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Abstract

Robust combinatorial optimization problems with cardinality constrained uncertainty may be solved
by a finite number of nominal problems. In this paper, we show that the number of nominal problems to
be solved can be reduced significantly.

Keywords: robust combinatorial optimization; discrete optimization

1 Robust combinatorial optimization problem

Let X C {0,1}™ be a set of feasible solutions of a combinatorial optimization problem. The nominal
combinatorial optimization problem of our interest is defined as follows:
min ¢’z (1)
reX
where ¢’z = Z?Zl ¢;x;. Bertsimas and Sim| (2003)) considered uncertainty for objective coefficients such

that the cost of item j € N ={1,2,--- ,n} takes a value in the interval [¢;, ¢; + d;], where d; > 0. A robust
combinatorial optimization problem is considered in the following form:

Z* = min {cTar: + max Zdjxj} (2)

zeX S|SCN,|S|<T} 4
{SISCN,IS|<T} £

where at most I" components of the cost coefficients can be ¢; 4+ d;; hence, the uncertainty set is called
cardinality constrained. The budget of uncertainty I' is a positive integer and represents the risk attitude
of decision makers, and 1 < T' < n. Without loss of generality, we assume that the indices are sorted in
descending order of the size of d; and define d,, 11 = 0 so that

dy>dy > >dp >dpy1 =0. (3)

Bertsimas and Sim/ (2003]) showed that is equivalent to

* : T L .
zZ* = poin (FQ +c x4+ ;Vmax(dj 0, O)xj> (4)
J
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and it can be solved by solving n 4+ 1 nominal problems. In particular,

Z*= min G, (5)
1=1,2,--- ,n+1
where for | =1,2,...,n+ 1:
1
G'=Td, + gél% (ch + Zl(dj - dl)a?j) (6)
§=

We let z,,4+1 = 0, so that @ is well-defined.

This result is very useful, because we can solve the robust optimization problem by solving a finite
number of nominal problems. If the nominal problem can be solved in polynomial time, we can also solve
the corresponding robust problem in polynomial time. [Park and Lee| (2007)) showed that the number of
nominal problems to be solved can be reduced to n — I + 1, and |Alvarez-Miranda et al.| (2013) to n —I" + 2
independently. In this paper, we show that the number of nominal problems to be solved can be further

reduced to [%—‘ + 1.

2 New Results

For a feasible solution « € X, let

l
Gla)=Td+c o+ (dj —d)z; VI=12..,n+1 (7)

j=1
then G! in @ can be written as

U il
G' = :,IJHEIQG (x) (8)

We let G°(x) = G*(x) for notational simplicity. We also define &' € X such that
G'=GY(x") < GY(x) VxeX (9)

We first consider G+ (x) — G'(zx) for I = 1,...,n and = € X:

n I+1
G (@) - Gl ) =Tdia + »_cjmj+ Y (dj — disr)x;
j=1 j=1
n l
—Id; — Z cixi — Z(dj —dp)z;
j=1 j=1

Similarly, we consider for [ =2,....n+1 and « € X:
-1
6'(@) - @) = (i~ i) (T = Y (1)
j=1
Using and , we provide the following lemmas.

Lemma 1. For [ =1,2,....,n and for any « € X, the following holds:
LI Y. @; <T, then G Y(z) > Gl(z) > GH(x).



2. If Z;:l z; > T, then G'~!(z) < Gl(z) < G (z).
Proof. Recall that « is binary.
1. We prove the first part.
(a) If Z;Zl z; < T, we obtain G'*!(x) < G'(x) from (10), since d;41 < d;.

(b) If 22:1 xzj < T, then Zé;ll z; < T. Therefore we obtain G'(xz) < G'~!(x) from (L), since
di <dj—;.

Hence, the first part is proved.
2. We can similarly prove the second part.

