each vertex i ∈ V . Then, for each vertex i ∈ V such that

|Ni| < ∆(Ni), we add, to Ni, the (∆(Ni)− |Ti|)-nearest vertices to i belonging to the

set V \ Ti according to travel times tij .

Notice that recursion (3.3) allows ng-paths to contain two-vertex loops, which can be

eliminated with the method described by Christofides et al. [1981c]. Nonetheless, we

do not implement this method because of the additional memory required and because,

in practice, whenever sets Ni, i ∈ V ′, are defined as above and parameter ∆(Ni) is

equal to 11 or 13, the resulting (NG, t, i)-paths rarely contain two-vertex loops.

Implementation issues. How the DP recursion (3.3) is computed and how Domi-

nance 2 is tested affect the effectiveness of the whole solution process. We decided to

compute (3.3) with a forward DP recursion using the variable state t (i.e., the time)

as stage. At stage t, the order in which states are propagated is defined by a queue

where states having time t are maintained.

To apply Dominance 2, we use an additional function Ft(NG, i), i ∈ V , NG ⊆
Ni s.t. NG 3 i, that represents the cost of a least-cost state (NG, t′, i) ∈ F̂ with

t′ < t (i.e., Ft(NG, i) = mint′∈[ei,t){f(NG, t′, i) : (NG, t′, i) ∈ F̂}). Let B(NG, i) =

{NG′ ⊆ NG : NG′ 3 i}, for each vertex i ∈ V and each set NG ⊆ Ni s.t. NG 3 i.
Because we use values of parameter ∆(Ni) less than or equal to 13, the sets B(NG, i)

can be computed by complete enumeration before starting the DP recursion. From the

definitions of Ft(NG, i) and B(NG, i), we derive that a state (NG, t, i) is dominated

according to Dominance 2 if f(NG, t, i) ≥ minNG′∈B(NG,i){Ft(NG′, i)}. Notice that

function Ft(NG, i) can be recursively computed as

Ft(NG, i) = min{Ft−1(NG, i), f(NG, t− 1, i)}, i ∈ V, NG ⊆ Ni s.t. NG 3 i.

3.4.3 The ngL-Tour Relaxation

In the case of the TSPTW, the ng-tour relaxation can be enhanced by forcing any ng-

tour to visit each vertex of a selected subset of vertices exactly once while satisfying

the precedence constraints imposed for such vertices by the precedence digraph ~G.



Chapter 3 Traveling Salesman Problem with Time Windows 37

Consider a path L = (p = i0, i1, . . . , ih = q) in ~G from vertex p to vertex q. Because

any arc (i, j) ∈ ~A of graph ~G implies that vertex i must be visited before vertex j in

any salesman tour, the h arcs of path L decompose any salesman tour in h subpaths

Pik−1ik , k = 1, . . . , h, where Pik−1ik corresponds to the subpath of the salesman tour

that starts from vertex ik−1, visits each vertex of subset Sk ⊆ V ′ \ V (L) exactly once,

and ends at vertex ik. Thus, any salesman tour is made up of any collection of h

subpaths Pik−1ik , k = 1, . . . , h, such that ∪hk=1Sk = V ′ \V (L). For a given path L of ~G

defined as above, we can force any ng-tour to visit, exactly once, each vertex i ∈ V (L)

as described in the following.

Let Vk be the set of vertices that must or can be visited in between vertices ik−1 and

ik (ik−1, ik ∈ L). For each k = 1, . . . , h, we have

Vk = {j ∈ V \ {ik−1} : eik−1
+ ~tik−1j ≤ lj and max{eik−1

+ ~tik−1j , ej}+ ~tjik ≤ lik}.

Notice that Vk ∩ V (L) = ik.

A forward ngL(k)-path is an ng-path (NG, t, i) that ends at vertex i ∈ Vk at time

t ∈ [ei, li], and such that each vertex j ∈ {i0, i1, . . . , ik−1} is visited exactly once. An

ngL-tour is an ngL(h)-path (NG, t, q).

Let F̂k = {(NG, t, i) ∈ F̂ : i ∈ Vk} be the subset of states corresponding to the

forward ngL(k)-paths, and let fk(NG, t, i) be the cost of a least-cost ngL(k)-path

(NG, t, i) ∈ F̂k.

Functions fk(NG, t, i), k = 1, . . . , h, i ∈ V ′, NG ⊆ Ni s.t. NG 3 i, t ∈ [ei, li], can be

computed with the following iterative procedure that, for each k = 1, . . . , h, performs

the following operations

a) Initialize fk(NG, t, ik−1) = fk−1(NG, t, ik−1), for each state (NG, t, ik−1) ∈ F̂k−1,

and fk(NG, t, i) =∞, for each state (NG, t, i) ∈ F̂k. We assume f0({p}, ep, p) = 0

and f0({p}, t, p) =∞, for each t ∈ (ep, lp];

b) Compute fk(NG, t, i), (NG, t, i) ∈ F̂k, as follows

fk(NG, t, i) = min
(NG′,t′,j)∈F̂k : j∈Γ−1

i , t′∈Ω(t,j,i),
NG′⊆Nj s.t. NG′3j,NG′∩Ni=NG\{i}

{fk(NG′, t′, j) + dji}. (3.5)

Because of the initialization and of the definition of the sets Vk, k = 1, . . . , h, any

ngL(h)-path corresponding to fh(NG, t, q) visits every vertex of the set V (L) exactly

once.

An optimal ngL-tour is the ngL(h)-path (NG∗, t∗, q) ∈ F̂h such that

fh(NG∗, t∗, q) = min
(NG,t,i)∈F̂h

{fh(NG, t, i)}.
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The value fh(NG∗, t∗, q∗) depends on the path L of ~G used. In our computational

experiments, the path L was chosen as the path in ~G from vertex p to vertex q of

maximal cardinality in order to maximize the number of vertices visited exactly once

by any ngL-tour.

The following dominance rule, similar to Dominance 2 described in §3.4.2 for the ng-

tour relaxation, can be used to reduce the size of each state sets F̂k, k = 1, . . . , h.

Dominance 3. Let (NG, t, i), (NG′, t′, i) ∈ F̂k be such that fk(NG, t, i) ≥ fk(NG′, t′, i),
NG′ ⊇ NG, t > t′. State (NG, t, i) is dominated by (NG′, t′, i) and can be removed

from F̂k.

3.5 A Valid Lower Bound LB on the TSPTW

In this section, we describe lower bounds on the TSPTW based on the three tour

relaxations described in §3.4.

Let Ĥ be the index set of the tours of a given tour relaxation of G (i.e., t-tour or

ng-tour or ngL-tour). For each tour ` ∈ Ĥ , we denote by ai` the number of times

vertex i ∈ V is visited by tour ` ∈ Ĥ and by c` its cost. Associate a penalty ui ∈ R
with each vertex i ∈ V , and let u = (u1, . . . , un). For a given penalty vector u, a valid

lower bound LR(u) on the TSPTW is given by

LR(u) = min
`∈Ĥ

{
c` −

∑
i∈V

ai`ui

}
+
∑
i∈V

ui.

A better lower bound LB on the TSPTW can be computed by using subgradient

optimization to solve the following Lagrangean dual problem LD

(LD) z(LD) = max
u∈Rn

{LR(u)}.

Solving problem LD by usual subgradient optimization requires to find, at each iter-

ation, an optimal value of problem LR(u) for a given penalty vector u. The optimal

value of problem LR(u) is computed with the DP recursion associated with the tour re-

laxation chosen by replacing arc costs dij with d′ij = dij−uj , for each arc (i, j) ∈ A\Aq,
and d′iq = diq, for each arc (i, q) ∈ Aq, where Aq = {(i, q) : i ∈ Γ−1

q }.
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Problem LD is equivalent to the following linear program D

(D) z(D) = max u0 +
∑
i∈V

ui, (3.6)

s.t. u0 ≤ c` −
∑
i∈V

ai`ui, ` ∈ Ĥ , (3.7)

u0 ∈ R, (3.8)

ui ∈ R, i ∈ V. (3.9)

Dualizing D, we obtain the following problem P

(P ) z(P ) = min
∑
`∈Ĥ

c`x`, (3.10)

s.t.
∑
`∈Ĥ

ai`x` = 1, i ∈ V, (3.11)

∑
`∈Ĥ

x` = 1, (3.12)

x` ≥ 0, ` ∈ Ĥ . (3.13)

Problem P seeks a minimum-weight convex combination of tours such that each vertex

i ∈ V has, on average, degree one. Notice that variables ui ∈ R, i ∈ V , and u0 ∈ R of

problem D represent the dual variables of constraints (3.11) and (3.12), respectively.

Problem P can be solved by column generation where, at each iteration, tours of

negative reduced cost with respect to the dual solution of the current master problem

must be computed. In our computational experiments, we found that this method of

solving P requires fewer iterations than solving LD with subgradient optimization.

To solve P , we use a column generation procedure that differs from standard column

generation methods because the master problem is not solved with the simplex but

using a dual-ascent heuristic procedure. The procedure computes lower bound LB1

corresponding to a P dual solution u1 = (u1
0, u

1
1, . . . , u

1
n).

Below we describe how we initialize the master problem, the method for solving the

master problem, and the procedure for solving the pricing problem.

3.5.1 Initializing the Master Problem

The initial master problem contains a small subset of elementary but nonnecessarily

Hamiltonian tours that are generated as follows. The procedure consists of executing

a limited number of subgradient iterations to solve problem LD. The optimal tour

found at each iteration is made elementary and then added to the master. At the end,

the procedure provides a lower bound LB0 and a corresponding solution of problem

LD. The procedure can be described as follows.
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• Set LB0 = 0. Initialize the Lagrangean penalties µi ∈ R, i ∈ V , as µi = 0.

• Perform Maxit0 iterations of the following subgradient method.

a) Define d′ij = dij −µj , for each arc (i, j) ∈ A \Aq, and d′iq = diq, for each arc

(i, q) ∈ Aq.

b) Find the tour `∗ ∈ Ĥ (i.e., t-tour or ng-tour or ngL-tour) of minimum cost,

c′`∗ , with respect to the modified arc costs d′ij .

c) If c′`∗ +
∑

i∈V µi > LB0, update LB0 = c′`∗ +
∑

i∈V µi, and set µ0
i = µi, for

each vertex i ∈ V .

d) Add, to the master problem, the elementary but nonnecessarily Hamiltonian

tour derived, from tour of index `∗, by removing the visits to the vertices

that have already been visited in the tour.

e) Because in any salesman tour each vertex i ∈ V must be visited exactly

once, update penalties µi, i ∈ V , using usual subgradient expressions setting

zUB = 1.2 (c′`∗ +
∑

i∈V µi) in computing the step size.

Notice that u0 = (u0
0, u

0
1, . . . , u

0
n), where u0

i = µ0
i , i ∈ V , and u0

0 = LB0 −
∑

i∈V µi,

represents a feasible solution of problem D of cost LB0.

3.5.2 Solving the Master Problem

Instead of solving the master problem with the simplex, we use a dual-ascent heuristic

based on the following theorem.

Theorem 1. Let λ = (λ0, λ1, . . . , λn) be a vector of n + 1 penalties, where penalties

λi ∈ R, i ∈ V , are associated with constraints (3.11) and penalty λ0 with constraint

(3.12). A feasible dual solution u of problem P of cost z(P (λ)) = u0 +
∑

i∈V ui is

obtained as

ui = min
`∈Ĥ : ai`≥1

{
c`−λ0−

∑
i∈V ai`λi∑

i∈V ai`

}
+ λi, i ∈ V

u0 = λ0

}
. (3.14)

Proof. Consider a tour ` ∈ Ĥ . From expression (3.14), we derive

ui ≤
c` − λ0 −

∑
i∈V ai`λi∑

i∈V ai`
+ λi, i ∈ V : ai` ≥ 1.

Thus, for each tour ` ∈ Ĥ , the following relation holds

∑
i∈V

ai`ui ≤
∑
i∈V

ai`(c` − λ0 −
∑

i∈V ai`λi)∑
i∈V ai`

+
∑
i∈V

ai`λi = c` − λ0 = c` − u0,
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which corresponds to constraint (3.7) for tour ` ∈ Ĥ∑
i∈V

ai`ui ≤ c` − u0.�

To find a near-optimal solution u′ of the current master problem, we perform Maxit1

subgradient iterations to modify the penalty vector λ. Baldacci et al. [2008] showed

that a valid subgradient of function z(P (λ)) at point λ can be computed by associating

with the current solution u′′ a nonnecessarily feasible solution x′′ of the current master

problem such that z(P (λ)) =
∑

`∈Ĥ
c`x
′′
` defined as follows.

Let `(i) ∈ Ĥ be the index of the tour associated with ui, i ∈ V , in expressions (3.14).

Define variables ξi` ∈ {0, 1}, ` ∈ Ĥ , i ∈ V , as ξi`(i) = 1, for each vertex i ∈ V , and

ξi` = 0, for each vertex i ∈ V and each tour ` ∈ Ĥ \ {`(i)}. The solution x′′ is

computed as x′′` =
∑

i∈V
ai`ξ

i
`∑

i∈V ai`
, for each tour ` ∈ Ĥ .

Let αi, i ∈ V , and α0 denote the values of the left-hand-side of constraints (3.11) and

(3.12) with respect to solution x′′, respectively. The values of αi, i ∈ V , and α0 are

used to update the penalty vector λ by means of the usual subgradient expressions,

where zUB = 1.2 z(P (λ)). We denote by u′ the final dual solution of the current

master problem of cost z(P (λ)) achieved by the procedure described above.

3.5.3 Solving the Pricing Problem

The pricing problem consists of finding a tour of minimum reduced cost with respect

to the current dual solution u′ of the master. Define the modified arc cost d′ij as

d′ij =

{
dij − u′j , (i, j) ∈ A \Aq,
diq − u′0, (i, q) ∈ Aq.

The reduced cost c′` = c`−
∑

i∈V ai`u
′
i−u′0 of tour ` ∈ Ĥ with respect to u′ is equal to

the cost of the tour (i.e., t-tour or ng-tour or ngL-tour) using the modified arc costs d′ij
instead of dij . Therefore, to compute the tour of minimum reduced cost with respect

to u′, it is sufficient to compute the associated DP recursion using d′ij instead of dij .

If the cost of the minimum reduced cost tour is negative, the tour is added to the

master problem and the bounding procedure performs another iteration; otherwise,

u′ is a feasible dual solution of problem P of cost z(P (λ)), so the best-known lower

bound LB1 is update as LB1 = z(P (λ)) and u1 = u′ if LB1 ≤ z(P (λ)). The bounding

procedure terminates after a number of macro-iteration.
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3.6 Computing Bounding Functions b(S, t, i)

In this section, we describe how to compute bounding functions b(S, t, i), introduced

in §3.3, to reduce the state-space graph associated with the DP recursion (3.1).

We define a backward path B = (σB = ik, ik+1, . . . , ih, q) as a path that starts from

vertex σB at time tB ∈ [eσB , lσB ], visits each vertex in V (B) = {ik, ik+1, . . . , ih, q}
within its time window, and ends at vertex q before time lq.

Consider the forward path F associated with f(S, t, i). The least-cost salesman tour

containing F is obtained by adding, to F , a least-cost backward path B of cost c(B)

that starts from vertex i at time t′ ∈ [t, li] and visits all vertices V ′ \ S.

The method to compute functions b(S, t, i) is based on the following proposition. For

a D solution (u1, w1) providing lower bound LB1, define the modified arc costs d1
ij as

d1
ij =

{
dij − u1

j , (i, j) ∈ A \Aq,
diq, (i, q) ∈ Aq.

Proposition 1. Let lb(S, t, i) be a lower bound on the cost, using arc costs d1
ij instead

of dij , of any backward path that starts from vertex i ∈ V at time t′ ∈ [t, li]. A valid

lower bound on the cost c(B) of a least-cost backward path B that starts from vertex

i ∈ V at time t′ ∈ [t, li] and visits vertices V ′ \ S is given by

b(S, t, i) = lb(S, t, i) +
∑
j∈V \S

u1
i . (3.15)

Proof. Let c1(B) be the cost of backward path B using arc costs d1
ij . From the definition

of lb(S, t, i), we have

lb(S, t, i) ≤ c1(B). (3.16)

Because B visits each vertex j ∈ V \ S exactly once, then

c1(B) = c(B)−
∑
j∈V \S

u1
i . (3.17)

From expressions (3.15), (3.16) and (3.17) we obtain b(S, t, i) ≤ c(B). �

In the following, we describe three methods to compute lower bound lb(S, t, i) on c(B)

that are based on the three relaxations described in §3.4.

A backward (t,i)-path is a nonnecessarily elementary path B that starts from vertex

i ∈ V ′ at time t ∈ [ei, li], visits a subset of vertices (each once or more) within their

time windows, and ends at vertex q before time lq. We denote by f−1(t, i) the cost of

a least-cost backward (t, i)-path without 2-vertex loops.
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A backward ng-path (NG,t,i) is a nonnecessarily elementary path B = (i = ik, ik+1, . . . ,

ih, iq) that starts from vertex i ∈ V ′ at time t ∈ [ei, li], visits a subset of vertices (each

once or more) within their time windows such that NG = Π−1(B), ends at vertex q

before lq, and such that i /∈ Π−1(B′), where path B′ is B′ = (ik+1, . . . , ih, iq) and must

be a backward ng-path. For each backward path B, the set Π−1(B) is defined as

Π−1(B) = {ir : ir ∈
r−1⋂
s=k

Nis , r = k + 1, . . . , h}
⋃
{ik}.

We denote by f−1(NG, t, i) the cost of a least-cost backward ng-path (NG, t, i).

An example of backward ng-path (NG,t,i) is the following. Let B = (9, 6, 7, 8, 9, 0) be

a backward path that starts from vertex 9, and let N6 = {6, 7, 8}, N7 = {6, 7, 8}, N8 =

{7, 8, 9} and N9 = {6, 7, 9}. Thus, path B′ is B′ = (6, 7, 8, 9, 0) and Π(B′) = {6, 7, 8}
because 6 is the first visited vertex and 7 ∈ N6, 8 ∈ N6 ∩N7, and 9 /∈ N6 ∩N7 ∩N8.

Because B′ is an ng-path and 9 /∈ Π(B′), B is an ng-path.

For a given longest path L = (i0 = p, i1, . . . , ik, ik+1, . . . , ih, ih+1 = q), let V̄k be

the subset of vertices that must or can be visited in between vertices ik and ik+1,

k = 0, . . . , h, that is

V̄k = {j ∈ V \ {ik+1} : eik + ~tikj ≤ lj and max{eik + ~tikj , ej}+ ~tjik+1
≤ lik+1

}.

A backward ngL(k)-path (NG,t,i) is a backward ng-path that starts from vertex i ∈ V̄k
and visits the vertices {ik+1, . . . , ih, iq} exactly once. We denote by f−1

k (NG, t, i) the

cost of a least-cost backward ngL(k)-path.

Functions f−1(t, i), f−1(NG, t, i) and f−1
k (NG, t, i) can be computed with the same

DP recursions used to compute f(t, i), f(NG, t, i) and f(NG, k, t, i) on the TSPTW

instance resulting from the following operations: (i) for each vertex i ∈ V ′, replace

time window [ei, li] with time window [lq − li, lq − ei]; (ii) replace the cost and time

matrices [dij ] and [tij ] with their transposed matrices [dij ]
T and [tij ]

T .

Let functions f−1(t, i), f−1(NG, t, i) and f−1
k (NG, t, i) be computed replacing the arc

costs dij with d1
ij . These functions allow for the computing of the lower bound lb(S, t, i)

as follows

a) From functions f−1(t, i), we derive

lb(S, t, i) = min
t′∈[t,li]

{
f−1(t′, i)

}
.

b) From functions f−1(NG, t, i), we derive

lb(S, t, i) = min
NG⊆Ni : NG3i, NG∩S={i},

t′∈[t,li]

{
f−1(NG, t′, i)

}
.
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c) From functions f−1
k (NG, t, i), we derive

lb(S, t, i) = min
NG⊆Ni : NG3i, NG∩S={i},

t′∈[t,li]

{
f−1
k′ (NG, t′, i)

}
,

where k′ is defined as follows

i) i /∈ V (L): k′ is the index of the first vertex ik′ of the longest path L such that

ik′ /∈ S;

ii) i ∈ V (L): k′ is the index of the vertex of L such that ik′ = i.

3.7 Computational Results

This section reports on the computational experiments of our algorithm, which was

implemented in C and compiled with Visual Studio 2008. The runs were performed

on a Sony Vaio P8400 (Intel Core 2 Duo, 2.26 GHz), equipped with 4 GB of RAM.

We denote by BMR.ng the exact algorithm of §3.3 using either the ng-tour or the ngL-

tour relaxations, according to the criterion described in §3.7.1, in computing the lower

bound and the bounding functions b(S, t, i). We denote by BMR.t the exact method

when the t-tour relaxation is used in computing the lower bound and the bounding

functions.

We tested both BMR.ng and BMR.t on the seven classes of instances available at http:

//iridia.ulb.ac.be/~manuel/tsptw-instances and the class proposed by Mingozzi

et al. [1997]. The classes proposed by Langevin et al. [1993], Dumas et al. [1995], and

Mingozzi et al. [1997] were easily solved (the most difficult instance was solved in 12

seconds by BMR.ng), so relative results are omitted. The results on the other five

classes are reported in the following and compared with the following state-of-the-art

exact methods:

• the branch-and-cut of Ascheuer et al. [2001] (hereafter AFG) - runs performed

on a Sun Sparc Station 10 with a time limit (tl) of 5 hours (i.e., tl = 18,000

seconds);

• the constraint programming based method of Focacci et al. [2002] (hereafter

FLM) - Pentium III 700 MHz with 128 MB of RAM (tl = 1,800 seconds). The

results reported in the tables are, on each instance, the best achieved by the two

versions of their method (i.e., AP-bound and Lagrangean-bound).

• the branch-and-cut of Dash et al. [2012] (hereafter DGLT) - workstation Intel

2.40 GHz running under Suse Linux 10.1 (tl = 18,000 seconds);

http://iridia.ulb.ac.be/~manuel/tsptw-instances
http://iridia.ulb.ac.be/~manuel/tsptw-instances
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Table 3.1: Results of BMR.ng on a representative set of instances

Inst |V ′| |L| Prec z∗ Rel ∆(Ni) LB %LB TLB |F | Ttot

n150w120.002 152 13 77.8 677 ng 11 663.3 97.98 69.7 - -

ng 13 663.8 98.05 124.8 - -

ngL 11 668.0 98.66 77.2 14,473 211.3

ngL 13 668.4 98.73 130.5 12,149 260.6

n200w120.005 202 14 79.6 840 ng 11 827.5 98.51 155.0 - -

ng 13 828.9 98.68 195.1 - -

ngL 11 831.5 98.99 204.9 - -

ngL 13 833.2 99.19 237.4 29,072 574.3

rbg152.3 152 12 81.3 1,539 ng 11 1,536.2 99.82 47.3 22,015 192.5

ng 13 1,536.7 99.85 64.7 17,387 206.7

ngL 11 1,537.7 99.92 73.3 17,191 201.9

ngL 13 1,538.2 99.95 81.5 14,151 213.2

rbg233.2 233 22 90.9 2,188 ng 11 2,187.0 99.95 72.1 9,200 124.8

ng 13 2,187.0 99.95 92.2 8,906 136.9

ngL 11 2,187.0 99.95 231.1 6,750 364.3

ngL 13 2,187.0 99.95 253.3 5,265 359.6

• the DP algorithm of Li [2009] (hereafter LI) - Lenovo Thinkstation with 4 Intel

processors at 2 GHz, 4 BG of RAM and a Linux operating system (no time limit

imposed).

These exact methods were not tested on all five instance classes. In the tables of this

section, “tl” indicates that the time limit was reached.

According to SPEC (http://www.spec.org/benchmarks.html), our machine is 10%

slower than that of Dash et al. [2012] and 10% faster than that of Li [2009]. No

benchmarks are available to compare our machine with those used by Ascheuer et al.

[2001] and Focacci et al. [2002]. Nevertheless, our machine is clearly faster (say, 6-10

times faster) than these two machines.

3.7.1 Parameter Setting

To find a parameter setting for BMR.ng on all instances, we performed preliminary

tests applying both ng-tour and ngL-tour relaxations and varying parameter ∆(Ni).

In Table 3.1, we present such results on a selected set of representative instances. The

columns report the instance name (Inst), the number of vertices of graph G (|V ′|),
the length of the longest path L of the precedence graph Ĝ (|L|), the percentage of

precedences (Prec) computed as Prec = 100 2|Â|
(n+2)(n+1) , and the optimal solution cost

(z∗). Then, we indicate the tour relaxation used (Rel), which can be either ng-tour

or ngL-tour, and the setting of parameter ∆(Ni). Finally, the lower bound achieved

(LB) is reported with the percentage (%LB = 100LB/z∗), the time (in seconds) to

compute the lower bound (TLB), the cardinality (in thousands) of the set F generated

by the exact algorithm of §3.3 (|F |), and the total computing time in seconds (Ttot).

http://www.spec.org/benchmarks.html


4
6

C
h
a
p
ter

3
T
rav

elin
g
S
alesm

an
P
rob

lem
w
ith

T
im

e
W

in
d
ow

s

Table 3.2: Results on easy Ascheuer instances

BMR.ng BMR.t AFG FLM DGLT LI

Inst |V ′| z∗ Prec LB %LB TLB |F | Ttot %LB Ttot %LB Ttot %LB Ttot %LB Ttot Ttot

rbg010a 12 149 72.7 149.0 100.0 0.1 0.1 99.5 0.8 99.3 0.1 99.3 0.0 100.0 0.0 0.1
rbg017 17 148 72.1 148.0 100.0 0.1 0.1 97.2 0.7 100.0 0.8 93.2 0.1 99.3 0.0 0.1
rbg017.2 17 107 41.2 107.0 100.0 0.1 0.1 100.0 0.6 100.0 0.0 93.5 0.0 100.0 0.0 19.9
rbg016a 18 179 83.0 179.0 100.0 0.1 0.1 100.0 2.2 98.9 0.2 93.3 0.1 100.0 0.0 0.1
rbg016b 18 142 56.9 142.0 100.0 0.2 0.2 95.9 4.8 93.7 8.8 88.7 0.1 97.2 0.2 0.1
rbg017a 19 146 49.1 146.0 100.0 0.3 0.3 100.0 0.4 100.0 0.1 100.0 0.1 100.0 0.0 10.3
rbg019a 21 217 91.9 217.0 100.0 0.2 0.2 100.0 0.4 100.0 0.0 100.0 0.0 100.0 0.0 0.1
rbg019b 21 182 61.4 182.0 100.0 0.3 0.3 99.4 2.8 98.9 54.5 96.2 0.2 99.5 0.3 0.2
rbg019c 21 190 45.7 190.0 100.0 0.5 0.5 98.5 1.4 95.8 8.7 94.2 0.3 96.8 0.9 35.3
rbg019d 21 344 78.1 344.0 100.0 0.3 0.3 98.8 2.6 99.7 0.7 98.3 0.0 100.0 0.2 0.1
rbg021 21 190 45.7 190.0 100.0 0.5 0.5 98.6 2.5 95.8 8.7 94.2 0.3 96.8 0.9 35.5
rbg021.2 21 182 43.3 182.0 100.0 0.4 0.4 100.0 0.8 100.0 0.2 98.4 0.2 100.0 0.1 48.0
rbg021.3 21 182 42.9 182.0 100.0 1.4 1.4 98.9 3.0 97.8 27.1 91.2 0.4 98.4 2.7 101.2
rbg021.4 21 179 40.5 179.0 100.0 1.2 1 1.4 99.7 2.2 98.9 5.8 92.7 0.3 100.0 0.2 692.8
rbg021.5 21 169 39.5 169.0 100.0 1.1 1.1 99.6 1.9 98.8 6.6 94.7 0.2 100.0 0.3 1,320.5
rbg021.6 21 134 24.3 134.0 100.0 0.6 1 0.7 100.0 1.4 99.3 1.3 95.5 0.7 100.0 0.3 7,876.4
rbg021.7 21 133 19.5 133.0 100.0 1.5 1 1.7 98.5 2.1 96.2 4.3 94.0 0.6 100.0 0.6 -
rbg021.8 21 132 18.6 132.0 100.0 1.6 15 1.8 98.4 2.3 97.7 17.4 97.0 0.6 98.5 2.8 -
rbg021.9 21 132 18.6 132.0 100.0 3.1 18 3.3 98.0 2.2 97.0 26.1 94.7 0.8 98.5 2.8 -
rbg020a 22 210 53.7 210.0 100.0 0.7 0.7 100.0 0.9 100.0 0.2 98.6 0.0 100.0 0.0 10.5
rbg027a 29 268 43.1 267.9 100.0 1.3 1 1.5 99.5 7.3 99.3 2.2 97.0 0.2 99.3 1.4 0.7
rbg031a 33 328 75.8 328.0 100.0 0.5 0.5 99.1 7.4 100.0 1.7 97.3 2.7 100.0 0.2 0.1
rbg033a 35 433 77.6 433.0 100.0 0.5 0.5 99.3 6.5 100.0 1.8 92.8 1.0 99.8 0.9 0.2
rbg034a 36 403 72.4 402.9 100.0 3.2 5 3.5 99.2 9.4 99.5 0.9 97.0 55.2 100.0 1.9 1.0
rbg035a 37 254 76.3 254.0 100.0 0.6 0.6 98.8 12.7 100.0 1.8 87.0 3.5 100.0 0.2 0.1
rbg035a.2 37 166 70.9 166.0 100.0 23.5 6 24.1 98.4 20.1 95.2 64.8 93.4 36.8 100.0 5.3 -
rbg038a 40 466 78.1 466.0 100.0 2.0 2.0 100.0 6.2 100.0 4,232.2 100.0 0.2 100.0 1.5 0.5
rbg040a 42 386 79.2 384.9 99.7 1.3 1 1.5 97.7 5.7 92.0 751.8 73.1 738.1 96.6 3.6 0.8
rbg050a 52 414 44.2 414.0 100.0 16.1 4 16.6 99.7 24.4 100.0 18.6 98.8 95.6 100.0 24.5 -
rbg055a 57 814 84.9 814.0 100.0 1.8 1 2.1 99.3 7.3 99.9 6.4 98.2 2.5 100.0 3.5 2.4
rbg067a 69 1,048 88.8 1,048.0 100.0 1.9 1 2.2 99.4 17.6 99.9 5.9 98.6 4.0 100.0 3.6 3.2
rbg125a 127 1,409 92.8 1,409.0 100.0 5.6 2 6.4 99.3 71.0 99.5 229.8 98.2 tl 100.0 9.6 3.5

Avg 100.0 2.3 2.4 99.1 7.2 98.5 171.5 95.0 30.5 99.4 2.1 376.4
Solved 32 32 32 31 32 27
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Table 3.1 shows that increasing parameter ∆(Ni) lets us compute better lower bounds

and generate smaller state-space graphs when solving the problem to optimality. None-

theless, because the complexity of computing the recursions 3.3 and 3.5 and testing

Fathoming 1 increases, the computing time to compute the lower bound and the total

computing time may increase.

The ngL-tour relaxation dominates the ng-tour relaxation but is more time consuming.

At the same time, the lower bound that can be achieved with the ngL-tour relaxation

is sometimes just slightly better or the same bound that can be achieved with the

ng-tour relaxation. In particular, we can see that the higher is the number of arcs in

the precedence digraph Ĝ (i.e., Prec), the lower is the increment of the lower bound

when applying ngL-tour relaxation instead of the ng-tour relaxation.

Notice that the ngL-tour relaxation allows us to solve a few instances that cannot

be solved with the ng-tour relaxation. Thus, BMR.ng uses the ng-tour relaxation if

Prec ≥ 80 and the ngL-tour relaxation otherwise.

In computing the lower bound LB (see §3.5.3), parameter ∆(Ni) was set equal to 11

when using the ng-tour relaxation and equal to 13 when using ngL-tour relaxation. In

computing bounding functions b(S, t, i) (see §3.6), parameter ∆(Ni) was set equal to

13 for both relaxations.

Finally, in the column generation method described in §3.5, for both BMR.ng and

BMR.t we set Maxit0 = 200 and Maxit1 = 150. In the exact method, due to memory

limits, the cardinality of the state set F is limited to 108. Both BMR.ng and BMR.t

terminate prematurely when this memory limit is reached.

3.7.2 Ascheuer Instances

The Ascheuer class consists of 50 asymmetric real-world instances with up to 233

vertices. Both travel costs and times are integer values. Travel times satisfy the

triangle inequality.

Like Dash et al. [2012], we present the results on this class dividing the 50 instances

into 32 easy instances (those solved by Ascheuer et al. [2001] within the time limit of

5 hours) and the remaining 18 hard instances.

Table 3.2 presents the computational results on easy instances. The columns mean

the same as in Table 3.1. For AFG, FLM and DGLT, column (%LB) reports the

percentage deviation of the lower bound at the root node of the decision tree. The

last two lines of the table indicate averages on the percentage deviation of the lower

bounds, the computing times of the instances solved to optimality and the number of

instances solved by each method.
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Table 3.3: Results on hard Ascheuer instances

BMR.ng BMR.t AFG FLM DGLT LI

Inst |V ′| z∗ Prec LB %LB TLB |F | Ttot %LB Ttot %LB %LB Ttot %LB Ttot Ttot

rbg041a 43 402 77.3 402.0 100.0 2.0 2.0 95.4 4.2 89.8 87.6 tl 97.5 146.8 2.2

rbg042a 44 411 71.6 411.0 100.0 6.6 6.6 97.7 5.0 95.9 90.0 149.8 98.3 188.3 35.6

rbg048a 50 487 47.8 487.0 100.0 12.3 12.3 100.0 14.7 93.2 91.2 tl 100.0 129.2 -

rbg049a 51 484 63.4 472.1 97.5 19.5 6 20.4 95.7 13.7 84.3 83.3 tl 95.9 tl -

rbg050b 52 512 61.1 504.8 98.6 19.1 2 19.9 96.5 8.1 87.3 87.1 tl 96.3 tl -

rbg050c 52 526 49.8 522.4 99.3 20.3 93 21.7 98.5 23.1 96.4 95.8 tl 98.3 tl -

rbg086a 88 1,051 91.7 1,050.0 99.9 2.1 1 2.5 99.1 14.5 99.1 97.3 tl 99.8 4.9 1.9

rbg092a 94 1,093 89.8 1,091.6 99.9 6.7 3 7.3 99.7 14.2 99.2 98.8 tl 99.8 90.4 9.0

rbg132.2 132 1,083 88.2 1,080.2 99.7 45.5 294 47.9 99.4 80.5 97.2 n.a. 99.8 2,761.1 -

rbg132 132 1,360 94.2 1,360.0 100.0 10.6 1 11.3 98.9 48.9 97.3 n.a. 99.5 37.6 6.1

rbg152.3 152 1,539 81.3 1,536.2 99.8 47.3 20,971 166.9 99.4 238.8 98.8 n.a. 99.9 10,353.3 -

rbg152 152 1,783 94.0 1,783.0 100.0 18.8 3 19.8 99.3 36.8 98.7 n.a. 99.8 43.7 11.5

rbg172a 174 1,799 93.9 1,799.0 100.0 37.1 4 38.4 99.2 455.7 98.8 n.a. 99.8 425.5 544.3

rbg193.2 193 2,017 89.1 2,015.3 99.9 50.8 414 54.4 99.6 76.3 97.6 n.a. 99.7 tl -

rbg193 193 2,414 94.5 2,414.0 100.0 46.4 16 47.9 99.8 65.9 98.8 n.a. 100.0 159.6 3,165.7

rbg201a 203 2,189 94.8 2,189.0 100.0 54.3 4 56.0 99.3 716.2 98.6 n.a. 99.9 462.7 581.1

rbg233.2 233 2,188 90.9 2,187.0 100.0 72.1 8,969 120.6 99.8 124.4 98.1 n.a. 99.7 tl -

rbg233 233 2,689 95.4 2,688.0 100.0 78.9 35 81.0 99.5 319.3 98.0 n.a. 100.0 749.4 1,433.3

Avg 99.7 30.6 40.9 98.7 125.6 95.9 91.4 149.8 99.1 1,196.3 579.0

Solved 18 18 1 13 10

n.a. Data not available
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Table 3.2 shows that the lower bound computed by BMR.ng closes the gap on all but

3 instances. BMR.ng solves all 32 instances with the same performance of DGLT.

Table 3.3 reports the results on hard Ascheuer instances. In column z∗ the optimal

value is in bold when instances were solved for the first time by BMR.ng. Table

3.3 shows that BMR.ng solves the 5 open instances and outperforms the other exact

methods.

3.7.3 Pesant Instances

The Pesant class consists of 27 symmetric instances proposed by Pesant et al. [1998]

with 21 to 46 vertices. Travel costs and times are the Euclidean distances truncated

to four decimal places. Travel times include service times and satisfy the triangle

inequality.

Table 3.4 reports the results on Pesant instances. The lower bounds computed by

BMR.ng are of excellent quality. BMR.ng and BMR.t solve all instances of this class

and clearly outperform FLM, DGLT and LI.

3.7.4 Potvin Instances

The Potvin class consists of 28 symmetric instances introduced by Potvin and Bengio

[1996] with 15 to 47 vertices (we neglect instances with fewer than 10 vertices). The

instances feature x-y coordinates. Travel times are Euclidean and include service time

at the starting vertex of each arc. Travel costs and travel times coincide.

In Table 3.5, we compare BMR.ng and BMR.t with LI. In column z∗, the optimal

solution cost is rounded to two decimal places. The last column indicates the computing

time of LI (a “-” is reported when the instance was not solved).

From Table 3.5, both BMR.ng and BMR.t compare favorably with LI. BMR.ng is

clearly superior to both BMR.t and LI because it solves all instances.

3.7.5 Gendreau Instances

The Gendreau class is made up of 28 groups of 5 instances proposed by Gendreau

et al. [1998]. Each group consists of five instances having the same number of vertices

and the same time windows width. The instances are obtained from the instances of

Dumas et al. [1995] extending the time windows and resulting in time windows ranging

from 80 to 200 time units in increments of 20. The number of vertices ranges from 22

to 102.
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Table 3.4: Results on Pesant instances

BMR.ng BMR.t FLM DGLT LI

Inst |V ′| z∗ Prec LB %LB TLB |F | Ttot %LB Ttot %LB Ttot %LB Ttot Ttot

rc201.0 27 378.62 84.3 378.62 100.0 0.1 0.1 100.0 0.1 100.0 0.2 100.0 0.0 0.1

rc201.1 30 374.70 85.3 374.70 100.0 0.2 0.2 99.0 0.3 68.4 1.8 100.0 0.0 0.1

rc201.2 30 427.65 83.7 427.65 100.0 0.2 0.2 100.0 0.1 99.0 0.4 100.0 0.0 0.1

rc201.3 21 232.54 82.9 232.54 100.0 0.1 0.1 99.9 0.1 93.7 0.1 98.7 0.1 0.1

rc202.0 27 246.22 45.3 246.22 100.0 0.4 0.4 100.0 0.2 98.2 1.0 100.0 0.2 63.0

rc202.1 24 206.53 55.1 206.53 100.0 0.4 0.4 94.8 0.4 71.1 3.8 100.0 0.1 1.1

rc202.2 29 341.77 61.3 341.77 100.0 0.2 0.2 94.6 0.8 82.5 3.1 100.0 0.1 0.4

rc202.3 28 367.85 50.5 367.85 100.0 0.3 0.3 97.9 0.6 76.8 33.1 100.0 0.2 5.1

rc203.0 37 377.45 24.0 376.22 99.7 4.2 2 4.6 83.4 31.0 79.0 tl 95.4 3,437.7 -

rc203.1 39 356.99 25.1 356.66 99.9 14.1 1 14.5 89.1 20.4 84.4 tl 97.6 2,722.7 -

rc203.2 30 337.47 42.3 337.47 100.0 0.5 0.5 94.1 2.3 87.5 94.3 100.0 0.9 392.7

rc204.0 34 221.45 16.8 221.45 100.0 1.7 1.7 93.1 2.0 96.8 352.8 100.0 2.8 -

rc204.1 30 205.37 14.7 205.37 100.0 4.3 4.3 92.3 9.0 98.9 3.4 99.0 14.9 -

rc204.2 42 378.40 14.6 374.77 99.0 33.5 7 36.4 92.3 29.4 87.3 tl 96.6 tl -

rc205.0 28 251.65 60.1 251.65 100.0 0.3 0.3 100.0 1.4 91.7 7.9 100.0 0.1 1.9

rc205.1 24 271.22 67.8 271.22 100.0 0.2 0.2 98.9 0.2 88.7 0.2 100.0 0.0 0.4

rc205.2 30 434.70 68.5 434.70 100.0 0.4 0.4 92.7 1.2 67.8 1,289.1 100.0 0.3 0.3

rc205.3 26 361.24 64.6 361.24 100.0 0.2 0.2 100.0 0.2 72.4 4.7 100.0 0.0 0.1

rc206.0 37 485.23 62.6 485.23 100.0 0.8 0.8 90.3 1.7 89.1 338.1 97.5 73.3 1.6

rc206.1 35 334.73 57.8 334.73 100.0 1.0 1.0 96.3 0.8 96.0 22.9 98.2 85.0 42.5

rc206.2 34 335.37 55.8 335.37 100.0 0.9 0.9 98.7 0.9 96.0 24.1 98.8 84.8 189.5

rc207.0 38 436.69 38.7 436.69 100.0 0.6 0.6 95.1 2.0 75.9 572.0 99.5 19.0 18,691.8

rc207.1 35 396.36 37.8 396.36 100.0 1.4 1.4 94.4 1.6 94.4 321.7 98.4 34.9 10,864.5

rc207.2 32 246.41 33.3 246.41 100.0 0.6 0.6 98.4 0.7 96.7 15.1 97.2 116.4 -

rc208.0 46 380.56 8.6 380.56 100.0 38.1 38.1 92.8 63.4 85.1 tl 93.4 tl -

rc208.1 29 239.04 13.5 239.04 100.0 6.9 6.9 96.5 0.9 96.1 34.2 96.1 990.6 -

rc208.2 31 213.92 12.7 213.92 100.0 1.3 1.3 94.4 1.2 100.0 1.4 100.0 7.9 -

Avg 99.9 4.2 4.3 95.5 6.4 87.9 135.9 98.8 303.7 1,680.8

Solved 27 27 23 25 18

The name of each instance indicates the number of vertices (excluding p and q), the

width of the time windows, and the instance number in the group (e.g. n20w120.1

is the first instance of the group of 5 instances with 22 vertices and time windows of

120 units). In some papers, two groups of instances (n100w80.x and n100w100.x) are

included in the Dumas class instead of the Gendreau class, but the instances coincide.

Travel times and costs coincide and are first computed as truncated integer Euclidean

distances and then modified to satisfy triangle inequality by iteratively setting cij =

tij = tik + tkj , if tik + tkj < tij , until no violation is identified.

Because t-tour relaxation requires strictly positive travel times, BMR.t was not tested

on the Gendreau instances such that tij = 0 for some arc (i, j) ∈ A.

