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Abstract 

Transportation of goods contributes to the economic development of societies but 

it generates negative impacts on its environment called negative externalities. In 

its White Paper on Transport, the European Commission encourages the flow 

transfer from road to more environmentally friendly modes like rail or inland 

waterways (IWW). This objective can be reached by the development of 

intermodal transport, i.e. the transportation of goods using two or more modes of 

transport, in the same loading unit, without handling of the goods themselves. 

A literature review on transport externalities and their valorization methods 

highlights the small number of studies related to the general modeling of transport 

externalities through dedicated mathematical formulas. However, the latter are 

important for identifying the key parameters that influence transport 

competitiveness in terms of externalities. This is demonstrated by analyzing two 

external cost functions for road and rail. The location of intermodal terminals, 

where the flow transfer between road and a more environmentally friendly mode 

occurs, stands out from the environmental perspective as one of the most 

important competitiveness factors of intermodal transport regarding road. 

An innovative mathematical model for the location of terminals and allocation of 

flows between road and intermodal rail and IWW transport is developed. The 

model is based on a bi-objective formulation which evaluates the trade-offs 

between transport operational costs and CO2 emissions. Economies of scale of 

intermodal transport are integrated thanks to nonlinear functions. The model is 

applied to the Belgian network. Results indicate that terminal locations are 

relatively stable, whatever the optimized economic or environmental objective. 

The type of terminal located changes according to the followed strategy. 

Minimizing CO2 emissions leads to an increased use of intermodal transport. 

The impact of transport on air pollution is also evaluated. On the Belgian case, an 

economic optimization of transport operational costs is compared to an 

environmental optimization of transport air pollution external costs. The 

intervention of public authorities through a taxation policy for trucks is also 

studied. Results show that the introduction of road taxes leads to a more intensive 

use of intermodal transport than in the absence of taxes. The maximum 

intermodal market share is observed when air pollution external costs are 

minimized.  
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Finally, intermodal transport is often modeled as a “road-rail/IWW-road” 

combination. A new model which considers other intermodal chains is applied on 

experimental data at the European level. The model allows to choose between any 

direct transport by one mode (road, rail or IWW), and any intermodal transport of 

up to three modes. Results indicate that several connections may benefit from the 

use of other combinations of modes than the “road-rail/IWW-road” combination. 
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PART I 

INTRODUCTION 

This thesis deals with freight transport systems. It 

focuses on intermodal transport and on its use as an 

alternative solution to road transport. The 

evaluation of the attractiveness of intermodal 

transport is performed in both economic and 

environmental terms, so as to reflect today’s and 

tomorrow’s expectations. 

This first part develops the general context of the 

thesis subject and identifies the research 

contributions and the thesis structure. 
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This introductory chapter is structured around two main parts. First, it presents the 

notions of transport and externalities, and how these two concepts are connected. 

Second, it elaborates on the thesis contributions and structure. 

1.1. Transport and externalities 

 

Freight transportation activities are necessary for the economic development of 

societies.  Everybody is concerned with freight transportation. Who never goes to 

the supermarket or to a restaurant, buys new clothes, shoes or material for 

repairing a house or a car? All these activities require goods and raw material that 

are not necessarily produced in facilities close to the retailing companies in which 
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they are sold. This implies the movement of freight between several origin and 

destination nodes using transportation modes.  

Freight transportation brings positive contributions to societies, such as the 

possibility to beneficiate from exotic food or from products which are produced at 

a lower price in further economic regions.  

Despite these positive impacts on the economy, transportation is responsible for a 

lot of negative effects on the environment, such as noise, air and water pollution, 

congestion, accidents and climate change. Some of these negative impacts happen 

at the local level and only affect the direct surroundings of the places where the 

transportation mode is employed (e.g. noise, road degradation, air pollution). 

Other negative impacts (e.g. climate change) have a more global influence on the 

environment. Indeed, the effects of global warming are not only observed in 

places where emissions are generated. 

All the negative effects of transport that are generated by transportation 

companies but that are not economically supported by them are defined as 

transport externalities. These negative effects of transport are supported by other 

economic stakeholders such as public authorities, local residents, private 

companies, or even inhabitants of faraway regions. The costs of these externalities 

on society are known as transport external costs. 

This thesis focuses on freight transportation and assesses the alternative 

intermodal transport solution in terms of economic and environmental impacts. 

Intermodal transport refers to the transportation of goods using several modes of 

transport in loading units, without handling of the goods themselves. Further 

discussion on the concept is developed in chapter 2.  

Developing deeper knowledge regarding alternative solutions to road and their 

impact on the environment is necessary, in view of the willingness of the 

European Commission (2011) to go for more environmentally friendly modes and 

regarding the still dominant share of road in European land freight transport. In 

2014, 75.5% of the freight t.km in Europe (28 countries) were transported by 

road, 18% by rail and 6.6% by inland waterways (IWW) (Eurostat, 2016). This 

dominant position of road on the freight transport market is explained by the 

advantages of this mode, such as its flexibility, its advantageous speed/price 

relationship and its direct connection between all origin and destination nodes, 

allowing a single door-to-door transportation mode. Nevertheless these 
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advantages are counterbalanced by negative impacts on the environment, such as 

air pollution, emission of greenhouse gases, congestion, accidents and noise. 

In the last decades, there has been an increasing trend to consider and try to 

reduce these negative effects of transport on the environment. Some of the main 

concerns of public authorities regarding transport externalities relate to the 

emissions generated by road vehicles. The latter are responsible for global 

warming, which induces climate change, and for air pollution which, in turn, 

implies negative effects on human health. Several tools have been used to limit 

these negative transport externalities. Some examples through legislative and 

policy measures are presented below.  

The interest for climate change is illustrated by the organization of international 

conventions and events, such as the Kyoto Protocol or the regular United Nations 

Climate Change Conferences. In 2016, more than 55 Parties to the Paris 

Convention, accounting in total for more than 55% of the total global greenhouse 

gas emissions, ratified the Paris Agreement (UNFCCC, 2016). This shows the 

world willingness to contain the average global temperature increase under 2%, 

compared to the pre-industrialized period. The main advantage and improvement 

of this Agreement, compared to the Kyoto Protocol, is the implication of all 

countries, including developing regions. The contribution to the global objective 

depends on each country, and a distinction is made between developed and 

developing countries. The main European objectives in terms of climate change 

can be summarized by the 20-20-20 objectives for 2020. Indeed, European 

authorities aim at reducing by 20% the greenhouse gases compared to 1990, at 

achieving a proportion of 20% of renewable energies in the global energy 

consumption, and at increasing by 20% their energy efficiency. For 2030, these 

objectives are even higher; Europe expects a reduction of 40% of greenhouse 

gases compared to 1990, a use of 27% of renewable energies in global energy 

consumption, and an increase of 27% of the energy efficiency (European 

Commission, 2016c). 

Besides climate change, air pollution matters at the world level are consolidated 

in the United Nation Economic Commission for Europe (UNECE) Convention on 

Long-range Transboundary Air Pollution (LRTAP). Dating from 1979, this 

convention is the first international legally binding tool developed to limit air 

pollution. It has been followed by a set of protocols aiming at enforcing the 

transboundary air pollution abatement (UNECE, 2015). At the European level, the 
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National Emission Ceilings Directive sets national emission maximum values for 

four pollutants i.e. NOx, SO2, NMVOC and NH3 for the year 2010. These ceilings 

are even more restrictive than the ones of the LRTAP convention (European 

Commission, 2015).  

At the local level, different kinds of polices are also implemented in order to limit 

air pollution. In European city centers, the introduction of Low Emission Zones 

(LEZs) is becoming very common. Austria, Belgium, Czech Republic, Denmark, 

Finland, Germany, Greece, Italy, France, the Netherlands, Norway, Portugal, 

Sweden and United Kingdom all have implemented LEZs of various scopes and 

with different characteristics. LEZs consist in predetermined geographical areas 

in which road traffic is controlled and limited, based on the emission 

characteristics of the vehicles. LEZs can concern passenger or freight 

transportation, they can be regulated through national or local schemes (Cruz and 

Montenon, 2015), they can have different enforcement methods (manual versus 

technological through cameras), and a fee can also be asked to enter into the zone. 

LEZs clearly have an environmental objective and they can be completed by a 

charge zone for congestion, i.e. a zone in which additional fee should be paid, in 

order to reduce traffic jam and congestion. A well-known example of these charge 

zones of congestion is the city of London. For reducing air pollution and 

congestion, other measures such as the implementation of alternate traffic 

circulation based on license plate have been implemented earlier in city centers 

(i.e. Athens was a pioneer) but this model showed its weaknesses. Indeed, drivers 

found alternative solutions for driving every day, such as buying an additional 

car, in order to have two license plates: an even and an odd one. Road pricing in 

the form of a bonus or a malus, depending on the sustainable characteristics of the 

vehicles, as well as subsidies for alternative modes of transport are other 

examples of policies introduced at the local level to limit the externalities of 

transport.  

The implementation of all these tools at the local, national, and supranational 

level reveal the importance accorded to the development and coordination of 

transport policies which take into account their impact on the direct and indirect 

environment. 

The reduction of the negative impacts of transport is generally associated with a 

reduction of the tonne.kilometers (t.km) performed by road. One of the objectives 

of the European Commission (2011) in the White Paper for Transport, is to 
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transfer 30% of the goods transported by road over 300 km to a more 

environmentally-friendly mode by 2030, and 50% by 2050. This objective can be 

achieved through the use of alternative modes like rail and IWW. However, the 

latter are not very efficient if they are used on their own, without combining them 

with road. Rail and IWW transport present the disadvantage of not connecting 

directly all possible origins and destinations because they require terminals where 

trains or barges can be welcomed.  

A combination of road with another more environmentally friendly mode 

therefore appears as an interesting alternative solution to limit the negative effects 

of direct road transport. Combining several modes for delivering goods from an 

origin to a destination is the basic concept of multimodal, intermodal and 

synchromodal transport.  

Multimodal transport is characterized by the use of several modes of transport for 

traveling from an origin to a destination node (SteadieSeifi et al., 2014).  

Intermodal transport adds the notion of transportation in an intermodal loading 

unit without handling of the goods themselves (United Nations, 2001). Intermodal 

loading units mainly refer to containers or swap bodies. According to the 

European Commission (2004), a container is “a box to carry freight, strong 

enough for repeated use, stackable and fitted with devices for transfer between 

modes”. From the same source, a swap body is a “freight-carrying unit, used in 

Europe, optimized to road vehicle dimensions and fitted with handling devices for 

transfer between modes, usually road/rail”. The main difference between a 

container and a swap-body is that a container is stackable whereas a swap body is 

not. Moreover, swap body cannot be lifted thanks to top lifting castings but have 

to be lifted from the sides using castings along the bottom (The Intermodal 

Container Web Page, 2013). 

Synchromodal transport implies the concept of transport flexibility. The idea is 

for the shipper to let the freedom to the logistics service provider (LSP) to choose 

the transport modes during the travel (DINALOG, 2013). The LSP is able to 

dynamically select the best way of traveling according to the current traffic, time, 

weather, service level, environmental or costs conditions (SteadieSeifi et al., 

2014, Verweij, 2011). The main challenges are related to the coordination and 

optimal use of modalities. If this improved connection between modes is 

achieved, it allows for more sustainability because it helps reducing the number of 
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operations and the storage time that are responsible for external costs (e.g. noise 

or pollutants). Synchromodality therefore refers to the efficient use of intermodal 

transport. 

This dissertation focuses on intermodal freight transport as an alternative solution 

to road transport. The effects of economic and environmental planning policies on 

the modal split between road and intermodal transport are analyzed and discussed. 

The objectives and structure of the thesis are defined in the next section. 

1.2. Contributions and structure of the thesis 

 

The objective of this thesis is to develop additional knowledge regarding the 

viability of intermodal transport in terms of economic and environmental 

perspectives. For this purpose, a literature review on freight transport externalities 

provides an overview of the latest research studies in the domain, as well as an 

analysis of the main parameters which influence intermodal competitiveness. In 

order to make strategic transport decisions, realistic decision support models for 

freight transport networks must be developed, so that insights can be derived for 

the different stakeholders of the transportation chain. This thesis develops such 

innovative location-allocation and allocation models for road and intermodal 

freight transport. The models are applied on case studies, in order to highlight the 

similarities and differences between economic and environmental policies 

regarding flows, terminal locations and terminal types. This thesis enriches the 

current state of the art by providing contributions regarding 

1) Freight transport external costs 

a. The latest research studies regarding freight transport external 

costs are identified and are summarized based on their 

characteristics in terms of their perspective (academic or project-

oriented), their objective (prescription, application, projection), 

the type of externality (air pollution, climate change, noise, 

accidents, congestion), and the type of cost (marginal, average, 

total) that is considered. 

b. The competitiveness of intermodal transport in relation to road is 

assessed for economic and environmental objectives. The 

analysis of the breakeven distance between these two modes for 

operational and internalized full costs allows determining the 
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main parameters which influence the competitiveness of land 

transport. 

2) Intermodal transport and climate change 

a. A new location-allocation model for intermodal and road 

transport is developed. This model takes into account three 

modes of transport and balances the economic and environmental 

objectives related to climate change in a bi-objective formulation. 

Economies of scale of intermodal transport can also be integrated 

using different sizes of vehicles or nonlinear cost and emission 

functions of the flows transported. 

b. The model is solved using exact methods on the extended real 

Belgian case study, considering all the flow exchanges between 

Belgian, Luxembourg and some Dutch, German and French 

regions. The effects on modal split, terminal type and terminal 

location are analyzed for economic and climate change purposes.  

3) Intermodal transport and air pollution 

a. A simplification of the previous model is applied on the extended 

Belgian case study to evaluate the trade-offs between economic 

and air pollution objectives. The effect on modal split of the 

introduction of additional road taxes is compared to purely 

economic or environmental objectives. The evolution of the 

competitiveness of intermodal transport in relation to road is 

assessed when cleaner vehicles are introduced in the truck fleet, 

when the rail traction mix is modified and when inland 

waterways costs are varied. 

4) Several intermodal chains 

a. An innovative location-allocation model for road and intermodal 

transport is developed. This model allows choosing between any 

direct transport by road, rail or IWW, and any intermodal 

combination of up to three modes. The flow distribution can 

therefore be assessed between direct transport, intermodal 

transport passing through one terminal, and intermodal transport 

passing through two terminals. 

b. The model is solved exactly using experimental data at the 

European level, in order to identify the behavior of flows between 

direct and intermodal combinations on long distances. The 

optimal flow exchanges between European regions are compared 
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for policies aiming at minimizing economic (operational costs) 

and environmental objectives (CO2 emissions and air pollution 

external costs). 

The thesis is structured as follows. 

Chapter 1 provides the general context of transport and externalities, and the 

thesis contributions and structure. 

Chapter 2 investigates the concept of intermodal transport. The basic notions and 

definitions of intermodal transport are described. An analysis of the main 

strengths, weaknesses, opportunities and threats of intermodal transport (SWOT 

analysis) is then performed.  

Chapter 3 focuses on freight transport externalities. The basic notions and 

definitions of transport externalities are explained. The theory of external costs 

internalization is also developed.  

Chapter 4 develops a state of the art of external costs as competitiveness factors 

for freight transport. 

Chapters 5, 6, and 7 compile on the results of chapters 2, 3 and 4 to combine 

intermodal transport and transport externalities in mathematical models of the 

operations research domain. The models take into account economic and 

environmental objectives so as to reflect today’s and tomorrow’s expectations. 

Chapter 5 develops a new intermodal location-allocation model which allows 

assessing the impact on flow distribution, on intermodal terminal location, and on 

intermodal terminal type of policies aiming at restricting the impact of climate 

change. The model is solved for an application on the extended Belgian case 

study. 

Chapter 6 provides an intermodal allocation model which assesses the impact on 

flow distribution of several policies aiming at optimizing air pollution external 

costs. The model is solved on the extended Belgian case study. 

Chapter 7 focuses on an intermodal allocation model which allows the choice 

between direct transport and several intermodal chains. The model is solved using 

experimental data at the European level. 
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Chapter 8 identifies the main conclusions retrieved from the analyses related to 

intermodal transport, externalities, and their combination in intermodal location-

allocation or allocation models. Further research perspectives are also elaborated. 
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PART II 

INTERMODAL FREIGHT 

TRANSPORT AND FREIGHT 

TRANSPORT EXTERNALITIES 

This second part develops the concepts of intermodal 

freight transport and freight transport externalities. 

Chapter 2 focuses on intermodal freight transport. It 

describes intermodal freight transport and identifies 

its positive and negative characteristics. 

Chapter 3 concentrates on freight transport 

externalities and explains the notions of 

externalities, external costs, and internalization of 

external costs. 

Chapter 4 provides a state of the art of external costs 

as competitiveness factors for freight transport. 
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8. Conclusions 

 

This chapter focuses on intermodal freight transport. The general definition and 

concepts of intermodal transport are first developed. A SWOT analysis of 

intermodal freight transport is then provided. 

2.1. Definition and concepts 

 

Intermodal transport is defined as the transportation of goods using two or more 

modes of transport, in the same loading unit, without handling of the goods 

themselves (United Nations, 2001). In this work, intermodal transport refers to the 

flows of goods transported in containers.  
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In this work, it is assumed that intermodal transport is performed by the travel 

through at most two intermodal terminals. This is done to better match reality and 

to represent the fact that transferring freight from one mode to another is not free 

of charges. Indeed, moving goods requires equipment (terminal infrastructure, 

cranes, storage areas) and labor (people activating the cranes, planning the 

transfer schedules). In this thesis, intermodal transport is therefore constituted by 

at most five main phases: 

1) Pre-haulage of the goods from the origin node to the first terminal 

2) Transfer at the first terminal, between the pre-haulage mode of transport, 

and the long-haul mode of transport 

3) Long-haul travel of the goods from the first to the second terminal 

4) Transfer at the second terminal, between the long-haul mode of transport 

and the post-haulage mode of transport. 

5) Post-haulage of the goods from the second terminal to the destination 

node. 

The modeling of intermodal transport is often done with road for the pre and post-

haulage (PPH) travels and with a more environmentally friendly mode like rail or 

IWW for the long-haul transport.  

Other configurations of intermodal transport with fewer stages are also possible. 

When goods are leaving or arriving at a port node, the PPH travels by road can be 

removed out of the process, since ports are generally connected to the rail and 

IWW networks. If the intermodal transport is done through one single terminal, 

only two modes of transport are required and intermodal transport refers to three 

stages i.e. pre-haulage from the origin to the unique terminal, transfer from one 

mode to another, and post-haulage from the unique terminal to the destination 

node. 

In order to be adopted by users, intermodal transport has to be efficient. It is 

therefore essential to identify the positive and negative features that characterize 

intermodal transport. This is the purpose of the following section. 
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2.2. SWOT analysis of intermodal freight transport
1
 

 

The SWOT analysis (table 1) identifies the positive and negative internal 

(strengths and weaknesses) and external (opportunities and threats) parameters 

that play a role on intermodal transport. Based on documents, scientific literature 

review, and interviews with experts in the field, the main elements related to the 

operational, macro-economic, sustainable, regulatory, and governance domains 

are pointed out. 

Strengths Weaknesses 

- Reduced costs and externalities 

(on “long” distances) thanks to 

larger capacities  

- Storage facilities and service 

providers 

- Liberalization of the market (rail) 

- Weak network access (rail)  

- Lack of flexibility 

- High fixed costs 

- High drayage operating costs 

- Missing links 

Opportunities Threats 

- Consolidation of flows 

- A single European 

Market/Transport Area (rail) 

- Future road taxes 

- Standardization 

- Cancellation of investments and 

subsidies 

- Interoperability problems 

- Passenger traffic (rail) 

- European Monopoly or duopoly 

(rail) 

Table 1: SWOT analysis of intermodal transport 

2.2.1. Strengths 

 

Intermodal transport benefits from the advantages of its combined transportation 

modes. Rail and IWW transport on the long-haul travel enable economic and 

                                                           
1
 This section is partially based on results of the BRAIN-TRAINS project published under the 

references: 

 “Troch, F., Vanelslander, T., Sys, C., Belboom, S., Léonard, A., Limbourg, S., Merchan Arribas, 

A., Mostert, M., Stevens, V., Tawfik, C. M. F., & Verhoest, K. (2015). Brain Trains: Intermodal 

Rail Freight Transport and Hinterland Connections - A Swot Analysis to Assess the Belgian Rail 

Practice. Proceedings of the IAME Annual Conference 2015.”  

