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Abstract

Robust combinatorial optimization problems with cardinality constrained uncertainty may be solved
by a finite number of nominal problems. In this paper, we show that the number of nominal problems to
be solved can be reduced significantly.
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1 Robust combinatorial optimization problem

Let X ⊂ {0, 1}n be a set of feasible solutions of a combinatorial optimization problem. The nominal
combinatorial optimization problem of our interest is defined as follows:

min
x∈X

c>x (1)

where c>x =
∑n
j=1 cjxj . Bertsimas and Sim (2003) considered uncertainty for objective coefficients such

that the cost of item j ∈ N = {1, 2, · · · , n} takes a value in the interval [cj , cj + dj ], where dj ≥ 0. A robust
combinatorial optimization problem is considered in the following form:

Z∗ = min
x∈X

{
c>x + max

{S|S⊂N,|S|≤Γ}

∑
j∈S

djxj

}
(2)

where at most Γ components of the cost coefficients can be cj + dj ; hence, the uncertainty set is called
cardinality constrained. The budget of uncertainty Γ is a positive integer and represents the risk attitude
of decision makers, and 1 ≤ Γ ≤ n. Without loss of generality, we assume that the indices are sorted in
descending order of the size of di and define dn+1 = 0 so that

d1 ≥ d2 ≥ · · · ≥ dn ≥ dn+1 = 0. (3)

Bertsimas and Sim (2003) showed that (2) is equivalent to

Z∗ = min
x∈X,θ≥0

(
Γθ + c>x +

∑
j∈N

max(dj − θ, 0)xj

)
(4)
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and it can be solved by solving n+ 1 nominal problems. In particular,

Z∗ = min
l=1,2,··· ,n+1

Gl, (5)

where for l = 1, 2, . . . , n+ 1:

Gl = Γdl + min
x∈X

(
c>x +

l∑
j=1

(dj − dl)xj
)

(6)

We let xn+1 = 0, so that (6) is well-defined.
This result is very useful, because we can solve the robust optimization problem by solving a finite

number of nominal problems. If the nominal problem can be solved in polynomial time, we can also solve
the corresponding robust problem in polynomial time. Park and Lee (2007) showed that the number of
nominal problems to be solved can be reduced to n− Γ + 1, and Álvarez-Miranda et al. (2013) to n− Γ + 2
independently. In this paper, we show that the number of nominal problems to be solved can be further

reduced to
⌈
n−Γ

2

⌉
+ 1.

2 New Results

For a feasible solution x ∈ X, let

Gl(x) = Γdl + c>x +

l∑
j=1

(dj − dl)xj ∀l = 1, 2, ..., n+ 1 (7)

then Gl in (6) can be written as
Gl = min

x∈X
Gl(x) (8)

We let G0(x) = G1(x) for notational simplicity. We also define xl ∈ X such that

Gl = Gl(xl) ≤ Gl(x) ∀x ∈ X (9)

We first consider Gl+1(x)−Gl(x) for l = 1, ..., n and x ∈ X:

Gl+1(x)−Gl(x) = Γdl+1 +

n∑
j=1

cjxj +

l+1∑
j=1

(dj − dl+1)xj

− Γdl −
n∑
j=1

cjxj −
l∑

j=1

(dj − dl)xj

= Γ(dl+1 − dl) +

l∑
j=1

(dl − dl+1)xj

= (dl+1 − dl)
(

Γ−
l∑

j=1

xj

)
(10)

Similarly, we consider for l = 2, ..., n+ 1 and x ∈ X:

Gl(x)−Gl−1(x) = (dl − dl−1)

(
Γ−

l−1∑
j=1

xj

)
(11)

Using (10) and (11), we provide the following lemmas.

Lemma 1. For l = 1, 2, ..., n and for any x ∈ X, the following holds:

1. If
∑l
j=1 xj ≤ Γ, then Gl−1(x) ≥ Gl(x) ≥ Gl+1(x).
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2. If
∑l
j=1 xj > Γ, then Gl−1(x) ≤ Gl(x) ≤ Gl+1(x).

Proof. Recall that x is binary.

1. We prove the first part.

(a) If
∑l
j=1 xj ≤ Γ, we obtain Gl+1(x) ≤ Gl(x) from (10), since dl+1 ≤ dl.

(b) If
∑l
j=1 xj ≤ Γ, then

∑l−1
j=1 xj ≤ Γ. Therefore we obtain Gl(x) ≤ Gl−1(x) from (11), since

dl ≤ dl−1.

Hence, the first part is proved.

2. We can similarly prove the second part.

(a) If
∑l
j=1 xj > Γ, we obtain Gl+1(x) ≥ Gl(x) from (10), since dl+1 ≤ dl.

(b) If
∑l
j=1 xj > Γ, then

∑l
j=1 xj ≥ Γ + 1, and consequently,

∑l−1
j=1 xj ≥ Γ. Therefore we obtain

Gl(x) ≥ Gl−1(x) from (11), since dl ≤ dl−1.