In Table 3.6, we report detailed computational results on Gendreau instances. BMR.ng

and BMR.t are compared with LI. Table 3.6 shows that BMR.ng is much faster than

LI and solves all 140 instances while LI solves 46 of them. BMR.t solves 18 more

instances than LI. The comparison of BMR.t and LI on the instances solved by both

methods shows that BMR.t outperforms LI.
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Table 3.5: Results on Potvin instances

BMR.ng BMR.t LI

Inst |V ′| z∗ Prec LB %LB TLB |F | Ttot %LB Ttot Ttot

rc201.1 21 444.54 80.0 444.54 100.0 0.1 0.1 99.6 0.7 0.0

rc201.2 27 711.54 86.0 711.54 100.0 0.2 0.2 100.0 1.3 0.1

rc201.3 33 790.61 86.7 790.61 100.0 0.2 0.2 98.7 4.0 0.1

rc201.4 27 793.64 86.0 793.64 100.0 0.2 0.2 99.4 3.3 0.0

rc202.1 34 771.78 52.2 771.64 100.0 1.0 1 1.3 92.9 9.0 164.5

rc202.2 15 304.14 33.3 304.14 100.0 0.2 0.2 95.5 3.4 0.6

rc202.3 30 837.72 76.6 835.87 99.8 0.2 1 0.4 97.2 5.9 0.0

rc202.4 29 793.03 49.8 791.54 99.8 5.1 1 5.3 98.1 7.2 94.8

rc203.1 20 453.48 40.5 453.48 100.0 0.2 0.2 99.4 3.2 2.4

rc203.2 34 784.16 32.4 781.64 99.7 1.7 1 2.1 93.4 11.1 -

rc203.3 38 817.53 33.1 810.46 99.1 9.3 10 9.9 94.9 71.6 -

rc203.4 16 314.29 28.3 314.29 100.0 0.4 0.4 100.0 0.8 11.1

rc204.1 47 878.64 14.8 872.62 99.3 42.6 10 43.8 93.2 581.6a -

rc204.2 34 662.16 16.2 650.94 98.3 21.3 151 23.1 90.5 473.4a -

rc204.3 25 455.03 17.0 455.03 100.0 9.9 9.9 95.0 9.0 -

rc205.1 15 343.21 67.6 343.21 100.0 0.1 0.1 98.3 4.8 0.0

rc205.2 28 755.93 72.0 755.93 100.0 0.3 0.3 98.8 3.7 0.2

rc205.3 36 825.06 57.3 825.06 100.0 2.2 2.2 97.7 8.5 197.7

rc205.4 29 760.47 76.1 756.95 99.5 0.2 1 0.4 97.5 4.1 0.1

rc206.2 38 828.06 59.9 826.66 99.8 6.4 1 6.8 95.3 9.7 20.5

rc206.3 26 574.42 52.3 574.42 100.0 0.6 0.6 90.0 6.3 5.5

rc206.4 39 831.67 59.0 827.54 99.5 1.8 1 2.2 90.5 13.4 69.6

rc207.1 35 732.68 42.9 731.57 99.8 9.0 1 9.3 93.3 11.9 -

rc207.2 32 701.25 33.7 694.22 99.0 53.1 5 54.8 89.4 47.2 -

rc207.3 34 682.40 30.8 677.23 99.2 1.9 1 2.3 91.8 15.6 -

rc208.1 39 789.25 10.4 785.69 99.5 46.7 2 47.5 90.0 435.9a -

rc208.2 30 533.78 13.1 533.78 100.0 30.1 30.1 93.8 25.2 -

rc208.3 37 634.44 10.7 622.48 98.1 82.0 24 86.8 94.1 532.6a -

Avg 99.7 11.7 12.2 95.3 11.7 33.3

Solved 28 24 17

a BMR.t runs out of memory

3.7.6 Olhmann Instances

The Olhmann class was proposed by Ohlmann and Thomas [2007] and consists of

25 instances divided in five groups. The instances have 152 or 202 vertices and are

obtained from the Dumas instances by extending the time windows by 100 time units.

Travel times and travel costs are computed as for the Gendreau class.

To our knowledge, no exact method has been tested on this class so far. In Table

3.7, we report the computational results of BMR.ng. BMR.t was not tested on these

instances as the requirement of strictly positive travel times is not satisfied by any of

the instances.

The table shows that all but one instance can be solved in a reasonable amount of

computing time. Instance n200w140.4 could not be solved as BMR.ng ran out of

memory (i.e., |F | > 108). BMR.ng ran out of memory after 2,413.1 seconds at iteration
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Table 3.6: Results on Gendreau instances

BMR.ng BMR.t LI BMR.ng BMR.t LI

Inst z∗ Prec %LB Ttot %LB Ttot Ttot Inst z∗ Prec %LB Ttot %LB Ttot Ttot

n20w120.1 267 62.8 100.0 0.4 100.0 0.2 0.2 n60w200.1 410 47.2 100.0 14.7 89.2 714.0b -
n20w120.2 218 52.4 100.0 0.5 96.6 0.2 0.3 n60w200.2 414 52.1 100.0 7.4 a -
n20w120.3 303 63.2 100.0 0.5 94.2 0.2 0.1 n60w200.3 455 46.1 97.6 192.1 a -
n20w120.4 300 63.2 100.0 0.3 97.2 0.1 0.1 n60w200.4 431 52.2 99.7 18.4 96.6 14.7 -
n20w120.5 240 60.2 100.0 0.3 99.3 0.3 0.3 n60w200.5 427 47.5 99.6 20.0 a -

n20w140.1 176 50.2 100.0 0.4 95.3 0.6 0.5 n80w100.1 541 74.2 100.0 3.8 a -
n20w140.2 272 56.7 100.0 0.4 95.9 0.3 0.1 n80w100.2 567 80.4 100.0 1.1 a -
n20w140.3 236 54.5 100.0 0.3 92.9 0.5 0.1 n80w100.3 578 75.7 100.0 3.4 a -
n20w140.4 255 51.1 100.0 1.2 96.3 0.5 0.3 n80w100.4 648 82.0 99.6 20.4 98.3 1.2 -
n20w140.5 225 58.9 100.0 0.3 88.4 0.6 0.1 n80w100.5 532 76.4 100.0 6.1 a -

n20w160.1 241 51.9 100.0 0.6 92.5 0.4 1.6 n80w120.1 498 70.8 99.9 27.0 a -
n20w160.2 201 52.8 100.0 0.3 95.0 0.2 0.1 n80w120.2 577 73.6 99.9 16.0 a -
n20w160.3 201 60.2 100.0 0.3 98.5 0.3 0.1 n80w120.3 540 73.1 100.0 6.4 a -
n20w160.4 203 42.0 100.0 0.7 90.8 0.4 3.4 n80w120.4 501 68.7 98.1 61.4 a -
n20w160.5 245 50.6 100.0 0.3 87.7 0.7 0.3 n80w120.5 591 72.2 99.3 39.6 a -

n20w180.1 253 51.5 100.0 0.3 97.7 0.3 0.4 n80w140.1 511 68.0 100.0 7.5 a -
n20w180.2 265 50.2 100.0 0.3 99.4 0.4 0.3 n80w140.2 470 67.8 99.8 77.8 a -
n20w180.3 271 44.2 100.0 1.0 94.1 0.5 0.4 n80w140.3 580 68.7 99.1 46.5 a -
n20w180.4 201 42.9 100.0 0.4 96.4 0.3 3.2 n80w140.4 422 67.8 99.6 38.8 a -
n20w180.5 193 35.9 100.0 0.3 91.7 0.7 27.2 n80w140.5 545 68.4 100.0 8.1 94.5 282.7 -

n20w200.1 233 38.1 100.0 1.1 93.1 0.4 12.0 n80w160.1 506 62.6 100.0 93.7 a -
n20w200.2 203 31.6 100.0 1.1 94.9 0.6 55.7 n80w160.2 548 60.6 99.9 194.8 a -
n20w200.3 249 40.3 100.0 0.8 89.5 0.8 4.5 n80w160.3 521 60.4 100.0 58.2 a -
n20w200.4 293 41.6 98.8 2.4 90.6 0.8 3.0 n80w160.4 509 63.5 100.0 50.8 a -

n20w200.5 227 34.2 100.0 0.4 99.5 0.3 26.4 n80w160.5 438 63.3 100.0 58.1 92.8 576.8b -

n40w120.1 434 70.4 100.0 2.1 a 15.7 n80w180.1 551 57.8 99.9 75.4 91.9 702.3b -
n40w120.2 444 66.7 100.0 1.9 95.4 1.7 51.5 n80w180.2 478 58.5 100.0 61.5 a -

n40w120.3 357 65.9 100.0 2.1 98.8 1.5 39.1 n80w180.3 524 55.3 100.0 84.3 89.7 967.6b -
n40w120.4 303 63.8 100.0 1.9 88.7 2.4 28.6 n80w180.4 479 59.6 100.0 47.4 a -

n40w120.5 350 68.3 100.0 1.3 98.9 0.9 2.4 n80w180.5 470 61.5 100.0 49.0 91.9 602.8b -

n40w140.1 328 65.2 100.0 2.0 97.3 1.0 42.9 n80w200.1 490 47.5 99.3 177.4 a -
n40w140.2 383 63.8 100.0 1.5 92.4 3.2 83.2 n80w200.2 488 55.1 99.9 32.1 a -
n40w140.3 398 66.9 100.0 2.2 a 5.5 n80w200.3 464 50.0 99.6 39.5 a -
n40w140.4 342 59.9 100.0 1.7 93.1 2.1 230.5 n80w200.4 526 54.1 99.1 63.3 a -
n40w140.5 371 56.3 100.0 6.2 95.7 1.5 1,288.1 n80w200.5 439 49.0 99.8 46.9 a -

n40w160.1 348 56.8 100.0 1.4 94.3 1.0 117.3 n100w80.1 670 84.3 100.0 4.5 a -
n40w160.2 337 56.1 100.0 1.2 95.7 0.9 1,331.4 n100w80.2 666 86.4 99.9 2.5 98.3 2.9 -
n40w160.3 346 53.7 100.0 3.5 a 474.4 n100w80.3 691 85.4 100.0 1.4 97.9 7.0 -
n40w160.4 288 47.5 100.0 12.9 90.6 196.6 - n100w80.4 700 84.1 100.0 2.8 a -
n40w160.5 315 51.5 100.0 6.9 92.6 4.5 9,369.0 n100w80.5 603 82.3 100.0 2.6 a -

n40w180.1 337 51.3 100.0 25.9 87.7 9.7 - n100w100.1 643 79.7 100.0 18.4 a -
n40w180.2 347 47.5 100.0 14.9 a - n100w100.2 618 81.0 100.0 2.5 96.3 37.3 -
n40w180.3 279 51.7 100.0 1.6 a - n100w100.3 685 80.5 100.0 4.5 96.3 15.8 -
n40w180.4 354 52.7 99.6 7.5 96.6 1.1 - n100w100.4 684 79.9 99.5 83.6 a -
n40w180.5 335 43.9 100.0 4.8 86.2 48.0 - n100w100.5 572 78.2 100.0 18.6 a -

n40w200.1 330 39.7 100.0 8.8 a - n100w120.1 629 78.2 100.0 34.5 a -
n40w200.2 303 39.6 99.7 17.1 a - n100w120.2 540 77.4 99.2 24.1 a -
n40w200.3 339 42.0 95.0 25.8 a - n100w120.3 615 74.2 100.0 61.6 97.1 33.2 -
n40w200.4 301 47.6 99.7 12.9 87.4 12.5 - n100w120.4 662 79.7 99.7 91.4 a -
n40w200.5 296 35.0 100.0 8.9 93.0 4.6 - n100w120.5 537 74.9 100.0 42.1 a -

n60w120.1 384 69.7 100.0 17.6 96.1 3.0 8,431.4 n100w140.1 603 71.2 100.0 38.1 a -
n60w120.2 426 72.6 100.0 4.1 99.0 0.9 419.3 n100w140.2 613 74.3 100.0 44.4 a -
n60w120.3 407 69.1 100.0 6.0 a 20,411.3 n100w140.3 481 73.9 100.0 51.5 a -
n60w120.4 490 70.1 100.0 4.8 96.5 5.0 13,702.2 n100w140.4 533 74.3 100.0 24.7 a -

n60w120.5 547 70.7 100.0 9.1 96.9 1.9 1,455.1 n100w140.5 509 73.1 99.1 66.9 90.5 725.4b -

n60w140.1 423 65.8 99.6 8.4 a - n100w160.1 582 69.4 100.0 117.4 92.0 310.0b -
n60w140.2 462 67.3 99.8 11.5 96.0 2.8 4,497.5 n100w160.2 530 68.8 99.8 99.5 a -
n60w140.3 427 66.0 100.0 11.8 94.6 10.1 - n100w160.3 495 71.5 100.0 52.6 a -
n60w140.4 488 67.6 100.0 14.2 93.7 2.9 - n100w160.4 580 69.8 100.0 116.6 a -
n60w140.5 460 66.1 99.0 33.4 90.6 8.5 5,148.5 n100w160.5 586 71.9 99.9 72.9 a -

n60w160.1 560 63.5 99.3 42.6 90.9 458.2 - n100w180.1 568 60.6 99.4 170.4 a -
n60w160.2 423 62.3 100.0 7.7 98.7 2.2 - n100w180.2 503 60.8 100.0 40.4 a -

n60w160.3 434 54.5 99.7 34.8 92.8 184.0b - n100w180.3 574 61.9 99.0 135.2 a -
n60w160.4 401 62.7 100.0 4.0 96.5 6.2 - n100w180.4 526 61.7 100.0 128.4 a -
n60w160.5 501 63.0 100.0 7.2 91.6 356.0 - n100w180.5 501 60.0 98.6 117.9 a -

n60w180.1 411 56.7 99.1 103.9 a - n100w200.1 549 55.7 100.0 424.3 a -
n60w180.2 399 53.7 100.0 8.4 95.4 13.3 - n100w200.2 502 55.9 100.0 86.9 a -

n60w180.3 444 54.7 99.1 28.5 90.9 624.0b - n100w200.3 557 57.9 99.5 264.6 a -
n60w180.4 456 54.9 99.9 51.6 93.5 20.8 - n100w200.4 521 57.3 99.4 199.5 a -
n60w180.5 395 50.3 98.4 39.3 a - n100w200.5 486 55.5 99.8 104.7 a -

Avg 99.8 36.7 94.2 24.9 1,462.7
Solved 140 64 46

a: not attempted as tij = 0 for some (i, j) ∈ A
b BMR.t runs out of memory
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Table 3.7: Results on Olhmann instances

BMR.ng

Inst z∗ Prec LB %LB TLB |F | Ttot

n150w120.1 732 77.5 725.5 99.1 243.8 243 248.6

n150w120.2 677 77.8 668.4 98.7 130.5 12,149 260.6

n150w120.3 747 76.5 746.4 99.9 160.0 2 163.2

n150w120.4 762 78.0 761.6 99.9 172.8 1 176.0

n150w120.5 689 76.9 684.7 99.4 113.1 373 118.9

n150w140.1 762 72.5 754.0 98.9 198.2 14,993 350.2

n150w140.2 753 74.5 752.0 99.9 439.0 7 442.1

n150w140.3 613 73.3 608.5 99.3 420.6 1,671 440.9

n150w140.4 676 73.7 676.0 100.0 104.8 104.8

n150w140.5 663 73.1 662.0 99.8 365.9 3 369.4

n150w160.1 704 70.4 701.4 99.6 262.9 48 266.5

n150w160.2 711 69.3 709.7 99.8 213.1 5 216.4

n150w160.3 608 71.9 603.2 99.2 483.0 352 491.8

n150w160.4 672 69.9 672.0 100.0 570.6 12 577.1

n150w160.5 658 71.0 655.0 99.5 169.5 44 173.4

n200w120.1 795 78.3 793.3 99.8 303.8 57 308.8

n200w120.2 721 80.2 713.9 99.0 110.4 20,223 257.1

n200w120.3 879 80.4 868.6 98.8 151.1 57,625 958.6

n200w120.4 777 79.1 775.8 99.8 412.3 13 417.1

n200w120.5 840 79.6 833.2 99.2 237.4 29,072 574.3

n200w140.1 830 77.1 826.2 99.5 1,217.8 6,261 1,274.9

n200w140.2 760 76.3 756.2 99.5 614.5 407 624.5

n200w140.3 758 76.3 756.0 99.7 250.7 133 259.0

n200w140.4 816a 75.3 807.1 98.9 592.9 - 2,413.1 b

n200w140.5 822 76.6 819.6 99.7 515.2 90 521.0

Avg 99.5 338.2 399.8

Solved 24

a Best known upper bound found by López Ibáñez and Blum [2010]

b BMR.ng ran out of memory after 2,413.1 seconds. This time

is not included in the final average computing time

h = 7 with z7
UB = 814. Thus, z6

UB = 813 is a valid lower bound on the optimal solution

cost.

3.7.7 More Details on the Computational Results

Table 3.8 shows average results of the exact method, BMR.ng, using either the ng-tour

or ngL-tour relaxations on the 6 classes of instances. Columns %LB show that the

ngL-tour relaxation closes half of the gap left by the ng-tour relaxation but is more

time-consuming. Columns “Solved” show the effectiveness of the ngL-tour relaxation

in solving the Ohlmann instances. BMR.ng using the ng-tour relaxation cannot solve

4 of the instances (n150w120.2, n150w140.1, n200w120.5, n200w140.1) solved by using

the ngL-tour relaxation.

Table 3.9 shows the effectiveness of the dominance and fathoming rules applied in Step

2 of the exact method (see §3.3). For a selected set of difficult instances, the table
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Table 3.8: Comparison of ng-tour and ngL-tour relaxations

BMR.ng with ng-tour BMR.ng with ngL-tour

Class #instances Solved %LB TLB Ttot Solved %LB TLB Ttot

Ascheuer Easy 32 32 99.00 1.4 1.7 32 99.99 2.6 2.8

Ascheuer Hard 18 18 99.60 23.5 33.4 18 99.70 89.2 114.1

Pesant 27 27 99.95 3.1 3.3 27 99.95 4.2 4.3

Potvin 28 28 99.50 8.9 9.7 28 99.67 11.7 12.2

Gendreau 140 140 99.59 19.1 37.7 140 99.78 35.6 36.9

Olhmann 25 20 99.25 197.1 242.6 24 99.55 340.1 404.7

Avg 99.52 28.0 42.1 99.78 56.8 65.0

Sum 270 265 269

Table 3.9: Effectiveness of the Dominance and Fathoming Rules

Fath 1 Dom 1 Fath 2 Undominated

Inst n1 %n1 n2 %n2 n3 %n3 n4 %n4

rbg049a 71 54.7 4 5.4 50 89.4 6 4.5

rbg050b 13 40.2 1 2.5 18 92.9 2 4.1

rbg050c 1,275 52.5 80 6.9 979 91.3 93 3.8

rbg193.2 6,394 70.6 1,027 38.6 1,219 74.6 414 4.6

rbg233.2 166,371 75.0 24,763 44.7 21,671 70.7 8,969 4.0

n150w120.2 369,823 76.5 6,281 5.5 95,468 88.7 12,149 2.5

n150w140.1 579,249 79.9 3,506 2.4 126,949 89.4 14,993 2.1

n200w120.2 629,067 77.7 5,461 3.0 154,832 88.4 20,223 2.5

n200w120.3 2,338,415 80.5 23,374 4.1 486,025 89.4 57,625 2.0

n200w120.5 1,389,485 81.8 9,951 3.2 270,429 90.3 29,072 1.7

n200w140.1 320,984 82.8 1,673 2.5 58,525 90.3 6,261 1.6

%n1 = n1/(n1 + n2 + n3 + n4) ∗ 100 %n2 = n2/(n2 + n3 + n4) ∗ 100

%n3 = n3/(n3 + n4) ∗ 100 %n4 = n4/(n1 + n2 + n3 + n4) ∗ 100

reports the following columns: the number of states fathomed by Fathoming 1 (n1),

the percentage of times Fathoming 1 is successfully applied (%n1), the number of states

dominated by Dominance 1 (n2), the percentage of times Dominance 1 is successfully

applied (%n2), the number of states fathomed by Fathoming 2 (n3), the percentage of

times Fathoming 2 is successfully applied (%n3), the number of undominated states

(n4), and the percentage of undominated states on the number of states generated

(%n4).

From Table 3.9, the effectiveness of the dominance and fathoming rules is noticeable.

In particular, it is remarkable that 70 to 90% of the states that are not discarded by

Fathoming 1 and Dominance 1 can be fathomed with Fathoming 2.
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3.8 Conclusions

In this chapter, we described an exact dynamic programming algorithm for the Trav-

eling Salesman Problem with Time Windows (TSPTW) based on two tour relaxations

called ng-tour and ngL-tour relaxations.

We reported extensive computational results on several classes of both real-world and

random instances taken from the literature and used them to test both exact and

heuristic methods involving up to 233 vertices.

The exact algorithm solved all but one instance and outperforms all previously pub-

lished exact methods for the TSPTW, solving 136 out of 270 instances for the first

time.





Chapter 4

Vehicle Routing Problem with

Time Windows

1

In this chapter, we describe an effective exact method for solving both the capacitated

vehicle routing problem (CVRP) and the vehicle routing problem with time windows

(VRPTW) that improves the method proposed by Baldacci et al. [2008] for the CVRP.

The proposed algorithm is based on the set partitioning formulation of the problem.

The ng-route relaxation, introduced in Chapter 3, is used by different dual-ascent

heuristics to find near-optimal dual solutions of the linear relaxation of the set par-

titioning model. We describe a column-and-cut generation algorithm strengthened

by valid inequalities that uses a new strategy for solving the pricing problem. The

ng-route relaxation and the different dual solutions achieved allow us to generate a

reduced set partitioning problem containing all routes of any optimal solution that is

finally solved by an integer programming solver. The proposed method solves 4 of the

5 open Solomon VRPTW instances and significantly improves the running times of

state-of-the-art algorithms for both VRPTW and CVRP.

4.1 Introduction

The problem of supplying customers with vehicles based at a central depot is generally

known as vehicle routing problem (VRP). The solution of a VRP calls for the design

of a set of routes, each performed by a vehicle that starts and ends at the depot, such

that all customers are serviced, a set of operational constraints are satisfied, and the

total routing cost is minimized.

1This chapter is based on Baldacci et al. [2010, 2011a, 2012a]

57
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The two most studied members of the VRP family are the capacitated vehicle routing

problem (CVRP) and the vehicle routing problem with time windows (VRPTW). In

the CVRP, a fleet of identical capacitated vehicles located at a central depot must

be optimally routed to supply a set of customers with known demands. Each vehicle

can perform at most one route, and the total demand delivered by a route cannot

exceed the vehicle capacity. The VRPTW generalizes the CVRP by imposing that

each customer must be visited within a specified time interval, called time window.

The CVRP is NP-hard, so is the VRPTW.

4.2 Literature Review

The most effective exact algorithms for the CVRP are owed to Baldacci et al. [2004],

Lysgaard et al. [2004], Fukasawa et al. [2006], and Baldacci et al. [2008]. Baldacci et al.

[2004] described a branch-and-cut (BC) algorithm based on a two-commodity network

flow formulation of the problem. Lysgaard et al. [2004] proposed a BC algorithm that

enhances the method of Augerat et al. [1995]. The method of Fukasawa et al. [2006]

combines a BC based on the algorithm of Lysgaard et al. [2004] with a new branch-

and-cut-and-price (BCP) algorithm based on the two-index and the set partitioning

(SP) formulations. The lower bound is computed with a column-and-cut generation

method that uses k-cycle-free q-routes (with k up to 4) instead of feasible CVRP

routes and the valid inequalities used by Lysgaard et al. [2004]. The algorithm decides

at the root node to use either a pure BC or the BCP algorithm. Baldacci et al. [2008]

presented an algorithm based on the SP model strengthened with capacity and clique

inequalities and were the first to compute lower bounds based on elementary routes.

Their algorithm could not solve three instances solved by Fukasawa et al. [2006] but is

faster with regards to the problems solved by both methods.

The first exact algorithm for the VRPTW based on the SP formulation was the branch-

and-price (BP) algorithm of Desrochers et al. [1992]. This method was improved by

Kohl et al. [1999] by adding 2-path inequalities to linear relaxation of the SP formu-

lation. Kohl and Madsen [1997] proposed a branch-and-bound algorithm where the

lower bounds were computed using subgradient and bundle methods. These methods

were based on 2-cycle elimination algorithms. Irnich and Villeneuve [2006] described a

BP algorithm where the pricing subproblem is solved with a k-cycle elimination pro-

cedure. Algorithms based on elementary routes were proposed by Feillet et al. [2004]

and Chabrier [2006]. Jepsen et al. [2008] described a BCP algorithm based on the SP

model and Subset-Row (SR) inequalities. This method was improved by Desaulniers

et al. [2008] by adding both SR and generalized k-path inequalities and by using a

tabu search heuristic, instead of dynamic programming (DP) algorithms, to rapidly

generate negative reduced cost routes. Their method outperforms all other algorithms,
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remarkably decreasing the computational time, and solving 5 of the 10 open Solomon

instances.

In general, any exact algorithm for the VRPTW based on the SP model can be easily

adapted to solve the CVRP by simply relaxing the time window constraints in the

pricing algorithm. Nonetheless, such a simple adaptation might not be effective, and

none of the methods published in the literature so far for the VRPTW have been

proven to effectively solve the CVRP.

The method of Baldacci et al. [2008] for the CVRP is based on an exact solution

framework that can be tailored to solve the VRPTW as well as several other variants of

the VRP. The method has the following steps: (i) use different bounding procedures to

find near-optimal dual solutions of the linear relaxation of the SP model strengthened

by valid inequalities; (ii) use a column-and-cut generation procedure to reduce the

integrality gap by adding, in a cutting plane fashion, both strengthened capacity and

clique constraints; (iii) use the final dual solution achieved at Step (ii) to generate a

reduced SP problem containing only the routes of reduced cost less than or equal to

the gap between a known upper bound and the lower bound obtained; (iv) solve the

resulting reduced problem with an integer programming (IP) solver.

The key components of this method are the bounding procedures of Step (i) that are

based on the state-space relaxation technique, introduced in Christofides et al. [1981c],

to extend the route set with a relaxation of feasible routes easier to compute, and

the use of bounding functions to reduce the state-space graph computed by DP when

solving the pricing problem and generating the final SP model.

In this chapter, we describe an exact method to solve both the VRPTW and the

CVRP that improves the method of Baldacci et al. [2008]. We show that the ng-route

relaxation (described in Chapter 3 for the TSPTW) improves other nonelementary

route relaxations proposed for the CVRP and VRPTW. This relaxation is particularly

effective for difficult VRPTW instances with wide time windows and loose capacity

constraints. The ng-route relaxation is used at Step (i) to derive a new dual-ascent

heuristic and at Steps (ii) and (iii) to reduce the state-space graph of the DP algorithm

in generating elementary routes. We also describe a new family of valid inequalities,

called weak subset-row inequalities, that are a relaxation of SR inequalities. The main

advantage of these new inequalities is that their duals can be implicitly considered

while solving the pricing problem. Moreover, we propose new ideas to improve the

pricing algorithm in the column-and-cut procedure based on the use of the dual solution

achieved at Step (i) to eliminate routes of negative reduced costs with respect to

the current dual solution that cannot be in any optimal solution. Finally, we report

computational results for both VRPTW and CVRP showing that the proposed method

solves 4 of the 5 open Solomon VRPTW instances and significantly improves the

running times of state-of-the-art algorithms for both VRPTW and CVRP.
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4.3 Mathematical Formulation and its Relaxations

The VRPTW is defined on a complete digraph G = (V ′, A), where V ′ = {0, 1, . . . , n}
is a set of n + 1 vertices and A is the arc set. Vertex 0 represents the depot, and

the vertex subset V = V ′ \ {0} corresponds to n customers. A demand qi and a time

window [ei, li] are associated with each vertex i ∈ V ′, where ei and li represent the

earliest and the latest time to visit vertex i. Time windows are “hard”, meaning that

if a vehicle visits a customer before time ei, the service is postponed until time ei. We

assume that q0 = 0. A travel cost dij and a travel time tij > 0 are associated with each

arc (i, j) ∈ A; without loss of generality, we assume that travel time tij includes the

service time at vertex i, so the departure time from any customer i ∈ V coincides with

the end of its service. We also assume that matrices dij and tij satisfy the triangle

inequality; therefore, time windows, travel times, and customer demands can be used

to properly reduce the arc set A as described in Desrochers et al. [1992]. For each

vertex i ∈ V ′, we indicate with Γi ⊆ V ′ the set of successors of vertex i in graph G

(i.e., Γi = {j ∈ V ′ : (i, j) ∈ A}) and with Γ−1
i ⊆ V ′ the set of predecessors of vertex i

in graph G (i.e., Γ−1
i = {j ∈ V ′ : (j, i) ∈ A}).

A fleet of m identical vehicles of capacity Q stationed at the depot must fulfill customer

demands. A vehicle route R = (0, i1, . . . , ir, 0), with r ≥ 1, is a simple circuit in graph

G that passes through the depot, visits vertices V (R) = {0, i1, . . . , ir} ⊆ V ′, within

their time windows, leaves the depot 0 at time e0, returns to the depot 0 before time

l0, and such that the total demand of visited customers does not exceed the vehicle

capacity Q (i.e.,
∑

i∈V (R) qi ≤ Q). The cost of route R is the sum of the travel costs

of the arc set, A(R), traversed by route R.

The VRPTW consists of designing at most m routes of minimum total cost such that

each customer is visited exactly once by exactly one route.

The following notation is used in the rest of this chapter. Given a set of vertices S ⊆ V ,

we indicate with q(S) =
∑

i∈S qi the total demand of the customers of the set S and

with k(S) the minimum number of vehicles needed to serve all customers of the set

S. We also denote with qmin = min{mini∈V {qi}, q(V ) − (m − 1)Q} the minimum

customer demand delivered by any feasible route. Finally, we denote with zUB a valid

upper bound on the optimal solution cost of the VRPTW.

We also define a forward path F = (0, i1, . . . , ik−1, ik) as an elementary path that starts

from depot 0 at time e0, visits vertices V (F ) = {0, i1, . . . , ik−1, ik} within their time

windows, and ends at customer σF = ik at time tF ∈ [eσF , lσF ]. We denote by A(F )

the set of arcs traversed by path F and by c(F ) =
∑

(i,j)∈A(F ) dij the cost of path

F . Similarly, a backward path B = (σB = ik, ik+1, . . . , ih, 0) is a path that starts from

vertex σB at time tB, visits customers V (B) = {ik, ik+1, . . . , ih, 0} within their time

windows, and ends at the depot 0 before time l0.
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4.3.1 Set Partitioning Formulation

Let R be the index set of all feasible routes in graph G, and let ai`, i ∈ V ′, ` ∈ R, be

a binary coefficient equal to 1 if i ∈ V (R`), 0 otherwise (we assume that a0` = 1, for

each route ` ∈ R). Each route ` ∈ R has an associated cost c`. Let x`, ` ∈ R, be a

binary variable equal to 1 if and only if route ` is in the optimal solution (0 otherwise).

The SP formulation of the VRPTW is

(P ) z(P ) = min
∑
`∈R

c`x`, (4.1)

s.t.
∑
`∈R

ai`x` = 1, i ∈ V, (4.2)∑
`∈R

x` ≤ m, (4.3)

x` ∈ {0, 1}, ` ∈ R. (4.4)

Constraints (4.2) specify that each customer i ∈ V must be visited by exactly one

route. Constraint (4.3) requires that at most m routes are selected.

4.3.2 Relaxation LP

The linear relaxation of formulation P can be strengthened with the following valid

inequalities.

i) Capacity constraints (CCs). Let S = {S : S ⊆ V, |S| ≥ 2} be the set of all

subsets of vertices of cardinality greater than 1, and let ρ`(S) = |{(i, j) ∈ A(R`) :

i ∈ V ′ \ S, j ∈ S}| be the number of times route ` ∈ R enters the set of vertices

S. The capacity constraints (CCs) are∑
`∈R

ρ`(S)x` ≥ k(S), S ∈ S . (4.5)

In solving the VRPTW, we ignore CCs, whereas in solving the CVRP we consider

only a subset of CCs a priori generated as described in Baldacci et al. [2008].

ii) Strengthened capacity constraints (SCs). These inequalities, introduced by

Baldacci et al. [2004], lift CCs and are given by inequalities (4.5) where the route

coefficient ρ`(S) is equal to 1 if V (R`) ∩ S 6= ∅ and 0 otherwise.

iii) Subset-row inequalities (SR3s). Let C = {C ⊆ V : |C| = 3} be the set of all

customer triplets, and let R(C) ⊆ R be the subset of routes serving at least two

customers in C (i.e., R(C) = {` ∈ R : |V (R`)∩C| ≥ 2}). Subset-row inequalities

(SR3s) are ∑
`∈R(C)

x` ≤ 1, C ∈ C . (4.6)
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Inequalities SR3s correspond to a subset of SRs and clique inequalities used by

Jepsen et al. [2008] for solving the VRPTW and by Baldacci et al. [2008] for

solving the CVRP, respectively. Hereafter, with C ∈ C we refer to both the index

and the customer triplet of an SR3 inequality.

iv) Weak subset-row inequalities (WSR3s). These inequalities are a relaxed

form of the SR3s (4.6) where, given the triplet C ∈ C , the route set R(C) contains

only those routes traversing at least one arc (i, j) with i, j ∈ C. The reason

for using WSR3s instead of SR3s is that WSR3 dual variables can be implicitly

considered in solving the pricing problem. The SR3s (4.6) and, thus, the WSR3s

are separated by complete enumeration.

We denote by LP the linear relaxation of formulation P strengthened with inequalities

(4.5) and (4.6) and by z(LP ) its optimal solution cost. Moreover, we denote by D the

dual of problem LP . The dual variables are given by the vectors u = (u0, u1, . . . , un),

v = (v1, v2, . . . , v|S |), and g = (g1, g2, . . . , g|C |), where u1, . . . , un ∈ R are the dual

variables of constraints (4.2), u0 ∈ R− is the dual variable associated with constraint

(4.3), v ∈ R|S |+ are the dual variables of inequalities (4.5), and g ∈ R|C |− are the dual

variables of inequalities (4.6).

By enlarging the route set R to contain also nonnecessarily elementary routes, we

can design efficient dual-ascent heuristic procedures to find near-optimal solutions of

D. In §4.5, we describe three bounding procedures, called H1, H2 and H3, where

procedure Hk provides lower bound LBk corresponding to the cost of both a feasible

D solution (uk,vk, gk) and a nonnecessarily feasible P solution xk. In §4.6, we describe

a column-and-cut generation bounding procedure, called H4, for solving problem LP ,

that computes lower bound LB4 corresponding to the D solution (u4,v4, g4). In the

following, we denote with ck` the reduced cost of route ` ∈ R with respect to the D

solution (uk,vk, gk).

Procedure H4 differs from classical column-and-cut generation methods for the new

strategy for solving the pricing problem and the use of the D solution (u3,v3, g3) to

reduce the size of the route set R by removing any route such that c3
` > zUB − LB3.

The usage of the D solution (u3,v3, g3) has the main benefits of (i) eliminating routes

of negative reduced cost when solving the pricing problem in H4 and (ii) improving

the final lower bound LB4. Procedures H1, H2, H3 and H4 are executed in sequence,

and the solution (uk,vk, gk) of Hk is used to hot-start procedure Hk+1, k = 1, 2, 3.

4.3.3 ng-Route Relaxation for the CVRP

In §3.4.2, we introduced the ng-route relaxation for the TSPTW. The same route

relaxation can be used for obtaining valid lower bounds to the VRPTW, as well. In

particular, it is used in bounding procedures H2, H3, and H4 for solving the pricing
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subproblems. In this chapter, as route relaxations of VRPTW elementary routes, we

use (t, i)-routes and (NG, t, i)-routes, which correspond exactly to t-tours and ng-tours

described in §§3.4.1 and 3.4.2. As to the CVRP, we use the (q, i)-path and the ng-route

relaxations that can be described as follows.

A (q, i)-path is a nonnecessarily elementary path that starts from the depot, visits a

set of customers of total demand equal to q, and ends at vertex i ∈ V ′. The cost f(q, i)

of a least-cost (q, i)-path can be computed as described by Christofides et al. [1981b].

A (q, i)-route is a (q, 0)-path.

A forward ng-path (NG, q, i) is a nonnecessarily elementary path F = (0, i1, . . . , ik−1,

ik = i) that starts from the depot 0, visits a set of customers (each once or more) of

total demand equal to q such that NG = ΠF , ends at customer i ∈ V ′, and such that

i /∈ ΠF ′ , where F ′ = (0, i1, . . . , ik−1).

We denote by f(NG, q, i) the cost of a least-cost forward ng-path (NG, q, i). An

(NG, q, i)-route is an (NG, q, 0)-path. Functions f(NG, q, i) can be computed using

DP recursions similar to (3.3) as follows.

Define the state-space graph ĜF = (F̂ , ÂF ), where the vertex set is defined as

F̂ = {(NG, q, i) : i ∈ V ′, q ∈ [qi, Q],∀NG ⊆ Ni s.t. NG 3 i and
∑
j∈NG

qj ≤ q},

and the arc set as

ÂF = {((NG′, q′, j), (NG, q, i)) : (NG′, q′, j), (NG, q, i) ∈ F̂ ,

j ∈ Γ−1
i , q′ = q − qi, ∀NG′ ⊆ Nj s.t. NG′ 3 j and NG′ ∩Ni = NG \ {i}}.

The DP recursion for computing functions f(NG, q, i) is

f(NG, q, i) = min
(NG′,q′,j) : ((NG′,q′,j),(NG,q,i))∈ÂF

{f(NG′, q′, j) + dji}, (NG, q, i) ∈ F̂ .

(4.7)

By using the transpose of the cost matrix [dij ], we can compute the reverse func-

tions f−1(q, i) and f−1(NG, q, i) with recursions similar to those used for f(q, i) and

f(NG, q, i). For symmetric CVRPs, we have f−1(q, i) = f(q, i) and f−1(NG, q, i) =

f(NG, q, i).

4.4 An Exact Algorithm

In this section, we describe an exact algorithm for solving both the VRPTW and the

CVRP. The algorithm generates a reduced problem P̃ obtained from P by replacing

the route set R with a smaller route set R̃ ⊆ R containing any optimal solution and
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solves P̃ with an IP solver. The core of the algorithm is the bounding procedures H1,

H2, H3, and H4 described in §§4.5 and 4.6. The algorithm can be described as follows.

Step 1. Execute in sequence bounding procedures H1, H2 and H3. If the LP solution

xk corresponding to lower bound LBk is a feasible P solution, for some k ∈
{1, 2, 3}, xk is an optimal solution, stop.

Step 2. Call procedure GenR (see §4.5.5) to generate the largest route set R3 ⊆ R

such that (i) c3
` ≤ zUB −LB3, ` ∈ R3, and (ii) |R3| ≤ ∆(R), where ∆(R) is a

parameter. If |R3| < ∆(R), R3 contains the routes of any optimal solution of

cost less than or equal to zUB and is defined optimal. Otherwise, R3 is defined

nonoptimal.

Step 3. Call procedure H4 to compute lower bound LB4 corresponding to the cost of

the D solution (u4,v4, g4). If the optimal LP solution x4 is integer, stop.

Step 4. We have two cases

(a) If the route set R3 is optimal, select the subset R̃ ⊆ R3 of routes such

that c4
` ≤ zUB − LB4.

(b) If the route set R3 is nonoptimal, call GenRF (see §4.7) to compute the set

of routes R̃ such that

c3
` ≤ zUB − LB3 ` ∈ R̃

c4
` ≤ zUB − LB4 ` ∈ R̃

|R̃| ≤ ∆(R)

 (4.8)

If |R̃| < ∆(R), then R̃ contains the routes of any optimal solution and is

defined optimal.

Step 5. Solve problem P̃ derived from P by replacing the route set R with the route

set R̃ and by adding the subsets of CCs and SR3s saturated by the optimal

LP solution produced by H4. Let z(P̃ ) be the cost of the optimal solution x̃

of P̃ (we assume z(P̃ ) =∞ if no feasible solution exists). If the route set R̃ is

optimal, then x̃ is an optimal solution; otherwise, min{z(P̃ ), zUB} is a valid

upper bound to z(P ).

4.5 Bounding Procedures H1, H2 and H3

Bounding procedures H1, H2 and H3 use the same column-and-cut generation method,

called CCG, to find lower bounds LB1, LB2 and LB3 corresponding to the cost of

three near-optimal D solutions. Procedures H1 and H2 are based on two different

route relaxations and add CCs. Procedure H3 is based on elementary routes and adds

both SCs and WSR3s.
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4.5.1 Algorithm CCG

Algorithm CCG differs from standard column-and-cut generation methods based on

the simplex algorithm because it uses a dual-ascent heuristic algorithm to solve the

master problem. Procedure CCG was proposed by Baldacci et al. [2008] for the CVRP

and used by Boschetti et al. [2008] for the set partitioning problem, who showed that

CCG is faster than the simplex because it is not affected by the typical degeneracy of

the simplex.

Define A(C) = {(i, j) ∈ A : i, j ∈ C}, and let C` = {C ∈ C : |A(C) ∩A(R`)| ≥ 1} be

the subset of WSR3s involving the route `. Algorithm CCG is based on the following

theorem, which is a straightforward extension of Theorem 1 described in §3.5.2.

Theorem 1. Let λ = (λ0, λ1, . . . , λn), µ = (µ1, . . . , µ|S |), ω = (ω1, . . . , ω|C |) be three

vectors of penalties, where penalty λ0 ∈ R− is associated with constraint (4.3), penal-

ties λi ∈ R, i ∈ V , with constraints (4.2), penalties µS ∈ R+, S ∈ S , with constraints

(4.5) in the form of either SCs or CCs, and penalties ωC ∈ R−, C ∈ C , with con-

straints (4.6) in the relaxed form of WSR3s. Let R̂ be the index set of nonnecessarily

elementary routes given by some SSR. A feasible dual solution (u,v, g) of problem LP

of cost z(D(λ,µ,ω)) is obtained as

ui = bi + λi i ∈ V
u0 = λ0

vS = µS S ∈ S

gC = ωC C ∈ C

 , (4.9)

where bi, i ∈ V , is defined as

bi = qi min
`∈R̂ : ai`≥1


c` −

∑
i∈V ′

ai`λi −
∑
S∈S

ρ`(S)µS −
∑
C∈C`

ωC∑
i∈V

ai`qi

 . (4.10)

Proof. Consider a route ` ∈ R̂. From the definition of the dual solution (u,v, g), we

derive

ui ≤ qi

c` −
∑
i∈V ′

ai`λi −
∑
S∈S

ρ`(S)µS −
∑
C∈C`

ωC∑
i∈V

ai`qi
+ λi, i ∈ V : ai` ≥ 1.