“Troch, F., Vanelslander, T., Sys, C., Belboom, S., Léonard, A., Limbourg, S., Merchan Arribas, A., 

Mostert, M., Stevens, V., Tawfik, C. M. F., & Verhoest, K. (2015). Brain Trains: Transversal 

assessment of new intermodal strategies: SWOT analysis.” 
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environmental savings. Indeed, these modes generate economies of scale 

(decrease of the average unit cost thanks to an increase of quantities/services 

produced) which imply reduced average costs/externalities per unit transported 

(Yevdokimov, 2000, Rodrigue et al., 2006).  

The economic and environmental interest of intermodal transport is generally 

acknowledged on “long” distances. Intermodal transport implies additional 

transshipment operations between the different modes. These additional 

transshipment activities generate economic and environmental costs. The main 

benefits of intermodal transport are achieved on the long-haul travels by rail or 

IWW. If the distance with these modes is too short, compared to the PPH by 

truck, it is possible that the advantages obtained on the long-haul travel cannot 

compensate for the transshipment and road operational and external costs. The 

breakeven distance at which intermodal transport becomes more interesting than 

road differs according to the authors. Grosso (2011) states that, for operational 

costs, “according to experiences and common practice in transport, the minimum 

rail distance that allows a shift from road to rail is around 500-600 km”. Janic 

(2007) determines the breakeven distance between road and intermodal rail 

transport at 900 km and 1050 km, respectively for internal and full costs. Janic 

(2008) claims that using Long Intermodal Freight Trains (LIFTs) instead of 

Conventional Intermodal Freight Trains (CIFTs) reduces the breakeven distance 

for full costs to 700 km. However, high volumes and short PPH distances can 

make intermodal transport attractive on short and medium distances (Bouchery 

and Fransoo, 2015).  

Intermodal terminals can provide storage and service facilities to their users. 

Inland terminals can be referred to dry ports when they are directly connected to a 

sea port. Leveque and Roso (2002) define a dry port as “an inland intermodal 

terminal directly connected to seaport(s) with high capacity transport mean(s), 

where customers can leave/pick up their standardized units as if directly to a sea 

port”. In the literature, various terms have been used to define intermodal inland 

terminals. Please refer to Notteboom and Rodrigue (2009) for a detailed typology. 

Besides the transfer of goods between modes, inland terminals provide additional 

services to their users. One of their main advantages relates to storage facilities. 

Sea ports generally face problems of land availability. Since land prices are lower 

in dry ports than in sea ports, customers can store their goods at a reduced cost. 

Moreover, storing at the dry port reduces the inventory and congestion at the sea 

port. Several types of services can be handled at the intermodal terminal such as 
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labeling and packaging of goods, customs clearance or container repair. The 

“Trilogiport” multimodal platform at Liege in Belgium is a good specific example 

of the willingness to incorporate services at the intermodal terminal. Indeed, 41.7 

hectares of land (i.e. about 42% of the total available area) are dedicated to 

logistics services. This zone is devoted to European distribution centers that can 

provide added-values to the goods that are passing through the platform (Port 

Autonome de Liège, 2016). 

The liberalization of the rail sector in Europe is a positive element for rail freight 

transport competitiveness. The liberalization process in Europe started in 2005 

and was completely achieved in 2007. Before this process, the rail market in each 

country was characterized by a monopoly, where one national freight company 

was providing the whole offer to the network users.  In economic theory, 

monopolies are responsible for market failure since producers (transport service 

providers in this case) hold some market power and do not price at the marginal 

cost but at a higher price (Gathon, 2013). It leads to inefficient systems where less 

quantity is produced (lower number of trips for instance) and at a higher price. 

Even if for rail experts in Belgium, the effects of the liberalization are not yet 

totally visible, positive impacts on the market development are expected, with 

increased competition at the borders, and the implementation of interoperability 

measures. 

2.2.2. Weaknesses 

 

Rail transport is characterized by a weak network access compared to road. 

Indeed, some obstacles, like slot attribution, establishment of new connections, 

expensive load wagons and network density, imply access restrictions such as the 

long lead times before operating a new service. These issues restrict the potential 

admission of new players on the network, and therefore limit the expansion of this 

mode of transport. The late deregulation of the rail sector compared to road also 

put barriers on the sector development. Difficult network access favors the system 

of one national company per country (Pham, 2013, Crozet et al., 2014) and the 

non-efficient economic theory of monopoly. 

Intermodal transport suffers from a lack of flexibility. It is explained by several 

elements. First, intermodal transport requires high load factors to be able to 

generate economies of scale. Ensuring this full loading of trains or barges 

therefore implies longer waiting times before operating the transport and leads to 
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services based on fixed schedules, which reduce transport flexibility. Second, few 

modifications can be performed in relation to the forecast schedules and flows. 

Indeed, in case of accidents on the rail and IWW network, it is difficult to find an 

alternative path. Other specific elements such as the priority of passenger over 

freight transport for trains, or variations of the water level due to the weather for 

barges reduce the flexibility of intermodal transport. In this context, the 

commitment of shippers to respect planned schedules and transported quantities is 

crucial for intermodal viability.  

Intermodal transport has to support high fixed costs compared to road. Indeed, rail 

or IWW transport implies the use of expensive locomotives, wagons, barges, 

cranes, and the development of an adapted rail or IWW infrastructure. These costs 

are much higher than for road, which makes intermodal freight transportation 

only competitive if high quantities of goods are transported.  

Intermodal transport implies the use of road and rail or IWW to deliver the goods 

from an origin to a destination node. This means that three main types of costs 

have to be supported: PPH by truck, long-haul transfer by train or barge, and 

transshipment costs at the terminal. Drayage operations costs consist in the 

movements by trucks between terminals and shippers or receivers, i.e. they refer 

to the PPH travels. Even if they are performed on short distances, drayage 

operations still consist in an important part of the total intermodal transportation 

costs. According to Macharis and Bontekoning (2004), they represent between 

25% and 40% of an origin-destination intermodal travel. These operations may 

hamper the profitability and the competitiveness of intermodal transport. They 

must be carefully considered in the intermodal transport planning. 

Intermodal transport is very dependent on its network and on the development of 

its infrastructure. At the European level, nine core network corridors 

(Scandinavian-Mediterranean Corridor, North Sea-Baltic Corridor, North Sea-

Mediterranean Corridor, Baltic-Adriatic Corridor, Orient/East-Med Corridor, 

Rhine-Alpine Corridor, Atlantic Corridor, Rhine-Danube Corridor, and 

Mediterranean Corridor) have been defined. An illustration of these corridors is 

shown by figure 1. 
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Figure 1: Core network corridors (source: RailNetEurope) 

On each corridor, coordination between the intermodal stakeholders is promoted, 

in order to provide high quality service. Some of these corridors however suffer 

from missing links. Flows cannot therefore directly go through the corridors using 

intermodal transportation. Europe is working on the building of the missing links. 

By doing so, they specially address the need of developing connected, 

interoperable, intelligent and environmentally responsible infrastructure networks. 

Even if the process of connecting the different parts of the network is going on, 

intermodal transport is nowadays still suffering from the situation, since these 

current disconnections imply the use of alternative paths, which are generally 

longer, if they exist.  

2.2.3. Opportunities 

 

Unlike road transport, which is interesting for its flexibility and rapidity, 

intermodal transport bases its competitiveness advantage on the possibility of 

generating economies of scale by consolidating flows at intermodal terminals. 

Consolidation is defined by Bookbinder and Higginson (2002) as “an active effort 

to more efficiently utilize transportation resources”. The term bundling is also 

interchangeably used to denote “the collection of goods to fill a transport unit” 
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(Macharis et al., 2002). Consolidation happens to balance the mismatch between 

shipment sizes and transportation mode units’ capacities. The decision to 

consolidate flows is based on different parameters: consignment size, transport 

distance, transport time demand, product characteristics and availability of other 

goods along the route (Woxenius, 2007).  Different schemes of flow consolidation 

exist in intermodal transport. Six theoretical models implying different 

consolidation strategies are defined by Woxenius (2007): direct link, corridor, 

hub-and-spoke, connected hubs, static routes, and dynamic routes (figure 2).  

 

Figure 2: Examples of the six theoretical models for transport design (source: 

Woxenius, 2007) 

The creation of a single European transport area and market makes the intermodal 

transportation of goods easier and more efficient. Through the implementation of 

European rules which aim at standardizing economic and technical regulations, 

flows can travel more easily on the European territory. Technical standardization 

passes through the modification of vehicle fleets, of transportation units, and of 

the network infrastructure. Economic regulation refers to an open market, where 

no monopoly exists, and where as perfect as possible competition is encouraged. 

According to the European Commission (2011) in its White Paper, the main 

expected benefits of a single European open market are reduced costs, increased 

sustainability and safety, and increased economic development through the 

creation of high quality jobs and working conditions. 

There is currently a political consent to shift the costs of the infrastructure to the 

user, i.e. through taxes on highways. These taxes can indirectly benefit to 

intermodal transport since it performs fewer kilometers on highways than when 

direct door-to-door road transport is used. If PPH distances are not too important 
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compared to the total length of the travels, taxes for trucks mean higher costs for 

road transport and relatively more attractiveness for intermodal transport. 

The standardization that is being established on the nine core freight corridors is 

an interesting opportunity of the intermodal sector since it allows the access to 

previously inaccessible markets. The development of interoperable services 

passes through the adaptation of gauges, safety, communication and signaling 

systems. Standard vehicles save time and money at borders. The standardization 

is paired with the increase use of information technology, such as freight tracking 

and tracing systems. The implementation of the European Rail Traffic 

Management System (ERTMS) in Europe, with its harmonized safety (European 

Train Control System - ETCS) and communication (Global System for Mobile 

communications - Railways - GSM-R) components is clearly going in this 

direction. 

2.2.4. Threats 

 

The rail and IWW freight sectors require important investments in terms of 

infrastructure and rolling stock. The European standardization of equipment and 

infrastructure is also expensive. For this reason, the financial support provided by 

the European Union and its member states is crucial in terms of business survival. 

Nevertheless, European budget restrictions limit the contribution of states in 

investments and subsidies for all sectors, including intermodal transport. The 

restriction of these financial helps may clearly hamper the development of the 

intermodal sector in its launch phase. The direct help from Europe, through funds 

like the Trans-European Transport Network (TEN-T) program and its related 

financial instrument, the Connecting Europe Facility, Structural Funds and 

Cohesion Funds as well as the European Fund for Strategic Investments (EFSI) is 

very welcome (UNIFE, 2016). 

Intermodal transport is operated on long distances and may face some 

interoperability problems due to the crossing of borders between countries. 

Mulley and Nelson (1999), define interoperability as “the ability of two, or more, 

transport systems to operate effectively and efficiently together to fulfill 

consumers’ requirements of a transport system”. The objective is not only to 

connect different networks together but to ensure the invisibility of the boundaries 

between the networks. The principal requirements for achieving interoperability 

in the rail sector have been consigned in the “Technical Specifications for 
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Interoperability” (European Railway Agency, 2011). Rail interoperability issues 

may concern languages, gauges, rail infrastructure (heights and widths of 

tunnels), electrification and signaling systems, train lengths, rolling stocks, 

directions of driving (left or right) and driving license characteristics. IWW also 

faces interoperability problems related to the various sizes and depths of 

waterways, due to different construction times or to the natural characteristics of 

their surroundings. 

Rail freight transportation has to share the network with passenger transportation. 

They use the same tracks and rail freight transport generally suffers from the 

priority that is mostly given to passenger transport. Slots are often attributed first 

to passenger transport, and freight transport has to use what remains (European 

Commission, 2007). This priority to passenger transport may reduce the viability 

and competitiveness of intermodal freight transport.  

The objective of the liberalization of the European market is to provide an open 

market on which operators can compete in a fair way, in order to ensure economic 

efficiency. However, derivatives of this system could bring the system back to its 

initial state of monopoly, this time not at the country but at the European level. 

Indeed, there is a risk that big and well-established players on the market like DB 

Schenker (Germany), SNCF (France), and Trenitalia (Italy) take over small other 

national companies, and then constitute a European monopoly or duopoly, on 

which competition almost does not exist.  

The SWOT analysis has highlighted the interest of using intermodal transport 

regarding freight transport externalities.  Chapter 3 further develops the concept 

of freight transport externalities and analyzes how externalities can be integrated 

in economic policies. Even if intermodal transport is attractive as to operational or 

external costs, the breakeven distance at which intermodal transport becomes 

more competitive than road varies according to the authors and is influenced by 

several parameters. Chapter 4 focuses on these aspects and provides a state of the 

art of external costs as competitiveness factors for freight transport.  
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8. Conclusions 

 

This chapter defines the general concepts of externalities, external costs, and 

internalization of external costs.  

3.1. Externalities 

 

Externalities of transport happen when the transportation users do not totally 

support the negative effects that they cause on their environment, or do not 

retrieve the whole benefit that they are generating out of their activities. Even if 

positive externalities of transport may happen (i.e. ability to provide emergency 

services or increases in land value), they are rare compared to the negative 

impacts of transport on societies. This is why this dissertation concentrates on 

negative externalities of freight transport. 
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A lot of different types of transport negative externalities exist. The main 

categories of negative impacts relate to congestion, accidents, pollution, climate 

change and noise. Other externalities can also be identified such as scarcity of 

infrastructure or the impact on nature and landscape (Ricardo-AEA, 2014). 

Externalities can be grouped into general endpoint categories such as damage to 

human health, damage to ecosystem diversity and resource scarcity (Merchan et 

al., 2016). 

Each mode of transport generates a different intensity of externalities. Indeed, 

road, rail and IWW do not produce the same amount of air emissions, or do not 

impact populations in the same way regarding noise. In a continuous perspective 

of reducing the impact of transport on its environment, it is interesting to be able 

to value these negative transport externalities. 

Externalities happen with different time horizons. Some negative effects are 

directly linked to the transportation activities (emissions of pollutants during the 

driving of the vehicle), but others are produced at previous or further steps of the 

vehicle lifecycle (energy production, vehicle production, vehicle recycling). In 

order to fairly compare different objects or services, it is important to correctly 

determine the scope of the analysis. 

When they are evaluated, the externalities of transport are expressed in their own 

units, e.g. the amount of tonnes of pollutants, the number of decibels, the number 

of accidents, the time losses in traffic jam, etc. These measures are reliable but 

they are provided in different units. In order to more easily compare externalities 

of several categories, externalities are often translated into monetary values, 

called external costs of transport. 

3.2. External costs 

 

External costs are side effects of transportation. According to Maibach et al. 

(2008), “they are costs to society and - without policy intervention - they are not 

taken into account by the transport users”.  External costs are the monetary 

valuation of externalities. They allow comparing different kinds of externalities in 

the same unit and are also important to take into account from an economic 

perspective.  
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Transportation is characterized by social, private and external costs. Social costs 

refer to the total costs of transportation that the society must bear. They are 

composed of private and external costs (European Commission, 2008). Private 

costs are the direct costs related to a specific transportation mode (e.g. fuel cost, 

maintenance cost, infrastructure cost, insurance cost). External costs refer to the 

costs that are generated by an economic agent (user of transport) but that are 

supported by other stakeholders of the society. Pigou (1920) is the first author to 

mention the difference between marginal private and social costs. It is important 

to take into account external costs are important for pricing at the right social cost. 

This refers to the economic theory of internalization of external costs.  

3.3. Internalization of external costs 

 

The reference model for competition analysis in economics is perfect competition. 

Perfect competition remains the most used model for analyzing the positive and 

negative impacts of other complex systems.  

A market is said to be in perfect competition, when two conditions are respected. 

First, no individual or group of individuals can, by his/her/their own action, 

influence the price of the good or service that he/she/they sell(s) or buy(s). 

Second, production factors, which are looking for the highest possible revenues, 

are free to change their utilization (Jurion, 2013). 

The condition that nobody is able to influence the price on the market in a perfect 

competition scheme means that the price is a fixed parameter for any stakeholder. 

The optimal price and quantity of goods or services to produce are determined by 

the intersection between supply and demand curves. The illustration of the 

demand-supply equilibrium in a perfect competition market is illustrated by figure 

3. This equilibrium leads to the selling a quantity 𝑞 of goods, at a price 𝑝.  
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Figure 3: Demand-supply equilibrium in perfect competition 

At the supplier level, the producer of transport services continues to provide 

transportation offers as long as the marginal revenue for this additional service is 

greater than the marginal cost that he/she has to support for ensuring this service. 

In a perfect competition scheme, the marginal revenue corresponds to the price of 

the goods/services, which is fixed for any stakeholder. At equilibrium, the price is 

therefore equal to the marginal cost of the transportation service provider. 

Figure 4 identifies the effect on the market prices and quantities of the 

internalization of external costs. 

When external costs are not internalized on the market, transportation price is set 

to a value 𝑝1, with a resulting produced quantity 𝑞1. This corresponds to the 

intersection of the marginal private cost curve with the demand. Transport 

providers offer services as long as they can cover the private cost that is generated 

by the production of an additional unit.  

p 
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Figure 4: Social and private marginal cost pricing 

When external costs are internalized, the marginal total cost corresponds to the 

sum of the marginal private costs and external costs. The optimal price is 

therefore equal to 𝑝, for a produced quantity 𝑞. This corresponds to the 

intersection of the marginal total cost curve with the demand. The quantity 

resulting from the equilibrium where external costs are not internalized is higher 

than the market social optimal quantity 𝑞, and allows the market to produce too 

much, in relation to its production costs. For this reason, external costs should be 

internalized. 

This can be done in economic policies by public authorities, through the 

introduction of a Pigovian tax per unit produced, in order to bring back the 

production to the optimal quantity 𝑞. Introducing this tax pushes the initial 

marginal private cost curve to the left hand side, so that it crosses the demand 

curve at the equilibrium price 𝑝 and quantity 𝑞. On figure 4, the value of this tax 

per unit produced should be equal to the vertical 𝐴𝐵 segment.  

External costs of transport have been studied a lot in the literature and are key 

elements that influence the competitiveness of intermodal transport in relation to 

road transport. This is shown in the following chapter.  
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8. Conclusions 

 

This chapter identifies the state of the art of external costs as competitiveness 

factors for freight transport. 

4.1. Abstract
2
 

 

External costs have been a key issue in the last years of transport research. In 

Europe, this trend is in line with the political willingness to internalize 

externalities in transport pricing policies. This paper has two purposes. It first 

                                                           
2 This chapter is based on the paper published under the reference: “Mostert, M. & Limbourg, S. 

(2016). External costs as competitiveness factors for freight transport: a state of the art. Transport 

Reviews, 36 (6), 692-712.” 
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identifies the recent work achieved in the field of external costs of road and 

intermodal freight transport, where each paper is assessed in terms of its 

perspective (academic or project-oriented), its objective (prescription, application, 

projection), the type of externality (air pollution, climate change, noise, accidents, 

congestion) and the type of cost (marginal, average, total) that is considered.  The 

literature review reveals a gap in the development of generic mathematical 

functions for external costs of transport. The second objective of the paper is to 

highlight the usefulness of such functions by identifying the main parameters that 

influence freight transport competitiveness in terms of external costs, and by 

determining which of these parameters should be incorporated in further research 

works. 

4.2. Introduction 

 

Freight transport provides societal benefits but also generates costs. The sum of 

the private and external costs of transport corresponds to the total or social cost of 

transport (Pigou, 1920). Private (or operational or internal) costs refer to the costs 

that an economic agent has to support in order to perform his activities. External 

costs are side effects of transport and, “without policy intervention they are not 

taken into account by the transport users” (Maibach et al., 2008).  