(a) If Zé.:l zj > T, we obtain G'**(x) > G'(z) from (10), since d;41 < d;.
b) If l.: x; > I', then l‘: z; > I' + 1, and consequently, l-_:l x; > I'. Therefore we obtain
j=1"J j=1"J j=1"J
GY(x) > G'~Y(x) from , since d; < d;_;.
This completes the proof. O

Lemma 2. For any € X, we have G!(z) > G?*(z) > --- > GI'(z) > G'1(x). Furthermore, G! > G? >
> GN > G

Proof. 1. For any [ <T', we have 2221 x; <T, and therefore G!(x) > G!*!(x) by the first part of Lemma
This completes the proof for the first part.

2. By definition @7 we have
GI1 = G (M) < GT () Ve X
Choosing & = 2" and applying the first part of this lemma, we obtain
GTH (2 +1) < 6T+ () < GF (2F)

consequently, GT'+1 < GU. By repeating the same procedure for I' — 1,I" — 2, ..., 1, we obtain the lemma.
O

Lemma [2| indicates that the [ = 1,2,...,I" cases are no better than the [ = I 4+ 1 case. Therefore the
[=1,2,...,T cases need not be examined in 7 if the ] =T + 1 case is ensured to be examined.

Lemma 3. For any [ = 1,2,...,n, we have either G' > G'*! or G' > G!~1.
Proof. 1. Suppose 2221 xé < T'. By definition @D
Gl =G () < G (x) Ve X
Choose = ' and apply the first part of Lemma [l Then,
Gl () < G (2) < Gl(2))
Therefore, G < GL.

2. If 22:1 xé > T, we can similarly show that G!~! < G', by considering G'~! and applying the second
part of Lemma
Since the two cases are mutually exclusive, we obtain the lemma. O

Lemma [3| provides a way to significantly reduce the number of nominal problems to be solved; it indicates
that any [ is no better than either [ — 1 or [ 4+ 1. This also indicates that the minimum of G! occurs at two or
more consecutive indices [, unless it does at I =T'+ 1 or [ = n + 1. Our main result follows.



Table 1: Comparison of £, with an example of n =20 and I' =5

Authors L L]

Bertsimas and Sim/ (2003]) {1,2,..,n+1} n+1=21
=1{1,2,3,..,19,20,21}

Alvarez-Miranda et al,| (2013) {[,T'+1,...,n—1,n,n+ 1} n+2-T=17
={5,6,7, ....,19,20,21}

Park and Lee| (2007) {\T+1,..,n—1,n+1} n+1-T=16
={5,6,7,...,19,21}

Theorem {'+1,T+3T+5,...I'+v,n+1} [”;F—‘+1:9

= {6,8,10,12, 14, 16, 18,20, 21}

Theorem 1. The robust combinatorial optimization problem can be solved by [%-I + 1 number of

nominal problems. In particular,

A min G! (12)
€

where £L={T"'+1,T'+3,T'+5,...,T +7,n+ 1} and ~ is the largest odd integer such that I'+ v < n + 1.

Proof. The set of indices L is obtained by Lemmas [2] and [3] We prove the number of nominal problems to be
solved. If we let v = 2k — 1, then k is the largest integer such that T' 4+ (2k — 1) <n+1, or k < "—gr + 1;

therefore k = [%—‘ Consequently, the cardinality of the set Lis k+ 1= [”%F—‘ + 1. This completes the
proof. O

Note that in Theorem [1} the set £ includes the two boundary indices I = T'4+ 1 and I = n+ 1. We
compared our result with the previous results in Table [I| with an example of n = 20 and I" = 5.

3 Concluding Remarks

In this short note, we showed that the number of nominal problems to be solved can be significantly reduced
to obtain a solution of robust combinatorial problems. We would like to close this note by providing a
small tip for further reduction that is suggested in [Kwon et al.| (2013) for the case when the cost vector ¢ is
nonnegative. Suppose G* is the smallest G! found so far. Then, there is no need to consider any indices [ such
that I'd; > G*, since the objective function value of the corresponding nominal problem is nonnegative, hence
there is no chance of improving. Therefore, by examining the set £ in descending order, i.e., first considering
n+ 1 and then I' + 4 to I' + 1, we can stop when we encounter the case of I'd; > G* for the first time.
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