Thus, for each route ` ∈ R̂, the following relation holds

∑
i∈V ′

ai`ui ≤
∑
i∈V ′

ai`qi

c` −
∑
i∈V ′

ai`λi −
∑
S∈S

ρ`(S)µS −
∑
C∈C`

ωC∑
i∈V

ai`qi
+
∑
i∈V ′

ai`λi
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= c` −
∑
S∈S

ρ`(S)µS −
∑
C∈C`

ωC ,

which corresponds to the constraint of problem D for route ` ∈ R̂∑
i∈V ′

ai`ui +
∑
S∈S

ρ`(S)vS +
∑
C∈C`

gC ≤ c`.�

Algorithm CCG is a column-and-cut generation-like method for solving the problem

LCG = max
(λ,µ,ω)

{z(D(λ,µ,ω))}. (4.11)

Procedure CCG executes a number of macro-iterations to compute a dual solution

(u′,v′, g′) of the master problem, defined by the route subset R′ ⊆ R, solving problem

(4.11) with a predefined numberMaxit2 of subgradient iterations to modify the penalty

vectors (λ,µ,ω).

Baldacci et al. [2008] have shown that a valid subgradient of function z(D(λ,µ,ω))

at point (λ,µ,ω) can be computed by associating, with the current D solution, a

nonnecessarily feasible LP solution x of cost z(LP ) = z(D(λ,µ,ω)) defined as follows.

Let R̃ be the index set of the distinct routes producing bi, i ∈ V , in expressions (4.10),

and let `(i) be the index of the route in R̃ associated with bi, i ∈ V . Solution x is

computed as x` =
∑

i∈V
ai`qi∑
i∈V ai`qi

ξi`, ` ∈ R̃, by setting ξi`(i) = 1 and ξi` = 0, for each

route ` ∈ R̃ \ {`(i)}, and each customer i ∈ V . The values of the left-hand-side of

constraints (4.2), (4.3), (4.5), and (4.6) with respect to x are used to update penalty

vectors λ, µ, and ω by means of the usual subgradient expressions, where we use

zUB = 1.2z(LP ) instead of a feasible upper bound.

The set S of CCs (or SCs) is generated a priori (see §4.3). After computing the master

dual solution (u′,v′, g′), CCG adds to the master a subset of WSR3 inequalities

violated by the LP solution x. Moreover, CCG generates a subset N of routes

of negative reduced cost with respect to (u′,v′, g′). If N 6= ∅, then CCG sets

R′ = R′ ∪N ; otherwise, (u′,v′, g′) is a feasible D solution. CCG terminates after

Maxit1 macro iterations (Maxit1 defined a priori).

We denote by (u∗,v∗, g∗) and x∗ the final D and LP solutions of cost LCG achieved

by CCG using penalty vectors (λ∗,µ∗,ω∗), respectively.

A step-by-step description of procedure CCG is the following.

Step 1. Initialization. A route set R′ ⊆ R̂ is generated to initialize the master problem

which corresponds to LP , where R is replaced with R′. We assume that R′

contains at least one route passing through each customer i ∈ V . The route set

R′ and the subsets S and C of SCs and WSR3s are generated, and (λ,µ,ω)
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are initialized as described in §§4.5.2, 4.5.3, and 4.5.4. Set LCG = 0 and

iter = 1.

Step 2. Find a master dual solution (u′,v′, g′) of cost z′. A near-optimal dual solution

(u′,v′, g′) of cost z′ of the master problem is computed by an iterative pro-

cedure that initializes z′ = 0 and performs Maxit2 iterations of the following

operations:

(i) Compute a dual solution (u,v, g) of the master of cost z by means of

expressions (4.9) and (4.10), where R̂ is replaced with R′, using the

current vectors (λ,µ,ω). Let R̃ be the index set of the distinct routes

producing bi, i ∈ V , in expressions (4.10), and let `(i) be the index of the

route in R′ associated with bi, i ∈ V . Define a nonnecessarily feasible

LP solution x as x` =
∑

i∈V
ai`qi∑
i∈V ai`qi

ξi`, ` ∈ R̃, by setting ξi`(i) = 1, and

ξi` = 0, for each route ` ∈ R̃ \ {`(i)}, and each customer i ∈ V . If z > z′,

update z′ = z, x′ = x, (u′,v′, g′) = (u,v, g).

(ii) Update the penalty vectors (λ,µ,ω) as follows. Compute

• α0 =
∑
`∈R̃

x` and αi =
∑
`∈R̃

ai`x`, i ∈ V ;

• βS =
∑
`∈R̃

b`(S)x`, S ∈ S ;

• δC =
∑

`∈R(C)∩R̃

⌊∑
i∈C ai`

2

⌋
x`, C ∈ C .

Then, vectors (λ,µ,ω) are modified as follows

λi = λi − εγ(αi − 1), i ∈ V
λ0 = min{0, λ0 − εγ(α0 −m)}
µS = max{0, µS − εγ(βS − k(S)}, S ∈ S

ωC = min{0, ωC − εγ(δC − 1)}, C ∈ C


where ε is a positive constant and

γ =
0.2z′∑

i∈V
(αi − 1)2 + (α0 −m)2 +

∑
S∈S

(β(S)− k(S))2 +
∑
C∈C

(δC − 1)2
.

Step 3. Check if (u′,v′, g′) is a feasible D solution. Generate (see §§4.5.2, 4.5.3, and

4.5.4) the largest subset N ⊆ R̂ of routes of negative reduced cost with respect

to the current dual master solution (u′,v′, g′) and such that |N | ≤ ∆(N )

(∆(N ) is an a priori defined parameter). If N = ∅ and z′ is greater than

LCG, then LCG = z′, (u∗,v∗, g∗) = (u′,v′, g′), x∗ = x′ and (λ∗,µ∗,ω∗) =

(λ,µ,ω); otherwise, R′ = R′ ∪N is updated.

Step 4. Termination criterion. Set iter = iter + 1. If iter = Maxit1, stop.
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Step 5. Separate WSR3s. Find the set C ′ of the WSR3s most violated by the current

LP solution x′ obtained at Step 2 and such that |C ′| ≤ ∆(C ). WSR3s are

separated by complete enumeration.

4.5.2 Bounding Procedure H1

Bounding procedure H1 enlarges the route set R with the t-routes (to solve the

VRPTW) or the q-routes (in the CVRP, see Christofides et al. [1981b]). The ini-

tial route set R′ of the master problem contains all single-customer routes (0, i, 0),

i ∈ V . WSR3s are ignored (i.e., we set C = ∅); solving the VRPTW, we initialize

S = ∅, whereas in the CVRP the set S contains CCs and is generated a priori as

described in Baldacci et al. [2008]. We initialize (λ,µ,ω) = (0,0,0).

Define the modified arc cost d′ij = dij− 1
2(u′i+u

′
j)−

∑
S∈Sij

v′S , (i, j) ∈ A, with respect to

the current dual solution (u′,v′, g′), where Sij = {S ∈ S : (i, j) ∈ A, i ∈ V ′ \ S, j ∈
S}. The set N is computed as follows. If we use t-routes, we compute functions f(t, i)

using the modified arc costs d′ij instead of dij . Let h(i) = mint∈[ei,li]{f(t, i)+d′i0}. The

set N contains any t-route corresponding to h(i) < 0, i ∈ V . Similarly, we compute

N when R̂ contains q-routes.

At the end, H1 sets (u1,v1, g1) = (u∗,v∗, g∗), x1 = x∗, (λ1,µ1,ω1) = (λ∗,µ∗,ω∗),

LB1 = LCG.

4.5.3 Bounding Procedure H2

Procedure H2 enlarges the route set R with the ng-routes and adds to LP the same set

S of CCs used byH1. WSR3s (4.6) are ignored. We initialize (λ,µ,ω) = (λ1,µ1,ω1),

define d1
ij = dij − 1

2(u1
i + u1

j )−
∑

S∈Sij
v1
S , (i, j) ∈ A, and compute Ni to be the ∆(Ni)

nearest customers to i according to d1
ij . We compute functions f(NG, t, i) using d1

ij

instead of dij in recursions (4.7) and the costs h(i) = min
(NG,t,i)∈F̂

{f(NG, t, i) + d1
i0},

i ∈ V , of the least-cost ng-route visiting i immediately before arriving at the depot.

The route set R′ contains the ng-routes corresponding to h(i) < 0, i ∈ V .

At each iteration, to generate the set N , we compute functions f(NG, t, i) with the

modified arc cost d′ij , (i, j) ∈ A, and Ni contains the ∆(Ni) nearest customers to i

according to d′ij . The route set N contains every ng-route corresponding to h(i) < 0,

i ∈ V .

At the end, procedure H2 sets (u2,v2, g2) = (u∗,v∗, g∗), x2 = x∗, (λ2,µ2,ω2) =

(λ∗,µ∗,ω∗), and LB2 = LCG.
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4.5.4 Bounding Procedure H3

Procedure H3 uses the set of elementary routes R. The sets R′ and N are generated

using the procedure GenR described in §4.5.5. Given a D solution (ũ, ṽ, g̃) and two

parameters ∆ and γ, GenR generates at most ∆ routes of reduced cost less than or

equal to γ with respect to (ũ, ṽ, g̃).

The initial route set R′ is obtained by setting ∆ = ∆a, (ũ, ṽ, g̃) = (u2,v2, g2),

and γ = zUB − LB2, and adding all single-customer routes to R′. Moreover, we

initialize (λ,µ,ω) = (λ2,µ2,ω2). In generating the route set N , we set ∆ = ∆b,

(ũ, ṽ, g̃) = (u′,v′, g′), and γ = −ε (say ε = 10−6).

Bounding procedure H3 adds, to LP , the set S of CCs used by H1 and H2 in the

form of SCs and separates WSR3s.

At the end, procedure H3 sets (u3,v3, g3) = (u∗,v∗, g∗), x3 = x∗, (λ3,µ3,ω3) =

(λ∗,µ∗,ω∗), and LB3 = LCG.

4.5.5 Procedure GenR

Procedure GenR is a DP algorithm that generates elementary routes using bounding

functions based on the ng-path relaxation. GenR is an extension of the algorithm

described by Baldacci et al. [2008] for the symmetric CVRP that, in turn, is based on

the method proposed by Mingozzi et al. [1994] and adapted by Baldacci et al. [2006] for

the asymmetric CVRP on a multigraph. Similar methods have been used by Righini

and Salani [2008], Jepsen et al. [2008], and Desaulniers et al. [2008].

In §4.3, we gave the definition of forward and backward paths. In addition, for a

forward path F = (0, i1, . . . , ik−1, ik), we refer to ik−1 with πF and set qF =
∑

i∈V (F ) qi,

and, for a backward path B = (ik, ik+1, . . . , ih, 0), we refer to ik+1 with πB and set

qB =
∑

i∈V (B) qi.

Let τ be a time such that τ ∈ (e0, l0) (say, τ = b(l0 − e0)/2c). We define F as the set

of all forward paths such that πF is visited at time less than τ , F ∈ F , and B as the

set of all backward paths such that πB is visited at time greater than τ , B ∈ B, plus

all backward paths B = (k, 0), k ∈ V . Procedure GenR is based on the observation

that all feasible VRPTW routes can be obtained combining any pair of paths (F,B),

F ∈ F , B ∈ B, satisfying the following feasibility conditions

σF = σB, V (F ) ∩ V (B) = {0, σF }, tF ≤ tB, qF + qB − qσF ≤ Q. (4.12)

GenR is a two-phase algorithm. Given a D solution (ũ, ṽ, g̃), it generates at most ∆

routes of reduced cost less than or equal to γ. In Phase 1, GenR generates the path
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sets F and B using a procedure called GenP; in Phase 2, it derives feasible routes by

combining F and B using a procedure called Combine. GenR is based on the following

lemma.

Lemma 1. Let d̃ij = dij− 1
2(ũi+ũj)−

∑
S∈Sij

ṽs be the arc reduced costs with respect to

(ũ, ṽ, g̃), and let c̃(F ) =
∑

(i,j)∈A(F ) d̃ij , F ∈ F , and c̃(B) =
∑

(i,j)∈A(B) d̃ij , B ∈ B.

Let ` ∈ R be the route of reduced cost c̃` = c` −
∑

i∈V (R`)
ũi −

∑
S∈S ρ`(S)ṽS −∑

C∈C`
g̃C , where S corresponds to SCs, resulting from a given pair of paths F and

B satisfying conditions (4.12). The following inequality holds c̃(F ) + c̃(B) ≤ c̃`.

Proof. Because paths F and B satisfy conditions (4.12) and route ` is the combination

of F and B, we have ∑
(i,j)∈A(F )

dij +
∑

(i,j)∈A(B)

dij = c` (4.13)

and
1

2

∑
(i,j)∈A(F )

(ũi + ũj) +
1

2

∑
(i,j)∈A(B)

(ũi + ũj) =
∑

i∈V (R`)

ũi. (4.14)

From the definitions of d̃ij , c̃(F ) and c̃(B) and from expressions (4.13) and (4.14), we

derive

c̃(F ) + c̃(B) = c` −
∑

i∈V (R`)

ũi −
∑

(i,j)∈A(R`)

∑
S∈Sij

ṽS . (4.15)

Because b`(S) ∈ {0, 1}, S ∈ S , as S corresponds to SCs and ṽS ≥ 0, we have∑
(i,j)∈A(R`)

∑
S∈Sij

ṽS ≥
∑
S∈S

b`(S)ṽS . (4.16)

From expressions (4.15) and (4.16), we obtain

c̃(F ) + c̃(B) ≤ c` −
∑

i∈V (R`)

ũi −
∑
S∈S

b`(S)ṽS . (4.17)

Because g̃C ≤ 0, C ∈ C , from the definition of c̃` and expression (4.17), we derive the

lemma.�

GenR is called (i) at the beginning ofH3 to generate the route set R′ of the initial master

problem setting (ũ, ṽ, g̃) = (u2,v2, g2) and γ = zUB − LB2; (ii) in H3 to generate

the route set N of negative reduced cost routes setting (ũ, ṽ, g̃) = (u′,v′, g′) and

γ = −ε; (iii) at Step 2 of the exact method (see §4.4) to generate the route set R3

setting (ũ, ṽ, g̃) = (u3,v3, g3) and γ = zUB − LB3.

4.5.5.1 Procedure GenP.

Procedure GenP is Phase 1 of GenR and computes the path sets F and B using bounding

functions based on the ng-path relaxation.
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In generating the set B, GenP imposes that any path B ∈ B is undominated by any

other path B′ ∈ B such that V (B) = V (B′), σ(B) = σ(B′), c(B) ≥ c(B′), and

t(B) ≤ t(B′).

Let l̃b(B) be a lower bound on the reduced cost c̃`, with respect to (ũ, ṽ, g̃), of any

route ` containing path B. Procedure GenP is a Dijkstra-like algorithm (see Baldacci

et al. [2008]) generating B as a sequence of undominated paths (B1, . . . , Bh), with

h ≤ ∆(B), such that l̃b(B1) ≤ . . . ≤ l̃b(Bh) ≤ γ, where ∆(B) is a parameter. To

compute l̃b(B) we have to consider two cases

Case 1: g̃ = 0 (i.e., C = ∅), functions f(NG, t, i) are computed with the modified

costs d̃ij and the subsets Ni, i ∈ V , contain the ∆(Ni) nearest customers to i

according to d̃ij . Value l̃b(B) is given by

l̃b(B) = c̃(B) + min
NG⊆Ni :NG∩V (B)={σB}, t′≤tB

{f(NG, t′, σB)}.

Case 2: g̃ 6= 0, l̃b(B) is computed extending the ng-route relaxation to consider the

dual variables g̃. We define Ni =
⋃
C∈C : i∈C C, i ∈ V , and, for all i ∈ V

such that |Ni| < ∆(Ni), we add to Ni the ∆(Ni)− |Ni| nearest customers to

i according to d̃ij not in Ni. We derive an expanded state-space graph G̃F =

(F̃ , ÃF ) from ĜF by partitioning all paths represented by state (NG, t, i) ∈ F̂

in |Γ−1
i | partitions, where each partition is identified by the last vertex j visited

before i and is represented by a state (NG, t, j, i) ∈ F̃ . The sets F̃ and ÃF

are defined as follows

F̃ = {(NG, t, j, i) : i ∈ V, j ∈ Γ−1
i , t ∈ [ei, li], ∀NG ⊆ Ni s.t. NG 3 i},

ÃF = {((NG′, t′, k, j), (NG, t, j, i)) : (NG′, t′, k, j), (NG, t, j, i) ∈ F̃ ,

j ∈ Γ−1
i , k ∈ Γ−1

j , t′ ∈ Ω(t, j, i), ∀NG′ ⊆ Nj s.t. NG′ 3 j and NG′∩Ni = NG\{i}},

where Ω(t, j, i) is the set of departure times from vertex j to arrive at vertex

i at time t when j is visited immediately before i and is defined as

Ω(t, j, i) =

{
t′ : t′ ∈ [ej ,min{lj , t− tji}]}, if t = ei,

t− tji : t− tji ∈ [ej , lj ], if t ∈ (ei, li].

Let Cij = {C ∈ C : (i, j) ∈ A(C)}. A possible DP recursion for computing

the cost f(NG, t, j, i) of a least cost ng-path (NG, t, j, i) ∈ F̃ is

f(NG, t, j, i) = min
(NG′,t′,k,j) :

((NG′,t′,k,j),(NG,t,j,i))∈ÂF

{f(NG′, t′, k, j) + d̃ji −
∑

C∈Cji\Ckj

g̃C}.

The following lemma gives a method for computing l̃b(B).
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Lemma 2. Let i = σB and k = πB. Lower bound l̃b(B) can be computed as

follows

l̃b(B) = c̃(B)−
∑
C∈C :

|A(C)∩A(B)|≥1

g̃C + min
NG⊆Ni :NG∩V (B)={i},

t′≤t(B), j∈Γ−1
i

{f(NG, t′, j, i)+ g̃{jik}},

(4.18)

where g̃{jik} is the dual of inequality (4.6) corresponding to C = {j, i, k}
(g̃{jik} = 0 if {j, i, k} /∈ C ).

Proof. Let R be the route of minimum reduced cost with respect to (ũ, ṽ, g̃)

containing the backward path B, and let F be the forward path producing R

once combined with B. Let W (F ), W (B) and W (R) be the subsets of the

WSR3s of C covered by F , B and R, respectively. Notice that W (F )∩W (B)

is either empty or contains the WSR3 inequality C∗ ∈ C such that A(C∗)

contains both the first arc (i, k) of B and the terminal arc (π(P ), i) of F ,

that is C∗ = {π(P ), i, k}. If {π(P ), i, k} ∈ C , let g̃{π(P ),i,k} be the dual of

inequality (4.6) corresponding to {π(P ), i, k}; otherwise ({π(P ), i, k} /∈ C ),

set g̃{π(P ),i,k} = 0. Because

c̃(R) = c̃(F ) + c̃(B)−
∑

C∈W (R)

g̃C

and ∑
C∈W (R)

g̃C =
∑

C∈W (F )

g̃C +
∑

C∈W (B)

g̃C − g̃{π(F ),i,k},

we have

c̃(R) = c̃(B)−
∑

C∈W (B)

g̃C + c̃(F )−
∑

C∈W (F )

g̃C + g̃{π(F ),i,k}. (4.19)

Notice that

min
NG⊆Ni s.t. NG∩V (B)={i},

t′≤t(B), j∈Γ−1
i

{f(NG, t′, j, i)+g̃{j,i,k}} ≤ c̃(F )−
∑

C∈W (F )

g̃C+g̃{π(P ),i,k}.

(4.20)

From (4.19) and (4.20), we derive that l̃b(B) computed according to expression

(4.18) provides a valid lower bound on c̃(R). �

Similarly, GenP generates the path set F as a sequence of undominated paths (F 1,

. . . , F h), with h ≤ ∆(F ), such that l̃b(F 1) ≤ . . . ≤ l̃b(F h) ≤ γ, where ∆(F ) is a

parameter. Bound l̃b(F ) is computed similarly as described above for B using the

reverse functions f−1(NG, t, i) and f−1(NG, t, j, i).
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4.5.5.2 Procedure Combine.

This procedure combines the path sets F and B to derive at most ∆ routes of re-

duced cost with respect to (ũ, ṽ, g̃) less than or equal to γ using the iterative method

described by Baldacci et al. [2006].

Because of Lemma 1, routes of reduced cost less than or equal to γ can be generated

combining only path pairs (F,B) such that c̃(F ) + c̃(B) ≤ γ. Procedure Combine

dynamically generates a sequence of pairs (F r1 , Bs1), . . ., (F rk , Bsk), . . ., (F rh , Bsh)

such that each pair satisfies conditions (4.12) and c̃(F r1) + c̃(Bs1) ≤ . . . ≤ c̃(F rk) +

c̃(Bsk) ≤ . . . ≤ c̃(F rh)+ c̃(Bsh) ≤ γ. The pool of routes generated by Combine contains

any route R resulting from the pairs of paths in the sequence such that c̃(R) ≤ γ and

R is undominated by any other route R′ previously generated (i.e., R′ dominates R if

V (R′) = V (R) and c̃(R′) ≤ c̃(R)).

The procedure terminates as soon as ∆ routes have been found or all pairs have been

considered.

4.5.5.3 GenR for the CVRP.

Unlike the VRPTW, the path sets F and B are defined as in Baldacci et al. [2008]:

F contains any forward path F such that qF ≤ Q
2 + qσF and B contains any backward

path B such that qB ≤ Q
2 + qσB (for symmetric CVRPs F and B coincide).

Moreover, the lower bound l̃b(B) is computed with bounding functions f(NG, q, i), if

g̃ = 0, or f(NG, q, j, i), if g̃ 6= 0. Functions f(NG, q, j, i) are derived by expanding

f(NG, q, i) so that j is the vertex preceding i similarly as described in §4.5.5.1 for

functions f(NG, t, j, i).

4.6 Column-and-Cut Generation Procedure H4

Procedure H4 is a column-and-cut generation procedure based on the simplex algo-

rithm to solve relaxation LP . H4 differs from the methods of Jepsen et al. [2008],

Desaulniers et al. [2008], and Baldacci et al. [2008] for the pricing algorithm.

Before starting H4 (see Step 2 of the exact algorithm in §4.4) an attempt is made to

generate the set R3 of all routes such that c3
` ≤ zUB − LB3. The set R3 is generated

by procedure GenR imposing that |F | ≤ ∆(F ), |B| ≤ ∆(B), and that at most ∆(R)

are generated. We call F 3 the set F , B3 the set B, and R3 the set R generated by

GenR. Define each set F 3, B3, and R3 as optimal if |F 3| < ∆(F ), |B3| < ∆(B), and

|R3| < ∆(R). The set R3 is optimal if and only if both F 3 and B3 are optimal.
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The route set R′ of the initial master problem of H4 is obtained by extracting the ∆a

routes of minimum reduced cost with respect to (u3,v3, g3) from R3 and by adding

all single-customer routes. We initialize the set C of SR3s as C = ∅ and use the same

set S of SCs of H3.

At each iteration, a set N of at most ∆b negative reduced cost routes with respect to

the current dual solution (ū, v̄, ḡ) is produced by procedure GenR4 (see §4.6.1). The

set N is either extracted from R3 or generated by combining sets F 3 and B3. The

sets F 3 and B3 are newly generated when necessary if they are not-optimal.

At each iteration, H4 adds the set C ′ of at most ∆(C ) SR3s most violated by the

current LP solution. H4 ends if N = ∅ and C ′ = ∅ and achieves a D solution

(u4,v4, g4) of cost LB4.

4.6.1 Procedure GenR4

Procedure GenR4 is called at each iteration of H4 to generate the route set N of

at most ∆b routes of negative reduced cost with respect to the current dual solution

(ū, v̄, ḡ) of the master problem.

GenR4 performs the following steps

Step 1. Extract from R3 a set of at most ∆b routes of negative reduced cost and add

them to N . If N 6= ∅ or R3 is optimal, stop.

Step 2. Call procedure Combine4 that combines the sets F 3 and B3 to derive the set

N . If N 6= ∅ or both sets F 3 and B3 are optimal, stop.

Step 3. If F 3 is not-optimal, call procedure GenP4 to generate a new path set F and

set F 3 = F (F 3 is still not-optimal).

Step 4. Similarly to the previous step, if B3 is not-optimal, call procedure GenP4 to

generate a new path set B and set B3 = B (B3 is still not-optimal).

Step 5. Call Combine4 that combines the sets F 3 and B3 to derive the set N .

If GenP4 or Combine4 run out of memory, H4 and the exact method terminate prema-

turely.

4.6.2 Procedure GenP4

Procedure GenP4 generates sets F and/or B in Steps 3 and 4 of GenR4. GenP4 is similar

to procedure GenP but applies different fathoming rules and an additional dominance
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rule introduced by Jepsen et al. [2008]. In generating B, procedure GenP4 applies the

following rules.

Let lb3(B), B ∈ B, be a lower bound to the reduced cost with respect to the dual solu-

tion (u3,v3, g3) found by H3 of any route R containing path B. Lower bound lb3(B)

corresponds to l̃b(B) described in §4.5.5.1 when (ũ, ṽ, g̃) is replaced with (u3,v3, g3).

Fathoming 1. Any path B ∈ B such that lb3(B) > zUB−LB3 can be fathomed because

B cannot generate any route of any VRPTW solution of cost less than or equal to zUB.

Let l̄b(B), B ∈ B, be a lower bound to the reduced cost with respect to the dual

solution (ū, v̄, ḡ) of any route containing path B.

Fathoming 2. Any path B such that l̄b(B) ≥ 0 is fathomed.

Lower bound l̄b(B) can be computed as described in the following lemma.

Lemma 3. Let functions f(NG, t, i) be computed with the arc costs d̄ij = dij − 1
2(ūi +

ūj) −
∑

S∈Sij
v̄S . Let c̄(B) be the cost of path B using arc costs d̄ij , and let i = σB.

Lower bound l̄b(B) can be computed as follows

l̄b(B) = c̄(B)−
∑
C∈C :

|C∩V (B)\{i}|≥2

ḡC + min
NG⊆Ni :

NG∩V (B)={i}, t′≤tB

{f(NG, t′, i)−
∑
C∈C :

|C∩NG|≥2

ḡC}.

(4.21)

Proof. Let R be the route of minimum reduced cost with respect to (ū, v̄, ḡ) containing

the backward path B, and let F be the forward path producing R once combined with

B. Let C (S) = {C ∈ C : |C ∩ S| ≥ 2}. We have

c̄(R) = c̄(B)−
∑

C∈C (V (B)\{i})

ḡC + c̄(F )−
∑

C∈C (V (F ))

ḡC −
∑

C∈C̄ (V (R))

ḡC

where C̄ (V (R)) = C (V (R)) \ (C (V (B) \ {i}) ∪ C (V (F ))). Because ḡ ≤ 0 and

min
NG⊆Ni :NG∩V (B)={i},

t′≤tB

{f(NG, t′, i)−
∑
C∈C :

|C∩NG|≥2

ḡC} ≤ c̄(F )−
∑

C∈C (V (F ))

ḡC ,

we have

c̄(R) ≥ c̄(B)−
∑

C∈C (V (B)\{i})

ḡC + min
NG⊆Ni :

NG∩V (B)={i}, t′≤tB

{f(NG, t′, i)−
∑
C∈C :

|C∩NG|≥2

ḡC},

thus proving that expression (4.21) provides a valid lower bound l̄b(B) on c̄(R).�

The dominance rule of Jepsen et al. [2008] when applied to B is as follows.
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Dominance 1. Let B, B′ ∈ B be two backward paths such that σB′ = σB, tB′ ≥ tB,

qB′ ≥ qmin, qB ≥ qmin, and V (B′) ⊆ V (B). Path B′ dominates path B if

c̄(B′) ≤ c̄(B)−
∑

C∈C : |C∩V (B)\V (B′)|≥2

ḡC .

Similar rules are applied by procedure GenP4 to generate the path set F .

4.6.3 Procedure Combine4

This procedure generates the route set N of negative reduced costs with respect to

the dual solution (ū, v̄, ḡ) of the master problem combining the path sets F 3 and

B3 as defined in §4.6.1. Procedure Combine4 corresponds to procedure Combine (see

§4.5.5.2) replacing (ũ, ṽ, g̃) with (ū, v̄, ḡ), setting γ = −ε, and applying the following

fathoming rule to reduce the set N .

Fathoming 3. Let c3(R) be the reduced cost of route R with respect to (u3,v3, g3)

computed as c3(R) = c(R) −
∑

i∈V (R) u
3
i −

∑
S∈S ρ`(S)v3

S −
∑

C∈C : |A(C)∩A(R)|≥1 g
3
C .

A route R of negative reduced cost with respect to (ū, v̄, ḡ) cannot belong to N if

c3(R) > zUB − LB3 as route R cannot be in any solution of cost less than or equal to

zUB.

4.6.4 Procedure GenR4 for the CVRP

The lower bound lb3(B) is computed using bounding functions f(NG, q, j, i) as de-

scribed in §4.5.5.3 for l̃b(B) whereas the lower bound l̄b(B) is computed according to

expression (4.21) but using bounding functions f(NG, q, i) instead of f(NG, t, i).

4.7 Procedure GenRF for Generating Route Set R̃

The exact method described in §4.4 at Step 4 asks to generate the largest subset R̃ ⊆ R

of routes satisfying conditions (4.8), whenever R3 is not-optimal.

For this purpose, we use a two-phase procedure, called GenRF, similar to GenR (see

§4.5.5). In the first phase, two sets F and B of forward and backward paths are com-

puted as described below. In the second phase, these sets are combined by procedure

CombineF (see §4.7.2) to derive the final route set R̃. In the first phase, there are four

cases

Case 1. Both F 3 and B3 generated by GenR are optimal. We set F = F 3 and

B = B3.
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Case 2. B3 is optimal but F 3 is not. We set B = B3 and call GenPF (§4.7.1) to

compute F .

Case 3. F 3 is optimal but B3 is not. We set F = F 3 and call GenPF to compute B.

Case 4. Both F 3 and B3 are not optimal. We call GenPF to compute both F and B.

In the end, R̃ is defined optimal (i.e., contains any optimal VRPTW solution) if and

only if F , B, and R̃ are such that |F | < ∆(F ), |B| < ∆(B) and |R̃| < ∆(R̃).

In the following §§4.7.1 and 4.7.2, we describe procedure GenPF and CombineF for the

VRPTW. It is quite obvious how to adapt them for the CVRP.

4.7.1 Procedure GenPF

Procedure GenPF generates one or both sets F and B required by GenRF (see cases (2),

(3) and (4) in §4.7). GenPF is similar to procedure GenP but applies different fathoming

rules.

In generating the set B, GenPF applies the following fathoming rules. Let lb3(B) and

lb4(B) be the lower bounds on the reduced costs, c3(R) and c4(R), of any route R con-

taining path B ∈ B with respect to (u3,v3, g3) and (u4,v4, g4), respectively. Bound

lb3(B) is computed as described in §4.6.2, and lb4(B) is computed using expression

(4.21) where (ū, v̄, ḡ) is replaced with (u4,v4, g4).

Fathoming 4. Any path B ∈ B such that lb3(B) > zUB −LB3 or lb4(B) > zUB −LB4

can be fathomed.

Fathoming 5. Let d4
ij = dij − 1

2(u4
i + u4

j )−
∑

S∈Sij
v4
s , (i, j) ∈ A. Whenever qmin = 0,

any backward path B such that∑
(i,j)∈A(B)

d4
ij −

∑
C∈C : |C∩V (B)\{i}|≥2

g4
C − d4

i0 > zUB − LB4 (4.22)

can be fathomed as it cannot produce any route R of reduced cost c4(R) ≤ zUB−LB4.

Proof. Let R be the route of minimum reduced cost c4(R) with respect to (u4,v4, g4)

obtained by combining B starting from σB = i with a forward path F ending at vertex

σF = i. Let C (S) = {C ∈ C : |C ∩ S| ≥ 2}. We have

c4(R) =
∑

(i,j)∈A(R)

d4
ij −

∑
C∈C (V (R))

g4
C .

Since C (V (R)) ⊇ C (V (B) \ {i}) ∪ C (V (F )) and g4
C ≤ 0, C ∈ C , we have

c4(R) ≥
∑

(i,j)∈A(B)

d4
ij −

∑
C∈C (V (B)\{i})

g4
C +

∑
(i,j)∈A(F )

d4
ij −

∑
C∈C (V (F ))

g4
C . (4.23)
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Consider the route R′ obtained by adding arc (i, 0) to F . As c4(R′) ≥ 0, we have∑
(i,j)∈A(F )

d4
ij −

∑
C∈C (V (F ))

g4
C ≥ −d4

i0. (4.24)

From inequalities (4.23) and (4.24), we obtain

c4(R) ≥
∑

(i,j)∈A(B)

d4
ij −

∑
C∈C (V (B)\{i})

g4
C − d4

i0.

Thus, if B satisfies inequality (4.22), then c4(R) > zUB − LB4. So route R cannot be

in any optimal solution of cost less than or equal to zUB. �

Similar fathoming rules are used to generate F .

4.7.2 Procedure CombineF

This procedure generates the route set R̃ combining the path sets F and B defined in

§4.7. CombineF is similar to Combine (see §4.5.5.2) but imposes that any route R ∈ R̃

is such that c3(R) ≤ zUB − LB3 and c4(R) ≤ zUB − LB4.

4.8 Computational Results

This section reports on the computational results of the exact method (hereafter called

BMR) described in this chapter. All algorithms were coded in Fortran 77 and compiled

with Intel Fortran 11.0. Cplex 12.1 was used as the LP solver in procedure H4 and the

IP solver in the exact method. All tests were run on an IBM Intel Xeon X7350 Server

(2.93 GHz - 16 GB of RAM).

4.8.1 Computational Results on the VRPTW

Our exact method BMR for the VRPTW was tested on Solomon instances Solomon

[1987], which are divided into six classes (classes C1, RC1 and R1 with tight time

windows and strict vehicle capacity, and classes C2, RC2 and R2 with wide time

windows and loose vehicle capacity). We considered all 100-customer instances and

instances with 50 customers of classes C2, RC2 and R2.

The travel costs dij are computed as dij = b10eijc/10, where eij is the Euclidean

distance between vertices i and j; the travel times tij are integer values computed as

tij = 10(dij + si), where si is the service time at vertex i.
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Because instances of classes C1, RC1 and R1 have tight time windows, we did not find

it worth running procedure H2. Thus, on such instances H2 was skipped. In addition,

we ignored SCs and WSR3s for all classes of instances.

BMR uses the best upper bounds reported in Ropke [2005] and Danna and Pape [2005].

Such upper bounds are obtained by running the heuristic of Pisinger and Ropke [2007]

with different parameter settings (Ropke [2010]). Whenever BMR uses the upper

bound, its computing time is added to the total computing time of BMR. For instance

R211 with 100 customers, the upper bound used was found by Desaulniers et al. [2008].

BMR uses the following parameter setting

• in H1: Maxit1 = 100 and Maxit2 = 50;

• in H2: ∆(Ni) = 8, Maxit1 = 100, and Maxit2 = 50;

• in H3: ∆(Ni) = 10, ∆b = 300, ∆(F ) = ∆(B) = 5 × 107, ∆(R) = 1.5 × 106,

Maxit1 = 100, and Maxit2 = 50;

• in H4, ∆a = 1 × 104, ∆b = 300, ∆(F ) = ∆(B) = 5 × 107, ∆(R) = 1.5 × 106,

∆(C ) = 20.

We compare BMR with the methods of Jepsen et al. [2008] and Desaulniers et al. [2008],

hereafter called JPSP and DHL, respectively. Desaulniers et al. [2008] presented three

versions of their algorithm. We consider the version labeled “ESPPRC SRC” as it

could solve more instances than the others. According to SPEC (http://www.spec.

org/benchmarks.html), our machine is three times faster than the Intel Pentium 4

3.0 GHz PC of JPSP and twice as fast as the Linux PC Dual Core AMD Opteron at

2.6 GHz of DHL.

In Tables 4.1, 4.2, and 4.3, we report on detailed computational results on the Solomon

instance considered. The columns of three tables report the instance name (Inst), the

optimal value (z∗ - in bold if solved for the first time by BMR), the upper bound used

(zUB) and the time to compute it (T ) in columns under heading Upper Bound. For each

bounding procedure Hk, k = 1, . . . , 4 (if run), we report the lower bound (LBk) and

the cumulative computing time spent up to Hk. Columns |F 3|, |B3|, and |R3| report

the cardinalities (in thousands) of the sets F 3, B3 and R3; if we could not completely

generate a set, an empty circle is displayed. The number of SR3s inequalities (SR3)

added in H4 is shown. The number of routes (|R̃|) in the final reduced problem P̃

and the time taken by Cplex to solve it (Tcpx) are shown. Finally, the total computing

time in seconds (Ttot) of the methods compared are reported in the last three columns

of the table. Ttot under BMR is equal to the sum of the time to compute the upper

bound, the time spent up to H4 and Tcpx.

Table 4.3 shows that BMR was able to solve four instances open so far. The only

open Solomon instance is R.208.100, where BMR ran out of memory. Notice that the

http://www.spec.org/benchmarks.html
http://www.spec.org/benchmarks.html
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lower bounds achieved using the ng-routes in algorithm CCG are close to the bounds

achieved using elementary routes and the time taken to perform H2 is limited.

Table 4.4 compares BMR, JPSP, and DHL. For each class, Table 4.4 reports the class

name (Class), the number of customers (n), the number of instances (NP ), the number

of instances solved by each of the three methods (Solved) and the average computing

time in seconds (T ) (n.a. means data are not available). In the last three rows, the

average computing time of the methods over all instances, the instances solved by

JPSP, and the instances solved by DHL are shown.

Table 4.4 shows that BMR outperforms JPSP and DHL: all instances solved by the

other methods were solved by BMR and the average time is significantly lower.

Table 4.5 reports the optimal solutions BMR found for the four 100-customer instances

(RC204, RC208, R204, and R211) open before this paper. We give the optimal solution

value, the number of vehicles used, and, for each route, the cost and the sequence of

visited customers.

We also report a computational analysis about some components of the algorithm

proposed (i.e., parameter ∆(Ni) and dominance and fathoming rules). Table 4.6 re-

ports the results obtained on a selected set of instances by varying parameter ∆(Ni)

in procedure H2. In particular, the table shows the value of lower bound LB2 using

∆(Ni) = 5, 8, 10, 12, and the corresponding computing time, compared with LB1, LB3,

and LB4. The last line of the table reports the average percentage deviations of the

different lower bounds. The table shows that using ∆(Ni) = 8 gives a good trade-off

between quality of the lower bound and computing time. Indeed, the lower bound is

on average about 5 percent greater than LB1 and about 0.5 percent lower than LB3.

Tables 4.7 and 4.8 report statistics on the number of states fathomed by the dominance

and fathoming rules applied in procedures GenP4 (called by procedure H4) and GenPF

(called to generate the final route sets R̃). The tables show the following columns:

total number of forward (backwards) states in millions generated in computing F (B)

(States), percentage of states eliminated by Dominance 1 (%Dom1), percentage of

states fathomed by Fathoming rule x (%Fath x, x = 1, 2, 4, 5), final cardinality (in

millions) of the set F (B) generated (|F |, |B|). The dominance and fathoming rules

are reported in the tables using the same order of application in BMR.

Regarding procedure GenP4, table 4.7 shows that the dominance and fathoming rules

are very effective in reducing the number of states. Indeed, on average about 90%

of the states generated (for both sets F and B) are eliminated. In particular, the

new Fathoming 1 and Fathoming 2 rules eliminates on average 80% of the states not

dominated by Dominance 1.

Concerning procedure GenPF, table 4.8 shows that both Fathoming 5 and 4 eliminate

on average about 90% of the states generated.
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4.8.2 Computational Results on the CVRP

We considered classes A, B, E, F, M, and P available at http://branchandcut.org/

VRP/data. Cost dij is an integer value computed as dij = beij + 0.5c, where eij is the

Euclidean distance between i and j. As done by Fukasawa et al. [2006], we impose that

exactly m vehicles are used in the solution by simply transforming constraint (4.3) into

an equality constraint.

For computational convenience we skip bounding procedure H2, so the sequence of the

bounding procedures is H1, H3, and H4. WSR3s are used whenever dn/me ≥ 12.

If BMR cannot solve a problem in Step 1, we use the upper bound used by Fukasawa

et al. [2006] and Baldacci et al. [2008], but, while generating the route set R3, whenever

in GenP |F 3| > 1 × 106, we run our implementation of the tabu search algorithm of

Gendreau et al. [1994] with a time limit of 180 seconds. The computing time of the

Tabu Search is considered in the total computing time of BMR whereas the computing

time of the initial upper bound is ignored (as done by Fukasawa et al. [2006] and

Baldacci et al. [2008]).

In our tests, we use the following parameter setting

• in H1 and H2: Maxit1 = 150 and Maxit2 = 100;

• in H3: ∆(Ni) = 10, ∆b = 300, ∆(F ) = 1 × 107, ∆(R) = 1 × 107, ∆(C ) = 100,

Maxit1 = 150, and Maxit2 = 100;

• in H4: ∆a = 1× 104, ∆b = 200, ∆(F ) = 1× 107, ∆(R) = 1× 106, ∆(C ) = 10,

Maxit1 = 150, and Maxit2 = 100.

BMR is compared with the methods of Baldacci et al. [2008] (BCM), Fukasawa et al.

[2006] (FLL) and Lysgaard et al. [2004] (LLE). According to SPEC, our machine is

three times faster than the Pentium 4 2.6 GHz PC of BCM and the Pentium 4 2.4

GHZ PC of FLL and ten times faster than the Intel Celeron 700 MHz PC of LLE.

Tables 4.9, 4.10, 4.11, 4.12, and 4.13 show the same columns of Tables 4.1, 4.2, and

4.3 reported for the VRPTW. Column zUB reports the initial upper bound whereas

column UB4 reports the upper bound computed by our tabu search heuristic (when

run). Under FLL, column (s) indicates that the BCP algorithm based on s-cycle-free

q-routes was used, whereas (−) indicates that the BC was used instead of the BCP.

The total time of BMR is the sum of the time spent up to H4 (that includes the time

spent to compute UB4) and Tcpx, but, if Hk, for some k ∈ {1, 2, 3} succeeds in solving

the problem to optimality, the time is equal to the time spent up to Hk.

Tables 4.9-4.13 show that BMR solves three problems not solved by BCM but does not

solve problem F-n135-k7 that is solved by FLL using the BC algorithm. It is worth

mentioning that problem F-n135-k7 was solved for the first time by Augerat [1995].

http://branchandcut.org/VRP/data
http://branchandcut.org/VRP/data
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Table 4.14 summarizes the results of the methods on the six CVRP classes considered.

For each class, the name (Class), the number of instances (NP ) and, for each exact

method, the number of instances solved to optimality (Opt), the average percentage

deviation of the lower bound (%LB) and the average computing time in seconds (T )

are reported. Under FLL, column OptBCP and OptBC report the number of instances

solved using BCP and BC, respectively. The last two rows indicate average values of

%LB and T and the number of problems solved by each method.

Table 4.14 clearly shows that BMR outperforms the other methods on all classes but

class F, where the BC algorithm of Lysgaard et al. [2004] outperforms the other meth-

ods.