The objective of the European Union is to integrate external costs in transport 

pricing policies (European Commission, 2008). Internalizing external costs allows 

pricing at the right social cost, leading to an efficient allocation of resources. 

European authorities also aim at limiting the total amount of external costs and 

therefore encourage the transfer of freight flows from road to more 

environmentally friendly modes of transport (European Commission, 2011). Road 

transport is thus in competition with intermodal transport, in order to ensure this 

modal transfer. 

In the recent years, external costs have become a key issue in transport studies. 

The broad variety of costs valuation methods, types and uses has led to the 

development of an extensive literature. 

The aim of this paper is twofold. It first provides a literature review on external 

costs of freight transport, for the last 15 years, identifying for each paper its 

perspective (academic or project-oriented), its objective (prescription, application, 

projection), the type of externality (air pollution, climate change, noise, accidents, 
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congestion) and the type of cost (marginal, average, total) that is considered. The 

second part of the paper aims at showing the practical interest of generic 

mathematical functions of external costs, for identifying the most important 

parameters that influence the competitiveness of road and intermodal freight 

transport. A sensitivity analysis of the external cost functions found in the 

literature review is therefore performed. A reference situation is compared to a 

worst-case and best-case scenario, for different parameters such as PPH distances, 

terminal locations, load and density of the goods. On the basis of this analysis, the 

main future research directions are identified.  

Section 4.3 describes the basic concepts and methodology related to transport 

external costs. Section 4.4. provides a literature review of the different studies 

dealing with external costs in freight transport. The main parameters that 

influence the competitiveness of freight transport in terms of external costs are 

identified in section 4.5. Discussion of the results is performed in section 4.6. 

Conclusions are finally drawn in the last section. 

4.3. External Costs: Methodology 

 

It is now acknowledged that transport generates negative effects on society. 

External costs consist in five main categories: global warming, air pollution, 

noise, accidents and congestion. 

External costs are not easy to evaluate and to monetize. Indeed it is difficult to 

measure physically the damage because the scope of the externality is not totally 

known, the effect is uncertain and can vary a lot from an individual to another, 

and externalities happen with different time horizons. Moreover, for the majority 

of externalities, there are no markets on which they can be exchanged at a 

commercial value (Nayes and Arnold, 2010). 

Dealing with costs requires distinguishing between marginal and average costs. In 

transport, marginal cost refers to the additional cost provoked by the transport of 

one additional unit. Average cost refers to the total transport costs divided by the 

number of units transported. In the literature, this differentiation has led to the 

development of two main methodologies: the bottom-up and the top-down 

approach.  
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The bottom-up strategy consists in starting the evaluation from the lowest level, 

i.e. the micro level. The analysis is based on the definition of the external effects 

of a particular element and how it affects its environment. This approach focuses 

on determining the marginal external cost. This method provides precise and 

detailed information on which specific parameters impact negative externalities. 

Nevertheless, since it focuses on very specific cases, it might be difficult to 

translate the obtained results into policy measures (Van Essen et al., 2007). 

The top-down strategy relates to a macro vision and consists in evaluating the 

external effects of a wider system, for example a country or a sector. This leads to 

the definition of average costs, which makes it difficult to extract the marginal 

cost value (Maibach et al., 2008). The total externalities are then divided by a cost 

unit in order to obtain the external effects of specific items. This approach has the 

advantage to be simpler than the bottom-up methodology but leads to less precise 

values. 

External costs thus deal with two main steps: determination and valuation of the 

impact. When there is no market price, different methods of evaluation exist: 

damage cost (Bickel et al., 2005, 2006a, Schmid et al., 2001), avoidance cost 

(Bickel et al., 2005, Schmid et al., 2001) or opportunity (or willingness-to-pay) 

cost method (Bickel et al., 2005, 2006a, OECD, 2005, Ortúzar et al., 2000, 

Schmid et al., 2001). The damage cost method consists in defining the real 

damages caused by the external costs. The avoidance cost method is based on 

scenarios and determines which costs are generated for avoiding a specific 

amount of externalities in the future. Finally, the opportunity cost method 

identifies the external cost value as the price that should be paid to an economic 

agent, who suffers from the externalities, in order to accept to support the external 

effect. The latter can be obtained through stated preference methods. 

4.4. Literature Review 

 

Several kinds of papers related to the identification and computation of external 

costs of road and intermodal transport can be found in the literature. Table 2 

provides a summary of the different characteristics of each paper related to the 

computation of transport external costs.  
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Costs: 

Average 

(A) 

Marginal 

(M) 

Total (T) 

Perspective: 

Academic 

Project 

Objective: 

Prescription 

Application 

Projection 

Forkenbrock 

(1999) 

X X X X  A Academic Application 

Forkenbrock 

(2001) 

X X X X  A Academic Application 

Sansom (2001) X X X  X A, M Project Application 

Mayeres (2001) X X  X X M Project Application 

RECORDIT 

(2001) 

X X X X X M Project Application 

Beuthe et al. 

(2002) 

X X X X X M Academic Application 

INFRAS/IWW 

(2004) 

X X X X X A, M, T Project Application 

CAFE (2005) X     M Project Application 

HEATCO 

(Odgaard et al., 

2005) 

X X X  X A, M, T Project Prescription 

ExternE (Bickel et 

al., 2005) 

X X  X  M Project Prescription 

HEATCO (Bickel 

et al., 2006a, 

2006b) 

X X X  X A Project Application 

Bickel et al. - 

UNITE(2006c) 

X X X   M, T Project Application 

Janic (2007) X  X X X A Academic Projection 

Janic (2008) X  X X X A Academic Projection 
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Maibach et al. 

(2008) 

X X X X X A, M Project Application 

Van Essen et al. 

(2008) 

X X X X X M Project Prescription 

Delucchi and 

McCubbin (2010) 

X X X X X M Academic Prescription 

Macharis et al. 

(2010) 

X X X X X M Academic Application 

Janic and Vleugel 

(2012) 

X X X X X A Academic Application 

Michiels et al. 

(2012) 

X     M Academic Application 

Cravioto et al. 

(2013) 

X X X X X A, T Academic Application 

Moliner et al. 

(2013) 

  X   A Academic Application 

Pérez-Martínez 

and Vassallo-

Magro (2013) 

X X  X  M Academic Application 

Ricardo-AEA 

(2014) 

X X X X X A, M Project Application 

van Lier (2014) X X X X X M Academic Prescription 

Agarwal et al. 

(2015) 

X X   X M Academic Application 

Austin (2015) X X  X X A, M Project Application 

Table 2: Summary of the main external costs characteristics studied in the 

literature 

 

The papers differ in terms of their perspective (academic or project-oriented), the 

type of externality (air pollution, climate change, noise, accidents, congestion) 

and the type of cost (marginal, average, total) that they consider. A differentiation 

of these papers can also be performed based on their objective. Some papers focus 
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on the development of the methods and tools to be used to determine the scope 

and value of external costs. Their aim is therefore to prescribe the right 

methodology (prescription). Another objective is to practically use and combine 

these methods for determining specific numerical values of external costs. This 

second objective consists in applying concretely the methodology on external 

costs (application). Finally other papers aim at formally generalizing the 

modelling of external costs, for instance for forecast purpose (projection).   

Besides external costs computations, some studies concentrate more on 

internalization policies (e.g. Beuthe et al., 2002, Macharis et al., 2010, Moliner et 

al., 2013, Agarwal et al., 2015, Austin, 2015). Optimization objectives can also be 

attributed to external costs of transport (e.g. Musso and Rotengatter, 2013, Zhang 

et al., 2013). External cost papers can focus on a specific cost type, a particular 

mode, multimodal transport or a defined transport entity such as a port or a 

terminal. 

The literature on external costs of road and intermodal freight transport does not 

only rely on academic production but is also considerably based on project-related 

papers. This shows the practical interest in tackling the issue of internalization of 

external costs of transport. The main objective of most of the papers is to 

determine the specific external costs values for different modes of transport. 

Indeed, more than 70% of the reviewed literature focuses on concrete evaluations 

of external costs, or on the impact on several internalization policies. Research on 

external costs of transport is therefore not only of theoretical scientific interest but 

has concrete applications in the real world. A smaller fraction of the analyzed 

papers concentrates on the methods that exist and that are appropriate to correctly 

evaluate the external costs of transport. This small amount of reference literature 

is not very surprising since these documents summarize all the current knowledge 

and best practices in the field. They are used by a lot of application papers in 

order to choose the correct methodology. Finally, only two papers define external 

costs functions that combine mathematically the different parameters that 

influence externalities. The lack of research in this specific area is damageable, 

since sensitivity analyses of these functions allow explicitly identifying the key 

parameters that ensure transport competitiveness, when external costs are 

internalized.  

In the following section, we look more deeply at the mathematical external costs 

functions found in the literature and provide a sensitivity analysis of different 
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parameters of these functions, in order to determine the main factors which 

influence the competitiveness of road and intermodal transport, in terms of 

external costs. 

4.5. External Costs as Competitiveness Factors 

 

The previous literature review shows that papers rarely focus on the development 

of generic mathematical functions that allow for determining the value of external 

costs. However, the use of these functions is very helpful to define the main 

parameters that ensure the competitiveness of transportation modes. This section 

aims at highlighting the interest of such functions in the identification of 

competitiveness factors of road and intermodal transport. A sensitivity analysis of 

the functions of Janic (2007, 2008) is provided in order to emphasize the key 

elements that have to be tackled in further research in the field. Best-case and 

worst-case scenarios are compared to the reference scenario, in order to determine 

the key issues that influence transport competitiveness. 

A common tool to evaluate the competitiveness of transportation modes is to 

compare their breakeven distance, i.e. the distance at which two modes of 

transport have the same cost. Below and above this breakeven distance, one mode 

is more advantageous than the other one. 

According to Kim and van Wee (2011), the elements that influence the breakeven 

distance of intermodal freight transport for operational costs can be classified into 

two categories: geometric and cost factors. These two categories are also valid for 

external costs. However, based on the sensitivity analysis of the generic costs 

functions of Janic (2007, 2008), we also identify a third category called weight 

factors. This class includes the load factor of the vehicle and the density of the 

transported goods. Finally, by reconsidering the classical hypothesis that demand 

for flows decreases with the distance, we highlight the importance of the 

management of flows on the breakeven distance. Flow management factors are 

thus grouped in a fourth category which tackles the issues of freight consolidation 

and transport reliability and flexibility. The analysis first focuses on geometric 

factors of intermodal transport and thus deals with PPH distances issues and 

terminal location scenarios. The effects of the weight (load and density) factors 

are then analyzed. We finally highlight the importance of freight consolidation 

and of the reliability and flexibility of transport services (flow management 

factors) in terms of external costs.  
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4.5.1. Reference Scenario 

 

We use the cost functions of Janic (2007, 2008) for analyzing the factors that 

influence transport external costs. The reference scenario reflects the main 

hypotheses assumed by Janic (2007, 2008) for the European case-study.  

Parameter Definition Value Unit 

𝑛𝑙 Number of locomotives per 

train 

1 locomotive 

𝑛𝑤 Number of flat wagons 26 flat wagon 

𝑠 Long-haul distance 25-1600 km 

𝑞 Net weight of the goods 

transported 

702 tonne 

𝑊 Gross weight of the train 1606 tonne 

𝑙 Number of segments 

between origin and 

destination terminal 

1 segment 

𝑣𝑙  Train commercial speed on 

segment 𝑙 
60 km/h 

𝑑𝑙 Distance of segment 𝑙 25-1600 km 

𝑛𝑑 Number of drivers 1 driver 

𝑡𝑑𝑝 Driver’s preparation and 

finishing time before and 

after the trip 

1 hour 

𝑣 Train commercial speed 

along a given line 

60 km/h 

𝐷 Anticipated delay of a train 

running between two 

intermodal terminals 

1 hour 

Table 3: Parameters and reference values of the internal and external cost 

functions 
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Door-to-door transport costs by road are determined thanks to internal and 

external cost functions for long-haul travels. Intermodal transport costs are 

constituted by internal and external (i) PPH costs by road, (ii) transshipment costs 

at the intermodal terminals and (iii) long-haul costs by rail. 

For rail transport, we use the cost function of Janic (2008) but slightly modify the 

term which represents the transshipment external costs. This term is multiplied by 

a factor two for considering the transshipment that happens both at the origin and 

destination terminal. The parameters of the rail costs are detailed in table 3. 

The rail internal cost function for one train is provided by 

 

(4.60𝑛𝑙 + 0.144𝑛𝑤 + 0.3)𝑠 + 12.98(𝑛𝑙 + 𝑛𝑤) + 5.6𝑞 + 0.0019𝑊𝑠 

 

 

+ ∑ [0.227 ∗
10−6𝑣𝑙

2

ln(𝑑𝑙)
+ 0.000774] 𝑊𝑠 + 33𝑛𝑑 (𝑡𝑑𝑝 +

𝑠

𝑣
+ 𝐷) ,

𝐿

𝑙=1
 

(1) 

 

and the rail external cost function by 

 

0.000128𝑊𝑠 + 2 ∗ 0.0549𝑞

+ ∑ [1.889 ∗
10−7𝑣𝑙

2

ln(𝑑𝑡)
+ 0.00064] 𝑊𝑠 + 0𝑊𝑠

𝐿

𝑙=1

+ 5.6𝑠𝐷̅𝑚. 

(2)  

 

 

The internal cost function (1) is constituted by six terms: the unit cost of 

depreciation and maintenance of the rolling stock and monitoring of the train, the 

unit cost of assembling/decomposing the train at both ends of the corridor, the 

unit transshipment cost at the intermodal terminals, the unit cost of using the rail 

infrastructure, the unit cost of the energy consumption along the line with L 

segments and finally the unit cost of the train’s driver.  

The external cost function (2) is composed of five principal terms: the unit cost of 

noise, the unit external cost of transshipment at the intermodal terminals, the cost 

of air pollution due to the energy consumption and production, the cost of traffic 
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accidents and finally the unit external cost of congestion. This last term is omitted 

because we assume an uncongested rail network.  

q stands for the net weight of the goods transported and is equal to 702 tonnes. W 

is the gross weight of the train and is equal to 1606 tonnes since the empty train is 

estimated at 724 tonnes and the train loading at 882 tonnes. We assume an 

average weight of 12 tonnes transported in one 20’ container (Black et al., 2003 

and Janic, 2007, 2008).  

One train consists in 26 flatcars. Each flatcar contains three 20 foot load units. 

Each unit weighs 14.3 tonnes, i.e. 12 tonnes of freight and 2.3 tonnes of tare. A 

load factor of 0.75 is assumed (Black et al., 2003). The load factor is defined as 

the ratio of the average load to total vehicle freight capacity (EEA, 2010). The 

load factor represents the utilization of the available capacity in terms of weight. 

Road external costs are split into short-haul (assumed average PPH distance of 50 

km) and long-haul (road-only) travels (Janic, 2007). A load factor λ of 0.85 and 

0.60 is respectively used for long-haul and short-haul journeys (Black et al., 

2003). The internal and external cost functions are non-linear with the distance 

travelled and are expressed in €/t.km. We assume that a full truck contains two 20 

foot load units. Cost functions of Janic (2007) are provided by vehicle.km. The 

cost per t.km is obtained by dividing the coefficient of the cost function by a 

factor 14.4 (2*12*0.60) for short-haul transport and by a factor 20.4 (2*12*0.85) 

for long-haul transport. These amounts correspond to the number of tonnes 

effectively transported by a truck over short- or long-haul transport. For long-haul 

travels, the internal cost function is 0.2676d−0,278/(t. km) and the external cost 

function is 0.4843d−0,624/(t. km). For short-haul travels, the internal cost 

function is 0.3791d−0,278/(t. km) and the external cost function is 

0.6861d−0,624/(t. km). These cost formulations imply that an increase in the 

handled quantities does not lead to economies of scale and therefore does not 

result in reduced average road costs per t.km. 

Full costs of transport refer to the sum of internal and external costs.  

Road and intermodal using rail transport are compared based on the assumption 

that the distance between two intermodal terminals on rail (s) is equal to the door-

to-door distance by road (d). For comparing fairly intermodal and road transport, 

an additional PPH distance must thus be added to the total kilometres travelled 
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using intermodal transport. For instance, a travel of 500 km by road is thus 

compared with a long-haul travel by rail of 500 km and a PPH of 50 km each. 

This assumption reflects an average situation for which the additional kilometre 

that must be performed when using intermodal transport are taken into account. 

Costs and breakeven distances are computed for distances comprised between 25 

and 1600 km, distances for which the cost functions of Janic (2007) are valid. The 

breakeven distance has to be understood as the road distance (d) at which 

intermodal transport becomes more interesting than road transport. 

According to the reference values of the cost functions of Janic (2007, 2008), the 

breakeven distance between road and intermodal transport for internal costs (925 

km) is lower than the breakeven distance for full costs (1100 km). In addition, 

there is a convergence of the internal and full costs, both for road and intermodal 

transport, meaning that unit external costs decrease with the distance. PPH 

distances of intermodal transport are assumed to be 50 km. The values of PPH 

external costs thus remain the same, whatever the distance travelled. However, if 

the long-haul distance increases, these PPH road external costs can be split into 

more kilometers. For intermodal transport, it therefore leads to decreasing 

external costs with the distance travelled. The decrease of road transport external 

costs along with the distance is linked to the definition of the cost function, which 

reflects economies of distance (figure 5). 
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Figure 5: Evolution of internal and full costs with the distance travelled, for road 

and intermodal using rail transport – Reference scenario 

Results of this reference scenario lead to a greater breakeven distance for full than 

for internal costs. This counter intuitive result is related to the structure of the cost 

functions of Janic (2007, 2008). This outcome is in contradiction with the 

willingness of the European Commission to internalize external costs and differs 

from the results of Macharis et al. (2010) which highlight that internalizing 

external costs increases the competitiveness of intermodal transport. 

The results of a greater breakeven distance for full than for internal costs also 

depend on the hypotheses of the model, such as the assumed average PPH 

distance by truck. When the real PPH and long-haul distances are taken into 

account, the relative part of PPH in the global intermodal costs can be reduced, 

which can advantage intermodal transport when internalizing external costs. The 

following sections identify the impact on the breakeven distance for internal and 

full costs of a modification of the geometric and weight parameters of the cost 

functions.  

4.5.2. Geometric Factors 

 

This chapter analyses the effects on the breakeven distance of PPH distances and 

several location scenarios. The focus is therefore on drayage external costs. 

Breakeven distance for full costs 

Breakeven distance for internal costs 
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Intermodal drayage costs are generated during the road operations of the PPH 

travels by truck (Caris et al., 2013). Drayage external costs thus refer to the 

externalities that are generated during the road travel between the pick-up at the 

origin node and the delivery at the first intermodal terminal, or between the pick-

up at the second intermodal terminal and the delivery to the destination node. 

4.5.2.1. PPH distances. 

Considering a PPH distance of 50 km refers to the basic scenario of Janic (2008) 

and thus to an average European situation. However in some countries, the part of 

intermodal transport is higher than the average European one and PPH distances 

are thus smaller.  

This is in particular the case in Belgium (Eurostat, 2013) where the modal share 

in t.km of road transport is 66.3% (75.5% for Europe), the modal share of IWW is 

18.5% (6.2% for Europe) and the modal share of rail is 15.2% (18.4% for 

Europe). Verhetsel et al. (2013) study the impact of accessibility on the location 

of logistics centres in Flanders. They observe that most of the 235 main logistics 

sites are located within 10 km of a rail and IWW terminal.  

In this sensitivity analysis, we study the impact on the breakeven distance of PPH 

distances of 50 km (reference scenario), 10 km, 5 km (Verhetsel et al., 2013) and 

0 km. The latter case consists in comparing road versus rail-only transport, which 

represents the possibility of door-to-door travels by rail, thanks to private sidings. 