This completes the proof.

Lemma 2. For any x ∈ X, we have G1(x) ≥ G2(x) ≥ · · · ≥ GΓ(x) ≥ GΓ+1(x). Furthermore, G1 ≥ G2 ≥
... ≥ GΓ ≥ GΓ+1.

Proof. 1. For any l ≤ Γ, we have
∑l
j=1 xj ≤ Γ, and therefore Gl(x) ≥ Gl+1(x) by the first part of Lemma

1. This completes the proof for the first part.

2. By definition (9), we have

GΓ+1 = GΓ+1(xΓ+1) ≤ GΓ+1(x) ∀x ∈ X

Choosing x = xΓ and applying the first part of this lemma, we obtain

GΓ+1(xΓ+1) ≤ GΓ+1(xΓ) ≤ GΓ(xΓ)

consequently, GΓ+1 ≤ GΓ. By repeating the same procedure for Γ− 1,Γ− 2, ..., 1, we obtain the lemma.

Lemma 2 indicates that the l = 1, 2, ...,Γ cases are no better than the l = Γ + 1 case. Therefore the
l = 1, 2, ...,Γ cases need not be examined in (5), if the l = Γ + 1 case is ensured to be examined.

Lemma 3. For any l = 1, 2, ..., n, we have either Gl ≥ Gl+1 or Gl ≥ Gl−1.

Proof. 1. Suppose
∑l
j=1 x

l
j ≤ Γ. By definition (9)

Gl+1 = Gl+1(xl+1) ≤ Gl+1(x) ∀x ∈ X

Choose x = xl and apply the first part of Lemma 1. Then,

Gl+1(xl+1) ≤ Gl+1(xl) ≤ Gl(xl)

Therefore, Gl+1 ≤ Gl.

2. If
∑l
j=1 x

l
j > Γ, we can similarly show that Gl−1 ≤ Gl, by considering Gl−1 and applying the second

part of Lemma 1.
Since the two cases are mutually exclusive, we obtain the lemma.

Lemma 3 provides a way to significantly reduce the number of nominal problems to be solved; it indicates
that any l is no better than either l− 1 or l+ 1. This also indicates that the minimum of Gl occurs at two or
more consecutive indices l, unless it does at l = Γ + 1 or l = n+ 1. Our main result follows.
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Table 1: Comparison of L, with an example of n = 20 and Γ = 5

Authors L |L|
Bertsimas and Sim (2003) {1, 2, ..., n+ 1} n+ 1 = 21

= {1, 2, 3, ..., 19, 20, 21}
Álvarez-Miranda et al. (2013) {Γ,Γ + 1, ..., n− 1, n, n+ 1} n+ 2− Γ = 17

= {5, 6, 7, ...., 19, 20, 21}
Park and Lee (2007) {Γ,Γ + 1, ..., n− 1, n+ 1} n+ 1− Γ = 16

= {5, 6, 7, ...., 19, 21}
Theorem 1 {Γ + 1,Γ + 3,Γ + 5, ...,Γ + γ, n+ 1}

⌈
n−Γ

2

⌉
+ 1 = 9

= {6, 8, 10, 12, 14, 16, 18, 20, 21}

Theorem 1. The robust combinatorial optimization problem (2) can be solved by
⌈
n−Γ

2

⌉
+ 1 number of

nominal problems. In particular,
Z∗ = min

l∈L
Gl (12)

where L = {Γ + 1,Γ + 3,Γ + 5, ...,Γ + γ, n+ 1} and γ is the largest odd integer such that Γ + γ < n+ 1.

Proof. The set of indices L is obtained by Lemmas 2 and 3. We prove the number of nominal problems to be
solved. If we let γ = 2k − 1, then k is the largest integer such that Γ + (2k − 1) < n+ 1, or k < n−Γ

2 + 1;

therefore k =
⌈
n−Γ

2

⌉
. Consequently, the cardinality of the set L is k + 1 =

⌈
n−Γ

2

⌉
+ 1. This completes the

proof.

Note that in Theorem 1, the set L includes the two boundary indices l = Γ + 1 and l = n + 1. We
compared our result with the previous results in Table 1 with an example of n = 20 and Γ = 5.

3 Concluding Remarks

In this short note, we showed that the number of nominal problems to be solved can be significantly reduced
to obtain a solution of robust combinatorial problems. We would like to close this note by providing a
small tip for further reduction that is suggested in Kwon et al. (2013) for the case when the cost vector c is
nonnegative. Suppose G] is the smallest Gl found so far. Then, there is no need to consider any indices l such
that Γdl ≥ G], since the objective function value of the corresponding nominal problem is nonnegative, hence
there is no chance of improving. Therefore, by examining the set L in descending order, i.e., first considering
n+ 1 and then Γ + γ to Γ + 1, we can stop when we encounter the case of Γdl ≥ G] for the first time.
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