Table 4.15 reports the results obtained by varying parameter ∆(Ni) in procedure H2

and by using different types of inequalities in procedures H1 and H3 on a set of selected

instances. For procedure H1, the value of lower bound LB1 and the corresponding

computing time without (no CCs) and with (CCs) CCs are shown. The table shows the

value of lower bound LB2 using ∆(Ni) = 5, 8, 10, 12, and the corresponding computing

time. For procedure H3, we show the value of lower bound LB3 and the corresponding

computing time without (no WSR3s) and with (WSR3s) WSR3s. The last line of the

last reports the average percentage deviations of the different lower bounds.

The results show that: (i) increasing parameter ∆(Ni) slightly improves lower bound

LB2; (ii) LB1 with CCs is very close to LB3 without WSR3s; (iii) the increase of LB2

with respect to LB1 achieved by H1 with CCs is very small and is not worth the extra

computing time required by procedure H2; (iv) CCs and WSR3s substantially increase

lower bounds LB1 and LB3, respectively. It is worth mentioning that on instance E-

n101-k14 lower bound LB1 with CCs is greater than lower bound LB2. This happens

as 2-vertex loops are allowed in the ng-route relaxation while they are forbidden in the

q-route relaxation.

4.9 Conclusions

In this chapter, we described an exact method for solving the VRPTW and CVRP

based on the set partitioning formulation strengthened with valid inequalities. We

introduced a new route relaxation, called ng-route, that improves other nonelementary

route relaxations proposed in the literature and a new strategy for solving the pricing

problem in a column-and-cut generation procedure that involve the use of multiple

dual solutions.

We reported computational results showing that the proposed method solves 4 of the

5 open Solomon VRPTW instances and is significantly faster than the state-of-the-art

algorithms for both VRPTW and CVRP.
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Table 4.1: Detailed results on VRPTW Solomon instances with 50 customers and wide time windows

Upper Bound Proc. H1 Proc. H2 Proc. H3 Proc. H4 Problem P̃ Ttot

Inst z∗ zUB T LB1 T LB2 T LB3 T |F3| |B3| |R3| SR3 LB4 T |R̃| Tcpx BMR JPSP

C.201.50 360.2 360.2 83 360.2 3 360.2 4 4 42

C.202.50 360.2 360.2 89 360.2 3 360.2 6 6 67

C.203.50 359.8 359.8 89 359.8 3 359.8 7 7 214

C.204.50 350.1 350.1 96 350.1 3 350.1 8 8 -

C.205.50 359.8 359.8 99 358.2 4 359.8 7 7 64

C.206.50 359.8 359.8 86 344.2 4 359.8 10 10 38

C.207.50 359.6 359.6 89 356.6 4 359.6 9 9 72

C.208.50 350.5 350.5 92 340.4 4 350.5 9 9 55

RC.201.50 684.8 684.8 40 670.1 3 684.8 8 8 3

RC.202.50 613.6 613.6 40 504.0 3 613.5 6 613.6 7 7 10

RC.203.50 555.3 555.3 50 409.2 3 555.3 15 15 190

RC.204.50 444.2 444.2 63 314.4 3 444.2 27 27 -

RC.205.50 630.2 630.2 40 541.4 3 630.2 9 9 5

RC.206.50 610.0 610.0 43 441.1 3 610.0 9 9 8

RC.207.50 558.6 558.6 53 390.7 3 558.2 7 558.6 8 8 21

RC.208.50 476.7 481.8 79 316.2 4 468.5 8 472.3 22 7 22 22 10 476.7 50 129 1,639

R.201.50 791.9 791.9 43 788.4 3 791.7 4 791.9 5 5 4

R.202.50 698.5 698.5 46 692.7 3 698.5 8 8 9

R.203.50 605.3 605.9 50 590.5 3 598.2 6 598.5 7 12 8 8 35 605.3 12 62 50

R.204.50 506.4 506.4 79 474.0 5 499.8 23 502.2 36 326 232 232 35 506.4 52 131 -

R.205.50 690.1 696.7 50 666.2 3 681.2 5 682.3 7 49 28 28 45 690.1 12 62 15

R.206.50 632.4 632.4 53 609.2 3 622.8 9 624.8 12 63 15 15 85 632.4 21 74 190

R.207.50 575.5 575.5 53 482.2 3 561.4 11 564.1 15 786 136 o 70 575.5 101 154 34,406

R.208.50 487.7 487.7 96 461.4 6 476.3 28 481.3 94 7,385 3,622 1,282 55 487.7 441 537 -

R.209.50 600.6 600.6 50 582.1 3 598.5 6 599.2 8 1 1 1 5 600.6 10 60 16

R.210.50 645.6 645.6 53 623.6 4 633.9 8 635.7 11 103 34 34 145 645.3 40 128 1 94 18,545

R.211.50 535.5 543.3 83 507.6 4 526.7 8 528.3 11 507 443 443 90 535.5 96 179 10,543

Avg 91.1 99.4 99.6 100.0 61 2,879

Tot 27 27 23
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Table 4.2: Detailed results on VRPTW Solomon instances with 100 customers and tight time windows

Upper Bound Proc. H1 Proc. H3 Proc. H4 Problem P̃ Ttot

Inst z∗ zUB T LB1 T LB3 T |F3| |B3| |R3| SR3 LB4 T |R̃| Tcpx BMR JPSP DHL

C.101.100 827.3 827.3 96 827.3 7 7 3 2

C.102.100 827.3 827.3 106 820.3 8 827.3 8 8 12 8

C.103.100 826.3 826.3 112 809.3 9 826.3 11 11 33 28

C.104.100 822.9 822.9 119 795.6 10 822.7 31 10 15 10 822.9 39 1 159 4,113 86

C.105.100 827.3 827.3 99 821.2 7 827.3 8 8 5 3

C.106.100 827.3 827.3 102 817.7 8 827.3 10 10 7 4

C.107.100 827.3 827.3 102 818.9 7 827.3 8 8 6 4

C.108.100 827.3 827.3 106 818.9 7 827.3 8 8 14 7

C.109.100 827.3 827.3 112 803.2 8 827.3 10 10 20 16

RC.101.100 1,619.8 1,619.8 92 1,576.2 5 1,581.1 5 24 31 298 95 1,619.8 13 105 12 19

RC.102.100 1,457.4 1,463.5 99 1,398.6 5 1,405.5 8 428 432 o 150 1,457.4 39 138 76 120

RC.103.100 1,258.0 1,267.0 102 1,214.7 5 1,224.5 8 811 794 o 342 1,257.6 237 118,992 96 435 2,705 541

RC.104.100 1,132.3 1,132.6 109 1,070.3 6 1,100.4 35 1,610 1,371 o 255 1,129.8 442 5,029 10 561 65,806 11,773

RC.105.100 1,513.7 1,513.8 99 1,467.6 5 1,471.7 7 81 116 o 60 1,513.7 17 116 26 33

RC.106.100 1,372.7 1,373.9 96 1,301.2 5 1,318.5 8 293 392 o 428 1,367.2 267 40,162 50 413 15,891 3,916

RC.107.100 1,207.8 1,209.3 99 1,156.4 6 1,182.7 8 136 195 o 105 1,207.8 28 127 153 161

RC.108.100 1,114.2 1,114.2 102 1,049.7 6 1,073.0 11 1,460 1,529 o 185 1,114.2 213 315 3,365 635

R.101.100 1,637.7 1,637.7 99 1,628.5 5 1,630.4 6 1 1 5 10 1,634.0 9 46 108 1 8

R.102.100 1,466.6 1,467.6 109 1,462.0 5 1,466.2 7 1 1 1 1,466.6 10 119 4 3

R.103.100 1,208.7 1,208.7 112 1,201.7 5 1,203.2 6 4 8 24 30 1,208.7 11 123 23 20

R.104.100 971.5 976.0 112 947.8 6 955.7 12 1,124 1,060 o 449 971.3 224 119,830 7 343 32,343 3,103

R.105.100 1,355.3 1,355.3 102 1,343.8 5 1,345.0 6 6 8 47 103 1,355.1 11 80 113 43 36

R.106.100 1,234.6 1,234.6 109 1,224.3 5 1,225.7 7 24 40 237 160 1,234.6 20 129 75 87

R.107.100 1,064.6 1,064.6 109 1,049.9 5 1,052.3 7 76 163 703 300 1,064.3 84 193 193 1,310 416

R.108.100 932.1 933.7 119 905.7 6 913.0 10 1,882 2,066 o 280 932.1 225 344 5,911 891

R.109.100 1,146.9 1,146.9 102 1,129.3 5 1,133.5 9 30 52 329 233 1,144.1 53 4,953 1 156 1,432 1,127

R.110.100 1,068.0 1,075.9 109 1,047.8 6 1,054.9 9 384 401 o 398 1,068.0 143 225,584 7 259 1,068 426

R.111.100 1,048.7 1,048.7 109 1,030.5 6 1,033.9 10 127 304 o 281 1,045.8 106 10,620 40 255 83,931 5,738

R.112.100 948.6 948.6 116 916.6 6 926.2 11 2,115 4,311 o 539 946.6 721 6,214 28 865 202,803 16,073

Avg 97.7 98.7 99.9 188 14,524 1,562

Tot 29 29 29 29
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Table 4.3: Detailed results on VRPTW Solomon instances with 100 customers and wide time windows

Upper Bound Proc. H1 Proc. H2 Proc. H3 Proc. H4 Problem P̃ Ttot

Inst z∗ zUB T LB1 T LB2 T LB3 T |F3| |B3| |R3| SR3 LB4 T |R̃| Tcpx BMR JPSP DHL

C.201.100 589.1 589.1 228 589.1 6 6 203 9

C.202.100 589.1 589.1 244 589.1 14 14 3,483 49

C.203.100 588.7 588.7 264 588.6 14 588.7 32 32 13,070 122

C.204.100 588.1 588.1 277 577.5 15 587.5 170 588.1 182 182 - 16,416

C.205.100 586.4 586.4 251 586.4 12 12 416 15

C.206.100 586.0 586.0 238 576.8 13 586.0 28 28 594 24

C.207.100 585.8 585.8 244 581.8 13 585.8 22 22 1,241 84

C.208.100 585.8 585.8 244 581.3 13 585.8 22 22 555 26

RC.201.100 1,261.8 1,262.6 139 1,240.0 7 1,254.4 10 1,255.4 12 6 7 34 55 1,261.7 18 585 157 229 92

RC.202.100 1,092.3 1,095.8 152 1,003.8 7 1,084.7 11 1,086.2 13 91 71 655 45 1,092.3 31 183 312 89

RC.203.100 923.7 923.7 185 814.3 7 916.0 16 919.5 22 119 29 269 30 923.7 67 252 14,917 324

RC.204.100 783.5 783.5 150 687.4 20 771.1 235 778.4 455 1,375 339 o 50 783.5 902 1,052 - -

RC.205.100 1,154.0 1,154.0 149 1,054.0 7 1,144.0 12 1,145.8 14 25 22 117 30 1,154.0 23 172 221 111

RC.206.100 1,051.1 1,051.1 172 951.5 8 1,034.4 13 1,037.7 16 276 177 o 40 1,051.1 55 227 339 344

RC.207.100 962.9 966.6 182 865.7 9 940.6 25 945.8 62 o o o 490 962.9 26,721 26,903 - 91,405

RC.208.100 776.1 777.3 215 703.9 20 761.3 114 765.8 168 3,909 3,306 o 110 776.1 980 6,959 1,195 - -

R.201.100 1,143.2 1,148.5 149 1,135.2 8 1,140.0 15 1,140.3 17 62 44 o 100 1,143.2 31 180 139 78

R.202.100 1,029.6 1,036.9 178 1,008.6 8 1,020.6 19 1,021.2 22 o o o 115 1,027.3 1,890 575,375 1,338 3,406 8,282 1,663

R.203.100 870.8 872.4 198 845.7 9 862.8 91 865.8 165 o 564 o 100 870.8 1,941 2,139 54,187 641

R.204.100 731.3 731.3 221 688.8 22 721.3 64 724.2 194 o o o 130 731.3 216,146 216,367 - -

R.205.100 949.8 949.8 191 916.0 11 934.1 27 938.0 31 3,779 920 o 553 948.3 1,240 19,034 2 1,433 - 6,904

R.206.100 875.9 880.6 201 834.0 13 860.2 34 866.3 76 o o o 145 875.9 6,474 6,675 - 60,608

R.207.100 794.0 794.0 238 746.9 16 781.6 120 789.9 368 o o o 35 794.0 1,163 1,401 - 11,228

R.208.100 701.2 701.2 284 660.9 21 686.4 156 690.3 2,405 o o o m.o. - - -

R.209.100 854.8 855.7 136 818.7 15 838.0 28 840.6 59 o o o 180 854.3 4,355 120,577 5 4,496 78,560 22,514

R.210.100 900.5 900.8 136 848.9 17 883.8 30 888.2 57 o o o 523 900.4 39,572 53,704 3 39,711 - 400,904

R.211.100 746.7 751.7 168 704.9 21 729.3 133 734.1 219 o o o 140 746.7 10,825 10,993 - -

Avg 95.4 99.0 99.3 99.9 12,202 11,047 27,893

Tot 27 26 16 22

m.o.: GenP4 runs out of memory
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Table 4.4: VRPTW Solomon instances: summary

Solved T

Class n NP BMR JPSP DHL BMR JPSP DHL

C2 50 8 8 7 n.a. 8 79 n.a.

RC2 50 8 8 7 n.a. 27 268 n.a.

R2 50 11 11 9 n.a. 124 7,086 n.a.

C1 100 9 9 9 9 25 468 18

RC1 100 8 8 8 8 276 11,004 2,150

R1 100 12 12 12 12 251 27,412 2,327

C2 100 8 8 7 8 40 2,795 2,093

RC2 100 8 8 5 6 3,767 3,204 15,394

R2 100 11 10 4 8 28,680 35,292 63,068

Avg 3,955 9,767 12,920

Solved by JPSP 261 9,767

Solved by DHL 1,825 12,920

Table 4.5: Optimal solutions of 100-customer VRPTW instances solved by BMR
for the first time

Cost Route

Solution of RC204. Total cost = 783.5. Number of vehicles = 4.

174.6 80 92 95 62 50 34 31 29 27 26 28 30 32 33 89 76 63 85 51 84 56 91

139.5 81 54 41 39 42 44 43 40 36 35 37 38 72 71 93 67 94 96

221.4 69 98 12 14 47 17 16 15 11 10 9 87 13 86 74 59 97 75 58 77 25 24 22 83 65 90

248.0 66 64 20 49 19 18 48 21 23 57 52 99 82 53 60 78 73 79 7 8 46 45 5 3 1 4 6 2 88 55 100 70 61 68

Solution of RC208. Total cost = 776.1. Number of vehicles = 4.

132.5 61 42 44 39 38 36 35 37 40 43 41 72 71 93 96 54 81

218.7 90 65 82 99 52 83 64 49 19 18 48 21 23 25 77 58 75 97 59 87 74 86 57 24 22 20 66

226.6 69 98 88 2 6 7 79 73 78 12 14 47 17 16 15 13 9 11 10 53 60 8 46 4 45 5 3 1 70 100 55 68

198.3 94 92 95 67 62 50 34 31 29 27 26 28 30 32 33 76 89 63 85 51 84 56 91 80

Solution of R204. Total cost = 731.3. Number of vehicles = 5.

8.8 53

211.6 27 69 1 50 76 3 79 33 81 9 51 20 66 65 71 35 34 78 29 24 55 25 54 80 68 77 12 26 28

150.5 2 57 42 43 15 41 22 75 56 23 67 39 4 72 74 73 21 40 58

136.2 6 94 95 92 98 85 91 44 14 38 86 16 61 93 99 96 59 97 87 37 100 13

224.2 52 31 88 7 82 48 19 11 62 10 70 30 32 90 63 64 49 36 47 46 8 45 17 84 5 60 83 18 89

Solution of R211. Total cost = 746.7. Number of vehicles = 4.

173.1 53 40 21 73 41 22 75 23 67 39 25 55 24 29 68 80 54 4 56 74 72 26

214.0 27 69 31 88 7 82 46 47 36 49 64 63 90 32 66 71 65 35 34 78 79 3 77 50 1

194.4 52 18 83 5 99 95 92 98 85 61 16 86 38 44 14 42 43 15 57 2 87 97 37 100 91 93 59 96 94 13 58

165.2 28 12 76 33 81 9 51 20 30 70 10 62 11 19 48 8 45 17 84 60 6 89



C
h
a
p
ter

4
V
eh

icle
R
ou

tin
g
P
rob

lem
w
ith

T
im

e
W

in
d
ow

s
87

Table 4.6: VRPTW: impact of parameter ∆(Ni) in procedure H2

H1 H2 H3 H4

∆(Ni) = 5 ∆(Ni) = 8 ∆(Ni) = 10 ∆(Ni) = 12

Inst z∗ LB1 T LB2 T LB2 T LB2 T LB2 T LB3 T LB4 T

R.207.50 575.5 482.2 3 558.5 7 561.4 11 561.6 13 562.4 16 564.1 15 575.5 101

R.208.50 487.7 461.4 6 475.1 22 476.3 28 476.6 37 477.3 57 481.3 94 487.7 441

R.108.100 932.1 905.7 6 909.8 7 910.3 10 910.3 14 910.8 26 913.0 10 932.1 225

R.112.100 948.6 916.6 6 924.2 7 925.0 10 925.0 18 925.0 39 926.2 11 946.6 721

RC.203.100 923.7 814.3 7 914.6 11 916.0 16 916.5 29 917.4 43 919.5 22 923.7 67

RC.204.100 783.5 687.4 20 753.9 91 771.1 235 772.9 638 773.0 976 778.4 455 783.5 902

RC.206.100 1,051.1 951.5 8 1,022.8 13 1,034.4 13 1,034.9 15 1,035.4 16 1,037.7 16 1,051.1 55

RC.207.100 962.9 865.7 9 918.4 23 940.6 25 940.9 38 941.6 48 945.8 62 962.9 26,721

RC.208.100 776.1 703.9 20 740.9 42 761.3 114 762.6 223 763.8 352 765.8 168 776.1 980

R.202.100 1,029.6 1,008.6 8 1,018.6 9 1,020.6 19 1,020.6 23 1,020.7 24 1,021.2 22 1,027.3 1,890

R.203.100 870.8 845.7 9 858.0 64 862.8 91 864.3 108 865.0 149 865.8 165 870.8 1,941

R.204.100 731.3 688.8 22 719.1 54 721.3 64 722.2 180 722.2 298 724.2 194 731.3 216,146

R.205.100 949.8 916.0 11 928.0 14 934.1 27 934.6 31 935.0 32 938.0 31 948.3 1,240

R.206.100 875.9 834.0 13 857.6 21 860.2 34 860.7 36 861.6 53 866.3 76 875.9 6,474

R.207.100 794.0 746.9 16 780.4 83 781.6 120 781.6 191 782.9 236 789.9 368 794.0 1,163

R.209.100 854.8 818.7 15 833.8 16 837.0 28 837.6 30 838.8 34 840.6 59 854.3 4,355

R.210.100 900.5 848.9 17 880.6 18 883.8 30 884.8 37 884.8 49 888.2 57 900.4 39,572

R.211.100 746.7 704.9 21 727.1 102 729.3 133 731.3 189 731.3 417 734.1 219 746.7 10,825

Avg 93.3 97.5 98.2 98.3 98.4 98.7 99.9
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Table 4.7: VRPTW: effectiveness of the Dominance and Fathoming Rules applied in GenP4

Generating F Generating B

Inst States %Dom1 %Fath1 %Fath2 |F | States %Dom1 %Fath1 %Fath2 |B|

RC.207.100 41 38.4 48.7 1.8 5 21 37.9 49.2 1.7 2

R.202.100 11 49.0 41.4 1.6 1 7 49.2 39.7 1.1 1

R.203.100 32 46.9 42.3 1.5 3

R.204.100 180 43.8 43.6 0.4 22 283 37.1 48.3 0.4 40

R.206.100 235 58.8 32.1 1.2 19 179 67.4 24.2 1.3 13

R.207.100 81 54.4 38.6 1.0 5 43 54.8 36.4 0.9 3

R.209.100 102 55.2 37.9 1.3 6 31 56.1 38.0 0.8 2

R.210.100 184 57.5 33.7 0.9 15 222 59.7 31.4 1.0 18

R.211.100 496 68.6 24.1 0.6 33 371 56.7 34.4 0.3 32

Avg 52.5 38.0 1.1 52.4 37.7 0.9

Table 4.8: VRPTW: effectiveness of the Dominance and Fathoming Rules applied in GenPF

Generating F Generating B

Inst States %Fath5 %Fath4 |F | States %Fath5 %Fath4 |B|

R.202.100 10 37.1 51.8 1 3 47.1 46.9 1

R.209.100 339 50.0 42.2 26 113 51.3 43.4 6

R.210.100 108 45.8 46.0 9 210 55.1 35.4 20

Avg 44.3 46.7 51.2 41.9
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Table 4.9: Results on CVRP instances of class A

Proc. H1 Proc. H3 Proc. H4 Problem P̃ Ttot

Inst zUB z∗ LB1 T LB3 T |F3| |R3| SR3 LB4 UB4 T |R̃| Tcpx BMR BCM FLL (s) LLE

A-n37-k5 669 669 664.7 3 666.1 5 5 1 3 669.0 6 6 13 19 (-) 25

A-n37-k6 949 949 929.8 3 937.9 7 9 10 37 941.6 8 1,968 < 0.1 8 12 379 (3) 531

A-n38-k5 730 730 717.9 4 722.4 7 10 10 41 728.7 7 267 < 0.1 7 18 26 (-) 116

A-n39-k5 822 822 815.1 4 818.7 7 8 2 14 822.0 7 7 19 167 (3) 138

A-n39-k6 831 831 820.5 4 823.7 6 5 4 31 831.0 7 149 < 0.1 7 12 98 (3) 109

A-n44-k6 937 937 932.4 2 935.3 5 2 1 2 937.0 5 124 < 0.1 5 102 90 (2) 620

A-n45-k6 944 944 933.0 6 941.1 11 4 1 4 944.0 12 114 < 0.1 12 77 170 (3) 157

A-n45-k7 1,146 1,146 1,135.7 5 1,141.4 10 5 4 62 1,146.0 11 316 < 0.1 11 35 331 (3) 19,414

A-n46-k7 914 914 912.6 6 914.0 8 1 1 0 914.0 8 8 11 92 (2) 50

A-n48-k7 1,073 1,073 1,065.9 9 1,071.8 14 2 1 1 1,073.0 15 129 < 0.1 15 20 166 (3) 372

A-n53-k7 1,010 1,010 1,001.1 11 1,003.8 21 15 12 78 1,009.7 24 364 < 0.1 24 28 611 (3) 363

A-n54-k7 1,167 1,167 1,148.7 12 1,156.6 25 84 207 91 1,166.1 35 709 < 0.1 35 86 1,409 (3) 7,246

A-n55-k9 1,073 1,073 1,064.2 9 1,067.8 18 10 5 30 1,070.7 19 771 < 0.1 19 19 84 (3) 468

A-n60-k9 1,354 1,354 1,339.0 17 1,343.9 32 78 201 108 1,351.7 44 2,704 2 46 111 3,080 (3) -

A-n61-k9 1,034 1,034 1,016.0 13 1,023.2 31 45 45 80 1,032.0 37 1,009 < 0.1 37 34 1,883 (3) 68,636

A-n62-k8 1,290 1,288 1,271.8 19 1,280.5 42 229 468 106 1,285.4 65 13,099 31 96 1,342 3,102 (3) -

A-n63-k9 1,616 1,616 1,596.8 18 1,608.6 37 20 17 32 1,616.0 40 303 < 0.1 40 44 1,046 (3) -

A-n63-k10 1,315 1,314 1,291.9 20 1,302.4 42 58 80 60 1,309.5 47 4,616 4 51 129 4,988 (3) -

A-n64-k9 1,402 1,401 1,376.7 16 1,387.5 36 146 271 84 1,395.3 49 7,810 14 63 120 11,254 (3) -

A-n65-k9 1,174 1,174 1,161.0 14 1,165.6 29 20 24 29 1,174.0 32 294 < 0.1 32 38 516 (3) 1,324

A-n69-k9 1,159 1,159 1,136.7 20 1,143.9 43 131 363 84 1,156.8 55 1,659 < 0.1 55 124 7,171 (3) -

A-n80-k10 1,763 1,763 1,746.2 30 1,755.5 63 126 80 89 1,760.7 78 2,513 4 82 194 6,464 (3) -

Avg 98.8 99.4 99.9 30 118 1,961 6,638

Solved 22 22 22 22 15
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Table 4.10: Results on CVRP instances of class B

Proc. H1 Proc. H3 Proc. H4 Problem P̃ Ttot

Inst zUB z∗ LB1 T LB3 T |F3| |R3| SR3 LB4 UB4 T |R̃| Tcpx BMR BCM FLL (s) LLE

B-n38-k6 805 805 801.5 3 803.8 4 2 1 4 805.0 4 4 16 14 (-) 37

B-n39-k5 549 549 549.0 5 549.0 6 1 1 - 549.0 6 6 7 3 (-) 9

B-n41-k6 829 829 827.7 3 828.7 4 1 1 2 829.0 4 4 15 18 (-) 42

B-n43-k6 742 742 735.7 4 736.8 5 88 29 91 740.0 20 9,591 3 23 37 29 (-) 125

B-n44-k7 909 909 909.0 2 909.0 3 1 1 - 909.0 3 3 24 9 (-) 8

B-n45-k5 751 751 748.8 6 750.9 8 2 1 - 751.0 9 9 16 16 (-) 46

B-n45-k6 678 678 675.3 5 677.0 8 11 1 - 678.0 10 10 61 279 (3) 299

B-n50-k7 741 741 741.0 3 741.0 4 1 1 - 741.0 4 4 24 6 (-) 11

B-n50-k8 1,312 1,312 1,291.1 11 1,302.6 24 1,011 334 92 1,308.8 1,312 118 23,073 29 147 662 2,845 (3) 31,026

B-n51-k7 1,032 1,032 1,025.8 8 1,026.7 11 339 27 71 1,032.0 32 8,793 2 34 52 46 (-) 209

B-n52-k7 747 747 746.1 7 746.1 7 2 1 3 747.0 8 8 29 9 (-) 25

B-n56-k7 707 707 704.3 7 704.8 9 28 1 - 705.0 11 1,653 ¡0.1 11 73 22 (-) 46

B-n57-k7 1,153 1,153 1,149.9 16 1,152.8 22 6 1 - 1,153.0 25 25 184 168 (-) 441

B-n57-k9 1,598 1,598 1,593.7 11 1,596.0 15 9 1 30 1,598.0 19 19 60 193 (3) 1,366

B-n63-k10 1,496 1,496 1,483.8 15 1,486.5 25 472 278 31 1,496.0 52 10,360 3 55 94 682 (-) 6,513

B-n64-k9 861 861 859.7 11 860.2 13 17 1 3 861.0 15 15 70 86 (-) 42

B-n66-k9 1,316 1,316 1,301.7 17 1,307.7 27 2,547 1,331 137 1,315.2 1,330 283 13,442 9 292 227 1,778 (3) 24,424

B-n67-k10 1,032 1,032 1,025.8 12 1,027.4 18 67 14 85 1,032.0 41 9,400 2 43 287 568 (-) 3,309

B-n68-k9 1,275 1,272 1,261.1 23 1,263.2 34 2,267 1,103 141 1,267.6 1,272 336 55,097 190 526 6,168 87,436 (3) -

B-n78-k10 1,221 1,221 1,208.4 23 1,214.9 36 266 71 52 1,221.0 91 11,131 6 97 229 1,053 (3) 87,408

Avg 99.5 99.7 99.9 67 417 4,763 8,178

Solved 20 20 20 20 19
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Table 4.11: Results on CVRP instances of classes E and M

Proc. H1 Proc. H3 Proc. H4 Problem P̃ Ttot

Inst zUB z∗ LB1 T LB3 T |F3| |R3| SR3 LB4 UB4 T |R̃| Tcpx BMR BCM FLL (s) LLE

E-n51-k5 521 521 516.9 3 517.6 7 7 7 14 521.0 8 8 12 65 (-) 59

E-n76-k7 682 682 667.2 5 669.8 28 910 o 193 680.6 151 3,597 1 152 3,370 46,520 (2) 118,683

E-n76-k8 735 735 724.3 13 725.1 45 218 1,249 160 734.0 81 1,765 1 82 873 22,891 (2) -

E-n76-k10 830 830 815.4 18 816.5 54 317 1,476 143 826.2 81 10,696 33 114 174 80,722 (3) -

E-n76-k14 1,021 1,021 1,004.3 15 1,007.0 36 109 255 93 1,014.7 42 8,965 10 52 44 48,637 (3) -

E-n101-k8 815 815 801.8 30 808.8 218 1,584 o 118 815.0 818 579 579 - 801,963 (3) -

E-n101-k14 1,071 1,067 1,049.6 10 1,052.9 45 2,272 o 198 1,062.3 1,067 319 56,692 134 453 1,230 116,284 (3) -

M-n101-k10 820 820 819.9 18 820.0 34 50 1 - 820.0 35 35 47 119 (-) 33

M-n121-k7 1,034 1,034 1,028.5 94 1,032.5 611 2,961 12 36 1,033.4 1,035 1,247 12,440 2 1,249 2,448 25,678 (3) -

M-n151-k12 1,015 993.4 131 1,004.3 380 o o m.o. - - - -

M-n200-k16 - 1,240.3 109 1,256.6 319 o o m.o. - - - -

M-n200-k17 1,275 1,243.1 139 1,258.7 436 o o m.o. - - - -

Avg 98.5 99.0 99.8 303 1,025 126,987 39,592

Solved 12 9 8 9 3

m.o.: GenP runs out of memory

Table 4.12: Results on CVRP instances of class F

Proc. H1 Proc. H3 Proc. H4 Problem P̃ Ttot

Inst zUB z∗ LB1 T LB3 T |F3| |R3| SR3 LB4 UB4 T |R̃| Tcpx BMR BCM FLL (s) LLE

F-n45-k4 724 724 723.9 20 724.0 23 4 1 0 724.0 23 23 8 (-) 6

F-n72-k4 237 237 233.0 249 236.2 301 228 10 1 237.0 304 304 121 (-) 40

F-n135-k7 1,162 1,162 1,158.0 1,057 m.o. - 7,065 (-) 3,092

Avg 99.3 99.8 100.0 164 2,398 1,046

Solved 3 2 3 3

m.o.: GenP runs out of memory



9
2

C
h
ap

ter
4
V
eh

icle
R
ou

tin
g
P
rob

lem
w
ith

T
im

e
W

in
d
ow

s

Table 4.13: Results on CVRP instances of class P

Proc. H1 Proc. H3 Proc. H4 Problem P̃ Ttot

Inst zUB z∗ LB1 T LB3 T |F3| |R3| SR3 LB4 UB4 T |R̃| Tcpx BMR BCM FLL (s) LLE

P-n16-k8 450 450 448.0 < 0.1 448.0 1 1 1 1 450.0 1 1 1 1 (2) 10

P-n19-k2 212 212 210.7 < 0.1 212.0 1 1 1 - 212.0 1 1 1 1 (-) 5

P-n20-k2 216 216 212.8 < 0.1 215.6 1 1 1 2 216.0 1 1 2 1 (-) 15

P-n21-k2 211 211 211.0 < 0.1 211.0 1 1 1 - 211.0 1 1 1 1 (-) 3

P-n22-k2 216 216 214.8 1 215.4 1 1 1 1 216.0 1 1 3 2 (-) 16

P-n22-k8 603 603 602.9 < 0.1 603.0 1 1 1 - 603.0 1 1 12 3 (2) 44

P-n23-k8 529 529 529.0 < 0.1 529.0 1 1 1 - 529.0 1 1 1 18 (2) 69

P-n40-k5 458 458 456.1 1 456.6 2 1 1 11 458.0 2 2 26 34 (-) 19

P-n45-k5 510 510 504.2 3 504.8 6 1 1 19 510.0 6 6 21 194 (3) 76

P-n50-k7 554 554 548.7 4 549.7 8 6 5 6 554.0 9 9 16 143 (3) 805

P-n50-k8 649 631 613.4 6 615.9 15 47 70 113 625.1 631 64 2,993 4 68 596 9,272 (3) -

P-n50-k10 696 696 685.4 4 689.2 8 6 6 45 694.9 8 393 1 9 10 304 (3) 73,016

P-n51-k10 741 741 730.0 4 734.0 10 6 5 49 740.9 10 202 1 11 9 105 (3) 82,469

P-n55-k7 568 568 556.5 7 559.1 12 50 121 97 565.7 16 2,410 1 17 205 4,649 (2) 11,178

P-n55-k8 588 588 577.3 6 579.3 13 39 98 103 584.7 16 3,851 2 18 74 1,822 (2)

P-n55-k10 699 694 677.8 5 680.6 15 112 314 84 689.1 19 18,061 10 29 66 9,076 (3) -

P-n55-k15 993 989 966.6 7 970.7 25 20 18 46 984.5 26 1,501 1 27 8 1,944 (3) -

P-n60-k10 756 744 736.8 9 739.3 22 125 395 57 743.1 28 53,850 2 30 59 570 (3) -

P-n60-k15 1,033 968 959.8 6 963.2 15 3 2 45 967.8 968 73 241 < 0.1 73 8 442 (3) -

P-n65-k10 792 792 784.5 5 787.9 13 6 6 27 792.0 14 14 16 422 (3) -

P-n70-k10 834 827 811.5 13 813.6 34 147 483 129 823.0 827 150 7,925 16 166 774 24,039 (3) -

P-n76-k4 593 593 587.0 13 590.0 89 174 569 65 593.0 118 118 2,211 572 (-) 535

P-n76-k5 627 627 614.1 5 619.5 87 905 3,707 137 627.0 282 401 < 0.1 282 - 14,546 (-) 10,970

P-n101-k4 681 681 668.5 13 678.7 73 4,475 8,811 106 681.0 681 1,154 458 1 1,155 - 1,253 (-) 281

Avg 98.8 99.2 99.8 85 187 2,892 11,219

Solved 24 24 22 24 16
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Table 4.14: CVRP instances: summary

BMR BCM FLL LLE

Class NP Opt %LB T Opt %LB T Opt OptBCP OptBC %LB T Opt %LB T

A 22 22 99.9 30 22 99.8 118 22 20 2 99.2 1,961 15 97.9 6,638

B 20 20 99.9 67 20 99.8 417 20 6 14 99.5 4,763 19 99.4 8,178

E-M 12 9 99.8 303 8 99.4 1,025 9 7 2 98.9 126,987 3 97.7 39,592

F 3 2 100.0 164 3 0 3 99.9 2,398 3 99.9 1,046

P 24 24 99.8 85 22 99.7 187 24 16 8 99.2 2,892 16 97.7 11,219

Avg 99.9 92 99.7 323 99.3 17,409 98.4 9,935

Tot 81 77 72 78 49 29 56
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Table 4.15: CVRP: impact of parameter ∆(Ni) and of different types of inequalities

H1 H2 H3 H4

no CCs CCs ∆(Ni) = 5 ∆(Ni) = 8 ∆(Ni) = 10 ∆(Ni) = 12 no WSR3s WSR3s

Inst z∗ LB1 T LB1 T LB2 T LB2 T LB2 T LB2 T LB3 T LB3 T LB4 T

B-n50-k8 1,312.0 1,229.0 2 1,291.1 11 1,302.6 20 1,302.6 21 1,302.6 21 1,302.6 22 1,302.6 24 1,303.0 39 1,308.8 118

B-n66-k9 1,316.0 1,223.8 3 1,301.7 17 1,307.0 20 1,307.4 22 1,307.4 23 1,307.4 24 1,307.7 27 1,309.7 70 1,315.2 283

B-n68-k9 1,272.0 1,166.8 3 1,261.1 23 1,263.2 28 1,263.2 29 1,263.2 29 1,263.2 31 1,263.2 34 1,264.3 103 1,267.6 336

B-n78-k10 1,221.0 1,126.4 4 1,208.4 23 1,212.7 27 1,213.9 29 1,214.3 30 1,214.5 32 1,214.9 36 1,218.0 67 1,221.0 91

E-n76-k7 682.0 667.2 2 667.2 5 668.5 20 668.9 22 669.2 23 669.3 23 669.8 28 673.3 74 680.6 151

E-n76-k8 735.0 720.3 2 724.3 13 724.7 33 724.8 34 724.9 36 724.9 38 725.1 45 729.1 72 734.0 81

E-n76-k10 830.0 811.3 1 815.4 18 815.9 46 815.9 46 816.1 49 816.2 52 816.5 54 820.9 73 826.2 81

E-n76-k14 1,021.0 999.2 1 1,004.3 15 1,006.1 26 1,006.7 28 1,007.0 33 1,007.0 36 1,007.0 36 1,009.3 40 1,014.7 42

E-n101-k8 815.0 796.5 5 801.8 30 802.1 32 802.1 32 802.4 34 802.4 35 806.4 35 808.8 218 815.0 579

E-n101-k14 1,067.0 1,044.6 5 1,049.6 10 1,047.5 33 1,047.6 35 1,047.7 40 1,047.8 40 1,052.9 45 1,056.7 191 1,062.3 319

F-n135-k7 1,162.0 1,098.2 140 1,158.0 1,057 1,158.9 1,359 1,159.1 1,396 1,159.3 1,405 1,159.3 1,423 - - -

M-n121-k7 1,034.0 1,013.2 9 1,028.5 94 1,031.1 173 1,031.8 178 1,032.0 191 1,032.0 197 1,032.2 220 1,032.5 611 1,033.4 1,247

P-n50-k8 631.0 612.3 < 0.1 613.4 6 614.6 10 615.3 11 615.5 13 615.9 13 615.9 15 618.6 27 625.1 64

P-n55-k10 694.0 676.9 1 677.8 5 679.7 9 680.6 11 680.6 12 680.6 12 680.6 15 682.6 25 689.1 19

P-n70-k10 827.0 807.9 1 811.5 13 812.3 24 812.9 28 813.2 31 813.3 32 813.6 34 817.6 60 823.0 150

P-n76-k5 627.0 614.1 3 614.1 5 615.3 24 615.7 27 615.9 27 616.1 28 616.8 32 619.5 87 627.0 282

P-n101-k4 681.0 668.5 13 675.7 55 676.0 58 676.0 59 676.4 60 676.4 60 676.9 62 678.7 73 681.0 1,154

Avg 96.4 98.5 98.7 98.7 98.8 98.8 98.8 99.1 99.7



Chapter 5

Multi-Trip Vehicle Routing

Problem

1

The multi-trip vehicle routing problem (MTVRP) is a variant of the capacitated vehicle

routing problem where each vehicle can perform a subset of routes, called a vehicle

schedule, subject to maximum driving time constraints. Despite its practical impor-

tance, the MTVRP has received little attention in the literature. Few heuristics have

been proposed, and only an exact algorithm has been presented for a variant of the

MTVRP with customer time window constraints and unlimited driving time for each

vehicle. We describe two set-partitioning-like formulations of the MTVRP. The first

formulation requires the generation of all feasible routes, whereas the second formula-

tion is based on the generation of all feasible schedules. We study valid lower bounds,

based on the linear relaxations of both formulations enforced with valid inequalities,

that are embedded into an exact solution method. The computational results show that

the proposed exact algorithm can solve MTVRP instances taken from the literature,

with up to 120 customers.

5.1 Introduction

The capacitated vehicle routing problem (CVRP) and its many variations play an im-

portant role in the management of many distribution systems. In most of the studied

models, the vehicles are identical and each vehicle is allowed to perform, at most, a

single route.

In many contexts, a distribution company uses leased vehicles to service the customers

and incurs a significant cost for each vehicle used. Whenever the planning period

1This chapter is based on Mingozzi et al. [2012]
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is large with respect to the route duration, and some vehicles can perform several

routes in the period, the primary concern of the company is to minimize the number

of vehicles used. The multi-trip vehicle routing problem (MTVRP) is an extension of

the CVRP where each vehicle can perform multiple routes during its working period.

The MTVRP can be described as follows.

A complete undirected graph G = (V ′, E) is given, where V ′ is the set of vertices and

E is the set of edges. We have V ′ = {0} ∪ V , where vertex 0 represents the depot and

the set V = {1, . . . , n} represents n customers, each one requiring qi units of product

from the depot. A fleet M = {1, . . . ,m} of m identical vehicles is located at the depot.

Each vehicle has capacity Q and maximum driving time T . A travel cost αij and a

travel time τij are associated with each edge {i, j} ∈ E. All input data are assumed to

be nonnegative.

A route of a vehicle is a least-cost elementary cycle in G that passes through the depot

and a subset of the customers such that the total demand of the customers visited does

not exceed the vehicle capacity Q. The cost (duration) of a route is equal to the sum

of the travel costs (travel times) of the edges traversed.

A schedule of a vehicle is a subset of routes whose total duration is less than or equal

to the maximum driving time T . The cost of a schedule is equal to the sum of the

costs of its routes.

The MTVRP calls for the design of a set of m schedules of minimum total cost such

that each customer is visited exactly once by the routes of the schedules.

5.2 Literature Review

To the best of our knowledge, no exact algorithm for the MTVRP has been presented

in the literature so far. The main heuristic methods proposed are surveyed in the

following. Fleischmann [1990] addressed the problem first. He proposed a modification

of the well-known saving algorithm and by using a bin packing heuristic to assign the

routes to the vehicles. Taillard et al. [1996] proposed a three-phase algorithm. In the

first phase, a set of routes satisfying the capacity constraints are designed. Next, the

routes are combined to derive different CVRP solutions. Finally, the routes of each

CVRP solution are assigned to the vehicles by solving a bin packing problem. Petch

and Salhi [2004] described a multi-phase heuristic that constructs many feasible CVRP

solutions and, for each one, assigns routes to vehicles with a bin packing heuristic. Salhi

and Petch [2007] investigated a genetic algorithm approach. Olivera and Viera [2007]

described an adaptive memory heuristic algorithm. Different tabu search algorithms

were proposed by Alonso et al. [2008], Brandão and Mercer [1997, 1998]. A real life

application of the MTVRP is described in Gribkovskaia et al. [2006].
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Azi et al. [2010] addressed a variant of the MTVRP where: (i) a time window and a

revenue are associated with each customer, (ii) the duration of each route is limited,

(iii) the maximum driving time of the vehicles is unlimited, and (iv) it is not required

to service all customers. Thus, the customers must be chosen based on their associated

revenue minus the traveling cost to reach them. Azi et al. described a branch-and-price

algorithm based on a set packing formulation that can routinely solve instances with

25 customers and a few instances with up to 50 customers. When the time windows

are removed, the problem becomes the well-known distance-constrained CVRP. In this

case, the algorithm was able to solve two instances with 25 customers.

5.3 Mathematical Formulations and Relaxations

In this section, we describe two set-partitioning-like formulations, called F1 and F2,

and a valid integer relaxation, called RF1, of the MTVRP. Formulation F1 requires

the a priori generation of all feasible routes, whereas formulation F2 is based on the

generation of all feasible schedules. Relaxation RF1 is an IP problem similar to the

set partitioning formulation of the CVRP.