Table 4 summarizes the values of the breakeven distances for internal and full 

costs of the different scenarios. 

Scenario Breakeven distance for internal 

costs (km) 

Breakeven distance for full costs 

(km) 

PPH= 50 km 925 1100 

PPH= 10 km 300 300 

PPH= 5 km 225 200 

PPH= 0 km No cost convergence No cost convergence 

Table 4: Breakeven distances for internal and full costs 

With a PPH of 50 km, the breakeven distance increases between internal and full 

costs consideration. This means that intermodal transport becomes less quickly 
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attractive if external costs are taken into account. On the contrary, a shorter PPH 

distance leads to an identical (for PPH = 10 km) or decreased (for PPH = 5 km) 

breakeven distance from internal to full costs consideration. This tends to show 

that intermodal transport is more rapidly competitive if external costs are 

internalized. The comparison between rail-only (intermodal with PPH= 0) and 

road transport leads to no breakeven distance, since the costs of rail are always 

lower than the ones of road, both for internal and full costs. The results of this 

sensitivity analysis show the importance of the proportion of PPH costs in total 

costs of intermodal transport. The difference in trend between internal and full 

costs breakeven distances is explained by external costs variations between 

intermodal and road transport. If the PPH distances increase, road external costs 

of these PPH travels increase considerably the total full costs of intermodal 

transport, leading to a longer breakeven distance between road and intermodal 

transport. External costs of road transport are higher than external costs of rail 

transport. If the PPH distances of intermodal transport become too long, then the 

long haul travel by rail cannot compensate anymore for the higher external costs 

of the PPH costs by road. This means that the internalization of external costs 

leads to a longer breakeven distance for full costs than for internal costs. In order 

to allow rail transport to compensate for the negative impacts of road transport in 

terms of externalities, PPH distances must thus be reduced as much as possible. 

Figure 6 shows the different external costs of transport, according to the 

considered scenario. The external costs of rail-only transport are always lower 

than the external costs of road transport (on an identical distance). For a PPH 

distance of 5 km, intermodal transport external costs are lower than road transport 

external costs around a distance of 125 km, against 300 km for a PPH distance of 

10 km. When considering a PPH distance of 50 km, the external costs of 

intermodal transport are always higher than the ones of road transport. However 

intermodal external costs decrease more quickly with the distance travelled than 

road external costs. 

The results of this analysis confirm that the PPH operations are very important for 

the competitiveness of intermodal to road transport. Indeed it comes out of the 

results that small PPH distances lead to lower external costs for intermodal than 

for road transport. In the case of small PPH and with the internalization of 

external costs, intermodal transport becomes more rapidly competitive in terms of 

distance than when only internal costs are taken into account. On the other hand, 

for longer PPH distances, external costs internalization leads to a lower 
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competitiveness of intermodal transport, i.e. to a higher breakeven distance than 

when only internal costs are considered. 

 

Figure 6: Comparison of road and intermodal external costs with different PPH 

4.5.2.2. Location scenarios. 

Until now we considered that the rail distance was equivalent to the door-to-door 

distance by road (i.e. between the origin and the destination nodes). Figure 7 

illustrates the two extreme situations under the alignment condition. The origin A 

and destination B represent the best-case scenario for intermodal transport 

whereas the origin C and destination D represent the worst-case scenario for 

intermodal transport. T1 and T2 stand for the origin and destination terminals. 
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Figure 7: Location of origin and destination nodes in relation to origin and 

destination terminals 

In this analysis, the circle around a terminal (determined by a specific average 

PPH distance) represents the potential origin/destination nodes that can be served 

by the terminal. It does not correspond to the rail market area defined as the set of 

all the points around the terminal for which intermodal transport using rail is less 

expensive than road-only transport. Contrary to figure 7 which represents by a 

circle the potential origin/destination nodes that can be served by the terminal, the 

shape of the terminal market area is part of the family of Descartes’ ovals (Niérat, 

1997) and its border represents all the points for which road and intermodal using 

rail transport have the same cost. Please refer to Limbourg and Jourquin (2010) 

for further discussions on the shape of the market area around intermodal 

terminals. 

In the reference scenario, a comparison is made between road and intermodal 

using rail transport, based on the hypothesis that the long-haul transport by rail  is 

equal to the door-to-door transport by road (s=d). In the best-case scenario for 

intermodal transport, the transport distance by rail is determined as s = d − 2 ∗ p, 

where p stands for the PPH distance. In the worst-case scenario for intermodal 

transport, the transport distance by rail is defined as s = d + 2 ∗ p. This instance 

is very simple since it assumes that the road and rail network are equivalent in 

terms of pathway, which is generally not the case. 

  

T1 T2DCA B
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Scenario Breakeven distance for 

internal costs (km) 

Breakeven distance for 

full costs  

(km) 

Reference scenario: s = d 925 1100 

Best-case scenario: s = d-2p 750 875 

Worst-case scenario: s = d+2p 1150 1375 

Table 5: Sensitivity analysis of the breakeven distance for internal and full costs 

to the location scenario 

The relation between the door-to-door distance by road and the long-haul distance 

by rail impacts the competitiveness of intermodal transport (table 5). Both internal 

and external costs are affected by the relation between rail distance and door-to-

door distance by road. The breakeven distances for internal and full costs are thus 

both modified. However the variation of the breakeven, in relation to the 

reference scenario, is a little bit higher for full costs than for internal costs. 

Indeed, for the best-case scenario, the variation is -18.9% for internal costs 

against -20.4% for full costs. For the worst-case scenario, a variation of +24.3% is 

observed for internal costs against +25% for full costs. 

The location scenario, and therefore the distances on which road and intermodal 

using rail transport are compared, also impacts the external costs of transport and 

the full costs breakeven, but to a lesser extent than the PPH distances. These 

results confirm the importance of drayage operations for external costs generation 

and therefore transport competitiveness. 

4.5.3. Weight Factors 

 

This section focuses on how the competitiveness of transport is affected by the 

load and density aspects. 

4.5.3.1. Load factors. 

The load factor has been defined as the percentage of the available capacity of the 

vehicle that is effectively used. The load factor influences externalities of 

transport (Maibach et al., 2008) and therefore impacts the competitiveness of 

transport modes when external costs are internalized. The load factor of rail 

transport is varied in order to analyze its effects on external costs and breakeven 
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distances. The best-case scenario for intermodal transport refers to a load factor of 

1, meaning that the full capacity of the train is used. The worst-case scenario is 

determined using a load factor of 0.5 (EEA, 2010). Table 6 provides the different 

breakeven distances. 

Scenario Breakeven distance for 

internal costs (km) 

Breakeven distance for 

full costs  

(km) 

Reference scenario: λrail = 0.75 925 1100 

Best-case scenario: λrail = 1 675 750 

Worst-case scenario: λrail =  0.5 No cost convergence No cost convergence 

Table 6: Sensitivity analysis of the breakeven distance for internal and full costs 

to the rail load factor 

The results show that the internal and external breakeven distances are sensitive 

to the rail load factor. As expected, an increased load factor for rail favours 

intermodal transport competitiveness. The comparison of the reference and best-

case scenario shows that the breakeven distance for full costs decreases more (-

31.82%) than the breakeven distance for internal costs (-27.02%). Again, external 

costs seem even more sensitive than internal costs to the load factor. When 

considering a load factor of 0.5, no breakeven distance is found between 

intermodal and road freight transport since road transport is always cheaper. The 

load factor of rail transport is therefore an important element in the decision of 

using intermodal transport, both from the economic and sustainable point of view.  

A half loaded train is thus not sufficient for achieving intermodal 

competitiveness. A deeper analysis determines that, under the reference scenario 

hypotheses, a minimum rail load factor of 67% is required for intermodal 

transport to become competitive from the full costs point of view. This rail load 

factor decreases to 63% for achieving intermodal competitiveness from the 

internal costs point of view. 

4.5.3.2. Density factors. 

The reference scenario assumes that a 20’ container contains on average 12 

tonnes of freight. This hypothesis stands for average density goods. However the 

weight can vary depending on the heaviness or lightness of goods (Black et al., 
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2013). We analyse the effect on transport competitiveness of such a density 

modification. We assume that heavy goods have to be transported, meaning that 

an average load of 22 tonnes is considered. This corresponds to the maximum 

load of a 20’ container according the ISO standards. As expected, the breakeven 

distances for both internal and full costs decrease respectively to 550 and 625 km. 

The breakeven variation is again more important for internal (-40.5%) than for 

full (-43.3%) costs, meaning that external costs are more sensitive than internal 

costs to density. Nevertheless, the variation of external costs is not sufficient for 

reducing the breakeven for full costs to a distance lower than the breakeven for 

internal costs. 

4.5.4. Flow Management Factors 

 

The hypothesis of Janic (2007), stating that demand flows generally decrease 

while the distance increases, is in particular supported by the transport gravity 

generation model (Ortúzar and Willumsen, 2011, Rodrigue et al., 2006). 

However, consolidation of flows is one technique that allows for generating 

higher demand on long distances. Consolidation is a critical issue for transport 

actors and bundling strategies can be classified into five basic bundling types 

(Kreutzberger, 2010). For barge transport, bundling can be achieved through 

cooperation between inland terminals, which leads to aggregate flows generation 

(Caris et al., 2012, Konings et al., 2013). The use of freight corridors allows 

avoiding flow reductions over longer distances. Increased distances between 

origin and destination nodes are thus not necessarily synonym of reduced 

intermodal competitiveness. 

Transport reliability must also be considered for comparing different modes of 

transport in a fair way. Reliability refers to transit/lead time variability (Dullaert 

and Zamparini, 2013). Reliability has effects on external costs and thus impacts 

the transport mode competitiveness. Indeed the unreliability of a mode of 

transport, especially in the case of intermodal transport, can lead to the missing of 

the connection with the following mode in the chain. This situation generates 

increased external costs that result, for instance, from the additional storage or 

handling operations that are required. 

Transport flexibility is another element that influences the external costs of 

transport. This notion is related to the concept of synchromodal transport. The 

idea is for the shipper to let the freedom to the logistics service provider (LSP) to 
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choose the transport modes during the travel (DINALOG, 2013). The LSP is thus 

able to dynamically select the best way of traveling according to the current 

traffic, time, weather, service level, environmental or costs conditions 

(SteadieSeifi et al., 2014, Verweij, 2011). The main challenges are related to the 

coordination and optimal use of modalities. If this improved connection between 

modes is achieved, it allows for more sustainability because it helps in reducing 

the number of operations and the storage time that are responsible for external 

costs (e.g. noise or pollutants). Synchromodality thus refers to the efficient use of 

intermodal transport. The design of such a transport system has recently been 

studied by Fan (2013). 

4.6. Discussion 

 

Based on the literature review and on the analysis in the last section, we discuss 

the use of externalities, marginal or average costs for integrating external effects. 

The cost functions studied in the previous section only refer to road and 

intermodal rail transport. However, intermodal IWW transport is also recognized 

for its benefits in terms of externalities. We thus give some insights for further 

research topics on this particular mode. 

The literature review shows that external costs of transport are not only of 

academic but also of real-life and project-based interests. Most of the papers deal 

with the topic of concretely evaluating the external costs values of specific modes 

of transport, or the impact of different internalization policies in the 

competitiveness of modes. Very few studies focus on the identification of generic 

mathematical functions that define average costs of transport. However, these 

functions have been proven to be very useful to identify the main competitiveness 

factors in terms of external costs. 

The analysis in the previous section deals with average costs estimations. 

Nevertheless, even if identifying the competitiveness of one mode of transport 

based on average costs is relatively easy and provides general recommendations, 

the use of average costs may lead to a lot of variations. External costs can appear 

in various situations such as different means of transport, vehicle technologies, 

road types, time periods, traffic conditions, geographical zones characteristics, 

population densities and standards of living. Some of these elements are related to 

the externality itself. A higher slope means for instance higher fuel consumption 

(Demir, 2012) and thus more emissions of pollutants. Other elements are linked to 
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the valuation aspects. For instance an additional decibel in an already noisy 

environment will be valued less than in a very calm area (Bickel et al., 2006). The 

particular circumstances of the external costs generation cannot thus be totally 

reflected in average costs.  

The choice for the type of considered costs must therefore carefully be achieved. 

For general strategic issues, i.e. for the identification of the main factors that 

influence the competitiveness of road transport, we recommend the use of average 

external costs functions. 

If the focus is on a specific transport connection, the use of the marginal cost 

approach is possible and seems more relevant. Indeed, marginal costs provide 

more reliable results in the framework of a specific point-to-point or firm-to-firm 

configuration analysis. The comparison of the marginal effects of several modes 

of transport can for instance be performed on a specific geographic corridor. The 

marginal external cost analysis can focus on the emissions related to the use of the 

transport mode (tank-to-wheel analysis), on the production phase (well-to-tank 

analysis) or on both aspects (well-to-wheel analysis, e.g. Hoffrichter et al., 2012).  

Instead of focusing on costs, one can also consider the externality itself, in non-

monetary units. Under this situation, it is easy to compare different modes of 

transport for a same type of external effect. For instance carbon dioxide emissions 

can simply be evaluated since they are virtually proportional to fuel consumptions 

(Kirby et al., 2000). However the use of the externality unit instead of its cost 

may lead to difficulties in comparing two different types of externality (e.g. noise 

and air pollution). 

Externalities, average costs functions and marginal costs values should thus be 

used in a complementary way, depending on the specific issue that is addressed. 

Average costs functions better suit the objectives of identifying strategic 

competitive factors, while marginal costs values are more appropriate for 

application to specific case studies. The use of externalities in non-monetary units 

allows for less variation in the estimation, although it suffers from the difficulty to 

compare external costs of different units. 

Also, the determination of external cost values or functions is generally an 

iterative procedure, based on related earlier studies. However, in order to account 

for the evolution of technologies (e.g. EURO norms for trucks), there is an 

important need for actualising these values and functions with up-to-date data. 
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Finally, several studies deal with external costs of IWW transport (see for 

instance Beuthe et al., 2002, Brons and Christidis, 2012 in the framework of the 

European Marco Polo project, Caris et al., 2013, Ricci and Black, 2005 or van 

Lier and Macharis, 2010). The above analysis has been developed for the 

evaluation of road and intermodal using rail transport costs. In the literature, we 

did not find any similar cost functions to those provided by Janic (2007, 2008) for 

IWW transport. However, it has been showed for intermodal rail transport that 

these generic functions considerably help in identifying the main competitiveness 

factors of a specific mode. Some of the results obtained for rail transport should 

also be valid for IWW transport, such as results related to drayage distances and 

location scenarios. Further research work should nevertheless be performed in this 

direction, in order to confirm these statements. 

4.7. Conclusions 

 

This paper focuses on the identification of external costs as competitive factors of 

freight transport. After a review of the basic methodology and definitions related 

to the topic, an analysis of the recent literature is provided. Very few papers in 

this field focus on the development of generic mathematical functions of external 

costs. However, the latter are very useful to strategically identify the main factors 

that influence the competitiveness of transport in terms of external costs. For 

illustrating the usefulness of such functions, a sensitivity analysis of the 

parameters of the functions developed by Janic (2007, 2008) is provided in the 

context of the internalization of transport external costs. 

The analysis of the functions of Janic (2007, 2008) highlights the importance of 

drayage operations external costs. Indeed, the PPH distances and location 

scenarios clearly influence the competitiveness of transport, when external costs 

are internalized. The load and density factors also impact transport 

competitiveness but to a lesser extent. Furthermore, the way in which flows are 

managed also influences the amount of generated externalities, and thus the 

competitiveness of different transportation modes.  

Further research topics on freight transport and environmental effects clearly have 

to consider the decisions related to the location of intermodal terminals. Indeed, 

depending on the commercial density of their surrounding areas, terminal 

locations determine the level of consolidation and thus the load factor. 

Furthermore, terminal locations also define the PPH distances of the companies 
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that they disserve. These factors have been identified as competitiveness attributes 

for intermodal transport full costs.  Location decision problems have thus to 

integrate environmental issues and focus on both rail and IWW transport.  

The use of generic mathematical functions dealing with average costs is useful for 

identifying the strategic competitiveness factors of freight transport. Nevertheless, 

this method should be considered in a complementary way with other approaches, 

such as the use of marginal costs. This solution is more appropriate for 

representing a particular case-study with all its specificities. In order to avoid 

errors in the monetization of costs, externalities themselves can also be directly 

taken into account. External cost values and functions require regular updates 

along time to account for the quick evolution of technologies. 

Finally few articles deal with the definition of generic functions for external costs 

computation. In this study, the usefulness of such kinds of functions has been 

practically shown for road and intermodal rail transport. No formulation was 

found in the literature to determine the external costs of IWW transport. Some 

research should also be performed in that direction. 
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PART III 

OPTIMIZATION MODELS 

AND APPLICATIONS 

This third part combines intermodal freight 

transport and freight transport externalities through 

the development of optimization models and their 

application to case studies. 
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Part II of the thesis (chapters 2, 3 and 4) has developed the topics of intermodal 

transport and transport externalities. The integration of the environmental 

component and the PPH distances of intermodal transport have been identified as 

key factors for improving intermodal transport development. Since PPH distances 

are determined by the position of intermodal terminals, it is necessary to correctly 

identify the location of intermodal facilities. The flow distribution between road 

and intermodal transport can then be deduced.  

The following part III of the thesis (chapters 5, 6 and 7) combines intermodal 

transport and transport externalities in optimization models of the operations 

research domain. These chapters focus on the analysis of intermodal location-

allocation or allocation models, taking into account economic and environmental 

perspectives. Each chapter provides a model with specific characteristics and its 

application to a transportation network.  

Chapter 5 deals with a three-mode bi-objective intermodal location-allocation 

model which accounts for climate change. The formulation evaluates the effects 

on intermodal terminal location, type and modal split of optimizing operational 

costs and CO2 emissions. The model is applied to the Belgian case study and 

allows testing how results vary if intermodal economies of scale are integrated or 

not, if unit costs and emissions are modified, and if the number of terminals to 

locate changes.  

Chapter 5 reveals that an increased intermodal market share is observed when 

economies of scale are considered, rather than when they are not. Indeed, taking 

into account economies of scale encourages a more intensive consolidation of 

flows, leading to reduced global costs and emissions for intermodal transport, 

with a higher use rate of this mode. Moreover, the phenomenon of self-

cannibalization among intermodal terminals is observed when economies of scale 

are integrated. In chapter 5, economies of scale have been modeled using several 

vehicle sizes or nonlinear functions of the flows. These methodological issues add 

complexity to the resolution of the problem. Since the results of the approaches 

that integrate and that do not integrate economies of scale provide not too 

different modal splits, and for keeping reasonable computational times, the 

following chapters 6 and 7 deal with linear costs and emissions, without taking 

into account economies of scale of intermodal transport. 
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Chapter 6 provides an intermodal allocation model which integrates the air 

pollution environmental impact. The model is applied to the Belgian case study 

and identifies the variations of flow allocation between a policy aiming at 

minimizing air pollution external costs (environmental perspective) and a policy 

aiming at minimizing operational costs (economic perspective). An intermediate 

policy consisting in the introduction of additional road taxes in an economic 

perspective is also evaluated. 

Chapter 7 delivers an intermodal allocation model that allows the choice between 

direct transport and any intermodal chain of up to three modes. This formulation 

differs from the traditional modeling of intermodal transport as a road-rail/IWW-

road combination. The formulation is tested on a network at the European level. 

The model identifies the effects on modal split of policies which optimize 

operational costs, CO2 emissions and air pollution external costs.  