5.3.1 Formulation F1

Let R be the index set of all feasible routes on graph G, and let Ri ⊆ R be the index

subset of the routes visiting customer i ∈ V . A cost d` and a duration τ` are associated

with each route ` ∈ R. In the following, we use R` and E(R`) to indicate the set of

customers visited and the edges traversed by route ` ∈ R, respectively.

Let ξj` be a binary variable equal to 1 if and only if route ` ∈ R is assigned to vehicle

j ∈M . The mathematical formulation F1 is as follows

(F1) z(F1) = min
∑
`∈R

d`
∑
j∈M

ξj` (5.1)

s.t .
∑
`∈Ri

∑
j∈M

ξj` = 1, i ∈ V, (5.2)

∑
`∈R

τ`ξ
j
` ≤ T, j ∈M, (5.3)

ξj` ∈ {0, 1}, j ∈M, ` ∈ R. (5.4)

Constraints (5.2) impose that each customer is visited exactly once, and constraints

(5.3) define a feasible schedule for each vehicle used.

We denote by LF1 the LP-relaxation of formulation F1 and by z(LF1) its optimal

solution cost.
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5.3.2 Formulation F2

Let H be the index set of all schedules. For each schedule k ∈ H , we denote by

Ωk ⊆ R the index subset of the routes in the schedule, by ck =
∑

`∈Ωk
d` its cost, and

by τ(Ωk) =
∑

`∈Ωk
τ` its total duration. Moreover, we denote by V (Ωk) = ∪`∈ΩkR`

and E(Ωk) = ∪`∈ΩkE(R`) the set of customers visited and the set of edges traversed

by schedule k ∈H , respectively.

We assume that H contains undominated schedules only (i.e., given k ∈ H , there

exists no k′ ∈H \{k} such that V (Ωk) = V (Ωk′) and ck > ck′). Notice that whenever

m = 1, H contains only schedules corresponding to optimal integer solutions of the

CVRP, where the total duration of the routes is less than or equal to T .

Let yk be a binary variable equal to 1 if and only if schedule k ∈ H is assigned to a

vehicle. Formulation F2 of the MTVRP is as follows

(F2) z(F2) = min
∑
k∈H

ckyk (5.5)

s.t .
∑

k∈H : i∈V (Ωk)

yk = 1, i ∈ V, (5.6)

∑
k∈H

yk ≤ m, (5.7)

yk ∈ {0, 1}, k ∈H . (5.8)

Constraints (5.6) specify that each customer i ∈ V must be visited exactly once.

Constraint (5.7) imposes the upper bound on the number of vehicles used.

We denote by LF2 the LP-relaxation of F2 and by z(LF2) its optimal solution cost.

5.3.3 Comparing Relaxations LF1 and LF2

The following proposition shows the relation between relaxations LF1 and LF2.

Proposition 1. The inequality z(LF1) ≤ z(LF2) holds and can be strict.

Proof. We show that any optimal dual solution of LF1 of cost z(LF1) is a feasible dual

solution of LF2 of cost z(LF1), as well. Let u = (u1, . . . , un) and w = (w1, . . . , wm)
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be the vectors of the dual variables associated with constraints (5.2) and (5.3), respec-

tively. The dual of LF1 is

(DF1) z(DF1) = max
∑
i∈V

ui + T
∑
j∈M

wj (5.9)

s.t .
∑
i∈R`

ui + τ`wj ≤ d`, j ∈M, ` ∈ R, (5.10)

ui ∈ R, i ∈ V, (5.11)

wj ≤ 0, j ∈M. (5.12)

Consider a vehicle schedule Ωk. Adding inequalities (5.10) over the routes of Ωk and

all vehicles of M and dividing by m, we obtain∑
`∈Ωk

∑
i∈R`

ui +
∑
`∈Ωk

τ`
m

∑
j∈M

wj ≤
∑
`∈Ωk

d`. (5.13)

Define ū0 = T
m

∑
j∈M wj . Because

∑
`∈Ωk

τ` ≤ T and wj ≤ 0, we have

ū0 ≤
∑
`∈Ωk

τ`
m

∑
j∈M

wj ≤ 0. (5.14)

From inequalities (5.13) and (5.14), we derive∑
`∈Ωk

∑
i∈R`

ui + ū0 ≤ ck,

which corresponds to the dual constraint associated with variable yk of problem LF2,

thus showing that ū = (ū0, u1, . . . , un) is a dual solution of LF2, where ui, i ∈ V , are

the dual variables of constraints (5.6) and ū0 is the dual variable of constraint (5.7).

The cost of the dual solution ū of LF2 defined above is∑
i∈V

ui +mū0 =
∑
i∈V

ui +
mT

m

∑
j∈M

wj = z(LF1).�

The following example shows that z(LF1) can be strictly smaller than z(LF2).

Example 1. Consider an MTVRP instance with n = 4, m = 2, T = 100, Q = 2,

q1 = 2, q2 = 1, q3 = 1, and q4 = 2. Travel costs and times coincide; in particular,

we have α01 = τ01 = 30, α02 = τ02 = 15, α03 = τ03 = 15, α04 = τ04 = 30, and

α23 = τ23 = 20.

Formulation F1 has the following five feasible routes (i.e., |R| = 5) for each vehicle:

R1 = {1}, d1 = 60; R2 = {2}, d2 = 30; R3 = {3}, d3 = 30; R4 = {4}, d4 = 60; and

R5 = {2, 3}, d5 = 50. Solving LF1, we obtain z(LF1) = 170 corresponding to ξ1
1 = 1,

ξ1
5 = 1

2 , ξ2
4 = 1, ξ2

5 = 1
2 (the other ξj` variables having a null value).
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Formulation F2 has the following nine schedules (i.e., |H | = 9): Ω1 = {1}, c1 = 60;

Ω2 = {2}, c2 = 30; Ω3 = {3}, c3 = 30; Ω4 = {4}, c4 = 60; Ω5 = {5}, c5 = 50;

Ω6 = {1, 2}, c6 = 90; Ω7 = {1, 3}, c7 = 90; Ω8 = {2, 4}, c8 = 90; and Ω9 = {3, 4},
c9 = 90. Solving LF2, we obtain z(LF2) = 180 > z(LF1) corresponding to solution

y6 = 1, y9 = 1, and yk = 0, for any k 6= 6, 9.

5.3.4 Relaxation RF1

Problem RF1 is an integer problem derived from F1 and is used, in the bounding pro-

cedures described in the next sections, to compute three lower bounds to the MTVRP.

Problem RF1 is obtained from F1 as follows.

1. Replace constraints (5.3) with the following surrogate constraint∑
`∈R

τ`
∑
j∈M

ξj` ≤ mT. (5.15)

2. Set x` =
∑

j∈M ξj` , ` ∈ R. Notice that, because of constraints (5.2), we have

x` ∈ {0, 1}.

3. Replace the term
∑

j∈M ξj` with x` into expressions (5.1), (5.2), and (5.15).

The resulting relaxed problem RF1 involves only the binary variables x`, ` ∈ R, where

x` is equal to 1 if and only if route ` is in the solution.

(RF1) z(RF1) = min
∑
`∈R

d`x` (5.16)

s.t .
∑
`∈Ri

x` = 1, i ∈ V, (5.17)

∑
`∈R

τ`x` ≤ mT, (5.18)

x` ∈ {0, 1}, ` ∈ R. (5.19)

In the following, we refer to problem RF1 as the CVRP relaxation of the MTVRP (or

as the CVRP associated to the MTVRP) and denote by LRF1 the LP-relaxation of

RF1 and by z(LRF1) its optimal solution cost.

Proposition 2. The following equality holds

z(LF1) = z(LRF1). (5.20)

Proof. Equality (5.20) follows from the observation that any LF1 solution ξ can be

transformed into an LRF1 solution x of the same cost, and vice versa.
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The following algorithm transforms a solution x of LRF1 into a feasible LF1 solution

ξ of cost z(LRF1).

1. Initialize j = 0.

2. Set j = j + 1 and wt = 0.

3. Let `∗ = min{` ∈ R : x`∗ > 0}. If τ`∗x`∗ ≤ T − wt, set wt = wt + τ`∗x`∗ ,

ξj`∗ = x`∗ , x`∗ = 0, and repeat Step 3. If τ`∗x`∗ > T −wt, define p = (T−wt)
τ`∗x`∗

, and

set ξj`∗ = p, x`∗ = 1− p, and return to Step 2.

Any LF1 solution ξ can be transformed into a feasible solution x of LRF1 of cost

z(LF1) by simply setting x` =
∑

j∈M ξj` . �

5.4 Improving Relaxations LRF1 and LF2 and Outline of

the Exact Method

In this section, we describe two relaxations, called LRF1 and LF2, derived respectively

from LRF1 and LF2 by adding some families of valid inequalities. These relaxations

are used to derive valid lower bounds on the MTVRP that are embedded in the exact

method proposed in §5.8.

5.4.1 Relaxation LRF1

Relaxation LRF1 derives from LRF1 by adding two types of valid inequalities for the

set partitioning formulation of the CVRP (see Chapter 4), called strengthened capacity

inequalities and subset row inequalities, and replacing inequality (5.18) with a new type

of inequalities, called working time inequalities.

Strengthened Capacity Inequalities. Let S be the set of all the subsets of cus-

tomers of cardinality greater than or equal to 2 (i.e., S = {S ⊆ V : |S| ≥ 2}), and let

δ(S) be the cutset of S ∈ S . Let ρ`(S) be the number of edges of δ(S) traversed by

route ` ∈ R (i.e., ρ`(S) = |E(R`)∩δ(S)|). The strengthened capacity (SC) inequalities

are ∑
`∈R

ρ`(S)x` ≥ 2k(S), S ∈ S ,

where k(S) is a lower bound on the number of vehicles required to service the customer

set S and can be computed as d
∑

i∈S qi/Qe.

Subset Row Inequalities. Subset row (SR) inequalities were introduced by Jepsen

et al. [2008] for the vehicle routing problem with time windows. They combine clique

inequalities with odd-hole inequalities. Let C = {C ⊆ V : |C| ≥ 3}, and let η be
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an integer such that η > 1. Any feasible RF1 solution must satisfy the following SR

inequality ∑
`∈R

ϕ`(C)x` ≤ ϕ0(C), C ∈ C ,

where ϕ`(C) =
⌊
|R`∩C|

η

⌋
, and ϕ0(C) =

⌊
|C|
η

⌋
. We consider the following three special

cases of the SR inequalities where η = 2.

1. SR3 inequalities. SR3 inequalities correspond to the subset C 3 ⊆ C defined

as C 3 = {C ⊆ V : |C| = 3}. SR3 inequalities correspond to a subset of clique

inequalities and impose that, at most, one of the routes visiting at least two of

the customers in C ∈ C 3 can be in the solution.

2. SR5 inequalities. SR5 inequalities correspond to the subset C 5 ⊆ C defined as

C 5 = {C ⊆ V : |C| = 5}. SR5 inequalities correspond to odd-hole inequalities

and impose that, at most, two of the routes visiting at least two of the customers

in C ∈ C 5 can be in the solution.

3. WSR3 inequalities. Weak subset row (WSR3) inequalities, introduced in

§4.3.2, are downlifted SR3 inequalities. They are used as an alternative to

the SR3 inequalities in the bounding procedures described in §5.5. Let E(C),

C ∈ C 3, be the edges whose terminal vertices are both in C. The coefficients of

the WSR3 inequalities, ϕ`(C), are computed as ϕ`(C) = 1 if |E(R`)∩E(C)| ≥ 1,

and ϕ`(C) = 0 if |E(R`) ∩ E(C)| = 0.

Hereafter, we use C = C 3∪C 5 and C ∈ C to refer to both the index and the customer

subset of an SR inequality. The SR3, SR5, and WSR3 inequalities are separated

through complete enumeration.

Working Time Inequalities. These new inequalities strengthen inequality (5.18).

They are given by the following proposition.

Proposition 3. Let tmin be a lower bound on the duration of any route ` ∈ R. If travel

costs αij satisfy the triangle inequality, we can define tmin = mini∈V {2τ0i}. For a given

time t ∈ [tmin, T ], let t̂ = Tmod(t) + 1, and let L = {L ⊆ R : τ` ∈ [t̂, t) for each ` ∈
L, and R`′ ∩R`′′ 6= ∅, for each `′, `′′ ∈ L}. The following inequalities, called working

time (WT) inequalities, are valid for LRF1

∑
`∈R\L

⌊τ`
t

⌋
x` +

∑
`∈L

x` ≤
⌊T
t

⌋
m, t ∈ [tmin, T ], L ∈ L . (5.21)

Proof. For a given L ∈ L , inequalities (5.3) can be written as∑
`∈R\L

τ`ξ
j
` ≤ T −

∑
`∈L

τ`ξ
j
` , j ∈M. (5.22)
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Inequalities (5.22) can be relaxed by replacing τ` with t̂, for each route ` ∈ L∑
`∈R\L

τ`ξ
j
` ≤ T − t̂

∑
`∈L

ξj` , j ∈M. (5.23)

By dividing inequalities (5.23) by t and rounding down the coefficients, we have

∑
`∈R\L

⌊τ`
t

⌋
ξj` ≤

⌊T − t̂∑`∈L ξ
j
`

t

⌋
, j ∈M. (5.24)

Notice that because of the definition of the set L,
∑

`∈L ξ
j
` is equal to either 0 or

1 for any feasible MTVRP solution. If
∑

`∈L ξ
j
` = 0, then bT−t̂

∑
`∈L ξ

j
`

t c = bTt c. If∑
`∈L ξ

j
` = 1, because of the definition of t̂, we have bT−t̂

∑
`∈L ξ

j
`

t c = bT−t̂t c = bTt c − 1.

Thus, we have ⌊T − t̂∑`∈L ξ
j
`

t

⌋
=
⌊T
t

⌋
−
∑
`∈L

ξj` , j ∈M. (5.25)

From inequalities (5.24) and equations (5.25), we derive

∑
`∈R\L

⌊τ`
t

⌋
ξj` +

∑
`∈L

ξj` ≤
⌊T
t

⌋
, j ∈M. (5.26)

By summing up inequalities (5.26) and replacing
∑

j∈M ξj` with x` ∈ {0, 1}, we derive

inequalities (5.21). �

The separation of inequalities (5.21) is NP-hard because it requires the computation

of the set L . Therefore, we use a subset of the WT inequalities (5.21) that are

obtained by defining Lit = {` ∈ Ri : τ` ∈ [t̂, t) }, for each vertex i ∈ V , and by setting

L = {Lit : i ∈ V, t ∈ [tmin, T ]}. Let W = {(t, i) : t ∈ [tmin, T ], i ∈ V }. These latter

inequalities can be conveniently written as follows∑
`∈R

ϑ`(t, i)x` ≤ ϑ0(t), (t, i) ∈ W , (5.27)

where, for a given (t, i) ∈ W , ϑ`(t, i) = b τ`t c, for each route ` ∈ R \ Lit, ϑ`(t, i) = 1,

for each route ` ∈ Lit, and ϑ0(t) = bTt cm. Inequalities (5.27) can be separated by

complete enumeration.

Example 2. Consider the MTVRP instance defined in Example 1 of §5.3.3. Problem

RF1 involves the same set R of routes of formulation F1. An optimal solution of RF1

of cost z(RF1) = z(LRF1) = 170 is given by x1 = 1, x4 = 1, and x5 = 1. Consider the

WT inequality (5.27) for t = 60 and i = 3. As t̂ = 41, we have L60,3 = {5}. Thus, the

coefficients of (5.27) are ϑ1(60, 30) = 1, ϑ2(60, 30) = 0, ϑ3(60, 30) = 0, ϑ4(60, 30) = 1,

ϑ5(60, 30) = 1, and ϑ0(60) = 2. Inequality (5.27) corresponds to x1 + x4 + x5 ≤ 2,

which is violated by the aforementioned solution of RF1. �
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Relaxation LRF1 is the following problem

(LRF1) z(LRF1) = min
∑
`∈R

d`x` (5.28)

s.t .
∑
`∈Ri

x` = 1, i ∈ V, (5.29)

∑
`∈R

ρ`(S)x` ≥ 2k(S), S ∈ S , (5.30)∑
`∈R

ϕ`(C)x` ≤ ϕ0(C), C ∈ C , (5.31)∑
`∈R

ϑ`(t, i)x` ≤ ϑ0(t), (t, i) ∈ W , (5.32)

x` ≥ 0, ` ∈ R. (5.33)

Let (u,v, g,h) be the dual variables of LRF1, where u ∈ Rn is associated with (5.29),

v ∈ R|S |+ with (5.30), g ∈ R|C |− with (5.31), and h ∈ R|W |− with (5.32).

In §5.5, we describe three bounding procedures to solve LRF1, called H1, H2, and

H3, that are extensions of similar procedures proposed in Chapter 4 for the CVRP.

The three procedures are executed in sequence, and the dual solution of procedure Hk

is used to hot-start procedure Hk+1, k = 1, 2.

Procedures H1 and H2 are dual-ascent heuristics based on a cut-and-column generation

(CCG) method that differs from standard CCG methods based on the simplex for the

use of a dual-ascent heuristic to find a near-optimal dual solution of problem LRF1.

Procedure H1 finds a dual solution (u1,v1, g1) of cost LB1 of problem LRF1 by

adding SC and WSR3 inequalities, ignoring WT inequalities, and replacing the route

set R with the set of all q-routes (see Christofides et al. [1981b]). Procedure H2 differs

from H1 as it uses elementary routes instead of q-routes. Procedure H2 achieves a

dual solution (u2,v2, g2) of cost LB2, such that LB1 ≤ LB2. Procedure H3 is a CCG

method based on the simplex to solve problem LRF1. Procedure H3 inherits from H2

the master and achieves an optimal dual solution (u3,v3, g3,h3) of cost LB3.
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5.4.2 Relaxation LF2

Relaxation LF2 is obtained by adding SC, SR3, and SR5 inequalities to LF2

(LF2) z(LF2) = min
∑
k∈H

ckyk (5.34)

s.t .
∑

k∈H : i∈V (Ωk)

yk = 1, i ∈ V, (5.35)

∑
k∈H

yk ≤ m, (5.36)∑
k∈H

ρk(S)yk ≥ 2k(S), S ∈ S , (5.37)∑
k∈H

ϕk(C)yk ≤ ϕ0(C), C ∈ C , (5.38)

yk ≥ 0, k ∈H , (5.39)

where ρk(S) and ϕk(C) of constraints (5.37) and (5.38) are computed as ρk(S) =

|E(Ωk) ∩ δ(S)| and ϕk(C) = b |V (Ωk)∩C|
η c.

Let (w,v, g) be the dual variables of LF2, where w = (w0, w1, . . . , wn) and w0 ∈ R− is

associated with constraint (5.36), (w1, . . . , wn) ∈ Rn with constraints (5.35), v ∈ R|S |+

with constraints (5.37), and g ∈ R|C |− with constraints (5.38).

In §5.6, we describe a CCG procedure, called H4, to solve LF2. We denote by x4 and

(w4,v4, g4) the optimal primal and dual solutions, respectively, of LF2 of cost LB4

achieved by H4.

5.4.3 Using Multiple Dual Solutions to Improve Procedures H2, H3

and H4

In this section, we describe two simple methods to improve the lower bounds and the

computing times of procedures H2, H3 and H4.

The method used in H2 and H3 is based on the following simple observation which

applies to any problem with binary variables. Consider the following problem with n

variables and m constraints

(F ) z(F ) = min cx

s.t . Ax = b,

x ∈ {0, 1}n.

Let us denote by LF the LP-relaxation of problem F and by D the dual of LF , and

let z(F ), z(LF ) and z(D) be the optimal solution costs of F , LF and D, respectively.

We assume to know a valid upper bound zUB on z(F ).
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Observation 1. Let w′ be a feasible (nonnecessarily optimal) D solution of cost z′(D).

Because any optimal F solution x∗ satisfies z(F ) = z′(D) +
∑

j∈J c
′
j , where c′j = cj −

w′aj , J = {j : x∗j = 1, 1 ≤ j ≤ n} is the reduced cost of variable xj and aj is the jth

column vector of matrixA, then any variable xj such that z′(D)+c′j > zUB cannot be in

any optimal solution of cost less than or equal to zUB and can be removed from F . The

resulting problem F ′ has the same optimal solutions of F . Let LF ′ be the LP-relaxation

of F ′, and let z(LF ′) be its optimal solution cost. It follows that z(LF ′) ≥ z(LF ), and

such inequality can be strict if c′j > zUB − z(LF ) for some variable xj of the optimal

basis of LF . In practice, it might happen that z(LF ) < z(LF ′) = z(F ), as shown in

the following example.

Example 3. Consider the following set partitioning problem F

min = x1 +x2 +x3 +4x4 +3x5 +4.5x6

s.t. x1 +x4 +x5 +x6 = 1,

x2 +x4 +x5 +x6 = 1,

x3 +x4 +x6 = 1,

x1 +x2 +x5 = 1,

x1 +x3 +x6 = 1,

x2 +x3 = 1,

xj ∈ {0, 1}, j = 1, . . . , 6.

A valid upper bound is zUB = 4.5, whereas the optimal integer solution cost of F is

z(F ) = 4 corresponding to x3 = 1, x5 = 1, xj = 0, j 6= 3, 5. The optimal LF solution

cost is z(LF ) = 2 corresponding to x = (1
2 ,

1
2 ,

1
2 ,

1
2 , 0, 0). Consider the dual solution

w = (1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3) of cost z(D) = 2; the vector c′ of the reduced costs with respect

to w is c′ = (0, 0, 0, 3, 2, 19
6 ).

According to Observation 1, we can remove variables x4 and x6 from F as z(D) + c′4 >

zUB and z(D) + c′6 > zUB. Thus, we derive problem F ′ that involves variables x1, x2,

x3 and x5 only.

An optimal solution of LF ′ is x = (0, 0, 1, 0, 1, 0) of cost z(LF ′) = 4, which is also an

optimal integer solution of F ; that is z(LF ) < z(LF ′) = z(F ). �

Observation 1 is used by procedures H2 and H3 for solving the pricing problem. Pro-

cedure Hk, k = 2, 3, uses the dual solution (uk−1,vk−1, gk−1) produced by Hk−1

to reject any route of negative reduced cost with respect to the incumbent dual so-

lution of problem LRF1 but having reduced cost with respect to (uk−1,vk−1, gk−1)

greater than zUB−LBk−1, where zUB is a valid upper bound to the MTVRP that can

be computed by running any of the heuristic algorithms available from the literature

(hereafter, we assume to know such upper bound on the MTVRP).
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In practice, this method improves both the final lower bound LBk achieved by Hk and

the computing time of Hk, avoiding the generation of routes of negative reduced cost

that cannot be in any optimal integer solution.

To improve the lower bound value as well as the computing time of H4, we use the

following observation.

Observation 2. Let d3
` be the reduced cost of route ` ∈ R with respect to the dual

solution (u3,v3, g3,h3) of LRF1 of cost LB3 achieved by H3. Let z(F2) be the cost

of an optimal F2 solution y∗, and let Y = {k ∈H : y∗k = 1}. The following inequality

holds z(F2) ≥ LB3 +
∑

k∈Y d
3(Ωk), where d3(Ωk) =

∑
`∈Ωk

d3
` . Thus, any schedule

k ∈ H such that d3(Ωk) > zUB − LB3 cannot be in any optimal solution and can be

removed from F2.

Observation 2 is used in procedure H4 to reject any schedule Ωk of negative reduced

cost with respect to the dual solution of the master such that d3(Ωk) > zUB − LB3.

5.5 Bounding Procedures H1, H2, and H3 Based on Re-

laxation LRF1

In this section, we describe three bounding procedures H1, H2 and H3 to derive lower

bounds LB1, LB2 and LB3, respectively. Procedures H1 and H2 use a method, called

CCG, proposed by Baldacci et al. [2008] for the CVRP and used in Chapter 4 for

solving the VRPTW and the CVRP. Procedure H3 is a CCG method, based on the

simplex, that uses a new strategy to solve the pricing problem.

5.5.1 Algorithm CCG

This algorithm differs from standard CCG methods based on the simplex as it uses a

dual-ascent heuristic to find a near-optimal dual solution of the master problem. The

main advantages of this method are

1. it is faster than simplex based methods;

2. it is not affected by the typical degeneration of the simplex;

3. the dual solution produced does not correspond to a dual basic solution of the

master, thus making the pricing problem easier to solve.

The Dual Heuristic to Solve the Master Problem. The master problem of

LRF1 with SC and WSR3 inequalities is defined by a subset R̄ ⊆ R and the sets S

and C of SC and WSR3 inequalities. The initializations of the sets R̄, S and C are
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described in §§5.5.2 and 5.5.4. The dual-ascent heuristic to compute a feasible dual

solution (ū, v̄, ḡ) of the master problem corresponds to the method described in §4.5.1

and is based on the following theorem.

Theorem 5.1. Let us associate penalties λi ∈ R, i ∈ V , with constraints (5.29),

µS ∈ R+, S ∈ S , with SC constraints (5.30), and ωC ∈ R−, C ∈ C , with constraints

(5.31) in the form of WSR3 inequalities. For each route R` (` ∈ R), we indicate with

c̄` its reduced cost with respect to (λ,µ,ω) (i.e., c̄` = c`−
∑

i∈R` λi−
∑

S∈S ρ`(S)µS−∑
C∈C ϕ`(C)ωC). For each i ∈ V , let us compute

βi = qi min
`∈R̄ : i∈R`

{ c̄`∑
i∈R` qi

}
.

A feasible dual solution (u,v, g) of the master of cost z(LRF1(λ,µ,ω)) is obtained

by setting

ui = βi + λi, i ∈ V, vS = µS , S ∈ S , and gC = ωC , C ∈ C .

Proof. See §3.5.2. �

A near-optimal dual solution (ū, v̄, ḡ) of the current master problem is obtained by

an iterative procedure that performs a predefined number Maxit2 of subgradient iter-

ations to solve the problem

LCCG = max
(λ,µ,ω)

{z(LRF1(λ,µ,ω))}.

We denote by (ū, v̄, ḡ) the near-optimal dual solution of LRF1 achieved after Maxit2

iterations and by x̄ the corresponding nonnecessarily feasible solution of LRF1.

Adding violated WSR3 inequalities and solving the pricing problem. After

computing the master dual solution (ū, v̄, ḡ), CCG adds, to the master, the largest

subset C ′ of at most ∆(C ) WSR3 inequalities most violated by x̄, where ∆(C ) is a

given parameter. In our computational results, we set ∆(C ) = 100. The set S of

SC inequalities is generated at the beginning of CCG, as described in Baldacci et al.

[2008], and is not changed.

Moreover, CCG generates a subset N ⊆ R of routes of negative reduced cost with

respect to (ū, v̄, ḡ). If N 6= ∅, then CCG sets R̂ = R̂ ∪N ; otherwise, (ū, v̄, ḡ) is a

feasible dual solution.

CCG terminates after Maxit1 macro iterations and provides an LRF1 dual solution,

(u∗,v∗, g∗), of cost LCCG corresponding to the penalty vector (λ∗,µ∗,ω∗).
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5.5.2 Bounding Procedure H1

Procedure H1 enlarges the route set R with an extension of the q-routes introduced by

Christofides et al. [1981b]. The initial route set R̄ of the master problem contains all

single-customer routes (0, i, 0), i ∈ V . We initialize C = ∅ and (λ,µ,ω) = (0,0,0).

At a given macro iteration, the set N of routes of negative reduced cost with respect

to the dual solution (ū, v̄, ḡ) is computed as follows. Define the modified arc cost

ᾱij = αij −
1

2
(ūi + ūj)−

∑
S∈S : {i,j}∈δ(S)

v̄S , for each edge {i, j} ∈ E,

with respect to (ū, v̄, ḡ).

A (q, j, i)-path is a nonnecessarily elementary path that starts from the depot and

visits a subset of customers (once or more) such that their total demand is q and the

last two customers visited are j and i in this order. A (q, j, i)-path is defined for any

load q (qj+qi ≤ q ≤ Q), and for any pair of vertices j, i ∈ V ′, j 6= i. A (q, j, 0)-route (or

simply a q-route) is a (q, j, 0)-path. Let f(q, j, i) be the cost of a least-cost (q, j, i)-path

using the modified arc costs ᾱij , and let Cij = {C ∈ C : {i, j} ∈ E(C)}. Functions

f(q, j, i) can be computed with the following dynamic programming (DP) recursion

f(q, j, i) = min
k∈V ′\{i}

{
f(q − qi, k, j) + ᾱji −

∑
C∈Cji\Ckj

ḡC

}
,

q = qj + qi, . . . , Q, j, i ∈ V ′, j 6= i, j 6= 0.

Functions f(q, j, i) are initialized as f(qi, 0, i) = ᾱ0i, i ∈ V .

The set N contains any q-route of negative reduced cost corresponding to a least-cost

q-route visiting customer j ∈ V as the last customer before arriving at the depot.

At the end, procedure H1 sets (u1,v1, g1) = (u∗,v∗, g∗), (λ1,µ1,ω1) = (λ∗,µ∗,ω∗),

and LB1 = LCCG.

5.5.3 Route Generation Algorithm GenR

In this section, we describe the two-phase algorithm GenR used by bounding procedure

H2 to initialize the master problem and to solve the pricing problem. Moreover,

the second phase of GenR is used by H3 to solve the pricing problem and by the

exact method to generate all routes of reduced cost, with respect to (u3,v3, g3,h3),

less than zUB − LB3. Algorithm GenR generates elementary routes and extends the

method proposed by Baldacci et al. [2008] for the CVRP by introducing new bounding

functions to reduce the state-space graph. GenR is based on the following observations.
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Let V (P ) ⊆ V be the subset of customers visited by path P , and let E(P ) be the edges

traversed by path P . Let P be the set of all elementary paths of minimum cost from

the depot such that q(P ) ≤ Q
2 +qσ(P ), for each path P ∈P, where q(P ) =

∑
i∈V (P ) qi,

τ(P ) =
∑
{i,j}∈E(P ) τij , and σ(P ) represent the load, the duration and the terminal

customer of path P , respectively. We denote by π(P ) the immediate predecessor of

σ(P ) in P .

Every route passing through customer i ∈ V can be obtained by combining a pair of

paths P, P̄ ∈P such that

σ(P ) = σ(P̄ ) = i, V (P ) ∩ V (P̄ ) = {i}, τ(P ) + τ(P̄ ) ≤ T, q(P ) + q(P̄ ) ≤ Q+ qi.

(5.40)

Given a nonnecessarily feasible dual solution (ũ, ṽ, g̃) of LRF1, a feasible dual solution

(u′,v′, g′) of LRF1 and four parameters ∆(P), ∆(R), γ and γ′, GenR generates the

largest subset B of routes such that |B| ≤ ∆(R), d̃` ≤ γ and d′` ≤ γ′, for each route

` ∈ B, where d̃` and d′` are the reduced costs of route ` with respect to (ũ, ṽ, g̃) and

(u′,v′, g′), respectively. In the first phase, GenR generates the path set P such that

|P| ≤ ∆(P), where ∆(P) is a parameter that limits the cardinality of the set P and

is imposed for memory limits. In the second phase, GenR combines the paths of P to

provide the subset B ⊆ R. Parameters ∆(R), γ and γ′ are defined according to the

type of subset B that must be generated.

Define the modified path cost d̃(P ) with respect to (ũ, ṽ) as follows

d̃(P ) =
∑

{i,j}∈E(P )

α̃ij , (5.41)

where α̃ij = αij − 1
2(ũi + ũj) −

∑
S∈S : {i,j}∈δ(S) ṽS . Let lb(P ) be a lower bound on

the reduced cost with respect to (ũ, ṽ, g̃) of any route containing path P . For a given

path P ∈P, let σ(P ) = i. The lower bound lb(P ) is computed as

lb(P ) = d̃(P )−
∑
C∈C

⌈ |E(P ) ∩ E(C)|
2

⌉
g̃C+ min

j∈V \V (P ), qi≤q′≤Q−q(P )+qi

{
f(q′, j, i)+g̃π(P )ij

}
,

where g̃π(P )ij is the dual of the WSR3 inequality {π(P ), i, j} ∈ C (we assume g̃π(P )ij =

0 if {π(P ), i, j} /∈ C ).

The two phases of GenR are shortly described as follows. For a more detailed description

of GenR see Baldacci et al. [2008].

5.5.3.1 Phase 1 of GenR.

Phase 1 generates a sequence P of paths (P 1, . . . , P k), with k ≤ ∆(P), such that

lb(P 1) ≤ . . . ≤ lb(P k) ≤ γ. If Phase 1 terminates with |P| = ∆(P), the entire
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algorithm terminates prematurely as there is no guarantee that all routes of reduced

cost less than or equal to γ are generated by combining the pairs P, P̄ ∈P.

5.5.3.2 Phase 2 of GenR.

Phase 2 is executed only if |P| < ∆(P). Consider a pair of paths (P, P̄ ) ∈ P

satisfying conditions (5.40). Let ` ∈ R be the index of the route resulting from (P, P̄ )

of reduced cost d̃` with respect to (ũ, ṽ, g̃). From (5.41), we have d̃` = d̃(P ) + d̃(P̄ )−∑
C∈C ϕ`(C)g̃C . As g̃ ≤ 0, then d̃(P ) + d̃(P̄ ) ≤ d̃`, so only pairs of paths (P, P̄ ) such

that d̃(P ) + d̃(P̄ ) ≤ γ can generate routes of reduced cost less than or equal to γ.

Phase 2 dynamically generates a sequence of path pairs (P r1 , P̄ s1), . . ., (P rk , P̄ sk),

. . ., (P rh , P̄ sh), where each path pair satisfies conditions (5.40) and d̃(P r1) + d̃(P̄ s1) ≤

. . . ≤ d̃(P rk) + d̃(P̄ sk) ≤ . . . ≤ d̃(P rh) + d̃(P̄ sh) ≤ γ. The pool B of routes generated

contains any route ` ∈ R resulting from the pairs of paths in the sequence such that

τ` ≤ T , d̃` ≤ γ, d′` ≤ γ′ and route ` is not dominated by any other route `′ previously

generated (i.e., route `′ dominates route ` if R`′ = R` and d̃`′ ≤ d̃`).

5.5.4 Bounding Procedure H2

Procedure H2 is a straightforward implementation of CCG, where R is the set of

elementary routes. The initial route set R̄ is obtained by executing GenR by setting

(ũ, ṽ, g̃) = (u′,v′, g′) = (u1,v1, g1), ∆(P) = 107, ∆(R) = 104, and γ = γ′ =

zUB − LB1, and adding all single-customer routes to R̄ = B. Procedure H2 starts

with the same sets S and C of SC and WSR3 inequalities resulting from H1. We

initialize (λ,µ,ω) = (λ1,µ1,ω1).

At each macro iteration, a set N of routes of negative reduced cost with respect to

(ū, v̄, ḡ) is given by N = B, where the set B is generated by GenR setting (ũ, ṽ, g̃) =

(ū, v̄, ḡ), (u′,v′, g′) = (u1,v1, g1), ∆(P) = 107, ∆(R) = 150, γ = 0, and γ′ =

zUB − LB1.

At the end, H2 sets (u2,v2, g2) = (u∗,v∗, g∗), (λ2,µ2,ω2) = (λ∗,µ∗,ω∗), and

LB2 = LCCG.

5.5.5 Generating the Path Set P2 and the Route Set R2

After the execution of H2, we try to generate the route set R2 of all routes of reduced

cost with respect to (u2,v2, g2) less than or equal to zUB − LB2. We call GenR by

setting (ũ, ṽ, g̃) = (u2,v2, g2), (u′,v′, g′) = (u1,v1, g1), ∆(P) = 107, ∆(R) = 5·106,

γ = zUB − LB2, and γ′ = zUB − LB1. We denote by P2 and R2 the path set P

and the route set B generated by GenR, respectively. Moreover, we denote by d2(P )
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the modified cost of path P ∈ P2 with respect to (u2,v2) computed according to

expression (5.41) by replacing (ũ, ṽ) with (u2,v2).

We define P2 to be optimal if |P2| < ∆(P) because it contains any path generating

any route of any optimal MTVRP solution. We define R2 to be optimal if P2 is

optimal and |R2| < ∆(R).

Because H3 and the exact algorithm require that P2 be optimal, whenever P2 is not

optimal (i.e., |P2| = ∆(P)), H3 is not executed and the entire procedure terminates

prematurely.

5.5.6 Bounding Procedure H3

Procedure H3 is a column-and-cut-generation procedure, based on the simplex algo-

rithm, to solve LRF1 with SC, SR3, SR5, and WT inequalities. H3 differs from

classical column-and-cut-generation algorithms because of the method used to solve

the pricing problem.

H3 uses sets P2 and R2, generated at the end of H2, to generate routes of negative

reduced cost. The route set R̄ of the master problem of H3 is generated by extracting,

from R2, the largest subset R̄ of routes of minimum reduced cost with respect to

(u2,v2, g2) such that |R̂| ≤ ∆(B) and by adding all single-customer routes to R̄.

The set S is set equal to the set of SC inequalities used in H1 and H2, and W and

C are defined as W = ∅, C = ∅, where the set C = C 3 ∪C 5 represents SR3 and SR5

inequalities.

Let x̄ and (ū, v̄, ḡ, h̄) be, respectively, the primal and dual solutions of the master

problem achieved at a given iteration. A set N of at most ∆(N ) negative reduced

cost routes with respect to (ū, v̄, ḡ, h̄) is generated with the following algorithm.

1. Extract, from R2, the largest subset N of at most ∆(N ) routes having the

largest negative reduced cost, and add them to R̄. If N = ∅ and R2 is not

optimal, continue with Step 2; otherwise, Stop.

2. Compute the modified cost d̄(P ), P ∈ P2, with respect to (ū, v̄) according to

(5.41) by replacing (ũ, ṽ) with (ū, v̄). Using the method described in §5.5.3.2,

combine any pair of paths P, P ′ ∈ P2 such that d2(P ) + d2(P ′) ≤ zUB − LB2

and d̄(P ) + d̄(P ′) ≤ 0 to derive the set N .

At each iteration, H3 adds, to C , a set of at most ∆(C ) most violated SR3 and SR5

inequalities and, to W , a set of at most ∆(W ) WT inequalities most violated by x̄.

Procedure H3 ends whenever N = ∅ and no cuts are added, and it achieves an LRF1

dual solution (u3,v3, g3,h3) of cost LB3.
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5.5.7 Generating the Route Set R3 and Solving F1

After the execution of H3, we try to generate the largest set R3 of routes such that

d3
` ≤ zUB − LB3, ` ∈ R3, and |R3| ≤ ∆(R), where d3

` is the reduced cost of route `

with respect to (u3,v3, g3,h3). In generating R3 we have two cases

a. R2 is optimal. We set R3 = {` ∈ R2 : d3
` ≤ zUB − LB3} and define R3 as

optimal.

b. R2 is not optimal. Recall that in this case P2 is optimal, so P2 allows us to

generate the routes of any optimal MTVRP solution. We compute the reduced

cost d3(P ) of each path P ∈P2, with respect to (u3,v3), according to expression

(5.41) by replacing (ũ, ṽ) with (u3,v3). Then, we combine the path pairs of the

set P2, by using the method of §5.5.3.2, to derive the set R3 of all routes

such that d2
` ≤ zUB − LB3 and d3

` ≤ zUB − LB3, for each route ` ∈ R3, and

|R3| ≤ ∆(R). If |R3| < ∆(R), then R3 is defined optimal.

If |R3| is small (say, |R3| ≤ 5, 000), we find an optimal MTVRP solution by solving

the reduced problem F1, obtained by replacing route set R with R3, through an IP

solver. Otherwise, we execute bounding procedure H4 (described in §5.6).

5.6 Bounding Procedure H4 Based on Relaxation LF2

Procedure H4 is a column-and-cut generation method, based on the simplex, to solve

relaxation LF2.

The initial sets S and C of SC, SR3 and SR5 inequalities are those resulting at the end

of H3. The initial master problem, H̄ ⊆H , is defined as follows. Execute procedure

GenSched (described in §5.7) to derive the schedule set D containing at most ∆(D)

(where ∆(D) is a given parameter) schedules such that c3
k ≤ zUB − LB3, k ∈ D ,

where c3
k is the reduced cost of schedule k with respect to (u3,v3, g3,h3) computed as

c3
k =

∑
`∈Ωk

d3
` . Set Ĥ = D , and add to Ĥ a schedule composed of a single-customer

route for every customer i not covered by any schedule of D .

At each iteration, GenSched generates a set N of at most ∆(D) schedules of negative

reduced cost with respect to the dual solution (w̄, v̄, ḡ) of the master and such that

c3
k ≤ zUB − LB3, for each schedule k ∈ N . Moreover, the subset C ′ of the ∆(C ) SR3

and SR5 inequalities most violated by the current master solution are added to C . In

our computational experiments, we used ∆(D) = 104 in generating D , ∆(D) = 150 in

generating N , and ∆(C ) = 100 in generating C ′.

Procedure H4 terminates if N = ∅ and C ′ = ∅ and provides a dual solution

(w4,v4, g4) of cost LB4.
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5.7 Algorithm GenSched to Generate Vehicle Schedules

In this section, we describe procedure GenSched to generate the schedule sets H̄ and

N , which are required by bounding procedure H4, and the schedule subset H 4 ⊆H ,

which is required by the exact method described in §5.8.

Given a dual solution (ŵ, v̂, ĝ) of LF2 and two parameters ∆(D) and γ, algorithm

GenSched combines the routes of set R3 to produce the largest subset D of schedules

of minimum reduced costs with respect to (ŵ, v̂, ĝ) such that |D | ≤ ∆(D), c3
k ≤

zUB − LB3, and ĉk ≤ γ, for each schedule k ∈ D , where ĉk is the reduced cost of

schedule k with respect to (ŵ, v̂, ĝ).

To generate the schedule sets H̄ , N and H 4, GenSched requires the following pa-

rameter settings

• The schedule set H̄ defining the initial master problem of H4. Define (ŵ, v̂, ĝ) =

(0,0,0) and γ = zUB.

• The set N of schedules of negative reduced costs in H4. Define (ŵ, v̂, ĝ) as the

dual of the current master problem of H4 and γ = 0.

• The schedule subset H 4 ⊆H of all the schedules of any optimal MTVRP solu-

tion. Define (ŵ, v̂, ĝ) = (w4,v4, g4) and γ = zUB − LB4.

Procedure GenSched is based on the following proposition.

Proposition 4. Let d̂` =
∑
{i,j}∈E(R`)

(αij−1
2(ŵi+ŵj)−

∑
S∈S : {i,j}∈δ(S) v̂S)−

∑
C∈C ϕ`(C)ĝC ,

` ∈ R3, and let d̂(Ωk) =
∑

`∈Ωk
d̂`, k ∈ H . The reduced cost ĉk of schedule k ∈ H

with respect to (ŵ, v̂, ĝ) satisfies the inequality ĉk ≥ d̂(Ωk).