Table 7 summarizes the main characteristics of the three models and applications 

developed in chapters 5, 6 and 7. 
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Characteristics Climate change Air pollution Several intermodal 

chains 

Three modes X X  

Any intermodal 

combination of up to 

three modes 

  X 

Direct road transport X X X 

Direct rail and IWW 

transport 

  X 

Intermodal transport 

with one terminal 

  X 

Intermodal transport 

with two terminals 

X X X 

Bi-objective X   

Economies of scale X   

Belgian case study X X  

Experimental results 

at the European level 

  X 

Operational costs X X X 

CO2 emissions X  X 

Air pollution external 

costs 

 X X 

Table 7: Overview of the characteristics of the three models and their application 
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8. Conclusions 

 

This chapter identifies the links between intermodal transport and climate change 

through an intermodal location-allocation model. The model is applied to the 

Belgian case study.  

5.1. Abstract
3
 

 

Freight transport planning is nowadays encouraged to align with environmental 

objectives. Among those, climate change is of particular interest for many 

countries. In its White Paper on Transport, the European Commission (2011) 

                                                           
3
 This chapter is based on the paper published under the reference: “Mostert, M., Caris, A. & 

Limbourg, S. (2017). Intermodal network design: A three-mode bi-objective model applied to the 

case of Belgium. Flexible Services and Manufacturing Journal, In Press” 
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considers intermodal transport as a potential solution for reducing environmental 

impacts. In order to make good strategic transport decisions, realistic decision 

support models for freight transport networks must be developed, so that insights 

can be derived for the different stakeholders of the transportation chain. This 

research provides a bi-objective mathematical formulation which takes into 

account economic and environmental objectives, on a road and intermodal 

network with three modes of transport (road, intermodal rail, and intermodal 

IWW), and in which economies of scale of intermodal transport can be 

considered. With this model better fitting reality, an application to the Belgian 

case study provides practical information on how flows, terminal types and 

locations vary depending on the chosen policy, on the integration or not of 

economies of scale, on costs or emissions modifications and on the number of 

terminals to locate. Results show that the chosen policy influences the terminal 

type and the intermodal market share. The study also highlights the interest of 

intermodal transport on short distances, and the risk of flow exchanges inside the 

intermodal market share, rather than between road and intermodal transport. 

5.2. Introduction 

 

One of the most negative impacts of transport on climate change is the release of 

CO2 emissions. Road transport represents around 20% of the total carbon dioxide 

emissions in Europe (European Commission, 2015a). Nowadays, European 

authorities clearly encourage the transfer of freight flows from road to more 

environmentally friendly modes of transport such as IWW or rail (European 

Commission, 2011). Intermodal transport is identified as an interesting solution 

for achieving the required transfer from road to less polluting modes of transport. 

Intermodal transport is defined as the transportation of goods using two or more 

modes of transport, in the same loading unit, without handling of the goods 

themselves (United Nations, 2001). For ensuring intermodal competitiveness both 

in terms of economic and environmental issues, it is of strategic importance to 

correctly locate intermodal terminals (Mostert and Limbourg, 2016). The location 

of terminals determines the PPH distances of trucks between the terminals and the 

origin/destination nodes. If terminals are wrongly located, i.e. if the PPH 

distances are too long, the benefits obtained on the intermodal travel cannot 

compensate anymore for the higher costs and emissions of road transport. 
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Intermodal transport has been studied according to different perspectives 

(Bontekoning et al., 2004, Mathisen and Sandberg Hanssen, 2014) in the literature 

and an important part of research is concentrated on supporting the decision-

making process (Macharis and Bontekoning, 2004, Caris et al., 2008, Caris et al., 

2013, SteadieSeifi et al., 2014). 

In particular, network design problems have been addressed using several 

methodologies: agent-based models (Sirikijpanichkul et al., 2007) , GIS-based 

models (Macharis and Pekin, 2009, Macharis et al., 2010, Zhang et al., 2013, 

Meers and Macharis, 2014) or mathematical programming models (Arnold et al., 

2001, Arnold et al., 2004, Racunica and Wynter, 2005; Ishfaq and Sox, 2011,  

Sörensen et al., 2012, Sörensen and Vanovermeire, 2013, Lin et al., 2014, 

Bouchery and Fransoo, 2015, Santos et al., 2015, Zhang et al., 2015).  

Studies on intermodal network design mostly focus on a single objective. Most of 

the research concentrates on the minimization of the operational costs on the 

network (Arnold et al., 2004, Racunica and Wynter, 2005, Ishfaq and Sox, 2011, 

Sörensen et al., 2012, Ghane-Ezabadi et al., 2016). Some models focus on 

generalized costs of transport, including transport externalities (Zhang et al., 

2013, Santos et al., 2015, Zhang et al., 2015). Single-objective optimization can 

also be applied to emissions minimization or modal split maximization (Bouchery 

and Fransoo, 2015). Few articles of bi-objective modeling are available in 

intermodal transport applications. Sörensen and Vanomermeire (2013) use bi-

objective optimization for balancing the network users' costs and the terminal 

operators' opening costs. In order to consider the environmental impact of trucks 

at maritime railroad terminals, Chen et al. (2013) apply a bi-objective queuing 

model that minimizes both the number of shifted truck arrivals and the total 

waiting time of trucks in the queue. 

With the exception of Ghane-Ezabadi et al. (2016), who develop a path-based 

formulation allowing the use of several modes of transport, and Zhang et al. 

(2015), who focus on bi-level programming, the traditional location-allocation 

mathematical programming models in the literature are generally developed on a 

network which does not exceed two modes of transport (Arnold et al., 2001, 

Arnold et al., 2004, Racunica and Wynter, 2005, Ishfaq and Sox, 2011, Limbourg 

and Jourquin, 2009, Söresen et al., 2012, Santos et al., 2015). Some papers 

however include road, rail and IWW transport (Macharis and Pekin, 2009, 

Macharis et al., 2010, Meers and Macharis, 2014) but in the framework of a GIS-
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based approach. The introduction of more than two modes of transport is 

important for better matching reality. 

Intermodal transport provides the advantage of moving large quantities of goods 

and thus to possibly benefit from scale effects. Economies of scale can happen at 

several levels of the intermodal chain, i.e. during the long-haul transportation by a 

more environmentally friendly mode (Racunica and Wynter, 2005, Ishfaq and 

Sox, 2011, Ghane-Ezabadi et al., 2016) or at the intermodal terminal, during the 

transshipment process (Limbourg and Jourquin, 2009, Zhang et al., 2013, Zhang 

et al., 2016). Economies of scale can be translated mathematically using different 

methods, e.g. nonlinear functions, discount factors, different values for different 

vehicle sizes or functions constituted by fixed and variables parts. 

The objective of this research is to help closing the gap between freight transport 

network design and its impact on the environment, especially on climate change. 

This is done by proposing an innovative bi-objective intermodal location-

allocation optimization model. The model evaluates the balance between 

economic (operational costs) and environmental (CO2 emissions) objectives, in 

the framework of a network with three modes: road, intermodal rail, and 

intermodal IWW transport. The economies of scale of intermodal transport are 

incorporated using different vehicle sizes and piecewise linear approximations of 

nonlinear cost and emission functions. The integration of these characteristics 

contributes to the development of a more realistic formulation of transportation 

planning, in a political context where transportation strategies have to be aligned 

with environmental objectives. To highlight the practical usefulness of the model, 

it is applied to the Belgian case study. Thanks to its strategic perspective, the 

model gives insights to various actors of the freight transport network, in a 

societal context which focuses more and more on environmental issues. Policy-

makers, intermodal terminal operators, road and intermodal transport companies 

and infrastructure managers can indeed gain insight on the strategies to follow, in 

terms of policy measure analysis, capacity, infrastructure design and transport 

flow planning. Indeed, the behavior of road and intermodal flows may vary 

depending on the followed transportation strategy, in terms of the objective to 

pursue, or the number of terminals to locate. Sensitivity analysis is used to 

evaluate the evolution and robustness of the results, when the parameters related 

to costs, emissions, or to the number of terminals are modified. 
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The papers of Zhang et al. (2013) and Zhang et al. (2015) are the closest to this 

research work since they also deal with intermodal network design by integrating 

environmental issues. The differences between this research work (Mostert et al., 

2017a) and the studies of Zhang et al. (2013, 2015) are presented in table 8. 

 Zhang et al. (2013, 2015) Mostert et al. (2017a) 

Methodology Bi-level programming Bi-objective 

optimization 

Resolution method Genetic algorithm Exact branch and cut 

Economies of scale At the terminal level At the transportation 

mode level (train and 

barge) 

CO2 emissions Monetized and internalized 

in a single objective function  

One separate objective 

of the bi-objective 

formulation 

Terminal location Selection of a terminal 

configuration among several 

terminal configuration 

scenarios 

Selection of the best 

possible terminal 

configuration among all 

accessible locations 

Table 8 : Comparison of the research works of Zhang et al. (2013, 2015) and 

Mostert et al. (2017a) 

The papers of Meers and Macharis (2014), Bouchery and Fransoo (2015), Santos 

et al. (2015) are also close to this research but they are based on different tools or 

integrate other aspects of transportation planning. Meers and Macharis (2014) 

focus on the terminal operator's perspective using a GIS-based approach, while 

we formulate the mixed integer nonlinear model at a global level and provide 

decision-making tools to different stakeholders. We also explicitly take 

environmental issues into account, whereas Meers and Macharis (2014) only 

consider them implicitly. Bouchery and Fransoo (2015) locate a single terminal. 

Alternatively, this work focuses on the location of several terminals between 

many origin and destination nodes. Bouchery and Fransoo (2015) focus on the 

Euclidian and Manhattan distances, and on approximated continuous demands, 

while we concentrate on the real distance and historical record of flow exchanges. 

We also offer the possibility to choose between road and two intermodal 

solutions, whereas Bouchery and Fransoo (2015) permit to select either road or 

intermodal transport. Our model is also subject to different constraints, not only 

related to demand satisfaction. Santos et al. (2015) focus on road and rail 

transport, while we consider three modes and economies of scale of intermodal 



78 

 

transport. We do not take into account subsidies and global external costs in a 

single objective function, but we solve a bi-objective model, in order to highlight 

the opposition between costs and CO2 emissions minimization, in terms of 

terminal location and type. 

The next section develops the problem formulation and the proposed 

mathematical model. Section 5.4 presents the experimental results of the 

application to the Belgian case. The last section highlights the main conclusions 

of the research work. 

5.3. Problem formulation 

 

The objective of the model is to provide a global vision of the impact of 

operational costs and CO2 emissions on terminal location and type, and on the 

allocation of flows between road and intermodal transport. Even if a lot of 

stakeholders are involved in the decision process of intermodal network design, 

this paper assumes a single decision maker at the strategic level (Arnold et al., 

2004, Limbourg and Jourquin, 2009, Santos et al., 2015) in order to provide 

decision-making support for different stakeholders of the system. Policy makers 

can gain insight by assessing the interest of locating new terminals inside their 

political zone of decision. They can also use the model to analyze the impact of 

policy measures such as the introduction of subsidies or the internalization of 

external costs. Intermodal terminal operators can benefit from improved 

information on the predicted volumes passing through their facilities and thus 

adapt the related services inside the terminal. Road and intermodal transport 

companies can be interested in identifying how the adoption of one or another 

policy could modify their market share. Information on flow distribution can also 

be used by rail, road and IWW infrastructure managers to determine the future 

transported volumes and thus plan the required capacities of the network. 

The formulation allows determining the modal split between three modes: road, 

intermodal rail and intermodal IWW transport. Transport network design models 

often only focus on a specific intermodal transport mode (Arnold et al., 2004, 

Racunica and Wynters, 2005, Ishfaq and Sox, 2011) using the hub location theory 

(Alumur and Kara, 2008,  Farahani et al., 2013) without considering the possible 

direct door-to-door road travel. Our modelling differs from the traditional hub 

system in the sense that non-hubs (i.e. non-terminal nodes) can be connected 

directly to each other using road transport, two intermodal terminals (hubs) are 
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not necessarily connected, and finally the non-hub nodes can be connected to 

more than one terminal. The relaxation of these hypotheses better reflects reality 

(Lin et al., 2014). 

The minimization of operational costs and CO2 emissions mainly refers to energy 

optimization. Instinctively, we presume that the terminal locations do not differ 

too much from costs to emissions optimization. However, we also expect some 

diverging factors between both functions. For instance, repair and maintenance 

costs may be lower for road than for rail, whereas emissions are expected to be 

higher for road than for rail. This possible opposition between costs and emissions 

is taken into account by including both functions in a bi-objective optimization 

model. 

For the environmental aspect, the focus is on climate change, using CO2 

emissions as its indicator. Only one type of externality is selected in order to 

identify its specific environmental impact on the terminal location problem. The 

choice for climate change is justified by the worldwide willingness to reduce the 

anthropic global warming effect. This is observed through big conventions and 

events such as the Kyoto Protocol or the regular United Nations Climate change 

conferences. Limiting the global warming effect is also part of the priorities of 

Europe (European Commission, 2015a) since heavy duty vehicles are responsible 

for 25% of road transport and 6% of total transport CO2 emissions. CO2 emissions 

are chosen as the environmental indicator because they represent the main 

greenhouse gas which influences climate change.  

The model takes train and barge capacity into account. For rail transport, a single 

train size is considered. The number of trains to be used on each arc is optimized 

and the related load factor is then deduced. Rail cost and emission values are 

computed on the basis of this load factor. For IWW transport, the number and size 

of barges to be used on each arc are optimized and the related load factor is then 

deduced. Similarly to rail, IWW cost and emission values are computed on the 

basis of this load factor. 

The formulation of the model which allows taking into account economies of 

scale of intermodal transport is developed hereunder. 

The transportation units used for expressing costs are tonne.kilometers (t.km), 

barge.kilometers (barge.km) and tonnes (t). 
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Sets 

T set of types of barges, according to their size, indexed by t {1, …, d} 

V set of trains indexed by v {1, …, f} 

N node set consisting of n demand nodes, indexed by i, m {1, …, n} 

H existing and potential terminal (hub) set, (H ⊆ N) consisting of h nodes, 

indexed by j, k {1, …, h} 

These sets are divided into various subsets: 

N0 set of port nodes, inside the studied geographical area. These nodes are 

assumed to have rail and IWW connections. They are therefore considered as 

existing intermodal terminals. 

N1 set of demand nodes inside the studied geographical area, potential 

railroad terminals 

N2 set of demand nodes inside the studied geographical area, potential IWW-

road terminals 

N3 set of railroad terminals located outside the studied geographical area 

N4 set of IWW-road terminals located outside the studied geographical area 

N5 set of demand nodes outside the studied geographical area 

Thus N = ⋃ Ni
5
i=0 ;  H = ⋃ Ni

4
i=0 ; HR = N0 ∪ N1 ∪ N3 and  HW = N0 ∪ N2 ∪ N4 

Parameters 

𝑝 number of intermodal terminals to locate inside the studied geographical 

area 

𝑑𝑖𝑚 road distance between demand nodes 𝑖 and 𝑚 (in km) 

𝑠𝑗𝑘  rail distance between terminals 𝑗 and 𝑘 (in km) 

𝑙𝑗𝑘 IWW distance between terminals 𝑗 and 𝑘 (in km) 



81 

 

𝐷𝑖𝑚 cargo demand from demand node 𝑖 to demand node 𝑚 (in t) 

𝐶𝑖𝑚
𝐿  long-haul road transportation costs for travelling from node 𝑖 to node 𝑚 

(in €/t.km) 

𝐶𝑖𝑗
𝑃 collection/distribution road transportation costs for travelling from node 𝑖 

to terminal 𝑗 (in €/t.km) 

𝐶𝑗𝑘
𝑅  long-haul rail transportation costs for travelling from terminal j to 

terminal k (in €/t.km) 

𝐶𝑗𝑘
𝑊 long-haul IWW transportation costs for travelling from terminal j to 

terminal k (in €/t.km) 

𝐶𝑗𝑘
𝑡𝑊 long-haul IWW transportation costs for travelling from terminal j to 

terminal k using a barge of size t (in €/barge.km) 

𝐸𝑖𝑚
𝐿  long-haul road transportation emissions for travelling from node 𝑖 to node 

𝑚 (in kg of CO2/t.km 

𝐸𝑖𝑗
𝑃  collection/distribution road transportation emissions for travelling from 

node 𝑖 to terminal 𝑗 (in kg of CO2/t.km) 

𝐸𝑗𝑘
𝑣𝑅 transportation emissions for travelling from terminal 𝑗 to terminal 𝑘 using 

the 𝑣𝑡ℎ train for the long-haul travel by rail (in kg of CO2/t.km) 

𝐸𝑗𝑘
𝑡𝑊 transportation emissions of a barge of size 𝑡 for travelling from terminal 𝑗 

to terminal 𝑘 for the long-haul travel by IWW (in kg of CO2/barge.km) 

𝐶𝑗
𝑇 handling operational costs at the terminal 𝑗 (in €/t) 

𝐸𝑗
𝑇 handling emissions at the terminal 𝑗 (in kg of CO2/t) 

𝐾𝑇  maximum capacity of a barge of size 𝑡 (in t) 

𝐴  maximum capacity of a train (in t) 
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Decision variables 

𝑦𝑘 =1 if a terminal is located at k  ∀ 𝑘 ∈ 𝑁1 ∪ 𝑁2 

 =0 otherwise 

𝑊𝑖𝑚 road flows from demand origin 𝑖 and destination 𝑚 (in tonnes), ∀ 𝑖, 𝑚 ∈

𝑁 

𝑋𝑗𝑘
𝑖  flows from node 𝑖 firstly routed through origin rail terminal 𝑗 and then 

through destination rail terminal 𝑘 (in tonnes), ∀ 𝑖 ∈ 𝑁, ∀ 𝑗, 𝑘 ∈  𝐻𝑅  

𝑋𝑗𝑘
𝑣𝑖  flows from node 𝑖 firstly routed through origin terminal 𝑗 and then 

through destination terminal 𝑘, using the 𝑣𝑡ℎ train for the long-haul travel 

by rail (in tonnes), ∀ 𝑣 ∈ 𝑉, ∀ 𝑖 ∈ 𝑁, ∀ 𝑗, 𝑘 ∈  𝐻𝑅  

𝑄𝑘𝑚
𝑖  flows from origin 𝑖 to destination 𝑚 that are routed through rail 

destination terminal in 𝑘 (in tonnes), ∀ 𝑖, 𝑚 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑅 

𝐹𝑗𝑘
𝑖   flows from node 𝑖 firstly routed through origin IWW terminal 𝑗 and then 

through destination IWW terminal 𝑘 (in tonnes), ∀ 𝑖 ∈ 𝑁, ∀ 𝑗, 𝑘 ∈  𝐻𝑊 

𝑉𝑘𝑚
𝑖  flows from origin 𝑖 to destination 𝑚 that are routed through IWW 

destination terminal in 𝑘 (in tonnes), ∀ 𝑖, 𝑚 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑊 

𝑀𝑡  number of barges of size 𝑡, ∀ 𝑡 ∈ 𝑇 
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Objective functions to minimize 

 

 𝑓𝑐𝑜𝑠𝑡𝑠 = 

 

∑ ∑ 𝑑𝑖𝑚. 𝐶𝑖𝑚
𝐿 . 𝑊𝑖𝑚

𝑚∈𝑁𝑖∈𝑁

 

+ ∑ 𝐶𝑖
𝑇 . 𝑊𝑖𝑚

𝑖∈𝑁0

+ ∑ 𝐶𝑚
𝑇 . 𝑊𝑖𝑚

𝑚∈𝑁0

 

+ ∑ ∑ ∑ (𝑑𝑖𝑗 . 𝐶𝑖𝑗
𝑃 + 𝐶𝑗

𝑇). 𝑋𝑗𝑘
𝑖

𝑘≠𝑗∈𝐻𝑅𝑗∈𝐻𝑅𝑖∈𝑁

 

+ ∑ ∑ ∑ 𝑠𝑗𝑘 . 𝐶𝑗𝑘
𝑅 . 𝑋𝑗𝑘

𝑖

𝑘≠𝑗∈𝐻𝑅𝑗∈𝐻𝑅𝑖∈𝑁

 

+ ∑ ∑ ∑ (𝑑𝑘𝑚. 𝐶𝑘𝑚
𝑃 + 𝐶𝑘

𝑇). 𝑄𝑘𝑚
𝑖

𝑚∈𝑁𝑘∈𝐻𝑅𝑖∈𝑁

 

+ ∑ ∑ ∑ (𝑑𝑖𝑗 . 𝐶𝑖𝑗
𝑃 + 𝐶𝑗

𝑇). 𝐹𝑗𝑘
𝑖

𝑘≠𝑗∈𝐻𝑊𝑗∈𝐻𝑊𝑖∈𝑁

 

+ ∑ ∑ ∑ 𝑙𝑗𝑘 . 𝐶𝑗𝑘
𝑡𝑊. 𝑀𝑡

𝑘≠𝑗∈𝐻𝑊𝑗∈𝐻𝑊𝑡∈𝑇

 

+ ∑ ∑ ∑ (𝑑𝑘𝑚. 𝐶𝑘𝑚
𝑃 + 𝐶𝑘

𝑇). 𝑉𝑘𝑚
𝑖

𝑚∈𝑁𝑘∈𝐻𝑊𝑖∈𝑁

 

 

 

 

 

 (3) 
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𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 

 

∑ ∑ 𝑑𝑖𝑚. 𝐸𝑖𝑚
𝐿 . 𝑊𝑖𝑚

𝑚∈𝑁𝑖∈𝑁

 

+ ∑ 𝐸𝑖
𝑇 . 𝑊𝑖𝑚

𝑖∈𝑁0

+ ∑ 𝐸𝑚
𝑇 . 𝑊𝑖𝑚

𝑚∈𝑁0

 

+ ∑ ∑ ∑ (𝑑𝑖𝑗 . 𝐸𝑖𝑗
𝑃 + 𝐸𝑗

𝑇). 𝑋𝑗𝑘
𝑖

𝑘≠𝑗∈𝐻𝑅𝑗∈𝐻𝑅𝑖∈𝑁

 

+ ∑ ∑ ∑ ∑ 𝑠𝑗𝑘. 𝐸𝑗𝑘
𝑣𝑅 . 𝑋𝑗𝑘

𝑣𝑖

𝑘≠𝑗∈𝐻𝑅𝑗∈𝐻𝑅𝑖∈𝑁𝑣∈𝑉

 

+ ∑ ∑ ∑ (𝑑𝑘𝑚. 𝐸𝑘𝑚
𝑃 + 𝐸𝑘

𝑇). 𝑄𝑘𝑚
𝑖

𝑚∈𝑁𝑘∈𝐻𝑅𝑖∈𝑁

 

+ ∑ ∑ ∑ (𝑑𝑖𝑗. 𝐸𝑖𝑗
𝑃 + 𝐸𝑗

𝑇). 𝐹𝑗𝑘
𝑖

𝑘≠𝑗∈𝐻𝑊𝑗∈𝐻𝑊𝑖∈𝑁

 

+ ∑ ∑ ∑ 𝑙𝑗𝑘 . 𝐸𝑗𝑘
𝑡𝑊. 𝑀𝑡

𝑘≠𝑗∈𝐻𝑊𝑗∈𝐻𝑊𝑡∈𝑇

 

+ ∑ ∑ ∑ (𝑑𝑘𝑚. 𝐸𝑘𝑚
𝑃 + 𝐸𝑘

𝑇). 𝑉𝑘𝑚
𝑖

𝑚∈𝑁𝑘∈𝐻𝑊𝑖∈𝑁

 

(4) 

 

Subject to: 

∑ 𝑦𝑘 ≤ 𝑝

𝑘∈𝑁1 ⋃ 𝑁2

    (5) 

𝑦𝑘 = 1 
∀ 𝑘 ∈ 𝑁0 ∪ 

𝑁3 ∪ 𝑁4 ∪ 𝑁5 ∪ 𝑁6 

   (6) 
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𝐷𝑖𝑚 = 𝑊𝑖𝑚 + ∑ 𝑄𝑘𝑚
𝑖

𝑘∈𝐻𝑅

+ ∑ 𝑉𝑘𝑚
𝑖

𝑘∈𝐻𝑊

 ∀ 𝑖, 𝑚 ∈ 𝑁    (7) 

∑ 𝐷𝑖𝑚 = ∑ 𝑊𝑖𝑚 + ∑ 𝑋𝑗𝑘
𝑖

𝑗,𝑘∈𝐻𝑅𝑚∈𝑁𝑚∈𝑁

+ ∑ 𝐹𝑗𝑘
𝑖

𝑗,𝑘∈𝐻𝑊

 
∀ 𝑖 ∈ 𝑁    (8) 

∑ 𝑋𝑗𝑘
𝑖

𝑘∈𝐻𝑅

≤ 𝑦𝑗 ∑ 𝐷𝑖𝑚

𝑚∈𝑁

 ∀ 𝑖 ∈ 𝑁, ∀ 𝑗 ∈ 𝐻𝑅    (9) 

∑ 𝑋𝑗𝑘
𝑖

𝑗∈𝐻𝑅

≤ 𝑦𝑘 ∑ 𝐷𝑖𝑚

𝑚∈𝑁

 ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑅 
         

(10)   

∑ 𝐹𝑗𝑘
𝑖

𝑘∈𝐻𝑊

≤ 𝑦𝑗 ∑ 𝐷𝑖𝑚

𝑚∈𝑁

 ∀ 𝑖 ∈ 𝑁, ∀ 𝑗 ∈ 𝐻𝑊  (11) 

∑ 𝐹𝑗𝑘
𝑖

𝑗∈𝐻𝑊

≤ 𝑦𝑘 ∑ 𝐷𝑖𝑚

𝑚∈𝑁

 ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑊  (12) 

∑ 𝑋𝑗𝑘
𝑖

𝑗∈𝐻𝑅

= ∑ 𝑄𝑘𝑚
𝑖

𝑚∈𝑁

 ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑅   (13) 

∑ 𝐹𝑗𝑘
𝑖

𝑗∈𝐻𝑊

= ∑ 𝑉𝑘𝑚
𝑖

𝑚∈𝑁

 ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑊    (14) 

∑ 𝑀𝑡. 𝐾𝑡

𝑡

≥  ∑ ∑ ∑ 𝐹𝑗𝑘
𝑖

𝑘≠𝑗∈𝐻𝑊𝑗∈𝐻𝑊𝑖∈𝑁

  (15) 

𝑋𝑗𝑘
𝑖 = ∑ 𝑋𝑗𝑘

𝑣𝑖

𝑣∈𝑉

 ∀ 𝑖 ∈ 𝑁, ∀ 𝑗, 𝑘 ∈ 𝐻𝑅 (16) 

𝑋𝑗𝑘
𝑣𝑖 ≤ 𝐴 ∀ 𝑣 ∈ 𝑉,  

∀ 𝑖 ∈ 𝑁, ∀ 𝑗, 𝑘 ∈ 𝐻𝑅 
(17) 

𝑊𝑚
𝑖 ≥ 0  ∀ 𝑖, 𝑚 ∈ 𝑁   (18) 
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𝑋𝑗𝑘
𝑖 ≥ 0 ∀ 𝑖 ∈ 𝑁, ∀ 𝑗, 𝑘 ∈ 𝐻𝑅  (19) 

𝑄𝑘𝑚
𝑖 ≥ 0 ∀ 𝑖, 𝑚 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑅  (20) 

𝐹𝑗𝑘
𝑖 ≥ 0 ∀ 𝑖 ∈ 𝑁, ∀ 𝑗, 𝑘 ∈ 𝐻𝑅  (21) 

𝑉𝑘𝑚
𝑖 ≥ 0 ∀ 𝑖, 𝑚 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑅  (22) 

𝑦𝑘 ∈ {0,1} ∀ 𝑘 ∈ 𝐻  (23) 

Equations (3) and (4) respectively stand for the total operational costs and 

emissions of transport companies. These equations are divided into: (i) door-to-

door road costs/ emissions, (ii) transshipment costs/emissions between sea and 

road, (iii) railroad intermodal costs/emissions and (iv) IWW-road intermodal 

costs/emissions. Elements (iii) and (iv) are again subdivided into (a) pre-haulage 

costs/emissions by road, (b) transshipment costs/emissions at origin intermodal 

terminal, (c) long-haul travel costs/emissions by rail or IWW, (d) transshipment  

costs/emissions at the destination terminal and (e) post-haulage costs/emissions 

by road. 

Constraint (5) suggests that a maximum of 𝑝 terminals can be located. This 

constraint reflects that building intermodal terminals is not free of charge so that 

only a certain number of terminals can be constructed, with respect to the 

available budget. Constraints (6) ensure that the already existing terminals are 

open. Constraints sets (7) and (8) respectively guarantee that the demand between 

each origin 𝑖 and destination 𝑚 pair is satisfied either by road, railroad or IWW-

road transport and that all the flows are leaving their origin by one of the three 

modes. Constraints (9) to (12) state that no flow can pass through an intermodal 

terminal if this terminal is not open. Constraints (13) and (14) ensure flow 

conservation for rail and IWW transport. Constraint (15) ensures that, at the 

global level, the number of available barges of all types is sufficient for satisfying 

the demand transported by IWW. This assumption implies that enough barges are 

available in total and that all barges are not used at the same moment. Constraints 

(16) guarantee flow conservation between road transport by truck and rail 

transport by train. Constraints (17) ensure that the capacity of the train is not 

exceeded. Finally constraints (18) to (22) are non-negativity constraints for flows, 

while constraints (23) define variables 𝑦𝑘 as binary variables. 
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The proposed model is bi-objective and can account for economies of scale of 

intermodal transport. The bi-objective formulation is solved using the exact Ɛ-

constraint resolution technique of Chankong and Haimes (1983). The method 

consists in transforming a multi-objective problem into single-objective 

optimization, by only keeping one objective function to optimize. Other objective 

functions are introduced as constraints of the model, lower or equal to a value Ɛ 

(Rangaiah,  2009). In this study, the CO2 emission function is introduced as a 

constraint of the cost minimization problem. Economies of scale of intermodal 

transport are modeled using nonlinear functions of the weight. The latter are 

approximated by a piecewise linear function, so as to permit the use of linear 

programming solvers for the problem resolution. Detailed explanations on the 

solution methodology can be found in section 5.6 (Belotti et al., 2013; Chankong 

and Haimes, 1983; Jeroslow and Lowe, 1984; Kimms, 2006; Rangaiah, 2009). 

This model is based on an all-or-nothing assignment of flows when it comes to 

select the best transportation mode between an origin and a destination node. The 

choice for the transportation mode is therefore restricted to one mode for any 

origin-destination pair, only depending on the cost criteria for the economic 

optimization and on the emission criteria for the environmental optimization. This 

assumption influences the resulted flow distribution since either all or none of the 

flows between a specific origin-destination pair (i.e. all of the flows between 

NUTS 3 regions) is transported using a single specific mode. Based on the 

aggregation level of data, it is therefore assumed that all the flows between 

NUTS 3 regions are sent using the same mode of transport. 

Even if the all-or-nothing assignment is a simplification of reality, this method 

has the advantage to provide information on the “desire line” (Ortúzar and 

Willumsen, 2011), i.e. what is the expected trajectory of flows, without any 

congestion on the network. 

An all-or-nothing assignment does not account for capacity issues neither for 

stochastic effects related to the perception and knowledge of available routes 

(Ortúzar and Willumsen, 2011).  

Congestion is not taken into account in our formulation since the model is applied 

at a strategic level of decision. The application of the all-or-nothing assignment of 

flows allows understanding the preferred choices of modes between the available 

possibilities in absence of congestion. The maximum wished capacities on the 
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network links can be evaluated and it can be assessed if these required capacities 

correspond to existing and available capacities. This provides information to 

infrastructure managers regarding the need to potentially increase or improve the 

transportation infrastructure of specific modes of transport. 

The stochastic aspects related to the perception of routes are not considered in the 

all-or-nothing assignment but are included in modal choice analysis. The all-or-

nothing assignment of flows has the advantage to be simpler than discrete choice 

analysis which takes into account several parameters which influence the 

probability of choosing one mode or another (i.e. through utility functions based 

on several attributes). Indeed, modal choice modeling requires good data based on 

surveys and these data are difficult to obtain, in particular for revealed 

preferences/choices (Ortúzar and Willumsen, 2011). 

Even if it is not the only driver of modal choice, the cost attribute of the 

transportation mode remains one of the main parameters which influence the 

modal choice (Cullinane and Toy, 2000, Garcia-Menendez et al., 2004, Danielis 

and Marcucci, 2007, Ravibabu, 2013, Larranaga et al., 2016). The all-or-nothing 

assignment approach at the strategic level simplifies reality since it assumes that 

all aggregated flows are sent using the same mode of transport. However, this 

approach gives interesting information on the flow preferences at the strategic 

level and it offers “extreme” modal split results in terms of cost or emissions 

minimization. These results provide a range in which modal splits can vary on the 

network. All-or-nothing algorithms are commonly used in freight transportation 

models of operations research (Racunica and Wynter, 2005, Ishfaq and Sox, 2009, 

Sörensen et al., 2012, Sörensen and Vanovermeire, 2013, Lin et al., 2014, Santos 

et al., 2015). 

The following sections develop the results of the approaches which do not take 

into account economies of scale of intermodal transport (linear approach) and 

which do take into account economies of scale of intermodal transport (nonlinear 

approach). A sensitivity analysis of the parameters related to costs, emissions, and 

number of terminals is then performed to check the robustness of the model. 
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5.4. Experimental results 

 

The model is tested on the Belgian network and its neighboring regions. This is 

done for several reasons. First, the country has a high density of road, rail and 

IWW infrastructure. Then, new intermodal terminals are still currently being 

added to the network, e.g. with the development of the new Trilogiport intermodal 

platform in Liege. Thanks to its strategic location at the heart of Europe, 

important quantities of freight flows are also transiting through the country.  

Moreover, Belgium has one of the worst European performances in terms of air 

quality (European Commission, 2015b), which makes this case interesting in 

terms of environmental analysis. The use of intermodal transport is often 

recommended on medium and long distances. This case study allows analyzing 

the performance of road and intermodal transport on shorter distances. Finally, the 

analysis of the development of intermodal transport on the Belgian network is 

supported by the Belgian government, for instance through the subvention of 

research projects aiming at enhancing intermodal transport in Belgium (i.e. the 

BRAIN-TRAINS project by Troch et al. (2015) for intermodal rail transport). 

Belgium has already been used as a case study by several authors to identify the 

impact of policy measures on the modal shift (Macharis and Pekin, 2009, 

Macharis et al., 2010, Santos et al., 2015), and to evaluate if opening additional 

intermodal terminals is still desirable from the terminal operator's perspective 

(Meers and Macharis, 2014).  

Demand data related to intermodal flows are hard to obtain and to gather and are 

not really up-to-date. In the present paper, the demand data originates from the 

Worldnet database (Newton 2009). It consists in the flows transported in 

containers by road, rail and IWW from and to 88 third-level Nomenclature of 

Territorial Units for Statistics (NUTS 3) regions in Belgium and its neighboring 

countries (France, the Netherlands, Luxembourg, Germany). The matrix takes 

into account the flows exchanges related to the Standard Goods Nomenclature for 

Transport Statistics (NST/R) 9 class of commodities which are transported in 

containers. Demand data consists in an origin-destination matrix of size 88*88. 

The original 2005 database has been extrapolated to 2010 based on aggregated 

flow values available from Eurostat and from Belgian ports' annual outlooks. The 

original flows at the NUTS 2 level are disaggregated to a NUTS 3 level, using the 

number of companies of productive sectors in each region as the proxy indicator. 

The studied region is presented in figure 8.   
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Figure 8: NUTS 3 regions considered in the Belgian case study 

The demand for each region is concentrated on a single generation node, called 

centroid and chosen for the importance of the cities in the NUTS 3 region and the 

existence of a rail/IWW platform nearby. The already existing terminals for rail 

and IWW outside Belgium, as well as the already existing sea terminals in 

Belgium (Antwerp, Zeebrugge and Ghent) are taken into account. These sea 

terminals in Belgium both have rail and IWW connections. They can therefore be 

assimilated to intermodal terminals. 

Supply data consists in the real road, rail and IWW transport distances between 

two nodes. Road and rail distances are based on GIS networks detained by 

Carreira et al. (2012). IWW distances are computed based on the Periskal route 

planning tool (Promotie Binnenvaart Vlaanderen, 2015) networks of transport, 

and their associated costs.  

In the reference case, the maximum number of IWW and rail terminals to be 

located is fixed to 15. It corresponds to the sum of the most important rail, IWW 

and three-mode terminals currently available in Belgium. Sea terminals of 

Antwerp, Ghent and Zeebruge are not considered for determining the total 

number of terminals to open, as they are already assumed to be open, both for 

IWW and rail. The limit between short-haul and long-haul travel is fixed to 300 

km, which is the accepted distance by the European Commission (2011). 

The next section discusses calibration and validation issues of the model. Since 

the intermodal location-allocation model developed in this chapter allows 

integrating economies of scale of intermodal transport, detailed experimental 
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results are then analyzed for two approaches. The first one does not take into 

account economies of scale of intermodal transport, which makes the model 

formulation linear. The second approach takes into account economies of scale of 

intermodal transport and leads to a nonlinear formulation. 

5.4.1. Discussion on calibration and validation 

Calibration and validation issues deal with the evaluation of the level of adequacy 

between the results of the model and reality. The difficulty to obtain real accurate 

data limits the possibility to confront the results of the model with reality. Indeed, 

flow demands of the model are based on values of 2010. Moreover, real data at 

the level of terminals or at the level of link between two terminals is generally 

only available for larger geographical regions than the case under study. The 

calibration and validation steps of the modeling are therefore not easy to perform. 

Calibration and validation issues in freight transportation models have been 

treated by Jourquin (2005), Yamada et al. (2009), Zhang (2013) and Jourquin 

(2016). Jourquin (2005) validates his model by comparing the resulted modal 

shares of the model by road, rail, and IWW transport with the real observed 

modal shares, for several categories of goods. Yamada et al. (2009) validate the 

modal split of their model by comparing the modelled link flows with the real link 

traffic counts but do not perform calibration at the node flows level. Zhang et al. 

(2013) calibrate their multimodal multi-commodity flow assignment model at the 

mode, route and node levels. Jourquin (2016) analyzes the validity of strategic 

freight transport planning models on the European case study at three levels: a 

highly aggregated level (global modal shares of each transport mode for each 

group of commodity) and two disaggregated levels (node and link perspectives). 

The results of the model should be validated in order to see if they correspond to 

real transport observations. The validation of the model can be done by 

comparing the resulting values of flows at the intermodal terminals or between 

some terminal connections with the observed real values on the case study. 

Few flow data are available for the specific geographical region under study. 

Some comparisons of the results of the model with data related to Belgium are 

nevertheless given to highlight that the model provides reasonable results. 
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Mode Modal split (%) for the 

economic optimization of 

the model 

Real modal split (%) 

Road 76 68 

Rail 15 15 

IWW 9 18 

Table 9: Real and modeled modal split under the economic optimization 

approach that does not consider economies of scale 

Table 9 compares the real and resulted modal split given by the model. The rail 

market share for the economic optimization of the model corresponds to the real 

observed market share on the case study (Belgium, the Netherlands, Germany, 

France and Luxembourg). The IWW market share of the model is underestimated 

compared to the real flows. This is partially explained by the fact that real 

statistics focus on all kinds of flows whereas our model only refers to 

containerized transport. Since IWW is often used for bulk transport, this may 

explain the underestimation of the IWW market share in the model, for which 

only containerized flows are analyzed.  

In 2010, a little bit less than 8,500,000 TEUs have been transshipped through the 

Port of Antwerp, for an estimated amount of 102,000,000 tonnes. Among these 

TEUs, 37% were originating from or destined to Europe, i.e. 38,000,000 tonnes. 

43% of these tonnes were transported using intermodal rail and IWW transport. In 

2010, 16,350,000 tonnes of containerized flows therefore transshipped by rail and 

by IWW through the Port of Antwerp for the European market (Port of Antwerp, 

2015).  