Proof. This happens as w0 ≤ 0, ĝ ≤ 0, and ϕk(C) ≥
∑

`∈Ωk
ϕ`(C), for any C ∈ C and

any k ∈H .�

Algorithm GenSched is a two-phase procedure. In the first phase, it computes the

reduced costs d̂`, ` ∈ R3, and orders the routes of the set R3 so that d̂`1 ≤ d̂`2 ≤
. . . ≤ d̂|R3|. The second phase is an iterative procedure that combines the routes R3

in schedules. At iteration j, an attempt is made to add the jth route of the ordered

set R3 to the schedules of a temporary schedule set pool containing all the schedules

composed of the first j − 1 routes `1, `2, . . . , `j−1 of R3.

We assume that pool is composed of undominated schedules, where schedule k′ is

dominated by schedule k′′ if V (Ωk′′) = V (Ωk′), d̂(Ωk′′) ≤ d̂(Ωk′), and τ(Ωk′′) ≤ τ(Ωk′).

A schedule k′ that is obtained by adding route `j to a schedule k ∈ pool becomes a

new member of pool only if d̂(Ωk′) ≤ γ, k′ is not dominated by any other schedule

k′′ ∈ pool, and c3(Ωk′) =
∑

`∈Ωk′
d3
` ≤ zUB − LB3.
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We denote by p the number of schedules in pool. The second phase of GenSched can

be described as follows.

1. Initialize pool = ∅, D = ∅ and p = 0.

2. For ` = 1, . . . , |R3| repeat Step 3.

3. Expansion of the temporary schedule set pool with route ` ∈ R3. For each

schedule k ∈ pool such that V (Ωk) ∩ R` = ∅, τ(Ωk) + τ` ≤ T , c3(Ωk) + d3
` ≤

zUB − LB3, and d̂(Ωk) + d̂` ≤ γ, repeat the following steps

• Define the schedule Ω′ = Ωk ∪ {`} of duration τ(Ω′) = τ(Ωk) + τ`, and set

d̂(Ω′) = d̂(Ω) + d̂`.

• If Ω′ is not dominated by any other schedule Ω′′ ∈ pool, insert Ω′ ∈ pool

and set p = p + 1. Remove any schedule Ω′′ dominated by Ω′ from pool,

and update p, accordingly.

• Compute ĉ(Ω′). If ĉ(Ω′) ≤ γ, add Ω′ to D . If |D | = p, Stop.

5.8 Description of the Exact Method to Solve the MTVRP

The exact method we propose consists of seven main steps and can be described as

follows.

1. Solving relaxation LRF1 with procedures H1 and H2. Solve relaxation

LRF1 with SC and WSR3 inequalities, executing, in sequence, procedures H1

and H2. Let LB2 be the cost of the dual solution (u2,v2, g2) achieved by H2

(see §§5.5.2 and 5.5.4).

2. Generating path set P2 and route set R2. Generate path set P2 and set

R2 of the routes of reduced cost with respect to (u2,v2, g2) less than or equal

to zUB −LB2 (see §5.5.5). If P2 is not optimal, Stop (the algorithm terminates

without providing any optimal solution).

3. Solving relaxation LRF1 with procedure H3. Solve relaxation LRF1 with

SC, SR3, SR5, and WT inequalities with procedure H3 (see §5.5.6). Let LB3

be the lower bound corresponding to the dual solution (u3,v3, g3,h3) of LRF1

achieved by H3.

4. Generating the route set R3. Generate the largest set R3 of the routes of

reduced cost with respect to (u3,v3, g3,h3) less than or equal to zUB−LB3 and

such that |R3| ≤ ∆(R) (see §5.5.7). If |R3| < ∆(R), R3 contains the routes of

any optimal solution of cost less than or equal to zUB and R3 is defined optimal.

Otherwise, R3 is defined not-optimal.
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5. Solving the reduced problem F1. If m = 1, or if m > 1, R3 is optimal,

and |R3| ≤ 5, 000, then find an optimal MTVRP solution by solving, with an

IP solver, problem F1 by replacing the route set R with the route set R3, and

Stop.

6. Solving relaxation LF2 with procedure H4. If m > 1, and either R3 is not

optimal or |R3| > 5, 000, then solve LF2 with SC, SR3, and SR5 inequalities

with H4 (see §5.6). Let LB4 be the lower bound corresponding to an optimal

dual solution (w4,v4, g4) of LF2 obtained by H4. If the optimal primal solution

y of LF2 is integer, Stop.

7. Solving the reduced problem F2. Call GenSched to generate the largest set

of schedules H 4 ⊆ H , by setting (w̃, ṽ, g̃) = (w4,v4, g4), γ = zUB − LB4,

∆(D) = 106.

If |H 4| ≥ ∆(D), as there is no guarantee that H 4 contains all schedules of any

optimal MTVRP solution, the algorithm terminates prematurely without pro-

viding any optimal solution.

Otherwise (i.e., if |H 4| < ∆(D)) compute an optimal MTVRP solution by solv-

ing, with an IP solver, the integer problem F2 obtained by replacing the schedule

set H with the subset H 4 and by adding all the valid inequalities saturated at

the end of H4.

5.9 Computational Results

This section reports on the computational results of the exact method described in

§5.8. All algorithms were coded in C and compiled with Visual Studio 2008. CPLEX

12.1 was used as the LP solver in H3 and H4 and as the IP solver in Steps 5 and 7 of

the exact method. All tests were performed on a Sony Vaio P8400 laptop (Intel Core

2 Duo@2.26 GHz with 4 GB of RAM).

The exact algorithm was tested on a subset of the benchmark instances proposed in

Taillard et al. [1996], which were used to test all heuristic algorithms in the literature.

These instances were generated by starting from the graphs, demands and vehicle

capacities of five CVRP problems (namely, CMT-1, CMT-2, CMT-3, CMT-11, and

CMT-12) proposed in Christofides et al. [1979] and by varying the number of vehicles,

m. For each problem and each value of m, two instances with different values of T were

generated: in the first instance, T = [1.05zRT
m ], and in the second one, T = [1.10zRT

m ],

where [x] is the integer value nearest to x and zRT is the CVRP solution cost obtained

by Rochat and Taillard [1995]. All instances feature x−y coordinates. The travel costs

coincide with the travel times and are real values computed as Euclidean distances

between the vertices. For an accurate description of the test instances see Taillard

et al. [1996].
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Table 5.1: Upper Bounds on the Test Instances

Inst m T zUB TUB Inst m T zUB TUB Inst m T zUB TUB

CMT-1 1 551 524.61 27 CMT-3 1 867 826.14 106 CMT-12 1 861 819.56 93

2 275 533.00 27 2 434 826.14 105 2 430 819.56 95

1 577 524.61 27 3 289 826.14 107 3 287 819.56 95

2 289 529.85 28 4 217 828.73 105 4 215 819.56 95

3 192 552.68 30 5 173 851.47 107 5 172 845.37 95

4 144 546.29 28 6 145 839.90 172 1 902 819.56 95

CMT-2 1 877 835.26 49 1 909 826.14 106 2 451 819.56 93

2 439 835.26 49 2 454 826.14 106 3 301 819.56 93

3 292 835.26 49 3 303 826.14 105 4 225 819.56 96

4 219 835.26 50 4 227 826.14 107 5 180 824.78 96

5 175 835.80 50 5 182 833.15 109 6 150 825.36 96

6 146 857.00 111 6 151 842.21 109

1 919 835.26 49 CMT-11 1 1,094 1,042.11 156

2 459 835.26 49 2 547 1,042.11 161

3 306 835.26 50 3 365 1,042.11 160

4 230 835.26 50 4 274 1,085.92 210

5 184 835.26 51 5 219 1,042.11 161

6 153 839.22 51 1 1,146 1,042.11 160

7 131 872.64 51 2 573 1,042.11 159

3 382 1,042.11 160

4 287 1,042.11 161

5 229 1,042.11 164

The exact method described in §5.8 requires an upper bound zUB (see Steps 2, 4 and

7). In our experiments, such upper bound was set equal to the best of three upper

bounds: (a) the upper bound computed by the heuristic of Taillard et al. [1996] (sent

us by private communication Taillard [2009]), (b) the upper bound reported in Olivera

and Viera [2007], and (c) the cost of the CVRP solution found by the heuristic of

Mester and Bräysy [2005] if the routes of such solution can be arranged so as to obtain

a feasible MTVRP solution.

For each instance, Table 5.1 reports the number of vehicles (m), the maximum driving

time (T ), the upper bound (zUB), and the estimated computing time for computing

zUB (TUB) on our machine. The estimated computing time TUB is the sum of the

computing times of the algorithms of Taillard et al. [1996], Olivera and Viera [2007],

and Mester and Bräysy [2005] normalized to our machine by considering that, according

to http://www.cpubenchmark.net/cpu_list.php, our machine is ≈ 100 times faster

than the 100 MHz machine used by Taillard et al. [1996], 4 times faster than the 1.8

GHz AMD Athlon XP 2200+ used by Olivera and Viera [2007], and 6.3 times faster

than the Pentium 4 2 GHz used by Mester and Bräysy [2005].

We did not test our algorithm on the four instances for which no feasible solution is

known (namely, instances CMT-1 with m = 3 and T = 184, CMT-1 with m = 4 and

T = 138, CMT-2 with m = 7 and T = 125, and CMT-12 with m = 6 and T = 143)

because the exact algorithm described in §5.8 would run out of memory at Step 2 while

generating the path set P2.

http://www.cpubenchmark.net/cpu_list.php
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Table 5.2: Computational Results on CMT-1, CMT-2 and CMT-3 instances

Formulation F1 Solving F1 Formulation F2 Solving F2

Inst m T zUB z∗ %LB1 %LB2 P2 R2 LB3 %LB3 T3 R3 TIP TTOT LB4 %LB4 T4 H 4 TIP TTOT

CMT-1 1 551 524.61 524.61 99.6 99.8 2,549 329 524.61 100.0 9.4 47 0.1 9.5
n = 50 2 275 533.00 533.00 98.1 98.3 142,645 95,763 532.22 99.9 36.3 509 0.9 37.2

1 577 524.61 524.61 99.6 99.8 1,922 329 524.61 100.0 10.3 62 0.5 10.8
2 289 529.85 529.85 98.7 98.9 35,676 16,669 527.68 99.6 15.0 806 1.9 16.9
3 192 552.68 94.6 94.8 m.o. - - - 34.8
4 144 546.29 546.29 95.7 96.0 2,365,662 3,941,493 543.50 99.5 588.8 1,268 15.5 603.3

CMT-2 1 877 835.26 835.26 98.5 98.9 138,112 114,078 832.78 99.7 205.9 3,117 10.6 216.5
n = 75 2 439 835.26 835.26 98.5 98.9 138,112 114,078 832.78 99.7 205.9 3,117 16.5 222.4

3 292 835.26 835.26 98.5 98.9 138,112 114,078 832.78 99.7 205.9 3,117 21.0 226.9
4 219 835.26 835.26 98.5 98.9 138,112 114,078 832.78 99.7 205.9 3,117 27.7 233.6
5 175 835.80 835.80 98.5 98.8 170,128 148,826 832.77 99.6 188.8 4,746 336.0 524.8
6 146 857.00 96.0 96.4 m.o. - - - 48.3
1 919 835.26 835.26 98.5 98.9 138,112 114,078 832.78 99.7 205.9 3,117 10.6 216.5
2 459 835.26 835.26 98.5 98.9 138,112 114,078 832.78 99.7 205.9 3,117 16.5 222.4
3 306 835.26 835.26 98.5 98.9 138,112 114,078 832.78 99.7 205.9 3,117 21.4 227.3
4 230 835.26 835.26 98.5 98.9 138,112 114,078 832.78 99.7 205.9 3,117 28.6 234.5
5 184 835.26 835.26 98.5 98.9 138,112 114,078 832.78 99.7 205.9 3,117 54.2 260.1
6 153 839.22 839.22 98.1 98.4 472,756 551,114 832.79 99.2 221.4 49,511 ⇒ 834.12 99.4 374.2 343,626 4,209.1 4,583.3
7 131 872.64 94.3 94.7 m.o. - - - 47.6

CMT-3 1 867 826.14 826.14 98.7 99.0 5,248,271 > 5 · 106 826.14 100.0 2,766.7 1,471 0.1 2,766.8
n = 100 2 434 826.14 826.14 98.7 99.0 5,248,271 > 5 · 106 826.14 100.0 2,766.7 1,471 15.0 2,781.7

3 289 826.14 826.14 98.7 99.0 5,248,271 > 5 · 106 826.14 100.0 2,766.7 1,471 27.2 2,793.9
4 217 828.73 98.4 98.7 m.o. - - - 96.2
5 173 A851.47 97.6 97.9 m.o. - - - 95.7
6 145 B839.90 97.5 97.9 m.o. - - - 93.4
1 909 826.14 826.14 98.7 99.0 5,248,271 > 5 · 106 826.14 100.0 2,766.7 1,471 0.1 2,766.8
2 454 826.14 826.14 98.7 99.0 5,248,271 > 5 · 106 826.14 100.0 2,766.7 1,471 15.3 2,782.0
3 303 826.14 826.14 98.7 99.0 5,248,271 > 5 · 106 826.14 100.0 2,766.7 1,471 28.5 2,795.2
4 227 826.14 826.14 98.7 99.0 5,248,271 > 5 · 106 826.14 100.0 2,766.7 1,471 46.6 2,813.3
5 182 833.15 97.9 98.2 m.o. - - - 94.1
6 151 C842.21 97.5 97.8 m.o. - - - 88.0

A Best known upper bound 836.01 from Alonso et al. [2008]
B Best known upper bound 836.21 from Olivera [2005]
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Table 5.3: Computational Results on CMT-11 and CMT-12 instances

Formulation F1 Solving F1 Formulation F2 Solving F2

Inst m T zUB z∗ %LB1 %LB2 P2 R2 LB3 %LB3 T3 R3 TIP TTOT LB4 %LB4 T4 H 4 TIP TTOT

CMT-11 1 1,094 1,042.11 1,042.11 99.6 99.9 185,303 4,705 1,042.11 100.0 632.1 83 0.2 632.3
n = 120 2 547 1,042.11 1,042.11 99.6 99.9 185,303 4,705 1,042.11 100.0 632.1 83 0.2 632.3

3 365 1,042.11 1,042.11 99.6 99.9 185,303 4,705 1,042.11 100.0 632.1 83 0.2 632.3
4 274 A1,085.92 96.3 96.6 m.o. - - - 776.1
5 219 1,042.11 1,042.11 99.6 99.9 182,530 5,102 1,042.11 100.0 620.0 105 0.2 620.2
1 1,146 1,042.11 1,042.11 99.6 99.9 185,303 4,705 1,042.11 100.0 632.1 83 0.2 632.3
2 573 1,042.11 1,042.11 99.6 99.9 185,303 4,705 1,042.11 100.0 632.1 83 0.2 632.3
3 382 1,042.11 1,042.11 99.6 99.9 185,303 4,705 1,042.11 100.0 632.1 83 0.2 632.3
4 287 1,042.11 1,042.11 99.6 99.9 185,303 4,705 1,042.11 100.0 631.0 83 0.2 631.2
5 229 1,042.11 1,042.11 99.6 99.9 185,303 4,705 1,042.11 100.0 619.8 83 0.2 620.0

CMT-12 1 861 819.56 819.56 99.7 100.0 49,368 71 819.56 100.0 39.9 24 0.3 40.2
n = 100 2 430 819.56 819.56 99.7 100.0 46,578 60 819.56 100.0 44.7 21 0.3 45.0

3 287 819.56 819.56 99.7 100.0 43,219 95 819.56 100.0 43.0 23 0.2 43.2
4 215 819.56 819.56 99.7 100.0 46,578 60 819.56 100.0 45.0 21 0.2 45.2
5 172 845.37 96.6 96.9 m.o. - - - 16.6
1 902 819.56 819.56 99.7 100.0 49,368 71 819.56 100.0 39.9 24 0.3 40.2
2 451 819.56 819.56 99.7 100.0 46,578 60 819.56 100.0 44.7 21 0.3 45.0
3 301 819.56 819.56 99.7 100.0 43,219 95 819.56 100.0 43.0 23 0.3 43.3
4 225 819.56 819.56 99.7 100.0 46,578 60 819.56 100.0 45.0 21 0.5 45.5
5 180 824.78 824.78 99.0 99.4 1,857,419 818,631 819.56 99.4 314.6 746,542 ⇒ 823.69 99.9 2,290.3 274,857 77.6 2,367.9
6 150 825.36 823.14 99.2 99.6 2,724,943 1,717,379 819.56 99.6 402.5 1,520,016 ⇒ 823.14 100.0 1,058.2 3,819 0.2 1,058.4

A Best known upper bound 1, 078.64 from Olivera [2005]
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Tables 5.2 and 5.3 report detailed computational results. For each instance, the

columns report the following information: instance name, Inst; number of vehicles,

m; maximum driving time, T ; initial upper bound, zUB; optimal solution cost, z∗;

percentage lower bound, %LBk (k = 1, . . . , 4), achieved by bounding procedure Hk;

lower bounds, LB3 and LB4, achieved by bounding procedures H3 and H4, respec-

tively; cardinality of the sets P2, R2, R3, H 4; global time spent, T3, to execute

H1, H2, and H3; time spent, T4, by H4 (including T3); time spent, TIP , by CPLEX

to solve F1 or F2; total computing time, TTOT . In column P2, “m.o.” means that

the exact method terminated prematurely at Step 2 because P2 is not optimal (i.e.,

|P2| > ∆(P) = 107). In this case, T3 indicates the time spent by H1 and H2 plus

the computing time for generating P2.

Table 5.2 and 5.3 show that the proposed method could solve 42 out of 52 test instances.

All but one of the instances were solved within one hour of computing time. Thirty-five

of the 42 instances solved to optimality have the optimal solution cost equal to the cost

of the corresponding CVRP instance. The other seven instances have optimal solution

cost slightly greater than the cost of the corresponding CVRP instance.

The lower bounds proposed seem to be effective. The lower bounds achieved by H1

and H2 are, on average, 98.6% and 98.9% with respect to the best known solution

cost, respectively. Bounding procedure H3 closed the gap of 26 instances. Only three

instances were solved by using formulation F2. In all such cases, lower bound LB4 is

strictly greater than LB3, requiring the generation of few schedules (set H 4) in Step

7 with respect to the routes generated at Step 4 (set R3).

For the sake of fairness, we have to say that the performance of the proposed algorithm

strongly depends on the initial upper bound, zUB, used at Steps 2, 4 and 7. For

example, by increasing such upper bound by 1%, the exact method, as it is, could not

solve any of the instances of the classes CMT-2, CMT-3 and CMT-11, and it could

solve only 12 out of 17 instances of the classes CMT-1 and CMT-12. Anyway, as shown

in Table 5.1, high-quality upper bounds can be computed in a few minutes by running

the heuristic algorithms of Taillard et al. [1996], Olivera and Viera [2007], and Mester

and Bräysy [2005].

5.10 Conclusions

In this chapter, we describe an exact method to solve the MTVRP based on two set

partitioning-like formulations. We describe four different bounding procedures, based

on the linear relaxations of both formulations, enforced by valid inequalities, that are

embedded into an exact solution method. The computational results show that the

proposed exact algorithm can solve, to optimality, 42 out of 52 benchmark instances,

involving up to 120 customers, used in the literature by the heuristic algorithms.



Chapter 6

Two-Echelon Capacitated

Vehicle Routing Problem

1

In the two-echelon capacitated vehicle routing problem (2E-CVRP), the delivery to

customers from a depot uses intermediate depots, called satellites. The 2E-CVRP

involves two levels of routing problems. The first level requires a design of the routes

for a vehicle fleet located at the depot to transport the customer demands to a subset

of the satellites. The second level concerns the routing of a vehicle fleet located at

the satellites to supply all customers from the satellites supplied from the depot. The

objective is to minimize the sum of routing and handling costs. This chapter describes

a new mathematical formulation of the 2E-CVRP used to derive valid lower bounds and

an exact method. Computational results on benchmark instances show that the new

exact algorithm outperforms the state-of-the-art exact methods from the literature.

6.1 Introduction

The two-echelon capacitated vehicle routing problem (2E-CVRP) is a two-level distri-

bution system where the deliveries to customers from a depot are managed through

intermediate capacitated depots, called satellites. The first level consists of vehicle

routes that start and end at the depot and deliver the customer demands to a subset

of satellites. In the 2E-CVRP we consider, a satellite has a limited capacity and can be

serviced by more than one 1st-level route. The second level consists of vehicle routes

that start and end at the same satellite and supply all customers. A homogeneous

vehicle fleet is used at each level. The 1st-level vehicles are located at the depot and

supply the satellites only. The 2nd-level vehicles have a capacity smaller than that

1This chapter is based on Baldacci et al. [2012b]

121



122 Chapter 6 Two-Echelon Capacitated Vehicle Routing Problem

of the 1st-level vehicles and supply the customers from the satellites. The operations

of unloading 1st-level vehicles and loading 2nd-level vehicles at the satellites imply a

handling cost, which we assume to be proportional to the quantity loaded/unloaded.

The 2E-CVRP aims to find two sets of 1st and 2nd-level routes such that each customer

is visited exactly once by a 2nd-level route and the total routing and handling cost is

minimized.

6.2 Literature Review

The 2E-CVRP has become a relevant distribution system for supplying customers

located in large cities. Because many municipalities impose legal restrictions to keep

large vehicles out of city centers, distribution companies create suburban platforms

(satellites) where they transport goods with large vehicles. Then, small vehicles service

downtown customers from the satellites.

Nonetheless, only recently the 2E-CVRP has received some attention in the literature.

Gonzales Feliu et al. [2007b] described a commodity flow formulation and an exact

branch-and-cut algorithm that solved instances with up to 32 customers and 2 satellites.

This algorithm was improved by Perboli et al. [2010] and Perboli et al. [2011] by adding

valid inequalities. Perboli et al. [2011] reported optimal solutions for instances with

up to 32 customers and 2 satellites, but their model has been shown by Jepsen et al.

[2011] not to be correct on instances with 3 or more satellites. Jepsen et al. [2011]

extended the problem considered by Gonzales Feliu et al. [2007b] and Perboli et al.

[2011] by introducing fixed costs for the routes of both levels and satellite capacities;

they described an exact branch-and-cut algorithm, based on the new formulation and

new valid inequalities, that outperforms the method of Perboli et al. [2011]. Heuristic

methods have been proposed by Crainic et al. [2008], Perboli et al. [2011], Crainic et al.

[2011] and Hemmelmayr et al. [2011]. Variants of the 2E-CVRP were considered by

Chao [2002], Tan et al. [2006] and Nguyen et al. [2010].

The 2E-CVRP considered in this paper corresponds to the 2E-CVRP considered by

Jepsen et al. [2011] and generalizes the capacitated location routing problem (LRP).

The LRP consists of opening one or more depots, on a given set of a-priori defined

depot locations, and designing, for each open depot, a number of routes to supply

customers. A fixed cost and a capacity are associated with each depot. The objective

is to minimize the sum of the fixed costs for opening the depots and the routing cost.

Exact algorithms for the LRP were presented by Laporte et al. [1986], Akca et al.

[2009], Belenguer et al. [2011], and Baldacci et al. [2011c].

In this chapter, we introduce a new mathematical formulation of the 2E-CVRP that

is used to derive both integer and continuous relaxations. We present a new bounding

procedure based on dynamic programming (DP), a dual-ascent method, and an exact
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algorithm that decomposes the 2E-CVRP into a limited set of multi-depot capacitated

vehicle routing problems (MDCVRP) with side constraints. Extensive computational

results on instances from the literature and on new instances show that the proposed

method outperforms previous exact algorithms, both for the quality of the lower bounds

achieved and the number and the size of the instances solved.

6.3 Problem Description and Mathematical Formulation

An undirected graph G = (N,E) is given, where the vertex set N is partitioned

as N = {0} ∪ NS ∪ NC . Vertex 0 represents the depot, the set NS = {1, 2, . . . , ns}
represents ns satellites, and the set NC = {ns+1, . . . , ns+nc} represents nc customers.

The edge set E is defined as E = {{0, j} : j ∈ NS} ∪ {{i, j} : i, j ∈ NS ∪NC , i < j}.
A travel cost dij is associated with each edge {i, j} ∈ E. We assume that matrix dij

satisfies the triangle inequality. Each customer i ∈ NC requires qi units of goods from

depot 0. We denote with qtot =
∑

i∈NC qi the sum of the customer demands.

A fleet of m1 identical vehicles of capacity Q1 are located at depot 0 and are used

to transport goods to satellites. If used, a 1st-level vehicle incurs a fixed cost U1 and

performs a route passing through the depot 0 and a subset of satellites. The cost of a

1st-level route is the sum of the costs of the traversed edges plus the fixed cost U1. Each

satellite k ∈ NS can be visited by more than one 1st-level route and has a capacity

Bk that limits the total customer demand that can be delivered to it by the 1st-level

routes. Moreover, a fleet of mk identical vehicles of capacity Q2 < Q1 are available at

satellite k ∈ NS for servicing the customers. Nevertheless, at most m2 ≤
∑

k∈NS mk

2nd-level vehicles can be globally used. If used, a 2nd-level vehicle incurs a fixed cost

U2 and performs a route, that is a simple cycle in G passing through a satellite and

a subset of customers and such that the total demand of the visited customers does

not exceed the vehicle capacity Q2. The cost of a 2nd-level route is the sum of the

traversed edges plus the fixed cost U2. The handling cost at satellite k ∈ NS is given

by Hk times the quantity delivered to satellite k.

The problem asks to design the vehicle routes of both levels so that each customer is

visited exactly once, the quantity delivered to customers from each satellite is equal to

the quantity received from the depot, and the sum of the routing and handling costs

is minimized.

The 2E-CVRP contains as a special case the LRP. The LRP is defined on an undirected

graph G′ = (N ′, E′), where N ′ is partitioned as N ′ = L∪V , where L represents possible

depot locations and V a set of customers. A travel cost dij is associated with each

edge {i, j} ∈ E′. A fixed cost Ck and a capacity Bk are associated with each depot

location k ∈ L. Each customer i ∈ V has associated a nonnegative demand qi. An

unlimited fleet of identical vehicles of capacity Q are available at the depots to supply
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the customers. If used, a vehicle incurs a fixed cost U and performs a route passing

through one of the depot locations and such that the total demand of the visited

customers is at most Q. The cost of a route is the sum of the costs of the traversed

edges plus the fixed cost U . The LRP consists of opening a set of depots and designing

a set of routes for each open depot so that the total load of the routes operated from

a depot k ∈ L does not exceed its capacity Bk and each customer is visited by exactly

one route. The objective is to minimize the sum of the cost of open depots and the

costs of the routes.

Any LRP instance can be converted into an equivalent 2E-CVRP instance as follows.

(a) Define graph G = (N,E) by setting NS = L, NC = V , and define the edge costs

d0k = 1
2Ck, k ∈ NS , and dkj =∞, k, j ∈ NS , k < j.

(b) Define the 1st-level vehicle fleet by setting m1 = |NS |, Q1 =∞, and U1 = 0;

(c) Define the 2nd-level vehicle fleet by setting m2 = |NC |, U2 = U , Q2 = Q, and

mk = |NC |, k ∈ NS .

Any optimal solution of the resulting 2E-CVRP instance is also an optimal solution of

the original LRP instance. Because dkj = ∞, for any k, j ∈ NS , k < j, each 1st-level

vehicle route can only be a single-satellite route (0, k, 0) of cost Ck, k ∈ NS . Because

Q1 =∞, any optimal solution contains at most a single-satellite route for each k ∈ NS

representing the opening of depot k.

As for the 2E-CVRP, we assume that the travel cost matrix [dij ] is modified as follows

in order to consider vehicle fixed costs U1 and U2: (i) d0k = d0k + 1
2 U1, k ∈ NS , and

(ii) dki = dki + 1
2 U2, k ∈ NS , i ∈ NC .

Let M be the index set of all 1st-level routes, and let Mk ⊆ M be the subset of

1st-level routes serving satellite k ∈ NS . Let Rr and E(Rr) be the subset of satellites

visited and the subset of edges traversed by 1st-level route r ∈ M , respectively. The

cost gr of route r ∈ M is gr =
∑
{i,j}∈E(Rr)

dij . We assume that the route set M

contains dmin{mkQ2, qtot}/Q1e copies of the single-satellite route (0, k, 0), for each

satellite k ∈ NS . Let wmin and wmaxr be the minimum and maximum loads of 1st-

level route r ∈ M , computed as wmin = max{qtot − (m1 − 1)Q1, 0} and wmaxr =

min{Q1, qtot,
∑

k∈Rr mkQ2}. Moreover, we denote by Wr = {w ∈ Z+ : wmin ≤
w ≤ wmaxr } the set of possible loads of 1st-level route r ∈ M . Because in real-world

applications the number of satellites is small (say, ns ≤ 10), in the following we assume

that the set M is generated by pure enumeration.

Let Rk be the index set of the 2nd-level routes passing through satellite k ∈ NS , and

let Rik ⊆ Rk be the subset of routes passing through satellite k ∈ NS and customer

i ∈ NC . We indicate with R = ∪k∈NSRk the set of all 2nd-level routes and with π` the

satellite visited by route ` ∈ R. Moreover, we indicate with Rk` and E(Rk`) the subset
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of customers visited and the subset of edges traversed by route ` ∈ Rk, respectively.

A load wk` =
∑

i∈Rk` qi and a cost ck` =
∑
{i,j}∈E(Rk`)

dij +Hkwk` are associated with

route ` ∈ Rk.

Let yr be a binary variable equal to 1 if and only if route r ∈M is in solution, xk` a

binary variable equal to 1 if and only if route ` ∈ Rk of satellite k ∈ NS is in solution,

and qkr a nonnegative integer variable representing the quantity delivered by 1st-level

route r ∈ M to satellite k ∈ Rr (we assume qkr = 0, for each satellite k ∈ NS \ Rr).
The 2E-CVRP can be formulated as follows

(F ) z(F ) = min
∑
k∈NS

∑
`∈Rk

ck`xk` +
∑
r∈M

gryr (6.1)

s.t .
∑
k∈NS

∑
`∈Rik

xk` = 1, i ∈ NC , (6.2)

∑
`∈Rk

xk` ≤ mk, k ∈ NS , (6.3)

∑
k∈NS

∑
`∈Rk

xk` ≤ m2, (6.4)

∑
`∈Rk

wk`xk` ≤ Bk, k ∈ NS , (6.5)

∑
r∈M

yr ≤ m1, (6.6)∑
r∈Mk

qkr =
∑
`∈Rk

wk`xk`, k ∈ NS , (6.7)

∑
k∈Rr

qkr ≤ Q1yr, r ∈M , (6.8)

xk` ∈ {0, 1}, k ∈ NS , ` ∈ Rk, (6.9)

yr ∈ {0, 1}, r ∈M , (6.10)

qkr ∈ Z+, k ∈ Rr, r ∈M . (6.11)

The objective function (6.1) states to minimize the total cost. Constraints (6.2) specify

that each customer i ∈ NC must be visited by exactly one 2nd-level route. Constraints

(6.3), (6.4), and (6.6) impose the upper bounds on the number of 1st and 2nd-level

routes in solution. Constraints (6.5) impose the satellite capacities. The balance be-

tween the quantity delivered by 1st-level routes to a satellite and the customer demands

supplied from the satellite is imposed by constraints (6.7). Finally, constraints (6.8)

impose that the vehicle capacity of the 1st-level vehicles is not exceeded.

6.4 Relaxations of Formulation F

Let LF be the LP-relaxation of formulation F , and let z(LF ) be its optimal solution

cost. Notice that, in any optimal LF solution, yr is equal to (
∑

k∈Rr qkr)/Q1, for each
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1st-level route r ∈M . Thus, the higher the 1st-level routing cost, the worse the lower

bound z(LF ). In the following, we describe an integer relaxation of the 2E-CVRP,

called RF , that can provide a lower bound better than z(LF ).

6.4.1 Relaxation RF

This relaxation derives from problem F by relaxing, in a Lagrangean fashion, con-

straints (6.2), (6.3), and (6.4) with penalties λi ∈ R, i ∈ NC , µk ∈ R−, k ∈ NS ,

and µ0 ∈ R−, respectively, and by defining the marginal routing costs βik for servicing

customer i ∈ NC from depot k ∈ NS as a feasible solution of the following inequalities∑
i∈NC

aik`βik ≤ ck` −
∑
i∈NC

aik`λi − µk − µ0, ` ∈ Rk, k ∈ NS , (6.12)

where aik` is the number of times customer i ∈ NC is visited by route ` ∈ Rk of satellite

k ∈ NS .

Problem RF involves binary variables ξik equal to 1 if customer i ∈ NC is supplied

from satellite k ∈ NS (0 otherwise) and variables yr and qkr, as defined for problem F .

Relaxation RF is

(RF ) z(RF (β,λ,µ)) = min
∑
k∈NS

∑
i∈NC

βikξik +
∑
r∈M

gryr+∑
i∈NC

λi +
∑
k∈NS

mkµk +m2µ0 (6.13)

s.t .
∑
k∈NS

ξik = 1, i ∈ NC , (6.14)

∑
r∈Mk

qkr =
∑
i∈NC

qiξik, k ∈ NS , (6.15)

∑
i∈NC

qiξik ≤ Bk, k ∈ NS , (6.16)

(6.6), (6.8), (6.10) and (6.11), (6.17)

ξik ∈ {0, 1}, i ∈ NC , k ∈ NS . (6.18)

Theorem 6.1. Value z(RF (β,λ,µ)) is a valid lower bound on the 2E-CVRP for any

solution β of inequalities (6.12) and any pair of vectors λ ∈ RNC and µ ∈ RNS+1
− .

Proof. Consider an F solution (x̄, ȳ, q̄) of cost z̄(F ). Let Jk = {` ∈ Rk : x̄k` = 1},
k ∈ NS , be the set of 2nd-level routes and L = {r ∈ M : ȳr = 1} the set of 1st-level

routes in solution. We denote by V̄k = {i ∈ Rk` : ` ∈ Jk} the subset of customers

serviced from satellite k ∈ NS and by N̄S = {k ∈ Rr : r ∈ L} the subset of satellites

used in solution.
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Let z(RF (β,λ,µ)) be the cost of an optimal RF solution for a given set of values βik,

satisfying inequalities (6.12), and penalty vectors λ and µ. Define the reduced cost c̃k`

of route ` ∈ Rk, k ∈ NS , with respect to β, λ, and µ as c̃k` = ck` −
∑

i∈NC aik`(βik +

λi)−µk−µ0. Note that c̃k` ≥ 0, ` ∈ Rk, k ∈ NS , from the definition of values βik (see

inequalities (6.12)). From the definition of c̃k`, we derive∑
k∈N̄S

∑
`∈Jk

c̃k` =
∑
k∈N̄S

∑
`∈Jk

ck`−
∑
k∈N̄S

∑
`∈Jk

∑
i∈NC

aik`(βik+λi)−
∑
k∈N̄S

∑
`∈Jk

(µk+µ0). (6.19)

Because any F solution imposes that each customer is visited exactly once, we have∑
`∈Jk

∑
i∈NC

aik`(βik + λi) =
∑
i∈V̄k

(βik + λi), k ∈ N̄S . (6.20)

Because |Jk| ≤ mk, µk ≤ 0, k ∈ N̄S ,
∑

k∈L |Jk| ≤ m2, and µ0 ≤ 0, we have∑
k∈N̄S

∑
`∈Jk

(µk + µ0) =
∑
k∈N̄S

|Jk|µk +
∑
k∈N̄S

|Jk|µ0 ≥
∑
k∈N̄S

mkµk +m2µ0. (6.21)

By adding and subtracting the term
∑

k∈L gr to the right-hand side of expression (6.19)

and by using expressions (6.20) and (6.21), we obtain the following inequality∑
k∈N̄S

∑
`∈Jk

c̃k` ≤
∑
k∈L

gr +
∑
k∈N̄S

∑
`∈Jk

ck`−
∑
k∈L

gr−
∑
k∈N̄S

∑
i∈V̄k

(βik +λi)−
∑
k∈N̄S

mkµk−m2µ0.

(6.22)

Note that
∑

k∈L gr +
∑

k∈N̄S
∑

`∈Jk ck` = z̄(F ), so from expression (6.22) we derive

∑
k∈N̄S

∑
`∈Jk

c̃k` ≤ z̄(F )−
(∑
k∈L

gr +
∑
k∈N̄S

∑
i∈V̄k

(βik + λi) +
∑
k∈N̄S

mkµk +m2µ0

)
. (6.23)

The second term of expression (6.23) is the cost, say z̃(RF (β,λ,µ)), of a feasible

but nonnecessarily optimal RF solution (ξ̃, ỹ, q̃) that is derived from the F solution

(x̄, ȳ, q̄) by setting

1. ỹ = ȳ;

2. ξ̃ik = 1, i ∈ V̄k, k ∈ N̄S ;

3. ξ̃ik = 0, i ∈ NC \ V̄k, k ∈ N̄S , and ξ̃ik = 0, i ∈ NC , k ∈ NS \ N̄S ;

4. q̃ = q̄.

Because z̃(RF (β,λ,µ)) is greater than or equal to the optimal solution cost z(RF (β,λ,µ))

of problem RF , from inequality (6.23) we derive∑
k∈N̄S

∑
`∈Jk

c̃k` ≤ z̄(F )− z(RF (β,λ,µ)). (6.24)



128 Chapter 6 Two-Echelon Capacitated Vehicle Routing Problem

Because c̃k` ≥ 0, ` ∈ Rk, k ∈ NS , from inequality (6.24) we have

z(RF (β,λ,µ)) ≤ z̄(F ).�

From Theorem 6.1, the following corollary follows.

Corollary 1. Let zUB be a valid upper bound on the 2E-CVRP. For a given pair of

vectors λ, µ and any solution β of inequalities (6.12), let c̃k` = ck`−
∑

i∈NC aik`(βik +

λi) − µk − µ0 be the reduced cost of 2nd-level route ` ∈ Rk, k ∈ NS . Any optimal

2E-CVRP solution of cost smaller than zUB cannot contain any 2nd-level route ` ∈ Rk,

k ∈ NS , of reduced cost c̃k` ≥ zUB − z(RF (β,λ,µ)).

Proof. The corollary directly follows from inequality (6.24) because c̃k` ≥ 0, ` ∈ Rk,

k ∈ NS . �

Theorem 6.2. The relation maxβ,λ,µ{z(RF (β,λ,µ))} ≥ z(LF ) holds, and this in-

equality can be strict.

Proof. We show that, from any optimal LF dual solution of cost z(LF ), two penalty

vectors λ and µ and a solution β of inequalities (6.12) such that z(RF (β,λ,µ)) ≥
z(LF ) can be derived.

Let u ∈ R|NC |, v ∈ R|NS |− , v0 ∈ R−, σ ∈ R|NS |− , α0 ≤ 0, α ∈ R|NS |, ω ∈ R|M |− , and

ϑ ∈ R|M |− be the dual variables associated with constraints (6.2)-(6.8) and with the

continuous relaxation of constraints (6.10) (i.e., 0 ≤ yr ≤ 1, r ∈ M ). The dual of

problem LF is as follows.

z(LF ) = max
∑
i∈NC

ui +
∑
k∈NS

mkvk +m2v0 +
∑
k∈NS

Bkσk

+m1α0 +
∑
r∈M

ϑr (6.25)

s.t .
∑
i∈Rk`

ui + vk + v0 + wk`σk − wk`αk ≤ ck`, ` ∈ Rk, k ∈ NS , (6.26)

α0 −Q1ωr + ϑr ≤ gr, r ∈M , (6.27)

αk + ωr ≤ 0, k ∈ NS , r ∈M (6.28)

ui ∈ R, i ∈ NC , (6.29)

vk ≤ 0, αk ∈ R, σk ≤ 0, k ∈ NS , (6.30)

v0 ≤ 0, α0 ≤ 0, (6.31)

ωr ≤ 0, ϑr ≤ 0, r ∈M . (6.32)

Let u∗ = (u∗1, . . . , u
∗
nc), v

∗ = (v∗0, v
∗
1, . . . , v

∗
ns), σ

∗ = (σ∗1, . . . , σ
∗
ns), α

∗ = (α∗0, α
∗
1, . . . , α

∗
ns),

ω∗ = (ω∗1, . . . , ω
∗
|M |), and ϑ∗ = (ϑ∗1, . . . , ϑ

∗
|M |) be an optimal dual solution of LF .

Define the vectors λ, µ and β with respect to u∗, v∗, σ∗ and α∗ by setting λi = 0,

i ∈ NC , µk = v∗k, k ∈ NS , µ0 = v∗0, and βik = u∗i + qi(σ
∗
k − α∗k), i ∈ NC , k ∈ NS .
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First, we show that vectors λ, µ and β as defined above provide a feasible solution of

inequalities (6.12). Because
∑

i∈NC aik`qi = wk`, we have∑
i∈NC

aik`βik =
∑
i∈NC

aik`u
∗
i + wk`σ

∗
k − wk`α∗k, ` ∈ Rk, k ∈ NS . (6.33)

Because of inequalities (6.26), from (6.33) we derive∑
i∈NC

aik`βik ≤ ck` − v∗k − v∗0, ` ∈ Rk, k ∈ NS . (6.34)

Inequalities (6.34) correspond to inequalities (6.12) because µk = v∗k, k ∈ NS , µ0 = v∗0,

and λi = 0, i ∈ NC .

Let (ξ∗,y∗, q∗) be an optimal RF solution using λ, µ and β as defined above. We

have

z(RF (β,λ,µ)) =
∑
k∈NS

∑
i∈NC

(u∗i + qi(σ
∗
k − α∗k))ξ∗ik +

∑
r∈M

gry
∗
r +

∑
k∈NS

mkv
∗
k +m2v∗0

=
∑
i∈NC

u∗i
∑
k∈NS

ξ∗ik +
∑
k∈NS

σ∗k
∑
i∈NC

qiξ
∗
ik −

∑
k∈NS

α∗k
∑
i∈NC

qiξ
∗
ik

+
∑
r∈M

gry
∗
r +

∑
k∈NS

mkv
∗
k +m2v∗0.

(6.35)

From constraints (6.14), we have∑
i∈NC

u∗i
∑
k∈NS

ξ∗ik =
∑
i∈NC

u∗i . (6.36)

From constraints (6.27), we derive∑
r∈M

gry
∗
r ≥ −

∑
r∈M

Q1ω
∗
ry
∗
r + α∗0

∑
r∈M

y∗r +
∑
r∈M

ϑ∗ry
∗
r . (6.37)

Because α∗0 ≤ 0, from inequality (6.6) we obtain

α∗0
∑
r∈M

y∗r ≥ m1α∗0 (6.38)

and, because ϑ∗r ≤ 0, we have ∑
r∈M

ϑ∗ry
∗
r ≥

∑
r∈M

ϑ∗r . (6.39)
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Thus, from expressions (6.35), (6.36), (6.37), (6.38) and (6.39), we derive

z(RF (β,λ,µ)) ≥
∑
i∈NC

u∗i +
∑
k∈NS

σ∗k
∑
i∈NC

qiξ
∗
ik −

∑
k∈NS

α∗k
∑
i∈NC

qiξ
∗
ik −

∑
r∈M

Q1ω
∗
ry
∗
r

+m1α∗0 +
∑
r∈M

ϑ∗r +
∑
k∈NS

mkv
∗
k +m2v∗0.