Under the economic optimization of costs, our results highlight that 9,050,000 

tonnes of goods are handled using rail and IWW at the Port of Antwerp. This 

corresponds to around 55% of the European 16,350,000 tonnes that transshipped 

through the Port of Antwerp  in  2010 (Port of Antwerp, 2015). The result of the 

model seems reasonable compared to the statistics of the Port since the model 

only focuses on the flows within Belgium and between Belgium and some NUTS 

3 regions of its neighboring countries, whereas statistics correspond to flow 

exchanges on the whole European territory.  

Under the economic optimization, the connection between the Port of Antwerp 

and the terminal located in Arlon (close to the existing terminal in Athus) ensures 

the transport of 325,000 tonnes of goods. Based on the load factor of trains, this 
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corresponds to between 12 and 13 trains of goods sent weekly. This is a little bit 

more than the current 8 to 10 trains transferred in reality each week between 

Antwerp and Athus (Terminal Container Athus, 2017). The results of the model 

are based on 2010 demands and should be balanced with the evolution of flows 

between 2010 and 2017. An annual average growth of around 2% is expected for 

the tonnes transported between 2008 and 2030 in Belgium (Bureau Fédéral du 

Plan, 2012). 

The flows transiting through the Port of Zeebrugge (Port of Zeebrugge, 2017) in 

containers in 2011 (22,500,000 tonnes) correspond to 21% of the flows 

transported through the Port of Antwerp (105,000,000 tonnes). In our model this 

proportion is also respected since 1,800,000 tonnes of goods pass through the Port 

of Zeebrugge, which represents around 20% of the tonnes transiting through 

Antwerp (9,050,000 tonnes). 

The Port of Ghent is the third most important port in Belgium. In 2011, 500,000 

tonnes of containerized goods have been transshipped through the Port of Ghent 

(Port of Ghent, 2017). The model also identifies the Port of Ghent as the third 

biggest port in terms of flows (1,500,000 tonnes). 

Under the optimization of operational costs, the two most important inland 

terminals in terms of transshipped flows are Hasselt (2,445,000 tonnes) and Liège 

(1,500,000 tonnes). The flows transshipped at these terminals are comparable to 

the ones identified in Santos et al. (2015) for Hasselt (1,811,000 tonnes) and for 

Liège (1,454,000 tonnes) under the optimal terminal locations. More important 

flows are transshipped at these terminals in our model than in Santos et al. (2015), 

since we consider the IWW flows and paths. The results of the model overstate 

the statistical flows of tonnes transported in TEUs at Liège (684,000 tonnes in 

2016) but are coherent with the expectations related to the implementation of the 

Trilogiport platform which lie between 160,000 and 200,000 TEUs, i.e. between 

1,920,000 and 2,400,000 tonnes (RTBF, 2014). 

The restricted availability of up-to-date data related to the flows passing through 

the extended Belgian case study makes difficult the comparison of the results of 

the model with reality. Indeed, information related to the amount of flows 

transshipped at the terminals is global and not disaggregated at the studied level 

of Belgium and its neighborhood. The validation step is therefore not easy to 

perform in an exact way. If more data was available, specifically related to the 
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flows transiting through the terminals in the studied case on Belgium and its 

neighborhood, better comparisons could be performed. Moreover, if good and up-

to-date data are available, calibration issues could be dealt with by modifying the 

level of subsidies and taxes in the model, to propose a formulation which is really 

adjusted to reality. One solution to perform a more efficient calibration and 

validation of the model is to apply it to a core network corridor, where flows can 

be better evaluated. However, data might be missing and the size of the problem 

may be too large to be solved using an exact method. 

The model developed in this study assumes that the decision makers are rational 

and that they are only driven by cost objectives. In reality, other objectives also 

play a role such as reliability, traveling time, or availability of services with 

added-value. These various objectives, in addition to the awarding of subsidies 

and to different negotiation powers (lobbying) may explain the differences that 

happen between our results and the statistical flows. Moreover, the translation 

between the tonnes transported and the number of TEUs in our model is based on 

average values (12 tonnes per container) whereas containers may have higher or 

lower load factors in reality, depending on the density of goods. Finally, the all-

or-nothing characteristic of the model implies that all the flows of a specific 

origin-destination are transported through the same mode of transport. Since 

flows are aggregated, the all-or-nothing assignment of the model may easily 

increase the t.km of one mode over another if the volume exchanged in this 

origin-destination pair is high. 

5.4.2. Without economies of scale - linear approach 

 

This section aims at presenting the results of the bi-objective linear model.  

The definition of the linear cost and emission functions can be found in section 

5.7 (European Commission, 2001; Hoen et al. 2010; Hoen et al.,  2014; Janic, 

2007; Janic, 2008; te Loo, 2009; PWC, 2003). Figure 9 shows the Pareto front for 

the bi-objective model under the linear approach in terms of relative values. The 

relative optimal costs-emissions pairs for 11 solutions varying from the minimum 

cost scenario (reference value) to the minimum emission scenario are presented. 
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Figure 9: Pareto front for the bi-objective model in the linear case 

The Pareto front shows that emphasizing more environmentally friendly transport 

implies additional financial means. The two next sections further analyze the 

Pareto curve by providing specific results for the two extreme points of the Pareto 

front and by identifying how one point of the Pareto front can be selected from a 

policy perspective, using marginal costs and benefits analysis. 

5.4.2.1. Extreme points of the Pareto front 

This subsection analyzes the results of the two extreme points of the Pareto curve 

in terms of flow distribution, terminal types and terminal locations. 

Table 10 provides the flow distribution values and the number of located 

terminals, for the two extreme points of the Pareto curve. 
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Reference 

scenario 

Absolute 

road flow 

values 

Absolute 

rail flow 

values 

Absolute 

IWW flow 

values 

Number of 

located rail 

terminals 

Number of 

located 

IWW 

terminals 

Costs min 76% 15% 9% 10 5 

Emissions 

min 

26% 24% 50% 6 9 

Table 10: Results of the optimal costs and emissions minimization cases 

Figure 10 illustrates the flow distribution of the extreme cases of the Pareto curve, 

i.e. the situation, with the minimum possible costs and the minimum possible 

emissions. 

 

Figure 10: Flow distribution (t.km) for costs and emissions minimization in the 

linear case 

In the cost minimization case, compared to the real modal split of the studied 

region, IWW flows are underestimated in favor of road flows. For 2011, the flow 

distribution in Belgium and in its neighboring countries (mainly the Netherlands, 

Germany and France), is on average 68% for road, 15% for rail and 18% for 

IWW transport (Eurostat, 2015). The difference between statistics data and the 

modal split of the model is explained by the fact that our origin-destination matrix 
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only takes into account containerized flows, whereas IWW is generally used for 

bulk transportation (Central Commission for the Navigation of the Rhine, 2014). 

The actual modal split is also influenced by the awarded subsidies (Santos et al., 

2015) which are not included in the current particular analysis. Furthermore, since 

the objective of the model is to minimize costs, only the cheapest mode of 

transport is used for transporting goods for a specific origin-destination pair. For 

origin-destination pairs with high volumes, the modal choice greatly influences 

the general market share distribution in t.km. 

The predominance of rail transport under costs minimization is explained by the 

low value of the used rail cost function compared to IWW. In addition, there are 

not as many IWW as rail potential locations for terminals, which leads to 

increased distances using barges compared to trains. Under emissions 

minimization, the switch to more IWW transport is also explained by the values 

of the emission functions. Even if the distance by barge is longer than the distance 

by train, the small unit IWW emissions can compensate for the larger distances. 

When costs are minimized, 5 IWW and 10 rail terminals are located. When 

emissions are minimized, 9 IWW and 6 rail terminals are open. Even if the type 

of terminal may change from costs to emissions minimization, more than half of 

the terminals are located exactly at the same place. This means that the policies 

aiming at optimizing costs and emissions are not totally in opposition, in terms of 

terminal location.  

The model locates 15 terminals in 44 possible NUTS 3 regions. Most of the 

locations found by the model correspond to the real implementations of the main 

intermodal terminals in Belgium. However, some minor changes can also be 

noticed. These differences can be explained by the model's focus only on costs 

and emissions efficiency. However, other parameters also influence the location 

of terminals, such as political issues, land availability and equipment. The current 

model assumes as a potential terminal location any centroid of a region that can 

physically be accessed by train and IWW, which does not necessarily correspond 

to an already existing terminal. 

Results of the model can be used by several stakeholders for retrieving policy 

information, among which infrastructure managers, intermodal terminal 

operators, intermodal transport operators, public authorities. 
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Infrastructure managers can use the model to evaluate the flows between two 

intermodal terminals and to identify the potentially related capacity issues. The 

economic optimization highlights that a little bit more trains than the current 

situation are necessary for ensuring the optimal flow distribution between the 

terminal of Athus and the Port of Antwerp. This information is interesting to 

practically identify the possibilities at the operational level to deal with increased 

traffic of trains. Results of the model identify that around 180,000 tonnes (i.e. 

more or less 15,000 TEUs) of containerized goods should optimally be 

transported between Charleroi and Antwerp, compared to the 6,000 TEUs 

transshipped in 2015 between the terminal of Garocentre and the Port of Antwerp. 

This result can support infrastructure managers in their choice for developing and 

investing in this connection. These results can be compared with existing 

infrastructure capacities in order to identify if an infrastructure adaptation is 

necessary or possible. Nevertheless, it should be reminded that the results 

provided here above are based on 2010 flows and that the evolution of the 

demand since then should be taken into account.  

Intermodal terminal operators can also gain insight from the results of the model 

in terms of flows, in order to compare the effects of economic and environmental 

objectives. Indeed, when the focus is on environmental issues related to climate 

change, the intermodal flows at the Port of Antwerp increase to 17,750,000 tonnes 

transported yearly. This means that the flows should be almost doubled compared 

to the optimal economic situation (9,050,000 tonnes). This result is interesting for 

terminal operators since they show that a policy focusing on CO2 emissions may 

increase the attractiveness of the terminal. However, it also shows that capacities 

of the terminal should be adapted consequently. Knowing terminal flow values 

under a specific policy is therefore useful to get advice on the possibility to 

support these flows from an infrastructural point of view. 

Intermodal transport operators can also benefit from the results of the model by 

identifying how the flows that they transport vary if economic or climate change 

objectives are taken into account. This can be done at the terminal and at the link 

level between two terminals. For instance, at the Port of Antwerp (=terminal 

level), 4,740,000 tonnes of goods are transported by rail when operational costs 

are minimized against 7,510,000 tonnes when CO2 emissions are optimized. This 

implies the transportation of two times more flows than under the economic 

situation and requires thinking about the availability of enough vehicle capacities 

to transport these flows. IWW flows at the Port of Antwerp vary from 4,308,000 
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tonnes when operational costs are optimized to 10,245,000 tonnes when CO2 

emissions are optimized. The variation of the IWW flows is even greater than the 

variation of the rail flows, which may lead to increased benefits for terminal 

transport operators. These values should nevertheless be compared to existing or 

possible extensions of the vehicle fleet. Another example consists in the 

connection between the Port of Antwerp and the region of Arlon. Under the 

minimization of operational costs, 335,000 tonnes of goods should optimally be 

transported by rail on this connection. When CO2 emissions are minimized, 

387,000 tonnes of goods should use this rail connection. The difference between 

the flows under economic and environmental optimizations corresponds to two 

trains a week. The availability of this additional capacity can then be evaluated in 

practice by transport operators.  

For public authorities, the optimizations in terms of economic and environmental 

objectives show that different kinds of intermodal terminal types should be 

located, depending on the followed objectives. These results provide a range of 

terminal locations and types when going from economic to environmental 

objectives. Our results show that more rail terminals (10/15) are located when 

operational costs are minimized, whereas more IWW terminals (9/16) are chosen 

when CO2 emissions are optimized. These outcomes may be useful for public 

authorities when deciding on supporting the development and implementation of 

additional rail or IWW terminal infrastructure, for instance with the awarding of 

public funding like subsidies for the building of terminals. 

The application of the linear model to the Belgian case study shows that the cost 

effort for achieving a same amount of reduction of CO2 emissions becomes larger 

as one approaches the emissions optimality scenario. The chosen policy (costs or 

emissions minimization) leads to the location of different types of intermodal 

terminals (rail or IWW) and also influences the intermodal market share. 

Regardless of the pursued objective, intermodal transport is always used, even on 

small networks with reduced distances like Belgium.  Finally, most of the 

locations found by the model correspond to the 15 main existing terminals in 

Belgium, or are located in the same region, which highlights the realism of the 

modeling approach. 



100 

 

5.4.2.2. Pareto front analysis 

The objective of the Pareto curve (figure 9) is to provide a set of Pareto optimal 

solutions but in practice and from the policy perspective, a specific solution has to 

be chosen among this set. 

From the economic perspective, choosing one solution among the set of solutions 

provided by the Pareto front can be done by identifying the point until which the 

marginal operational costs resulting from the CO2 emissions decrease are lower 

than the marginal benefits obtained from reducing these emissions. Indeed, at this 

point, the economic gains resulting from the avoidance of CO2 emissions (and 

therefore the improvement of the impact on climate change) can compensate for 

the economic losses related to operational costs on the transportation system 

network. 

In our model, the value of the externality itself has been taken into account (i.e. 

CO2 emissions) for building the Pareto curve. In order to make the cost-benefit 

analysis in relation to operational costs and CO2 emissions, the values of CO2 

emissions have to be translated into monetary terms. Reference CO2 costs per 

tonne of CO2 equivalent are given by Ricardo AEA (2014). These outcomes 

originate from the meta-study of Kuik et al. (2009) which is based on the analysis 

of 26 models of available estimates of abatement costs. The avoidance costs are 

computed with the target to stabilize global warming at 2°C (maximum CO2 

equivalent concentration in the atmosphere of 450 ppm), which corresponds to the 

goal currently supported and formalized in the 2016 Paris Agreement of the 

United Nations Framework Convention on Climate Change (UNFCCC). Table 11 

provides the CO2 costs for avoidance objectives for the time horizons 2025 and 

2050. 

Time horizon Low value 

(€/t of CO2 

equivalent) 

Central value 

€/t of CO2 

equivalent 

High value 

€/t of CO2 

equivalent 

2025 48 90 168 

2050 90 158 277 

Table 11: CO2 avoidance costs for 2025 and 2050 

The marginal operational costs related to reductions of CO2 emissions are 

identified in table 12. 
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From To 

Marginal operational 

costs 

(in €) 

Point 1 Point 2 864,201 

Point 2 Point 3 1,949,091 

Point 3 Point 4 3,081,668 

Point 4 Point 5 5,103,868 

Point 5 Point 6 7,108,696 

Point 6 Point 7 8,740,899 

Point 7 Point 8 10,954,746 

Point 8 Point 9 16,803,790 

Point 9 Point 2 39,446,017 

Table 12: Marginal operational costs between the points of the Pareto curve 

If the low and central values of the 2025 time horizon are used, marginal benefits 

resulting from the decrease of CO2 emissions from one point to another of the 

Pareto curve respectively have a value of 288,000€ (48€/t CO2*6,000t CO2) and 

540,000€ (90€/t CO2*6,000t CO2). These marginal benefits obtained from the 

reduction of CO2 emissions are never high enough to compensate for the marginal 

operational costs due to the reduction of emissions. This means that under these 

CO2 pricings, it is economically more interesting for policy makers to focus on 

the extreme left point of the Pareto curve, i.e. the minimization of the operational 

costs on the network.  

If the high value of the 2025 time horizon is used, marginal benefits resulting 

from the decrease of CO2 emissions have a value of 1,008,000€ (168€/t 

CO2*6,000t CO2). The equilibrium solution happens at point 2 of the Pareto front. 

Indeed, going from point 1 to point 2 ensures higher benefits retrieved from the 

CO2 emissions reductions, than the related increase of operational costs on the 

transport network. Nevertheless, going further down on the Pareto curve is not 

economically interesting since the benefits of reducing emissions from point 2 to 

point 3 are lower than the required operational costs increase for making the 

transition. 

Comparisons between marginal operational costs and marginal benefits of 

reducing CO2 emissions for the 2050 time horizon have been done in the same 

way as for the 2025 horizon. 
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If the low value of the 2050 time horizon is used, the equilibrium solution is at 

point 1, i.e. the solution which optimizes operational costs. This solution is the 

same as the solution selected for the 2025 time horizon with the low and central 

values of avoidance costs. 

If the central and high values of the 2050 time horizon are used, the equilibrium 

solution is at point 2. This point corresponds to the solution to select if high 

avoidance cost values of the 2025 time horizon are taken into account. 

These results tend to show that for CO2 avoidance objectives related to the 2025 

and 2050 time horizons, the economic optimal solutions among the set of 

solutions proposed by the Pareto front are more situated on the left side of the 

Pareto curve, i.e. next to the solution which optimizes operational costs. 

These outcomes should to be balanced with several elements. First, the model 

only takes CO2 emissions into account for identifying the impact on climate 

change, whereas, even if CO2 is the main greenhouse gas, other emissions also 

contribute to the global warming effect. The inclusion of these emissions may 

lead to solutions closer to the right side of the Pareto curve. Second, the results of 

the choice for one or another solution of the Pareto curve is strongly related to the 

assumption regarding the value of CO2 emissions. Indeed, when different values 

of the reference ranges are used, different results regarding the solution to select 

are provided. This has been shown using the lowest, middle and highest values of 

the avoidance objectives related to CO2 avoidance costs for the time horizons 

2025 and 2050.  

Even if balancing the marginal costs and benefits of reducing CO2 emissions may 

be a useful tool for policy makers to select a specific solution on the Pareto curve, 

the uncertainty related to the valuation of avoidance costs of CO2 emissions 

should be carefully considered when dealing with this method. Indeed, the values 

attributed to CO2 have already considerably evolved between 2008 and 2014, and 

are still subject to potential quick modifications, because of the uncertainty in the 

process of estimation of the carbon price (Ricardo AEA, 2014). 

This uncertainty is one of the reasons why we focused on the values of the 

externality itself (CO2 emissions) in a bi-objective formulation, instead of dealing 

with the monetary valuation of the externalities (external costs). 
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5.4.3. With economies of scale - nonlinear approach 

 

This section identifies how the integration of economies of scale of intermodal 

transport impacts the results of the linear approach. The definitions of the cost and 

emission functions are described in section 5.8 (Eurostat, 2014; Janic, 2007; 

Janic, 2008; Mostert and Limbourg, 2016; PWC, 2003). The focus is on the two 

extreme cases of the Pareto curve, i.e. costs minimization and emissions 

minimization. The terminal configurations obtained under the linear approach are 

tested using the nonlinear parameters, in order to compare the flows obtained in 

the linear and nonlinear cases.  

Figure 11 details the flow distribution between the different modes of transport 

under the nonlinear parameters. 

 

Figure 11: Flow distribution (t.km) for costs and emissions minimization in the 

nonlinear case 

In the nonlinear case, going from costs to emissions minimization also leads to an 

increase of the use of intermodal transport. Inside intermodal transport, rail 

transport is preferred for achieving cost efficiency, but IWW is favored when it 

comes to optimize the environmental perspective. The chosen policy therefore 

influences the actual modal split. 
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Between the linear and nonlinear approach, a market share increase of 10% for 

rail and 2% for IWW is observed under the costs minimization case. When 

economies of scale are integrated, 12% of the road flows are thus transferred to 

the intermodal market share. For the emissions minimization case, a market share 

decrease of 7% for rail and an increase of 6% for IWW are identified when taking 

into account economies of scale, i.e. a transfer of 1% from road to intermodal 

market share. In the minimum emissions case, the main flow transfer between the 

linear and nonlinear approach is observed inside the intermodal market share, 

rather than between road and intermodal transport. 

Taking into account economies of scale in the model encourages a more intensive 

consolidation of flows, leading to reduced global costs and emissions for 

intermodal transport, with a higher use rate of this mode. This explains the 

increased intermodal market share, when going from the linear to the nonlinear 

approach. 