(6.40)

From inequalities (6.8) and because ω∗r ≤ 0, we obtain

−
∑
r∈M

Q1ω
∗
ry
∗
r ≥ −

∑
r∈M

ω∗r
∑
k∈Rr

q∗kr. (6.41)

Because
∑

i∈NC qiξ
∗
ik =

∑
r∈M q∗kr, k ∈ NS , from (6.41) we have∑

k∈NS

σ∗k
∑
i∈NC

qiξ
∗
ik −

∑
k∈NS

α∗k
∑
i∈NC

qiξ
∗
ik −

∑
r∈M

Q1ω
∗
ry
∗
r ≥∑

k∈NS

(σ∗k − α∗k)
∑
r∈M

q∗kr −
∑
r∈M

ω∗r
∑
k∈Rr

q∗kr.
(6.42)

Notice that
∑

k∈NS α
∗
k

∑
r∈M q∗kr =

∑
r∈M

∑
k∈Rr α

∗
kq
∗
kr. Because σ∗k ≤ 0 and

∑
r∈M q∗kr ≤

Bk (see constraints (6.5)), we have σ∗k
∑

r∈M q∗kr ≥ Bkσ
∗
k, k ∈ NS . Thus, from (6.42),

we derive ∑
k∈NS

(σ∗k − α∗k)
∑
r∈M

q∗kr −
∑
r∈M

ω∗r
∑
k∈Rr

q∗kr ≥∑
k∈NS

Bkσ
∗
k −

∑
r∈M

∑
k∈Rr

α∗kq
∗
kr −

∑
r∈M

ω∗r
∑
k∈Rr

q∗kr.
(6.43)

Because of constraints (6.28), we have

−
∑
r∈M

∑
k∈Rr

α∗kq
∗
kr −

∑
r∈M

ω∗r
∑
k∈Rr

q∗kr = −
∑
r∈M

∑
k∈Rr

(α∗k + ω∗r )q
∗
kr ≥ 0. (6.44)

From inequalities (6.40), (6.43) and (6.44) we obtain

z(RF (β,λ,µ)) ≥
∑
i∈NC

u∗i +
∑
k∈NS

mkv
∗
k +m2v∗0 +

∑
k∈NS

Bkσ
∗
k +m1α∗0 +

∑
r∈M

ϑ∗r = z(LF ).

Finally, notice that z(RF (β,λ,µ)) > z(LF ) whenever the optimal dual solution

(u∗,v∗,σ∗,α∗,ω∗,ϑ∗) does not saturate constraint (6.27) for some route r ∈ M

that is in the optimal RF solution (i.e., y∗r = 1) or/and constraint (6.28) for some

satellite k ∈ NS and route r ∈M such that q∗kr > 0. In these cases, inequality (6.37)

or/and inequality (6.43) are strict and, consequently, z(RF (β,λ,µ)) > z(LF ). �
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6.4.2 Relaxation RF

Solving RF to optimality can be time-consuming, so we describe a further relaxation

of RF , called RF , that can be efficiently solved.

Let φrw be a lower bound on the cost for delivering a demand w ∈ Wr to customers

from the subsets of satellites Rr visited by 1st-level route r ∈ M . For a given vector

β satisfying inequalities (6.12), the value φrw is defined as the optimal solution cost of

the following continuous knapsack problem, called KP (r, w)

(KP (r, w)) φrw = min
∑
i∈NC

min
k∈Rr
{βik}zi

s.t .
∑
i∈NC

qizi = w,

0 ≤ zi ≤ 1, i ∈ NC .

For each pair (r, w), we denote by z∗i (r, w), i ∈ NC , the optimal solution of problem

KP (r, w), and we define V (r, w) = {i ∈ NC : z∗i (r, w) > 0}. Let ζrw, r ∈M , w ∈Wr,

be a binary variable equal to 1 if and only if 1st-level route r delivering w units of

goods is in solution. Problem RF is defined as

(RF ) z(RF (β,λ,µ)) = min
∑
r∈M

∑
w∈Wr

(gr + φrw)ζrw+

∑
i∈NC

λi +
∑
k∈NS

mkµk +m2µ0 (6.45)

s.t .
∑
r∈M

∑
w∈Wr

wζrw = qtot, (6.46)

∑
w∈Wr

ζrw ≤ 1, r ∈M , (6.47)

ζrw ∈ {0, 1}, r ∈M , w ∈Wr. (6.48)

Problem RF is an integer problem that can be conveniently solved by DP. The following

theorem shows that RF is a relaxation of problem RF .

Theorem 6.3. The relation z(RF (β,λ,µ)) ≤ z(RF (β,λ,µ)) holds for any solution

β of inequalities (6.12) and for any penalty vectors λ and µ.

Proof. Let (ξ̄, ȳ, q̄) be an RF solution of cost z̄(RF (β,λ,µ)). This solution provides a

feasible RF solution ζ̄ of cost z̄(RF (β,λ,µ)) as follows. Let M̄ = {r ∈M : ȳr = 1},
and let V̄k = {i ∈ NC : ξ̄ik = 1}, k ∈ NS . Define ζ̄rw = 0, r ∈M \ M̄ and w ∈ Wr.

For any r ∈ M , define w̄r =
∑

k∈Rr q̄rk. Set ζ̄rw̄r = 1, r ∈ M̄ , and ζ̄rw = 0, r ∈ M̄ ,

w 6= w̄r.

It is quite obvious to observe that ζ̄ satisfies constraints (6.47). To show that ζ̄ also

satisfies constraints (6.46), we observe that, by adding up constraints 6.15 of problem
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RF , we obtain ∑
k∈NS

∑
r∈Mk

q̄rk =
∑
i∈NC

qi
∑
k∈NS

ξ̄ik. (6.49)

Because q̄rk = 0, r ∈M \ M̄ , k ∈ NS , and r ∈ M̄ , k ∈ NS \Rr, we have∑
k∈NS

∑
r∈Mk

q̄rk =
∑
r∈M̄

∑
k∈Rr

q̄rk. (6.50)

Because of equations (6.14), from (6.49) and (6.50) we derive∑
r∈M̄

∑
k∈Rr

q̄rk =
∑
i∈NC

qi. (6.51)

From the definition of w̄r, r ∈M , and of ζ̄rw, r ∈M , w ∈Wr, we have∑
r∈M̄

∑
k∈Rr

q̄rk =
∑
r∈M̄

∑
w∈Wr

wζ̄rw,

which shows, together with equality (6.51), that ζ̄ also satisfies constraint (6.46).

For each r ∈ M̄ , define θikr, i ∈ NC , k ∈ NS , by setting

θikr =

{
0, if ξ̄ik = 0

q̄rk∑
r∈M̄k

q̄rk
, if ξ̄ik = 1

(6.52)

where M̄k = Mk ∩ M̄ .

In the following, we show that the values θikr, defined above, provide a feasible solution

to problemsKP (r, w̄r), r ∈ M̄ . For each r ∈ M̄ , define z̄i(r, w̄r) =
∑

k∈Rr θikr, i ∈ NC .

Since customer i is assigned exactly to a satellite in any feasible RF solution, from

the definition of θikr, given by expression (6.52), we have 0 ≤ z̄i(r, w̄r) ≤ 1, i ∈ NC .

Moreover, we have ∑
i∈NC

qiz̄i(r, w̄r) =
∑
i∈NC

qi
∑
k∈Rr

θikr, r ∈ M̄ . (6.53)

Because θikr = 0, i ∈ NC , k ∈ NS \Rr, we have∑
i∈NC

qi
∑
k∈Rr

θikr =
∑
k∈Rr

(∑
i∈V̄k

qi

)
θikr =

∑
k∈Rr

(∑
i∈V̄k

qi

) q̄rk∑
r∈M̄k

q̄rk
, r ∈ M̄ . (6.54)

Since
∑

r∈M̄k
q̄rk =

∑
i∈V̄k qi, from (6.53), (6.54) and the definition of w̄r, we obtain∑
i∈NC

qiz̄i(r, w̄r) =
∑
k∈Rr

q̄rk = w̄r, r ∈ M̄ .
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The cost φ̄rw̄r of solution of problem KP (r, w̄r) is

φ̄rw̄r =
∑
i∈NC

min
k∈Rr
{βik}z̄i(r, w̄r), r ∈ M̄ .

Thus, the cost z̄(RF (β,λ,µ)) of the RF solution ζ̄ obtained from the RF solution

(ξ̄, ȳ, q̄) is

z̄(RF (β,λ,µ)) =
∑
r∈M̄

φ̄rw̄r +
∑
r∈M̄

gr +
∑
i∈NC

λi +
∑
k∈NS

mkµk +m2µ0.

The cost z̄(RF (β,λ,µ)) of the RF solution (ξ̄, ȳ, q̄) is

z̄(RF (β,λ,µ)) =
∑
i∈NC

∑
k∈NS

βikξ̄ik +
∑
r∈M̄

gr +
∑
i∈NC

λi +
∑
k∈NS

mkµk +m2µ0. (6.55)

From the definition of θikr (see expression (6.52)), we have

ξ̄ik =
∑
r∈M̄k

θikr. (6.56)

From (6.55) and (6.56) we obtain

z̄(RF (β,λ,µ)) =
∑
r∈M̄

( ∑
i∈NC

∑
k∈Rr

βikθikr + gr

)
+
∑
i∈NC

λi+
∑
k∈NS

mkµk +m2µ0. (6.57)

It is quite clear that the following inequalities hold∑
i∈NC

∑
k∈Rr

βikθikr ≥
∑
i∈NC

min
k∈Rr
{βik}

∑
k∈Rr

θikr, r ∈ M̄ . (6.58)

Thus, using the definition of z̄i(r, w̄r), inequalities (6.58) become∑
i∈NC

∑
k∈Rr

βikθikr ≥
∑
i∈NC

min
k∈Rr
{βik}z̄i(r, w̄r) = φ̄rw̄r , r ∈ M̄ . (6.59)

Finally, from expression (6.57) and inequalities (6.59), we obtain

z̄(RF (β,λ,µ)) ≥
∑
r∈M̄

(φ̄rw̄r + gr) +
∑
i∈NC

λi +
∑
k∈NS

mkµk +m2µ0 = z̄(RF (β,λ,µ)).�

Because of Theorem 6.3 and Corollary 1, any optimal 2E-CVRP solution of cost smaller

than a known upper bound zUB cannot contain any 2nd-level route ` ∈ Rk, k ∈ NS , of

reduced cost c̃k` ≥ zUB − z(RF (β,λ,µ)), where c̃k` is defined as above.
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A valid lower bound LD1 on the 2E-CVRP can be computed as the cost of a near-

optimal solution of problem

LD1 = max
β,λ,µ

{z(RF (β,λ,µ))}. (6.60)

6.5 Lower bound LD1 and bounding procedure DP 1

In this section, we describe a bounding procedure, called DP 1, and a heuristic algo-

rithm based on relaxation RF to compute lower and upper bounds LD1 and UB1,

respectively. Procedure DP 1 finds a near-optimal solution of problem (6.60) and uses

a DP algorithm to solve problem RF .

Bounding procedure DP 1 is based on a relaxation of the 2E-CVRP, where the 2nd-level

route sets Rk, k ∈ NS , are enlarged to also contain nonnecessarily elementary routes.

The method used by DP 1 to find a feasible solution of inequalities (6.12) is based on

the following theorem.

Theorem 6.4. Let us associate penalties λi ∈ R, i ∈ NC , with constraints (6.2),

µk ∈ R−, k ∈ NS, with constraints (6.3), and µ0 ∈ R− with constraint (6.4). Let

R̂k ⊇ Rk be the index set of nonnecessarily elementary routes for satellite k. A feasible

solution βik of inequalities (6.12) is given by

βik = qi min
`∈R̂ik

{
ck` −

∑
i∈NC aik`λi − µk − µ0∑

i∈NC aik`qi

}
, i ∈ NC , k ∈ NS . (6.61)

Proof. Consider route ` ∈ R̂k of a given satellite k ∈ NS . From expressions (6.61), we

derive

βik ≤
qi(ck` −

∑
i∈NC aik`λi − µk − µ0)∑
i∈NC aik`qi

, i ∈ Rk`. (6.62)

By summing up inequalities (6.62) for all i ∈ Rk`, we obtain

∑
i∈Rk`

aik`βik ≤
∑
i∈Rk`

aik`qi(ck` −
∑

i∈NC aik`λi − µk − µ0)∑
i∈NC aik`qi

= ck` −
∑
i∈NC

aik`λi − µk − µ0, ` ∈ R̂k, k ∈ NS .�

In procedure DP 1, the route set R̂k is defined as the set of ng-routes introduced in

§4.3.3 that are shortly described below.

Let Ni ⊆ NC , i ∈ NC , be a set of selected customers for customer i (according to

some criterion), such that Ni 3 i and |Ni| ≤ ∆(Ni), where ∆(Ni) is a parameter.

The sets Ni allow us to associate with each path P = (k, i1, . . . , it) that starts from



Chapter 6 Two-Echelon Capacitated Vehicle Routing Problem 135

satellite k ∈ NS , visits vertices i1, . . . , it ∈ NC , and ends at vertex it, the subset Π(P )

containing it and every customer is, s = 1, . . . , t − 1, of P that belongs to all sets

Ns+1, . . . , Nit associated with the customers is+1, . . . , it visited after is. The set Π(P )

is defined as

Π(P ) =
{
is : is ∈

t⋂
j=s+1

Nij , s = 1, . . . , t− 1
} ⋃

{it}.

A forward ng-path (NG, k, q, i) is a nonnecessarily elementary path P = (k, i1, . . . ,

it−1, it = i) that starts from satellite k ∈ NS , ends at customer i, visits a subset of

customers of total demand equal to q, and such that NG = Π(P ) and i /∈ Π(P ′), where

P ′ = (k, i1, . . . , it−1). An (NG, k, q, i)-route (or simply ng-route) is obtained by adding

edge {i, k} to an ng-path (NG, k, q, i).

Algorithm DP 1 uses column generation to solve equations (6.61) and subgradient

optimization to solve problem (6.60).

6.5.1 Description of Procedure DP 1

To solve equations (6.61), procedure DP 1 uses a limited set R̄k ⊆ R̂k, k ∈ NS , of ng-

routes. Procedure DP 1 initializes each set R̄k with all single-customer routes (k, i, k),

i ∈ NC , and sets λ = 0, µ = 0, LD1 = 0 and UB1 =∞. Procedure DP 1 executes an

a-priori defined number (Maxit1) of macro iterations where, at each macro iteration,

the following steps are performed.

(1) Initialize z∗ = 0, and perform Maxit2 iterations of the following steps.

(i) Compute values βik, i ∈ NC , k ∈ NS , through expression (6.61), where each

set R̂k is replaced with set R̄k, k ∈ NS .

(ii) Solve RF using values βik as described in §6.5.2. If z(RF (β,λ,µ)) > z∗,

then update z∗ = z(RF (β,λ,µ)), β∗ = β, λ∗ = λ and µ∗ = µ.

(iii) Update penalty vector λ and µ as described in §6.5.3.

(2) Generate a set of ng-routes Nk ⊆ R̂k \ R̄k, k ∈ NS , for which inequalities (6.12)

are violated by β∗, λ∗ and µ∗ as described in §6.5.4. There are two cases

(i) If Nk = ∅, for each satellite k ∈ NS . If LD1 < z∗, then update LD1 = z∗,

β1 = β∗, λ1 = λ∗, µ1 = µ∗, and execute the heuristic algorithm described

in §6.5.5 producing upper bound zUB. Update UB1 = min{UB1, zUB}.

(ii) If Nk 6= ∅, for some satellite k ∈ NS , then update R̄k = R̄k ∪Nk.

Notice that β1, λ1 and µ1 are the vectors producing lower bound LD1 in problem

(6.60).
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6.5.2 Solving Problem RF

Problem RF can be solved by DP as follows. Let h(r, w) be the optimal solution cost

of RF obtained by using the 1st-level routes 1, . . . , r, 0 ≤ r ≤ |M |, and replacing qtot

in equation (6.46) with w ∈ Z+, wmin ≤ w ≤ qtot. The DP recursion for computing

functions h(r, w), r = 1, . . . , |M |, wmin ≤ w ≤ qtot, is

h(r, w) = min{h(r−1, w), min
wmin≤w′≤min{w,wmaxr }

{h(r−1, w−w′) +gr +φrw′}}. (6.63)

The recursion is initialized by setting h(r, 0) = 0, r = 0, . . . , |M |, and h(0, w) = ∞,

w = 1, . . . , qtot. The RF optimal solution cost is z(RF (β,λ,µ)) = h(|M |, qtot).

Let z̄ be an upper bound on z(RF (β,λ,µ)). The number of states (r, w) to generate in

order to compute z(RF (β,λ,µ)) can be reduced by using bounding functions lb(r, w),

described below, to eliminate any state (r, w) that cannot lead to any RF solution of

cost smaller than z̄.

We denote by lb(r, w) a lower bound on the optimal solution cost of problem RF

where the set M is replaced with the subset {r, r + 1, . . . , |M |} and qtot with w. Let

αr = minwmin≤w≤wmaxr
{(gr + φrw)/w}, r ∈ M . By assuming that the routes in the

set M are indexed so that α1 ≤ α2 ≤ . . . ≤ α|M |, functions lb(r, w) can be computed

using the following backward recursion.

Initialize (i) lb(r, 0) = 0, r = 1, . . . , |M |, (ii) lb(r, w) = ∞, 0 < w < wmin, r =

1, . . . , |M |, (iii) lb(|M |, w) = wα|M |, w ∈ W|M |, and (iv) lb(|M |, w) = ∞, wmaxr <

w ≤ qtot.

For each 1st-level route r = |M | − 1, |M | − 2, . . . , 1 and each load wmin ≤ w ≤ qtot

compute

lb(r, w) =

{
wαr if w ≤ wmaxr

wmaxr αr + lb(r + 1, w − wmaxr ) if wmaxr + 1 ≤ w ≤ qtot.

Thus, a state (r, w), r < |M |, is fathomed if h(r, w) + lb(r + 1, qtot − w) ≥ z̄.

In performing recursion (6.63), the upper bound z̄ is initialized as z̄ = UB1 and

dynamically updated, at the end of stage r, as z̄ = min{z̄, h(r, qtot)}.

6.5.3 Computing a subgradient

Usual backtracking can be used to derive the RF solution ζ of cost h(|M |, qtot). Given

ζ and the sets V (r, w), as defined in §6.4.2, associated to φrw, we derive the index sets

R̃k ⊆ R̄k, k ∈ NS , of the 2nd-level routes in solution and the index `(i, k) of the route

in R̃k associated with βik as follows.
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(i) Initialize R̃k = ∅, k ∈ NS , and `(i, k) = 0, i ∈ NC , k ∈ NS ;

(ii) Repeat the following steps for each 1st-level route r ∈ M such that ζrw = 1 for

some load w ∈Wr

(a) Compute k̄(i) = argmink∈Rr{βik}, i ∈ V (r, w). Let `(i, k̄(i)), i ∈ V (r, w),

be the index of the route in R̂k associated with βi k̄(i) in expressions (6.61);

(b) For each i ∈ V (r, w), set R̃k̄(i) = R̃k̄(i) ∪ {`(i, k̄(i))}.

A subgradient to function z(RF (β,λ,µ)), at point (λ,µ), can be computed as follows.

Let x̃ be a vector whose components are computed as

x̃k` =
∑

i∈NC : `(i,k)=`

aik`qi∑
i∈NC aik`qi

, ` ∈ R̃k, k ∈ NS ,

and let 
αi =

∑
k∈NS

∑
`∈R̃k

aik`x̃k`, i ∈ NC ,

δk =
∑

`∈R̃k
x̃k`, k ∈ NS ,

δ0 =
∑

k∈NS δk.

Then, penalty vectors λ and µ are modified as
λi = λi − εγ(αi − 1), i ∈ NC ,

µk = min{0, µk − εγ(δk −mk)}, k ∈ NS ,

µ0 = min{0, µ0 − εγ(δ0 −m2)},

where ε is a positive constant and γ is defined as

γ =
0.2z(RF (β,λ,µ))∑

i∈NC (αi − 1)2 +
∑

k∈NS (δk −mk)2 + (δ0 −m2)2
.

6.5.4 Generating the ng-route set Nk for a given satellite k

We describe the procedure to generate, for a given satellite k ∈ NS , the set of ng-routes

Nk ⊆ R̂k that violate inequalities (6.12) for given vectors β∗, λ∗ and µ∗, when the

route set Rk is replaced by the route set R̂k.

Define the modified edge costs d̄ij = dij − 1
2(β∗ik +λ∗i +Hkqi)− 1

2(β∗jk +λ∗j +Hkqj) and

the sets Ni ⊆ NC , i ∈ NC , to contain the ∆(Ni) nearest customers to i according to

dij .

Let f(NG, k, q, i) be the cost of a least-cost ng-path (NG, k, q, i) using the modified

edge cost d̄ij . Functions f(NG, k, q, i) are computed using the DP recursions described

in §4.3.3 on the state-space graph H = (V ,Ψ), defined for a given satellite k ∈ NS ,
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as

V = {(NG, k, q, i) : qi ≤ q ≤ Q2, ∀NG ⊆ Ni s.t. NG 3 i and
∑
j∈NG

qj ≤ q, ∀i ∈ NC},

Ψ = {((NG′, k, q′, j), (NG, k, q, i)) : ∀(NG′, k, q′, j) ∈ Ψ−1(NG, k, q, i), ∀(NG, k, q, i) ∈ E },

where Ψ−1(NG, k, q, i) = {(NG′, k, q − qi, j) : ∀NG′ ⊆ Nj s.t. NG′ 3 j and NG′ ∩
Ni = NG \ {i}, j ∈ NC s.t. {i, j} ∈ E if i < j or {j, i} ∈ E if j < i}.

Let r(i, k) = min
(NG,k,q,i)∈V

{f(NG, k, q, i)− µ∗k − µ∗0 + d̄ik} be the cost of a least-cost ng-

route visiting customer i ∈ NC immediately before arriving at satellite k. The route

set Nk contains the ng-routes corresponding to r(i, k) < 0, for each customer i ∈ NC .

6.5.5 A Lagrangean heuristic

Procedure DP 1 is interwoven with a heuristic algorithm that produces a feasible 2E-

CVRP solution of cost zUB using the 2nd-level route sets R̃k, k ∈ NS , and vector

x̃ associated with an RF solution (see §6.5.3). First, the routes in R̃k, k ∈ NS , are

modified with the objective of obtaining a solution vector x satisfying constraints (6.2)-

(6.5). Then, the solution vector x is used to derive solution vectors y and q such that

(x,y, q) represents a feasible 2E-CVRP solution.

A step-by-step description of the heuristic algorithm is the following.

1) Initialization. Let R̃ = ∪k∈NSR̃k. Initialize SOL = ∅ and δ(i) = 0, i ∈ NC .

2) Extract a subset of routes SOL ⊆ R̃. Let `∗ be the route of R̃ where x̃π`∗`∗ =

max{x̃π`` : ` ∈ R̃}. Remove `∗ from R̃. If δ(i) = 0, for some i ∈ Rπ`∗`∗ , then

update SOL = SOL ∪ {`∗} and δ(i) = δ(i) + 1, i ∈ Rπ`∗`∗ . Repeat Step 1 until

R̃ = ∅.

3) Modify the route set SOL. Remove from SOL any route ` ∈ SOL such that

δ(i) > 1, i ∈ Rπ``, and update δ(i) = δ(i) − 1. For each ` ∈ SOL, compute the

savings that can be achieved by removing from route ` every customer i ∈ Rπ``

having δ(i) > 1. Let `∗ ∈ SOL be the route of maximum saving. Remove from

route `∗ every customer i ∈ Rπ`∗`∗ with δ(i) > 1, and update δ(i) = δ(i)−1. Repeat

Step 3 until δ(i) ≤ 1, for each i ∈ NC .

4) Insert unrouted customers. For each unrouted customer i (i.e., δ(i) = 0) perform the

following operations. Compute the minimum extra-mileage exm(i, `) for inserting i

in route ` ∈ SOL. We set exm(i, `) =∞ if the total load of the resulting route ` ex-

ceeds the vehicle capacity Q2. Let `∗ be such that exm(i, `∗) = min`∈SOL[exm(i, `)].

If exm(i, `∗) =∞, then set zUB =∞ and stop; otherwise, insert customer i in route

`∗ in the position of cost exm(i, `∗), and set δ(i) = 1.
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5) Define the F solution x. Define xπ`` = 1, for each route ` ∈ SOL, and xπ`` = 0,

for each route ` ∈ R \ SOL. If x does not satisfy constraints (6.3)-(6.5), then set

zUB =∞ and the algorithm terminates.

6) Improve the cost of the routes in SOL. The post-optimization procedure for im-

proving the total cost of the routes in SOL applies the following procedure in the

order specified below.

(a) Exchange of one customer between two routes of SOL. For each customer i ∈
NC , compute the savingmove(i, `) achieved by removing i from its current route

`i and inserting i in the least-cost position of route ` ∈ SOL. Set move(i, `i) = 0

and move(i, `) = −∞ if the load of the resulting route ` violates constraint (6.5)

for satellite π` or if customer i cannot be inserted in route ` without violating

the vehicle capacity Q2. Let i∗ and `∗ be determined such that move(i∗, `∗) =

max[move(i, `) : i ∈ NC , ` ∈ SOL]. If move(i∗, `∗) > 0, then remove customer

i∗ from its current route and insert it in the best position of route `∗. This

procedure is repeated until move(i∗, `∗) ≤ 0.

(b) Exchange of two customers between two routes of SOL. For all pairs of routes

`, `′ ∈ SOL and for each pair of customers i ∈ Rπ`` and j ∈ Rπ`′`′ , compute

the saving sav(i, j) obtained by moving customer i from route ` to route `′ and

customer j from route `′ to route `. We set sav(i, j) = −∞ if the exchange

violates constraint (6.5) for one of the two satellites π`, π`′ or if the total load

of one of the two routes exceeds the vehicle capacity Q2. The two customers, i∗

and j∗, producing the maximum saving are then exchanged if sav(i∗, j∗) > 0.

This procedure is repeated until sav(i∗, j∗) ≤ 0. Whenever this procedure

improves the solution, then the post-optimization routing is restarted from the

beginning.

(c) Optimize each route ` ∈ SOL using a 3-optimal method.

7) Constructing a feasible 2E-CVRP solution. Let ωk =
∑

`∈Rk
wk`xk`, k ∈ NS , be

the total demand associated with satellite k by the solution vector x defined above.

We solve the following integer problem to optimality

(F (x)) z(F (x)) = min
∑
r∈M

gryr

s.t .
∑
r∈M

yr ≤ m1,∑
r∈Mk

qkr = ωk, k ∈ NS ,∑
k∈Rr

qkr ≤ Q1yr, r ∈M ,

yr ∈ {0, 1}, r ∈M ,

qkr ≥ 0, k ∈ Rr, r ∈M .
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Problem F (x) is solved to optimality with an integer programming solver. Let

(y, q) be the optimal F (x) solution (we assume z(F (x)) = ∞ if problem F (x)

does not admit a feasible solution). If problem F (x) admits a feasible solution,

then the vectors (x,y, q) represents a feasible 2E-CVRP solution of cost zUB =

z(F (x)) +
∑

k∈NS
∑

`∈Rk
ck`xk`.

6.6 An exact method for solving the 2E-CVRP

The method for solving the 2E-CVRP is based on the following re-formulation of

problem F .

Let P = {M ⊆M : |M |Q1 ≥ qtot, |M | ≤ m1}. We call configuration each element M

of the set P. For each configuration M ∈P, let NS(M) =
⋃
r∈M Rr, Mk = M ∩Mk,

k ∈ NS , and U(M) =
∑

r∈M gr. An optimal 2E-CVRP solution can be computed as

z(F ) = min
M∈P

{U(M) + z(F (M))} ,

where z(F (M)) is the optimal solution cost of the following problem F (M)

(F (M)) z(F (M)) = min
∑

k∈NS(M)

∑
`∈Rk

ck`xk`

s.t .
∑

k∈NS(M)

∑
`∈Rik

xk` = 1, i ∈ NC ,∑
`∈Rk

xk` ≤ mk, k ∈ NS(M),

∑
k∈NS(M)

∑
`∈Rk

xk` ≤ m2,

∑
`∈Rk

wk`xk` ≤ Bk, k ∈ NS(M),

∑
r∈Mk

qkr =
∑
`∈Rk

wk`xk`, k ∈ NS(M),

∑
k∈Rr

qkr ≤ Q1, r ∈M,

xk` ∈ {0, 1}, k ∈ NS(M), ` ∈ Rk,

qkr ≥ 0, k ∈ Rr, r ∈M.

We assume z(F (M)) =∞ if F (M) has no feasible solution for configuration M ∈P.

Problem F (M) is an extension of the multi-depot capacitated vehicle routing problem

(MDCVRP) considered by Baldacci and Mingozzi [2009].

The exact method we propose (i) generates the set M of 1st-level routes and executes

bounding procedure DP 1 to compute lower bound LD1 corresponding to the optimal
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cost of problem RF (β1,λ1,µ1) and upper bound UB1; (ii) then, generates the set P

of configurations and limits its size by using LD1, UB1 and vectors (β1,λ1,µ1); (iii)

finally, for each configuration M ∈P, solves the associated problem F (M).

The last two steps of the exact method are described in detail in the following.

6.6.1 Generating the Set of Configurations P

The generation of the set P of configurations is based on the following propositions.

Let LBR be a lower bound on the 2nd-level routing cost of any optimal 2E-CVRP

solution computed as LBR =
∑

i∈NC mink∈NS{β1
ik} +

∑
i∈NC λ

1
i +

∑
k∈NS mkµ

1
k +

m2µ1
0, and let LBW (M) be a lower bound on z(F (M)) computed as LBW (M) =∑

i∈NC mink∈NS(M){β1
ik}+

∑
i∈NC λ

1
i +

∑
k∈NS(M)mkµ

1
k +m2µ1

0.

Proposition 1. Let zUB be a valid upper bound on the 2E-CVRP. A configuration

M ∈ P can belong to an optimal 2E-CVRP solution if and only if it satisfies the

following conditions

|Rr ∩Rr′ | ≤ 1, r, r′ ∈M, r 6= r′, (a)∑
r∈M min{Q1,

∑
k∈Rr mkQ2} ≥ qtot, (b)∑

r∈M
∑

k∈Rr mk ≥ dqtot/Q2e, (c)

U(M) < zUB − LBR, (d)

U(M) < zUB − LBW (M). (e)


(6.64)

Condition (a) is a property of the feasible solutions of the split delivery vehicle routing

problem (see Dror and Trudeau [1990]). Conditions (b) and (c) are feasibility con-

ditions. Conditions (d) and (e) follow from the properties of any optimal 2E-CVRP

solution of cost less than zUB.

Proposition 2. For a given configuration M ∈ P, let θ(k), k ∈ NS(M), be a lower

bound on the quantity that must be supplied to satellite k in any feasible F (M) solution

by the 1st-level routes Mk ⊆ M passing through satellite k. Problem F (M) has no

feasible solution if either
∑

k∈NS(M)dθ(k)/Q2e > m2 or dθ(k)/Q2e > mk, for some

satellite k ∈ NS . In this case, configuration M can be removed from P.
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Lower bound θ(k) can be computed as the optimal solution cost of the following prob-

lem

θ(k) = min
∑
r∈Mk

qkr (6.65)

s.t .
∑
h∈Rr

qhr ≤ Q1, r ∈M, (6.66)

∑
r∈M

∑
h∈Rr

qhr = qtot, (6.67)

∑
r∈Mh

qhr ≥ qmin, h ∈ NS(M), (6.68)

∑
r∈Mh

qhr ≤ mkQ2, h ∈ NS(M), (6.69)

qhr ≥ 1, h ∈ Rr, r ∈M, (6.70)

where qmin = max{mini∈NC{qi}, qtot − (m2 − 1)Q2}. We assume θ(k) =∞ if problem

(6.65)-(6.70) has no feasible solution.

The set P is generated by pure enumeration by using Propositions 1 and 2 to eliminate

any configuration M that cannot lead to an optimal 2E-CVRP solution.

6.6.2 Solving Problem F (M)

Problem F (M) is solved with the following three-phase method. In the first phase,

bounding procedure DP 1 is used to compute lower bound LD1(M) on z(F (M)) by

replacing M with M . In the second phase, a near-optimal dual solution of the LP-

relaxation of F (M) strengthened by valid inequalities, called problem F̄ (M), is com-

puted. In the third phase, the F̄ (M) dual solution is used to generate the subsets

R′k ⊆ Rk, k ∈ NS(M), of all 2nd-level routes of any F (M) optimal solution. An F (M)

optimal solution is obtained by replacing, in F (M), each set Rk with R′k, k ∈ NS(M),

and solving the resulting problem, called F ′(M), with an integer programming solver.

6.6.2.1 Phase 1: computing lower bound LD1(M)

We execute bounding procedure DP 1, by replacing the set M with M , to compute

lower bound LD1(M) and upper bound UB1(M) on F (M). If LD1(M) is greater

than a known upper bound on the 2E-CVRP, Phases 2 and 3 are skipped.

6.6.2.2 Phase 2: solving F̄ (M)

Problem F̄ (M) corresponds to the LP-relaxation of problem F (M) strengthened with

the following valid inequalities
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a) Capacity constraints. Let S = {H : H ⊆ NC , |H| ≥ 2}. The capacity constraints

are ∑
k∈NS(M)

∑
`∈Rk :Rk`∩H 6=∅

xk` ≥
⌈∑

i∈H qi

Q2

⌉
, H ∈ S . (6.71)

b) Clique inequalities. Let R(M) =
⋃
k∈NS(M) Rk, and let G = (R(M),E ) be the

conflict graph associated with the route set R(M), where the edge set E contains

every edge {`, `′}, `, `′ ∈ R(M), such that ` < `′ and Rπ`` ∩ Rπ`′`′ 6= ∅. Let C be

the set of all cliques of graph G . The clique inequalities are∑
`∈C

xπ`` ≤ 1, C ∈ C . (6.72)

Problem F̄ (M) is solved with a CCG procedure that starts by setting S = ∅, C = ∅.

The master problem is initialized with a set of elementary routes obtained from the final

set of ng-routes generated in Phase 1 for computing lower bound LD1(M) by removing,

from each ng-route, the customers visited more than once. At each iteration, a set of

negative reduced cost routes are generated and a set of violated inequalities (6.71) and

(6.72) are added as described in Baldacci and Mingozzi [2009]. The procedure ends

when no negative reduced cost routes exist and no inequalities (6.71) and (6.72) are

violated and provides an F̄ (M) dual solution of cost z(F̄ (M)).

6.6.2.3 Phase 3: solving F (M) to optimality

In Phase 3, two steps are performed.

(1) Define the reduced problem F ′(M) resulting from F (M) by

(i) Replacing the route set Rk, k ∈ NS(M), with the largest subset R′k ⊆ Rk

of routes such that c′k` < zUB − (U(M) + z(F̄ (M))), ` ∈ R′k, k ∈ NS(M),

where c′` is the reduced cost of route ` ∈ R′k with respect to the F̄ (M) dual

solution achieved at Phase 2 and zUB is the current best upper bound on the

2E-CVRP.

(ii) Adding all constraints (6.71) and (6.72) saturated by the final F̄ (M) solution.

(2) Solve problem F ′(M) with a general purpose integer programming solver.

6.6.3 Description of the Exact Method

The exact method we propose for solving the 2E-CVRP can be described as follows.

(1) Generate the set M and compute a lower bound on the 2E-CVRP.
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• Generate the set M of 1st-level routes by pure enumeration.

• Execute bounding procedure DP 1 to produce lower and upper bounds LD1

and UB1.

(2) Generate the set P of configurations as described in §6.6.1.

(3) Solve the 2E-CVRP.

(a) Initialize z(F ) = UB1, LB = UB1, zUB = UB1, P̄ = ∅ and rmax = 0.

(b) If P = ∅, then Stop.

Let M = argminM ′∈P{LBW (M ′)}. Remove M from P. If LBW (M) ≥ z(F )

then Stop (z(F ) is the optimal 2E-CVRP solution cost).

(c) Solve problem F (M).

(i) Execute Phase 1 (see §6.6.2.1) to compute lower bound LD1(M) and

upper bound UB1(M) on F (M). Update zUB = min{zUB, UB1(M)},
z(F ) = min{z(F ), UB1(M)}, and LB = min{LB, z(F )}.
If LD1(M) ≥ z(F ), go to Step 3.b.

(ii) Execute Phase 2 (see §6.6.2.2) to compute lower bound z(F̄ (M)), and

update LB = min{LB, max{LD1(M), U(M) + z(F̄ (M))}}.
If U(M) + z(F̄ (M)) ≥ z(F ), go to Step 3.b.

If the F̄ (M) solution of cost z(F̄ (M)) is integer, update z(F ) = U(M) +

z(F̄ (M)) and go to Step 3.b.

(iii) Execute Phase 3 (see §6.6.2.3) to solve problem F (M). Let z(F (M)) be

the optimal solution cost of F ′(M). Update z(F ) = min{z(F ), U(M) +

z(F (M))}, P̄ = P̄ ∪ {M} and rmax = max{rmax,
∑

k∈NS(M) |R′k|}. Go

to Step 3.b.

Notice that Step 3.c-(iii) is executed for any configuration M ∈P such that U(M) +

z(F̄ (M)) < z(F ) and the F̄ (M) solution is not integer. Thus, if Step 3.c-(iii) is never

executed, the algorithm terminates with P̄ = ∅, implying that LB = z(F ) and the

optimal 2E-CVRP solution corresponds to either the initial upper bound UB1(M)

computed at Step 3.c-(i) or to the integer F̄ (M) solution achieved at Step 3.c-(ii) for

some configuration M ∈P.

At the end of the exact method, LB represents a valid lower bound on the 2E-CVRP

because it corresponds to LB = minM∈P{max{LD1(M), U(M) + z(F̄ (M))}}. Value

rmax is the maximum number of 2nd-level routes generated, and set P̄ contains the

configurations for which the corresponding problem F (M) was solved to optimality at

Step 3.c-(iii). Upper bound zUB is the cost of the best upper bound computed at Step

1 or at Step 3.c-(i). Finally, because we impose a limit ∆max on the maximum number

of 2nd-level routes,
⋃
k∈NS(M) R′k, to generate at Step 3.c-(iii), whenever such limit is

reached for some configuration M ∈ P̄, at the end of the algorithm, the value z(F ) is

an upper bound on the 2E-CVRP but is not necessarily the optimal solution cost.
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Table 6.1: Satellite coordinates of Set 6

Name nS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

A-n51-4 4 7 (21.0,47.0) 11 (51.0,21.0) 17 (52.0,41.0) 42 (10.0,17.0)

A-n51-5 5 5 (20.0,26.0) 7 (21.0,47.0) 16 (36.0,16.0) 23 (42.0,57.0) 39 (45.0,35.0)

A-n51-6 6 3 (49.0,49.0) 5 (20.0,26.0) 15 (12.0,42.0) 16 (36.0,16.0) 49 (25.0,55.0) 50 (48.0,28.0)

A-n76-4 4 30 (52.0,26.0) 36 (55.0,50.0) 45 (21.0,48.0) 74 (27.0,24.0)

A-n76-5 5 33 (22.0,53.0) 49 (48.0,21.0) 53 (54.0,38.0) 54 (55.0,57.0) 74 (27.0,24.0)

A-n76-6 6 6 (55.0,20.0) 13 (35.0,51.0) 17 (21.0,36.0) 53 (54.0,38.0) 54 (55.0,57.0) 63 (30.0,20.0)

A-n101-4 4 8 (20.0,50.0) 22 (45.0,20.0) 51 (47.0,47.0) 96 (25.0,24.0)

A-n101-5 5 3 (35.0,17.0) 51 (47.0,47.0) 55 (57.0,29.0) 83 (15.0,47.0) 90 (26.0,35.0)

A-n101-6 6 5 (55.0,20.0) 19 (20.0,40.0) 52 (49.0,58.0) 62 (12.0,24.0) 69 (56.0,39.0) 98 (25.0,21.0)

B-n51-4 4 7 (21.0,47.0) 11 (51.0,21.0) 17 (52.0,41.0) 42 (10.0,17.0)

B-n51-5 5 5 (20.0,26.0) 7 (21.0,47.0) 16 (36.0,16.0) 23 (42.0,57.0) 39 (45.0,35.0)

B-n51-6 6 3 (49.0,49.0) 5 (20.0,26.0) 15 (12.0,42.0) 16 (36.0,16.0) 49 (25.0,55.0) 50 (48.0,28.0)

B-n76-4 4 30 (52.0,26.0) 36 (55.0,50.0) 45 (21.0,48.0) 74 (27.0,24.0)

B-n76-5 5 33 (22.0,53.0) 49 (48.0,21.0) 53 (54.0,38.0) 54 (55.0,57.0) 74 (27.0,24.0)

B-n76-6 6 6 (55.0,20.0) 13 (35.0,51.0) 17 (21.0,36.0) 53 (54.0,38.0) 54 (55.0,57.0) 63 (30.0,20.0)

B-n101-4 4 8 (20.0,50.0) 22 (45.0,20.0) 51 (47.0,47.0) 96 (25.0,24.0)

B-n101-5 5 3 (35.0,17.0) 51 (47.0,47.0) 55 (57.0,29.0) 83 (15.0,47.0) 90 (26.0,35.0)

B-n101-6 6 5 (55.0,20.0) 19 (20.0,40.0) 52 (49.0,58.0) 62 (12.0,24.0) 69 (56.0,39.0) 98 (25.0,21.0)

C-n51-4 4 22 (62.0,42.0) 26 ( 7.0,38.0) 32 (37.0,69.0) 46 (39.0,10.0)

C-n51-5 5 26 ( 7.0,38.0) 32 (37.0,69.0) 37 (63.0,69.0) 40 (59.0,15.0) 44 ( 5.0,64.0)

C-n51-6 6 22 (62.0,42.0) 26 ( 7.0,38.0) 32 (37.0,69.0) 34 (46.0,10.0) 37 (63.0,69.0) 44 ( 5.0,64.0)

C-n76-4 4 11 (40.0,66.0) 25 ( 7.0,43.0) 55 (67.0,41.0) 62 (36.0, 6.0)

C-n76-5 5 55 (67.0,41.0) 56 (10.0,70.0) 57 ( 6.0,25.0) 61 (64.0, 4.0) 67 (57.0,72.0)

C-n76-6 6 19 ( 9.0,56.0) 32 (31.0,76.0) 57 ( 6.0,25.0) 58 (65.0,27.0) 60 (70.0,64.0) 62 (36.0, 6.0)

C-n101-4 4 30 (64.0,42.0) 33 (35.0,69.0) 42 (42.0, 7.0) 46 ( 6.0,38.0)

C-n101-5 5 30 (64.0,42.0) 42 (42.0, 7.0) 46 ( 6.0,38.0) 65 (15.0,77.0) 66 (62.0,77.0)

C-n101-6 6 16 (30.0, 5.0) 30 (64.0,42.0) 46 ( 6.0,38.0) 65 (15.0,77.0) 66 (62.0,77.0) 68 (67.0, 5.0)

6.7 Computational results

We report on the computational results of the exact method (hereafter BMRW) de-

scribed in §6.6.3 and its comparison with the methods of Perboli et al. [2011] (here-

after PTV) and Jepsen et al. [2011] (hereafter JSR). BMRW was coded in Fortran 77.

CPLEX 12.1 was used as the linear programming and integer programming solver. All

tests were run on an IBM Intel Xeon X7350 Server (2.93 GHz - 16 GB of RAM).

We considered four sets of instances from the literature: Set 2 and 3 from by Gonza-

les Feliu et al. [2007a], Set 4 from Crainic et al. [2010], and Set 5 from Hemmelmayr

et al. [2011]. Sets 2 to 4 are available at http://people.brunel.ac.uk/~mastjjb/

jeb/orlib/vrp2einfo.html, whereas Set 5 was kindly provided by the authors. On

all instances, travel costs are computed as real Euclidean distances. The 39 instances

of Sets 2 and 3 feature 21, 32 or 50 customers and 2 or 4 satellites; in Set 2, satellites

are randomly spread on the plane, whereas, in Set 3, satellites are located peripher-

ally. Set 4 consists of 54 randomly generated instances with 50 customers and 2, 3

or 5 satellites; different criteria were adopted to spread satellites and customers on

the plane. Set 5 is made up of 18 instances obtained by adapting LRP benchmark

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/vrp2einfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/vrp2einfo.html
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Table 6.2: Computational results on Set 2 instances

Name ns z(F ) %LD1 tLD1 |P| %UB %LB tLB |P̄| rmax ttot

E-n22-k4-s6-17 2 417.07 99.9 0.4 1 100.0 100.0 0.5 0 0 0.5

E-n22-k4-s8-14 2 384.96 99.5 0.4 1 100.0 100.0 0.7 0 0 0.7

E-n22-k4-s9-19 2 470.60 95.4 0.5 1 100.0 100.0 1.2 0 0 1.2

E-n22-k4-s10-14 2 371.50 99.6 0.5 1 100.0 100.0 0.5 0 0 0.5

E-n22-k4-s11-12 2 427.22 96.5 0.4 2 100.5 100.0 1.3 0 0 1.3

E-n22-k4-s12-16 2 392.78 96.7 0.5 2 100.0 100.0 1.1 0 0 1.1

E-n33-k4-s1-9 2 730.16 97.9 25.1 1 100.0 100.0 37.6 0 0 37.6

E-n33-k4-s2-13 2 714.63 97.8 27.8 2 100.0 100.0 34.9 0 0 34.9

E-n33-k4-s3-17 2 707.48 95.0 28.9 3 105.8 100.0 48.1 0 0 48.1

E-n33-k4-s4-5 2 778.74 94.1 23.1 4 100.9 100.0 72.5 0 0 72.5

E-n33-k4-s7-25 2 756.85 96.8 27.4 3 101.0 100.0 47.1 0 0 47.1

E-n33-k4-s14-22 2 779.05 98.7 26.0 3 100.0 100.0 31.7 0 0 31.7

E-n51-k5-s3-18 2 597.49 93.5 3.0 5 100.0 99.8 23.7 1 33,547 25.8

E-n51-k5-s5-47 2 530.76 98.1 3.1 4 101.6 99.8 25.9 1 34,110 27.5

E-n51-k5-s7-13 2 554.81 94.6 3.3 6 100.2 98.9 37.3 2 42,075 55.1

E-n51-k5-s12-20 2 581.64 95.5 3.1 3 100.5 99.3 27.1 1 39,033 44.3

E-n51-k5-s28-48 2 538.22 95.8 3.2 6 100.0 99.7 40.1 2 34,797 44.0

E-n51-k5-s33-38 2 552.28 95.4 3.8 3 100.0 100.0 13.6 0 0 13.6

E-n51-k5-s3-5-18-47 4 530.76 96.6 6.6 55 100.0 99.9 259.2 1 62,913 260.8

E-n51-k5-s7-13-33-38 4 531.92 94.7 7.6 68 100.0 99.4 263.6 1 68,796 266.6

E-n51-k5-s12-20-28-48 4 527.63 95.6 9.0 24 100.0 99.6 71.8 1 67,620 74.2

instances; among them, we only considered the 6 instances with 5 satellites and 100

customers.

We generated another set of 27 instances (called Set 6) by starting from the CVRP

instances E-n51-k5, E-n76-k10 and E-n101-k14 (available at http://branchandcut.

org/VRP/data). For each CVRP instance, we generated nine 2E-CVRP instances by

maintaining customer locations and demands and vehicle capacity (Q2) of the original

CVRP instance and by setting Q1 = 4Q2. The 27 instances are divided in 3 classes (A,

B and C), where, in classes A and C, the depot is on the bottom-left-hand corner at

coordinates (1, 1) and, in class B, the depot location coincides with that of the original

CVRP instance. The number of satellites is 4, 5 or 6, and their locations coincide with

those of some customers. In class C, satellites are peripheral to customers, whereas,

in classes A and B, they are positioned in the middle of the customers.

Table 6.1 reports the details of the satellite coordinates of the 27 instances of the

Set 6. The table reports, for each instance, the name of the instance (Name), the

number of satellites (nS) and the list of the satellite coordinates. For each satellite

k ∈ NS , the index of the corresponding customer in the original CVRP instance and

the corresponding X and Y coordinates are reported.

In all instances, the handling costs are 0, and satellite capacities are unlimited (i.e.,

Hk = 0 and Wk = ∞, k ∈ NS). Furthermore, in Sets 2, 3 and 5 the maximum

number of vehicles per satellite is unlimited (i.e., mk = ∞, k ∈ NS). Set 4 was

treated differently by Jepsen et al. [2011] who considered the given upper bounds on

http://branchandcut.org/VRP/data
http://branchandcut.org/VRP/data
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Table 6.3: Computational results on Set 3 instances

Name ns z(F ) %LD1 tLD1 |P| %UB %LB tLB |P̄| rmax ttot

E-n22-k4-s13-14 2 526.15 96.4 0.4 4 100.0 100.0 2.1 0 0 2.1

E-n22-k4-s14-19 2 498.80 93.2 0.5 6 100.0 100.0 2.4 0 0 2.4

E-n22-k4-s13-16 2 521.09 94.9 0.4 4 100.0 100.0 2.8 0 0 2.8

E-n22-k4-s17-19 2 512.80 95.5 0.5 4 100.0 100.0 2.6 0 0 2.6

E-n22-k4-s13-17 2 496.38 96.8 0.5 1 100.0 100.0 1.2 0 0 1.2

E-n22-k4-s19-21 2 520.42 94.9 0.5 5 100.0 100.0 3.8 0 0 3.8

E-n33-k4-s22-26 2 680.37 94.7 28.2 3 100.1 99.8 71.8 1 23,690 73.3

E-n33-k4-s16-22 2 672.17 92.0 32.6 5 102.0 99.4 115.4 1 26,474 127.5

E-n33-k4-s16-24 2 666.02 94.6 38.0 5 100.1 99.9 125.2 1 23,040 128.4

E-n33-k4-s24-28 2 670.43 95.6 31.0 3 100.0 100.0 73.1 1 24,266 78.8

E-n33-k4-s19-26 2 680.37 94.0 27.3 3 100.1 99.6 70.8 2 22,549 72.8

E-n33-k4-s25-28 2 650.58 95.7 30.7 3 100.3 100.0 56.0 0 0 56.0

E-n51-k5-s13-19 2 560.73 95.6 3.3 5 100.0 99.6 43.8 2 34,800 48.0

E-n51-k5-s13-42 2 564.45 97.8 3.6 1 100.3 99.1 18.3 1 44,083 50.1

E-n51-k5-s13-44 2 564.45 96.8 3.2 3 101.4 99.0 29.7 1 50,444 73.0

E-n51-k5-s40-42 2 746.31 91.2 3.6 5 102.6 99.0 34.8 1 53,016 107.2

E-n51-k5-s41-42 2 771.56 97.7 5.7 2 100.1 98.9 36.9 1 315,861 2,078.6

E-n51-k5-s41-44 2 802.91 91.8 4.1 4 101.2 99.6 39.8 1 39,979 59.4

the maximum number of vehicles per satellite, mk, and Perboli et al. [2011] who ignored

such values. To compare BMRW with both JSR and PTV, we considered two versions

of Set 4, namely Set 4A and Set4B, where Set 4A corresponds to the original Set 4

whereas, in Set 4B, mk is unbounded (i.e., mk =∞, k ∈ NS).

Perboli et al. [2011] considered and solved to optimality 66 instances with 12 customers

and 2 satellites (therein Set 1), as well. We do not report the results of BMRW on

such instances because they were easily solved in a few seconds.

According to SPEC (http://www.spec.org/benchmarks.html), our machine is 10%

faster than the Intel(R) Xeon X5550 2.67 GHz with 24 GB of memory and 8 cores

used by JSR and twice as fast as the 3 GHz Pentium PC with 1 GB of Ram used by

PTV. A time limit of 10,000 seconds was imposed on PTV and JSR.

In testing BMRW, we used the following parameter settings. In procedure DP 1, we

set ∆(Ni) = 12, and we set Maxit1 = 25, ε = 1.0, Maxit2 = 200, at Step 1, and

Maxit1 = 10, ε = 0.5, Maxit2 = 100 at Step 3.c-(i). Moreover, we set ∆max = 106

and imposed a time limit of 5,000 seconds to solve problem F ′(M).

Tables 6.2-6.7 report the results obtained by BMRW on the 6 sets of instances. The

tables report the instance name, the number ns of satellites, the cost z(F ) of the

best solution found, the percentage ratio %LD1 of lower bound LD1 over z(F ) (i.e.,

%LD1 = 100LD1/z(F )), the time tLD1 in seconds for computing LD1, the cardinality

|P| of the set P at the beginning of Step 3, the percentage ratio %UB of upper bound

zUB over z(F ), the percentage ratio %LB of lower bound LB over z(F ), the total time

tLB in seconds for computing LD1 and LB, the cardinality |P̄| of the set P̄, the value

of rmax, and finally the total computing time ttot in seconds. Whenever |P̄| > 0, the

http://www.spec.org/benchmarks.html
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difference ttot − tLB is the time spent by CPLEX for solving the problems F ′(M), for

all configurations M ∈ P̄.

Tables 6.8-6.10 compare BMRW with PTV and JSR. Under the headings “PTV ” and

“JSR”, we report the percentage ratio, over z(F ), of the upper bound (%UB) and

of the lower bound (%LB) achieved at the root node, the percentage gap (%gap)

between the best lower and upper bound computed, and the total computing time

(ttot) in seconds. The values in columns z(F ) are in bold whenever the instances were

open before BMRW. The last lines of the tables reports, for each method, the number

of instances solved to optimality (in columns %gap), and, for JSR and BMRW, the

average percentage deviation of the upper and lower bounds (in columns %UB and

%LB) and the average computing time (in columns ttot), computed over all instances

solved by JSR, that are a subset of the instances solved by BMRW.

Tables 6.2-6.7 show that BMRW solved to optimality 166 out of 180 instances. Columns

|P| and |P̄| show the effectiveness of both the procedure applied at Step 2 for gener-

ating the set P and the procedures applied at Steps 3.c-(i) and 3.c-(ii) for computing

valid lower bounds on z(F (M)). Notice that few problems F (M) required solving by

CPLEX (see columns |P̄|). BMRW was able to solve 25 out of 33 instances of the Sets

5 and 6 (see Tables 6.6-6.7). On the other 8 instances, BMRW could not generate all

2nd-level routes required to solve some problems F (M) to optimality because of the

gap between the computed lower and upper bounds.

On the Sets 2 and 3 (see Tables 6.8 and 6.9), BMRW solved to optimality all 39 in-

stances whereas PTV and JSR solved to optimality 13 and 32 instances, respectively.

Of the 54 instances of the Set 4A, BMRW and JSR solved 50 and 15 of them, respec-

tively. None of the 18 instances considered by PTV of Set 4B were solved to optimality

whereas 52 instances out of 54 were solved to optimality by BMRW. Tables 6.8-6.10

show that BMRW outperforms both PTV and JSR.

Finally, Tables 6.8 and 6.9 indicate that the heuristic algorithm described in §6.5.5

provided better solutions, on average, than the heuristic algorithms of PTV and JSR.

6.8 Conclusions

In this chapter, we proposed a new exact method for solving the two-echelon capac-

itated vehicle routing problem (2E-CVRP). We described a bounding procedure that

is used by the exact algorithm to decompose the 2E-CVRP into a limited set of multi-

depot capacitated vehicle routing problems (MDCVRP) with side constraints. The

optimal 2E-CVRP solution is obtained by solving the set of MDCVRPs generated.

The proposed method was tested on 180 instances, both taken from the literature and

newly generated, with up to 100 customers and 6 satellites. The new exact algorithm
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Table 6.4: Computational results on Set 4A instances

Name ns z(F ) %LD1 tLD1 |P| %UB %LB tLB |P̄| rmax ttot

Instance50-1 2 1,569.42 97.1 23.3 2 100.1 99.9 72.5 2 30,903 75.5

Instance50-2 2 1,438.33 95.8 14.6 3 100.9 99.6 110.7 2 44,411 161.9

Instance50-3 2 1,570.43 97.1 23.3 2 102.6 99.9 67.8 1 31,377 70.6

Instance50-4 2 1,424.04 96.4 20.2 2 101.7 99.4 59.6 1 44,211 101.8

Instance50-5 2 2,193.52 98.3 25.1 5 100.2 99.6 286.2 5 67,491 663.7

Instance50-6 2 1,279.87 95.2 18.5 2 100.0 100.0 42.7 0 0 42.7

Instance50-7 2 1,458.63 98.0 29.7 2 104.7 99.8 92.7 2 30,995 100.4

Instance50-8 2 1,363.74 95.5 20.8 3 100.1 99.5 199.2 2 404,659 2,261.9

Instance50-9 2 1,450.27 98.0 28.5 2 104.5 99.9 82.6 1 29,683 84.6

Instance50-10 2 1,407.65 92.9 22.9 2 100.3 99.6 71.9 1 52,513 112.9

Instance50-11 2 2,047.46 99.0 35.7 5 100.8 99.5 225.5 5 88,929 339.1

Instance50-12 2 1,209.42 93.1 25.0 2 100.1 100.0 69.4 0 0 69.4

Instance50-13 2 1,481.83 95.5 24.5 2 102.4 99.9 86.1 2 30,277 92.1

Instance50-14 2 1,393.61 93.6 21.8 3 100.9 99.4 126.2 2 181,889 1,188.3

Instance50-15 2 1,489.94 95.5 25.1 2 102.4 99.8 66.6 1 30,130 71.5

Instance50-16 2 1,389.17 95.0 16.1 2 101.1 99.8 56.0 1 36,097 62.6

Instance50-17 2 2,088.49 97.3 28.8 5 100.7 99.8 253.0 2 40,721 305.3

Instance50-18 2 1,227.61 93.1 16.9 2 100.0 99.3 60.5 1 49,390 117.2

Instance50-19 3 1,564.66 92.5 72.7 8 100.0 99.3 179.3 2 53,950 234.3

Instance50-20 3 1,272.97 93.7 24.5 8 101.3 99.1 59.4 1 84,784 140.1

Instance50-21 3 1,577.82 96.0 62.1 4 100.1 99.2 139.8 2 58,059 218.9

Instance50-22 3 1,281.83 95.1 33.9 8 101.4 100.0 76.2 1 50,177 79.2

Instance50-23 3 1,807.35 89.3 52.1 11 100.0 98.7 310.9 3 190,099 1,510.9

Instance50-24 3 1,282.68 95.1 28.6 14 100.0 100.0 80.0 0 0 80.0

Instance50-25 3 1,522.42 91.3 63.0 8 102.0 99.2 221.7 2 67,095 335.9

Instance50-26 3 1,167.46 97.2 27.1 1 100.2 99.9 51.9 1 49,094 54.0

Instance50-27 3 1,481.57 93.9 72.2 4 102.0 99.3 196.0 2 67,175 355.9

Instance50-28 3 1,210.44 93.2 38.3 10 100.0 100.0 279.5 1 55,285 295.6

Instance50-29 3 1,722.04 89.9 67.7 12 102.5 98.8 461.4 3 ∆max 9,092.9

Instance50-30 3 1,211.59 93.5 32.8 13 100.5 100.0 243.1 0 0 243.1

Instance50-31 3 1,490.34 91.8 65.1 8 102.2 98.1 325.9 4 ∆max 11,561.3

Instance50-32 3 1,199.00 94.1 25.9 7 100.1 98.7 262.7 1 619,322 4,009.4

Instance50-33 3 1,508.30 93.4 64.5 6 101.2 98.0 234.6 2 ∆max 12,922.3

Instance50-34 3 1,233.92 93.2 30.7 10 100.0 99.0 130.8 1 85,850 207.0

Instance50-35 3 1,718.41 87.6 63.9 12 100.1 98.3 619.9 5 ∆max 20,377.6

Instance50-36 3 1,228.89 93.3 28.6 14 100.0 99.3 121.6 1 59,745 154.1

Instance50-37 5 1,528.73 94.5 162.7 116 100.7 99.5 778.3 3 82,225 807.8

Instance50-38 5 1,169.20 93.9 52.5 134 100.9 99.0 429.3 1 253,662 1,648.2

Instance50-39 5 1,520.92 94.6 168.0 63 100.6 99.8 688.0 2 78,320 695.0

Instance50-40 5 1,199.42 90.3 55.4 66 101.6 99.6 986.8 2 99,764 996.4

Instance50-41 5 1,667.96 95.3 195.4 64 100.3 99.6 1,302.9 4 79,889 1,344.7

Instance50-42 5 1,194.54 95.2 50.5 61 101.6 99.4 177.3 1 94,931 223.2

Instance50-43 5 1,439.67 95.4 175.5 56 101.3 99.5 1,032.2 3 87,237 1,095.7

Instance50-44 5 1,045.13 95.6 84.4 100 100.2 99.8 424.1 1 90,132 435.8

Instance50-45 5 1,450.96 94.9 160.9 34 101.7 99.2 577.7 2 135,411 774.0

Instance50-46 5 1,088.77 91.8 68.0 62 100.2 99.3 1,150.5 5 131,810 1,345.4

Instance50-47 5 1,587.29 96.2 205.5 62 102.1 99.4 1,470.7 2 98,905 1,566.3

Instance50-48 5 1,082.20 96.7 56.7 6 101.1 100.0 91.0 0 0 91.0

Instance50-49 5 1,434.88 95.0 164.3 74 102.3 100.0 714.8 0 0 714.8

Instance50-50 5 1,083.12 93.2 55.1 134 100.5 99.1 869.1 1 239,534 1,337.0

Instance50-51 5 1,398.05 94.6 179.6 64 101.0 100.0 744.0 1 73,279 748.4

Instance50-52 5 1,125.67 90.3 52.0 65 101.5 99.0 1,231.9 7 167,299 1,533.7

Instance50-53 5 1,567.77 95.0 211.4 63 100.1 98.7 1,712.0 2 268,139 4,223.3

Instance50-54 5 1,127.61 94.1 48.3 58 100.2 98.9 343.4 1 414,080 1,041.6
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Table 6.5: Computational results on Set 4B instances

Name ns z(F ) %LD1 tLD1 |P| %UB %LB tLB |P̄| rmax ttot

Instance50-1 2 1,569.42 95.0 39.2 3 101.5 100.0 113.3 2 31,196 117.0

Instance50-2 2 1,438.33 95.8 14.7 5 101.0 99.7 129.8 2 42,949 188.5

Instance50-3 2 1,570.43 95.1 38.9 3 101.5 100.0 95.1 1 31,017 97.8

Instance50-4 2 1,424.04 96.3 21.9 3 101.2 99.3 69.3 1 48,595 115.6

Instance50-5 2 2,193.52 98.3 40.8 7 100.2 99.6 326.6 5 62,190 631.5

Instance50-6 2 1,279.87 95.1 17.4 3 102.9 99.9 49.1 1 34,244 52.6

Instance50-7 2 1,408.57 98.5 41.5 3 101.6 99.9 73.0 1 31,607 76.5

Instance50-8 2 1,360.32 95.7 17.3 5 100.2 99.6 222.8 3 604,910 3,293.6

Instance50-9 2 1,403.53 98.7 40.0 3 103.3 99.9 80.3 1 35,515 81.7

Instance50-10 2 1,360.56 96.1 20.8 3 100.0 100.0 46.3 0 0 46.3

Instance50-11 2 2,047.46 99.0 50.6 7 100.8 99.5 296.8 6 88,960 450.8

Instance50-12 2 1,209.42 93.0 22.1 3 100.0 99.9 106.9 1 48,537 111.9

Instance50-13 2 1,450.93 96.1 44.1 3 102.3 100.0 94.1 0 0 94.1

Instance50-14 2 1,393.61 93.6 20.6 5 101.1 99.4 147.4 2 175,756 1,069.7

Instance50-15 2 1,466.83 95.5 39.7 3 101.1 99.9 103.4 1 29,552 106.0

Instance50-16 2 1,387.83 95.1 16.4 3 100.1 99.8 76.7 2 43,428 99.0

Instance50-17 2 2,088.49 97.3 44.3 7 100.6 99.8 306.0 2 38,365 358.3

Instance50-18 2 1,227.61 93.1 17.0 3 100.0 99.2 69.7 1 51,842 127.8

Instance50-19 3 1,546.28 93.7 86.3 16 101.2 99.2 262.5 1 60,815 293.4

Instance50-20 3 1,272.97 93.8 24.3 9 101.3 99.0 59.7 1 107,430 170.9

Instance50-21 3 1,577.82 96.0 85.6 12 100.8 99.2 199.8 2 58,718 250.9

Instance50-22 3 1,281.83 95.2 31.2 9 103.0 100.0 68.9 0 0 68.9

Instance50-23 3 1,652.98 96.6 83.6 7 102.0 100.0 193.7 0 0 193.7

Instance50-24 3 1,282.68 95.2 29.1 16 100.0 100.0 79.7 0 0 79.7

Instance50-25 3 1,408.57 98.2 87.2 7 101.9 99.9 150.9 1 45,580 155.0

Instance50-26 3 1,167.46 97.2 27.1 2 100.2 99.9 52.6 1 48,772 55.9

Instance50-27 3 1,444.51 96.5 93.1 8 102.3 99.9 194.2 1 44,411 198.1

Instance50-28 3 1,210.44 92.9 34.9 11 100.9 100.0 249.6 0 0 249.6

Instance50-29 3 1,552.66 96.7 104.4 7 103.0 100.0 257.3 1 48,508 258.4

Instance50-30 3 1,211.59 93.2 38.6 16 100.5 99.9 239.9 1 61,768 245.9

Instance50-31 3 1,440.86 94.8 87.5 13 101.2 100.0 262.2 0 0 262.2

Instance50-32 3 1,199.00 94.1 31.1 8 100.1 98.7 116.9 1 579,861 3,812.3

Instance50-33 3 1,478.86 95.4 86.0 11 101.5 99.0 239.6 1 121,197 467.9

Instance50-34 3 1,233.92 93.1 27.6 11 101.1 99.1 166.6 1 131,443 287.7

Instance50-35 3 1,570.72 94.7 95.5 7 102.4 98.9 332.0 3 221,318 1,299.7

Instance50-36 3 1,228.89 93.1 26.8 16 100.0 99.2 126.2 1 72,167 180.1

Instance50-37 5 1,528.73 93.7 206.7 223 102.0 97.9 1,520.3 10 ∆max 14,522.3

Instance50-38 5 1,163.07 94.6 78.8 153 100.0 99.1 485.7 3 229,650 1,163.0

Instance50-39 5 1,520.92 93.1 212.4 112 100.3 98.8 1,097.6 7 126,528 1,791.0

Instance50-40 5 1,163.04 93.0 59.2 82 101.3 99.6 312.8 1 96,251 348.0

Instance50-41 5 1,652.98 95.3 266.4 117 101.0 99.6 2,229.6 14 153,550 2,370.6

Instance50-42 5 1,190.17 95.5 55.5 75 101.9 99.2 238.4 2 132,823 432.4

Instance50-43 5 1,406.11 95.2 210.3 79 101.3 99.6 1,065.4 1 94,023 1,098.4

Instance50-44 5 1,035.03 96.4 67.0 93 100.9 100.0 382.9 1 84,919 387.2

Instance50-45 5 1,401.87 95.3 187.3 55 102.7 99.6 464.7 1 82,077 484.7

Instance50-46 5 1,058.11 94.7 83.5 65 100.4 100.0 426.9 0 0 426.9

Instance50-47 5 1,552.66 95.8 260.8 103 103.0 100.0 1,220.1 2 146,044 1,227.0

Instance50-48 5 1,074.50 97.3 60.0 6 100.5 99.9 121.4 1 74,056 125.5

Instance50-49 5 1,434.88 94.4 217.4 142 101.1 98.1 1,498.7 8 ∆max 13,940.3

Instance50-50 5 1,065.25 94.8 89.2 126 100.0 99.9 500.7 1 83,400 508.0

Instance50-51 5 1,387.51 93.9 225.0 92 102.2 98.9 845.9 2 113,910 1,299.1

Instance50-52 5 1,103.42 92.0 56.0 81 100.1 99.4 788.8 1 109,254 846.0

Instance50-53 5 1,545.73 95.2 283.1 97 101.6 99.0 2,113.7 3 232,398 2,395.8

Instance50-54 5 1,113.62 95.2 51.4 36 100.8 99.0 232.0 2 222,523 1,027.9
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Table 6.6: Computational results on Set 5 instances

Name ns z(F ) %LD1 tLD1 |P| %UB %LB tLB |P̄| rmax ttot

2eVRP 100-5-1 5 1,564.46 97.9 16.5 44 102.1 99.3 381.8 5 147,996 9,359.6

2eVRP 100-5-1b 5 1,142.53 93.8 36.5 60 100.0 94.6 1,339.2 10 ∆max 24,028.9

2eVRP 100-5-2 5 1,016.32 95.6 15.2 197 100.6 99.1 928.8 19 156,424 10,517.6

2eVRP 100-5-2b 5 796.53 95.2 29.9 100 100.0 96.6 1,750.8 10 ∆max 26,099.7

2eVRP 100-5-3 5 1,045.29 97.5 16.3 50 100.3 99.2 262.5 13 137,379 2,930.2

2eVRP 100-5-3b 5 833.94 95.7 39.7 95 100.0 97.6 1,475.1 8 ∆max 32,693.8

Table 6.7: Computational results on Set 6 instances

Name ns z(F ) %LD1 tLD1 |P| %UB %LB tLB |P̄| rmax ttot

A-n51-4 4 652.00 94.6 6.7 16 100.3 99.7 108.0 4 55,040 119.1

A-n51-5 5 663.41 95.7 10.4 81 100.3 99.7 149.8 2 64,146 154.8

A-n51-6 6 662.51 94.9 15.9 246 100.6 100.0 262.8 0 0 263.1

A-n76-4 4 985.95 95.9 16.1 71 101.9 99.4 267.6 2 78,465 343.7

A-n76-5 5 979.15 95.8 27.6 281 101.8 99.6 818.9 4 91,512 857.2

A-n76-6 6 970.20 95.8 46.0 1,391 101.8 99.5 3,215.2 8 108,558 3,327.4

A-n101-4 4 1,194.17 95.9 52.7 120 101.0 99.2 1,709.6 11 461,313 5,971.3

A-n101-5 5 1,211.38 96.6 43.7 647 102.5 99.4 3,540.3 4 234,285 4,823.3

A-n101-6 6 1,158.98 95.8 91.9 4,814 101.7 98.7 24,851.2 51 ∆max 118,077.4

B-n51-4 4 563.98 96.0 6.6 10 101.1 98.8 30.3 1 87,968 56.8

B-n51-5 5 549.23 94.8 9.7 64 101.0 99.0 105.8 1 100,364 130.9

B-n51-6 6 556.32 94.3 15.5 106 100.0 100.0 125.5 0 0 125.6

B-n76-4 4 792.73 94.5 12.4 23 102.1 99.3 257.9 2 119,142 333.7

B-n76-5 5 783.93 94.0 21.3 167 101.5 99.3 572.2 1 144,513 610.8

B-n76-6 6 774.17 94.4 32.6 877 102.2 99.6 2,023.2 2 164,489 2,075.0

B-n101-4 4 939.21 97.3 42.1 10 102.0 98.9 195.7 1 485,177 2,512.5

B-n101-5 5 967.82 94.8 37.3 587 102.1 99.1 4,772.3 7 331,423 7,058.8

B-n101-6 6 960.29 96.2 76.9 456 103.0 99.1 1,970.4 4 273,755 3,772.4

C-n51-4 4 689.18 95.5 6.7 26 100.3 99.4 54.2 1 51,909 78.3

C-n51-5 5 723.12 93.6 10.3 64 100.3 98.9 81.4 1 125,120 431.6

C-n51-6 6 697.00 94.4 16.3 126 101.1 99.4 145.8 1 76,426 166.0

C-n76-4 4 1,054.89 94.9 15.5 66 102.9 99.1 290.7 4 108,471 454.3

C-n76-5 5 1,115.32 92.5 21.6 303 103.0 99.2 1,089.2 6 136,054 1,817.0

C-n76-6 6 1,064.72 92.2 31.7 1,449 101.7 97.8 4,786.7 20 ∆max 47,840.9

C-n101-4 4 1,305.68 95.0 49.3 116 101.7 98.4 1,392.8 10 ∆max 29,626.4

C-n101-5 5 1,309.42 96.4 84.4 206 101.6 98.6 1,203.2 2 ∆max 10,865.1

C-n101-6 6 1,284.48 96.2 94.6 1,373 103.3 98.7 6,804.4 8 ∆max 27,969.4

solved to optimality 144 out of the 153 instances from literature and closed 97 of them

for the first time. The comparison with the state-of-the-art exact methods from the

literature show that new exact method outperforms the other exact methods in terms

of size, number of problems solved to optimality, and computing time.
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Table 6.8: Comparison with the exact methods PTV and JSR on Set 2 instances

PTV JSR BMRW

Name z(F ) %UB %gap %UB %LB %gap ttot %UB %LB tLB %gap ttot

E-n22-k4-s6-17 417.07 100.0 0.0 100.0 96.7 0.0 0.2 100.0 100.0 0.5 0.0 0.5

E-n22-k4-s8-14 384.96 106.0 0.0 100.0 98.0 0.0 1.0 100.0 100.0 0.7 0.0 0.7

E-n22-k4-s9-19 470.60 100.0 0.0 113.1 90.4 0.0 12.4 100.0 100.0 1.2 0.0 1.2

E-n22-k4-s10-14 371.50 117.3 0.0 100.0 96.8 0.0 1.2 100.0 100.0 0.5 0.0 0.5

E-n22-k4-s11-12 427.22 100.0 0.0 104.1 94.7 0.0 3.2 100.5 100.0 1.3 0.0 1.3

E-n22-k4-s12-16 392.78 108.4 0.0 100.0 95.9 0.0 2.0 100.0 100.0 1.0 0.0 1.1

E-n33-k4-s1-9 730.16 100.9 0.0 100.0 87.3 0.0 49.4 100.0 100.0 37.6 0.0 37.6

E-n33-k4-s2-13 714.63 103.0 1.5 100.0 89.4 0.0 34.2 100.0 100.0 34.9 0.0 34.9

E-n33-k4-s3-17 707.48 104.5 1.7 113.2 91.0 0.0 1,126.8 105.8 100.0 48.1 0.0 48.1

E-n33-k4-s4-5 778.74 104.9 1.5 100.0 87.6 0.0 54.9 100.9 100.0 72.5 0.0 72.5

E-n33-k4-s7-25 756.85 100.0 1.6 100.0 86.0 0.0 87.5 101.0 100.0 47.1 0.0 47.1

E-n33-k4-s14-22 779.05 100.0 1.6 105.9 88.0 0.0 2.4 100.0 100.0 31.7 0.0 31.7

E-n51-k5-s3-18 597.49 100.0 2.6 100.0 92.6 4.5 - 100.0 99.8 23.7 0.0 25.8

E-n51-k5-s5-47 530.76 102.3 1.8 102.4 97.0 0.0 13.3 101.6 99.8 25.9 0.0 27.5

E-n51-k5-s7-13 554.81 100.0 4.1 100.0 94.4 1.6 - 100.2 98.9 37.3 0.0 55.1

E-n51-k5-s12-20 581.64 100.4 3.7 104.2 94.2 0.0 213.6 100.5 99.3 27.1 0.0 44.3

E-n51-k5-s28-48 538.22 100.0 2.0 100.0 95.5 0.8 - 100.0 99.7 40.1 0.0 44.0

E-n51-k5-s33-38 552.28 104.7 0.7 100.0 95.8 0.0 2,114.0 100.0 100.0 13.6 0.0 13.6

E-n51-k5-s3-5-18-47 530.76 102.2 2.8 103.3 94.4 0.0 84.0 100.0 99.9 259.2 0.0 260.8

E-n51-k5-s7-13-33-38 531.92 107.5 3.6 102.7 94.6 0.0 3,642.8 100.0 99.4 263.6 0.0 266.6

E-n51-k5-s12-20-28-48 527.63 113.8 1.5 109.4 95.5 0.0 798.7 100.0 99.6 71.8 0.0 74.2

Avg./Solved 103.6 7 102.8 93.1 18 457.9 100.5 99.8 21 53.6

Table 6.9: Comparison with the exact methods PTV and JSR on Set 3 instances

PTV JSR BMRW

Name z(F ) %UB %gap %UB %LB %gap ttot %UB %LB tLB %gap ttot

E-n22-k4-s13-14 526.15 100.1 0.0 102.2 98.2 0.0 3.2 100.0 100.0 2.1 0.0 2.1

E-n22-k4-s14-19 498.80 105.0 0.0 105.0 91.1 0.0 61.2 100.0 100.0 2.4 0.0 2.4

E-n22-k4-s13-16 521.09 100.0 0.0 101.0 98.2 0.0 2.3 100.0 100.0 2.8 0.0 2.8

E-n22-k4-s17-19 512.80 100.0 0.0 104.8 93.8 0.0 8.0 100.0 100.0 2.6 0.0 2.6

E-n22-k4-s13-17 496.38 100.0 0.0 100.0 93.4 0.0 1.1 100.0 100.0 1.2 0.0 1.2

E-n22-k4-s19-21 520.42 101.4 0.0 101.4 95.4 0.0 5.5 100.0 100.0 3.8 0.0 3.8

E-n33-k4-s22-26 680.37 100.0 4.2 101.5 91.0 0.0 6.3 100.1 99.8 71.8 0.0 73.3

E-n33-k4-s16-22 672.17 100.0 5.7 113.2 93.0 2.1 - 102.0 99.4 115.4 0.0 127.5

E-n33-k4-s16-24 666.02 100.4 6.0 100.0 96.4 0.0 747.4 100.1 99.9 125.2 0.0 128.4

E-n33-k4-s24-28 670.43 103.3 5.6 100.0 94.8 0.0 17.6 100.0 100.0 73.1 0.0 78.8

E-n33-k4-s19-26 680.37 100.0 4.7 109.2 89.4 0.0 26.4 100.1 99.6 70.8 0.0 72.8

E-n33-k4-s25-28 650.58 100.0 5.3 100.0 92.6 0.0 158.2 100.3 100.0 56.0 0.0 56.0

E-n51-k5-s13-19 560.73 100.0 95.5 0.0 1,007.9 100.0 99.6 43.8 0.0 48.0

E-n51-k5-s13-42 564.45 106.1 96.6 0.0 208.3 100.3 99.1 18.3 0.0 50.1

E-n51-k5-s13-44 564.45 107.6 96.8 0.0 288.5 101.4 99.0 29.7 0.0 73.0

E-n51-k5-s40-42 746.31 100.9 88.9 7.5 - 102.6 99.0 34.8 0.0 107.2

E-n51-k5-s41-42 771.56 100.5 95.1 0.6 - 100.1 98.9 36.9 0.0 2,078.6

E-n51-k5-s41-44 802.91 100.0 89.7 7.0 - 101.2 99.6 39.8 0.0 59.4

Avg./Solved 100.8 6 103.0 93.9 14 181.6 100.5 99.7 18 42.5
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Table 6.10: Comparison with the exact method JSR on Set 4A instances

JSR BMRW

Name ns z(F ) %UB %LB %gap ttot %UB %LB tLB %gap ttot

Instance50-1 2 1,569.42 112.9 91.2 1.7 - 100.1 99.9 72.5 0.0 75.5

Instance50-2 2 1,438.33 100.0 91.5 0.0 1,146.7 100.9 99.6 110.7 0.0 161.9

Instance50-3 2 1,570.43 112.7 88.7 1.6 - 102.6 99.9 67.8 0.0 70.6

Instance50-4 2 1,424.04 100.0 90.1 0.9 - 101.7 99.4 59.6 0.0 101.8

Instance50-5 2 2,193.52 100.3 85.6 0.4 - 100.2 99.6 286.2 0.0 663.7

Instance50-6 2 1,279.87 100.0 97.2 0.0 4,463.4 100.0 100.0 42.6 0.0 42.7

Instance50-7 2 1,458.63 114.2 89.9 1.5 - 104.7 99.8 92.7 0.0 100.4

Instance50-8 2 1,363.74 100.0 91.8 0.0 1,164.5 100.1 99.5 199.2 0.0 2,261.9

Instance50-9 2 1,450.27 113.9 89.8 1.3 - 104.5 99.9 82.6 0.0 84.6

Instance50-10 2 1,407.65 101.0 98.4 0.0 3,933.1 100.3 99.6 71.9 0.0 112.9

Instance50-11 2 2,047.46 100.9 89.7 0.6 - 100.8 99.5 225.5 0.0 339.1

Instance50-12 2 1,209.42 100.0 95.7 0.0 22.3 100.1 100.0 69.4 0.0 69.4

Instance50-13 2 1,481.83 111.9 91.7 1.2 - 102.4 99.9 86.1 0.0 92.1

Instance50-14 2 1,393.61 101.6 91.2 0.1 - 100.9 99.4 126.2 0.0 1,188.3

Instance50-15 2 1,489.94 111.8 91.7 1.1 - 102.4 99.8 66.6 0.0 71.5

Instance50-16 2 1,389.17 100.0 91.0 0.0 1,045.1 101.1 99.8 56.0 0.0 62.6

Instance50-17 2 2,088.49 100.4 85.7 0.1 - 100.7 99.8 253.0 0.0 305.3

Instance50-18 2 1,227.61 100.0 96.5 0.0 8,130.1 100.0 99.3 60.5 0.0 117.2

Instance50-19 3 1,564.66 109.8 82.2 0.5 - 100.0 99.3 179.3 0.0 234.3

Instance50-20 3 1,272.97 116.6 93.2 0.6 - 101.3 99.1 59.4 0.0 140.1

Instance50-21 3 1,577.82 106.8 88.5 0.4 - 100.1 99.2 139.8 0.0 218.9

Instance50-22 3 1,281.83 105.1 86.2 0.0 8,636.7 101.4 100.0 76.2 0.0 79.2

Instance50-23 3 1,807.35 100.0 83.2 10.0 - 100.0 98.7 310.9 0.0 1,510.9

Instance50-24 3 1,282.68 101.8 93.9 0.0 6,559.9 100.0 100.0 79.9 0.0 80.0

Instance50-25 3 1,522.42 100.8 83.7 1.2 - 102.0 99.2 221.7 0.0 335.9

Instance50-26 3 1,167.46 113.4 95.1 0.0 66.4 100.2 99.9 51.9 0.0 54.0

Instance50-27 3 1,481.57 107.0 86.4 1.0 - 102.0 99.3 196.0 0.0 355.9

Instance50-28 3 1,210.44 104.1 86.7 0.0 2,046.0 100.0 100.0 279.5 0.0 295.6

Instance50-29 3 1,722.04 100.9 80.5 0.8 - 102.5 98.8 461.4 1.2 9,092.9

Instance50-30 3 1,211.59 101.8 92.1 0.0 17.4 100.5 100.0 243.1 0.0 243.1

Instance50-31 3 1,490.34 109.7 90.3 1.5 - 102.2 98.1 325.9 1.9 11,561.3

Instance50-32 3 1,199.00 104.8 86.9 0.5 - 100.1 98.7 262.7 0.0 4,009.4

Instance50-33 3 1,508.30 105.3 82.7 1.3 - 101.2 98.0 234.6 2.0 12,922.3

Instance50-34 3 1,233.92 102.5 85.6 0.1 - 100.0 99.0 130.8 0.0 207.0

Instance50-35 3 1,718.41 100.3 79.3 1.2 - 100.1 98.3 619.9 1.7 20,377.6

Instance50-36 3 1,228.89 100.1 85.8 0.0 2,038.2 100.0 99.3 121.6 0.0 154.1

Instance50-37 5 1,528.73 108.7 82.6 2.9 - 100.7 99.5 778.3 0.0 807.8

Instance50-38 5 1,169.20 108.2 82.6 0.2 - 100.9 99.0 429.3 0.0 1,648.2

Instance50-39 5 1,520.92 106.4 84.6 0.4 - 100.6 99.8 688.0 0.0 695.0

Instance50-40 5 1,199.42 101.0 81.5 2.6 - 101.6 99.6 986.8 0.0 996.4

Instance50-41 5 1,667.96 108.1 86.6 1.4 - 100.3 99.6 1,302.9 0.0 1,344.7

Instance50-42 5 1,194.54 112.8 83.3 1.2 - 101.6 99.4 177.3 0.0 223.2

Instance50-43 5 1,439.67 113.3 87.4 1.7 - 101.3 99.5 1,032.2 0.0 1,095.7

Instance50-44 5 1,045.13 109.5 80.4 0.0 144.0 100.2 99.8 424.1 0.0 435.8

Instance50-45 5 1,450.96 108.5 82.1 1.0 - 101.7 99.2 577.7 0.0 774.0

Instance50-46 5 1,088.77 101.7 77.4 1.0 - 100.2 99.3 1,150.5 0.0 1,345.4

Instance50-47 5 1,587.29 109.7 83.5 1.0 - 102.1 99.4 1,470.7 0.0 1,566.3

Instance50-48 5 1,082.20 115.8 86.1 0.0 133.4 101.1 100.0 91.0 0.0 91.0

Instance50-49 5 1,434.88 108.4 84.3 2.1 - 102.3 100.0 714.7 0.0 714.8

Instance50-50 5 1,083.12 105.4 77.9 1.7 - 100.5 99.1 869.1 0.0 1,337.0

Instance50-51 5 1,398.05 106.6 82.3 4.6 - 101.0 100.0 744.0 0.0 748.4

Instance50-52 5 1,125.67 100.2 81.0 1.1 - 101.5 99.0 1,231.9 0.0 1,533.7

Instance50-53 5 1,567.77 109.4 83.8 1.3 - 100.1 98.7 1,712.0 0.0 4,223.3

Instance50-54 5 1,127.61 110.6 88.2 0.9 - 100.2 98.9 343.4 0.0 1,041.6

Avg./Solved 105.9 87.1 15 2,599.1 101.0 99.4 50 276.0
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