The number and size of barges used under the nonlinear approach differs from 

costs to emissions minimization. Indeed, around three times more barges are used 

when emissions are minimized than when costs are minimized. This is coherent 

with the observed increase of IWW market share from costs to emissions 

minimization. Moreover, the split between the different types of barges is also 

different. Under costs minimization, 3% of the barges are small, 71% are medium 

and 26% are large. Under emissions minimization, small barges represent 47% of 

the IWW flows, medium barges correspond to 37% and large barges have 16% of 

the IWW market.  

Under the emission minimization policy, more IWW terminals are open, all of 

which not necessary accessible through medium barges (geographical 

constraints), which may explain the larger part of used small barges. These results 

are interesting for infrastructure managers and barge operators, since they show 

that the chosen policy (economic or environmental) influences the way in which 

networks and vehicles should be planned in the future.  

For both objective functions, in the linear and nonlinear cases, the model advises 

the use of intermodal transport. This result shows that, to the contrary of what is 

recommended by the European Commission in its White Paper (European 

Commission, 2011), intermodal transport is also viable and could therefore also 

be used on short distances. Indeed, most of the distances of the case study on 
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Belgium are below 300 km. This insight has already been highlighted by 

Bouchery and Fransoo (2015) who state that high volumes and short PPH 

distances make intermodal transport attractive on short and medium distances. 

The importance of short PPH distances in terms of intermodal competitiveness, 

especially from the perspective of externalities, has also been underlined in 

Mostert and Limbourg (2016). The conclusions of Janic (2008) showing that, in 

some cases, the internalization of external costs may lead to a lower attractiveness 

of intermodal transport, rather than when only operational costs are considered, 

reinforces the need for particularly considering short PPH distances. As Zhang et 

al. (2013) and Zhang et al. (2015), our results also show the strong link between 

the terminal network configuration and the amount of CO2 emissions. 

To summarize, in the limited case of Belgium and its neighborhood, the nonlinear 

and linear approaches both encourage more intermodal transport in order to 

reduce the environmental impact of transport. Furthermore, introducing 

economies of scale of intermodal transport in the modeling modifies the modal 

split, favoring intermodal transport both for costs and emissions minimization. 

5.4.4. Computational performance 

 

The optimization steps were performed on a workstation (Windows 10 Pro, Intel 

Xeon 2.1 GHz, 32 GB of RAM) with CPLEX 12.63.  

The problem developed in this paper is complex to solve. The model uses an 

origin destination matrix constituted by 88 origin and 88 destination nodes. The 

number of flow variables is 88² for road, 2*88³ for intermodal rail, and 2*88³ for 

intermodal IWW transport. As Ernst and Krishnamoorthy (1998), the model uses 

variables of maximum size O(n³). The problem size, in terms of the number of 

variables, is thus reduced by a factor n, compared to most of the hub location 

models Farahani et al. (2013), where flows are expressed using variables with 

four indices. 

For the example under study, the linear single cost minimization problem is easier 

to solve than the linear single emission minimization problem. The single cost 

minimization location-allocation model is solved in 69 seconds. The single 

emission minimization location-allocation problem is solved in about 80 times the 

time required for the single cost case.  The difference in computational times may 

be explained by the unit emission values, which allow for more use of the three 
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modes of transport in the emission rather than in the cost minimization case, in 

which road transport is clearly favored. Whatever the optimized objective, we 

therefore expect shorter computational times, as long as the differences between 

the unit modal parameters increase. 

Solving the cost minimization problem, and then determining the corresponding 

optimal emission value (i.e., defining the Pareto optimal solution) results in a 

computational time of 983 seconds. It is 14 times the time required for finding a 

solution which is optimal in terms of cost. 

Having generated the starting point of the Pareto curve, the inclusion of the 

additional epsilon-constraint leads to run times varying between 2 and 14 times 

the time required for the optimization without the additional constraint on the 

emissions. Each point of the Pareto curve is generated in times between 1,912 and 

14,069 seconds. The average time for solving one point of the Pareto curve is 

7,339 seconds. The standard deviation of the solving times is 4.06.  

When dealing with economies of scale, a single allocation problem is solved and 

the resolution times are less than 450 seconds. 

Since our model solves a problem at the strategic level of transport planning, the 

resolution times do not limit its usefulness for decision makers. At the NUTS 3 

level, the model allows solving location-allocation problems for a small 

geographical region like Belgium. In order to obtain similar computational 

performances for bigger geographical areas, the level of aggregation of flows 

should be increased. If larger instances with the same degree of disaggregation are 

analyzed, further solution methods (Sörensen et al., 2012) will be needed. 

5.4.5. Sensitivity analysis 

 

The goal of this section is to test the robustness of the model, by identifying 

whether the results change substantially, when the input parameters are modified. 

Sensitivity analysis is performed on the parameters related to costs, emissions and 

the number of terminals. 

5.4.5.1. Costs 

Table 13 compares the results of the linear cost minimization case analyzed here 

above (table 10) with scenarios of 10% increase and decrease of the initial 

parameter values. 
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Cost min Relative 

cost Δ 

Absolute 

road flow 

Δ 

Absolute 

rail flow 

Δ 

Absolute 

IWW 

flow Δ 

Rail 

termi-

nal 

IWW 

termi-

nal 

Same 

locations 

Transsh.: 

+10% 

+1.16% +2.89% -1.36% -1.53% 10 5 15/15 

Transsh.: 

-10% 

-1.23% -0.91% +0.75% +0.16% 10 5 14/15 

IWW 

cost: 

+10% 

+0.17% +1.16% +1.49% -2.65% 11 4 14/15 

IWW 

cost: 

-10% 

-0.34% -1.39% -6.24% +7.63% 9 6 14/15 

Road 

cost: 

+10% 

+8.01% -3.05% +3.22% -0.17% 11 4 14/15 

Road 

cost: 

-10% 

-8.23% +5.05% -1.98% -3.07% 11 4 13/15 

Rail 

cost: 

+10% 

+0.36% +0.03% -7.15% +7.12% 9 6 14/15 

Rail 

cost:  

-10% 

-0.56% -0.38% +3.02% -2.64% 11 4 14/15 

Table 13: Sensitivity analysis of the cost parameters 

The cost and flow variations are the respective relative and absolute differences in 

total costs and flows, compared to the cost minimization scenario. For instance, 

an increase of 10% of the transshipment cost leads to total costs relatively 1.16% 

higher than the ones obtained in the cost minimization scenario. Regarding flows, 

an increase of 10% of the transshipment cost leads to an absolute increase of 

2.89% of the road market share, compared to the cost minimization scenario. The 

relative variation of the total costs is smaller than the relative variation of the cost 

parameters. Road external cost is the parameter that mostly influences the 

modification of total costs (respectively +8.01% and -8.23% when road costs are 
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increased and decreased). This is expected since road activities have the greater 

modal share in the initial scenario and they influence the model in direct road 

transfers, but also during the PPH stages of intermodal transport.  

When road costs are modified, most of the flow distribution changes are observed 

between road and intermodal market shares. However, when the costs of 

intermodal long-haul modes are varied, a transfer of flows inside the intermodal 

market share is observed. This result highlights the risk of switch of modes inside 

the intermodal market share, rather than between intermodal and all-road 

transport (Macharis and Pekin, 2009). As expected, the general flow distribution 

is affected by changes in cost factors. However, the absolute variation never 

exceeds 8%. The terminal locations mainly remain the same, in each of the 

studied scenarios. However, some slight switch in terminal type is noticed, 

depending on the cost variation under study. At most two terminals are different 

from the initial solution. When a different terminal is located, only two different 

locations are chosen, whatever the scenario. The terminal location, type and flow 

distribution thus seem robust to cost variations. 

Table 14 provides the aggregate elasticities for an increase of 10% of the road, 

rail and IWW transport costs (flows in t.km). 

  Cost increase of 10%  

  Road Rail IWW 

t.km Road -0.51 0.25 0.07 

 Rail 1.93 -6.37 0.89 

 IWW -0.26 6.20 -3.60 

Table 14 : Aggregate elasticities of road, rail and IWW 

These elasticities confirm the previous results showing that increasing the cost of 

one mode decreases the use of this mode in t.km. Results highlight the important 

link between the rail and the IWW sector. Indeed, an increase of the rail cost has a 

significant impact on the flows transported by IWW. The elasticity related to the 

impact of rail costs on rail demand is high compared to the elasticities observed in 

most papers of the literature (see Beuthe et al., 2014 for a review of elasticities in 

multi-mode studies). These strong elasticities may be explained by the all-or-

nothing characteristic of the model and the aggregation level of the data  which 

imply that important flows of goods can be transferred from one mode to the least 

expensive mode in case of cost variations. 
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Results show that increasing road costs may reduce the intermodal flows 

transported by IWW, highlighting that the pre- and post-haulage distance values 

by road play a more significant role in intermodal IWW than in intermodal rail 

transport. This can be explained by the fact that under the economic optimization, 

more rail than IWW terminals are located, which reduces the PPH distances of 

intermodal rail compared to intermodal IWW transport. 

Elastic demands are observed for rail and IWW when rail costs are modified, for 

rail when road costs are modified, and for IWW when IWW costs are modified. 

As several studies in the literature (Beuthe et al., 2014), inelastic demand is 

observed for road transport. 

5.4.5.2. Emissions 

Table 15 compares the results of the linear emission minimization case analyzed 

here above (table 10) with scenarios of 10% increase and decrease of the initial 

parameter values. 

The relative variation of the total emissions is smaller than the relative variation 

of the emission parameters. The greatest gap is also observed for the scenarios 

where road emissions are modified. Global emissions are thus more sensitive to 

road than to other modes of transport. The flow distribution varies according to 

the scenario but the changes are limited in most of the cases. Larger market share 

variations are only observed in the scenario where rail emissions are decreased. 

Flow transfers mainly occur inside the intermodal market share, between rail and 

IWW transport. These results highlight again the risk of flow transfers inside the 

intermodal market share, rather than between road and a more environmentally 

friendly mode. Most of the terminal locations and types remain the same, 

whatever the scenario. The identical structure of terminal locations and types is 

observed in three out of eight scenarios. In four other cases, only one rail terminal 

is placed at another location (identical for each of these four scenarios). When rail 

emissions are reduced, three IWW terminals are replaced by rail terminals, which 

is coherent with the observed market share variation. The terminal location, type 

and flow distribution thus seem robust to emission variations. 

  



110 

 

 

Emission 

min 

Relative 

emission 

Δ 

Absolute 

road flow 

Δ 

Absolute 

rail flow 

Δ 

Absolute 

IWW 

flow Δ 

Identical 

rail 

terminals 

Identical 

IWW 

terminals 

Transsh.: 

+10% 

+0.58% +1.66% -0.34% -1.32% 5/6 9/9 

Transsh.:  

-10% 

-0.61% -1.69% +1.98% -0.29% 6/6 9/9 

IWW 

emission: 

+10% 

+1.06% +1.97% +0.30% -2.27% 5/6 9/9 

IWW 

emission: 

-10% 

-1.12% -0.43% -1.17% +1.60% 6/6 9/9 

Road 

emission: 

+10% 

+6.96% -3.10% +3.24% -0.14% 6/6 9/9 

Road 

emission: 

-10% 

-7.23% +3.54% -2.61% -0.93% 5/6 9/9 

Rail 

emission: 

+10% 

+1.11% +2.64% -3.27% +0.63% 5/6 9/9 

Rail 

emission:  

-10% 

-1.38% -2.30% +12.97% -10.67% 6/6 6/9 

Table 15: Sensitivity analysis of the emission parameters 

5.4.5.3. Number of terminals 

The model assumes that the number of terminals is given and that it is a fixed 

parameter. This assumption has implications on the resulted terminal locations 

and types and on the modal split. In order to test the implications of this 

assumption, sensitivity analysis of the results to variations of the maximum 

number of allowed terminals is performed. 
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In order to test the parameter 𝑝 and its effect on the model, we varied its value 

from 10 to 16 terminals, both on the linear and nonlinear approaches. We also 

tested two extreme cases, i.e. a very small (2) and a very high (24) number of 

located terminals. Results show that the model is robust in terms of terminal 

locations. Indeed, when allowing 𝑝+1 terminals to be opened, the model locates 

exactly the same terminals as in the 𝑝-configuration, and opens an additional 

terminal. The locations and types of terminals are thus consistent, whatever the 

value of 𝑝.  

Under the linear cost optimization, the road market share progressively decreases 

with the increasing number of terminals. This behavior is understandable since 

locating more terminals reduces the PPH costs of intermodal transport, and thus 

increases its competitiveness. A maximum of 8% of the road flows are transferred 

to the intermodal market share, between the location of 2 and 24 terminals. This 

means that, on several connections, even by increasing the number of terminals, 

i.e. by decreasing the PPH distances, the long-haul costs of rail and IWW are not 

low enough to compensate for the transshipment and PPH costs of intermodal 

transport. This modal transfer of 8% from road to more environmentally-friendly 

modes is far from the targeted flow transfers of 30% or 50% expressed in the 

European White Paper on Transport (European Commission, 2011).The main 

absolute transfers of flows happen between road and rail transport. Intermodal 

IWW and rail transport are similar in terms of cost structure. Flows are thus 

transferred from road to rail and not IWW, because rail long-haul costs are more 

attractive. In addition, rail terminals can be implemented at much more locations 

than IWW terminals (due to geographical constraints), which enhances their 

accessibility. 

For the nonlinear cost optimization, a decrease of the road market share to the 

benefit of intermodal transport is observed until 𝑝 = 13, i.e. less than the number 

of currently existing main terminals in Belgium. For every further additional 

terminal, the ratio between the intermodal and road market share remains the 

same. In the nonlinear case, there is thus some limitation in the flow exchange 

between road and intermodal transport. At some point, flows are simply 

transferred from one to another terminal, highlighting the self-cannibalization 

issue of intermodal transport. Results show that this phenomenon can happen 

either between the same type of terminals or between rail and IWW terminals. 

The absolute difference of road market share between the smallest and the highest 

amount of located terminals is bigger for emission (22%) than for cost 
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optimization (8%). The modal split between road and intermodal transport is thus 

more sensitive to the number of terminals, when emissions are optimized, rather 

than when costs are optimized. 

In the linear emission optimization, the flow exchanges happen between the three 

modes of transport. Flows are first mainly transferred from road to IWW, but 

when reaching a number of 15 terminals, only additional rail terminals are open. 

Some IWW flows are thus replaced by rail flows, which increases the rail market 

share to the detriment of IWW. Again, this underlines the risk of flow exchange 

inside intermodal transport rather than between road and intermodal transport. 

For the nonlinear emission minimization, the intermodal market share also 

increases with the increasing number of terminals. An increase of the IWW 

market share is observed until 𝑝=14, where this market share starts to decrease. 

This is explained by reduced flows passing through certain terminals, which leads 

to barges less charged and thus to reduced economies of scale. 

It might be expected that changing the maximum number of terminals when fewer 

terminals are located modifies more significantly the results. For this purpose, an 

analysis of the outcomes when at most 1, 2 or 3 terminals can be located is also 

studied. 

The terminal location is stable when few terminals are located. As when a large 

number of terminals is located, allowing 𝑝+1 terminals to be opened implies the 

location of the same terminals as in the 𝑝-configuration with the opening of an 

additional terminal. 

In the cost minimization, the same kinds of results are observed for a small 

number as for a large number of terminals. Indeed, allowing more terminals 

progressively decreases the road market share to the benefit of intermodal 

transport.  

For the emission minimization, other results are observed. Indeed, when going 

from 1 to 2 terminals, a decrease of the relative market share of intermodal 

transport in t.km is observed (from 58% to 55%) whereas the proportion of tonnes 

transported by intermodal transport increases (from 50% to 53%). This means that 

the reduction of the intermodal market share in t.km (flows vary from 5,155*10
6
 

to 4,243*10
6 t.km) is due to the reduction of the kilometers rather than to the 

reduction of the tonnes (flows vary from 56*10
6
 to 61*10

6 
t) transported by 
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intermodal transport. This result demonstrates that adding terminals allows 

decreasing the long-haul travel by intermodal transport. This contradictory 

behavior between intermodal market share in tonnes and in t.km is observed when 

modifying a small number but not a large number of terminals. As expected, this 

means that increasing the number of terminals has a larger effect on distance 

reductions by rail or IWW when a small rather than when a large number of 

terminals is located.  

5.5. Conclusions 

 

This research develops and solves a new bi-objective location-allocation 

optimization model for intermodal transport under economies of scale. The model 

includes three modes: road, intermodal rail and intermodal IWW transport. It 

focuses on a bi-objective formulation, for identifying the trade-off between 

economic and environmental goals. The latter are estimated through CO2 

emissions, main greenhouse gas responsible for climate change. The economies 

of scale of intermodal transport can also be taken into account, using different 

sizes of vehicles for IWW and nonlinear cost and emission functions for rail.  

The characteristics of the model allow a better matching with reality, and provide 

interesting insights to the stakeholders of the freight transportation chain. Indeed, 

the obtained results in terms of modal split and intermodal terminal location and 

type can be used by public authorities, infrastructure and terminal managers, or 

road, rail and IWW carriers to plan their strategic future decisions in alignment 

with environmental perspectives. 

A case study on Belgium reveals interesting information regarding the impact on 

flow distribution, terminal type, and terminal location, of the followed economic 

or environmental policy, of the consideration or not of economies of scale, of the 

structure of costs and emissions, and of the number of located terminals.  

The case study shows that different terminal types and modal splits are obtained, 

depending on the economic- or environmental-oriented policy that is considered. 

Similarly, the chosen policy affects the modal split inside the intermodal market 

share. Locations may change according to the economic or environmental desired 

outcome, but generally most of the terminals remain the same. 
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No matter if economies of scale are integrated or not, an increase of the 

intermodal market share is observed going from cost to emission minimization. 

An increased use of intermodal transport is thus suggested for achieving the 

environmental objectives related to climate change. Results of the linear and 

nonlinear cases underline the viability and interest of using intermodal transport 

on short distances. When economies of scale are integrated, more road flows are 

transferred to the intermodal market share, compared to the linear case. 

Slight modifications of the unit costs and emissions of the different modes of 

transport do not provide significant impacts on the terminal location and flow 

distribution. This shows the robustness of the model but also highlights the issue 

that modifying slightly the performance of one mode in terms of costs or 

emissions (for instance through improved technologies) does not necessary lead 

to an important modification of the modal split. Moreover, results of the 

sensitivity analysis also illustrate that modifying road costs or emissions leads to 

flow transfers between road and intermodal transport, whereas modifications of 

rail or IWW costs or emissions generate flow exchanges between rail and IWW, 

inside the intermodal market share. 

The terminal locations remain stable when the maximum number of allowed 

terminals is modified. The modal split behavior is however different, when 

economies of scale are taken into account or not. Indeed, with linear costs and 

emissions, increasing the number of terminals continuously increases the 

intermodal market share, due to reduced PPH distances. When economies of scale 

are modelled, the decrease of the road market share is observed only until a 

certain number of terminals. After this ceiling, flows are transferred from one to 

another terminal, highlighting the risk of self-cannibalization of terminals. Indeed, 

more terminals means less flows through them, lower possibilities of 

consolidation, and thus lower economies of scale. 

The tests on the Belgian case study reveal that intermodal transport should be 

more used when environmental goals are followed. These outcomes confirm and 

support the usefulness of the European policies which encourage the transfer of 

road freight to more environmentally friendly modes such as rail or IWW. 

However, the results also underline the risk of flow transfers inside the intermodal 

market share, rather than between road and intermodal transport. 
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This research can be extended in future studies, by using other types of 

externalities to represent the environmental impact. Other applications of the 

model can also be developed, such as the analysis of new policy scenarios and the 

assessment of the impact of improvement in environmental friendliness of 

specific modes. The model can also be applied to another geographical area, 

where intermodal network design is still in progress. The strategic evaluation in 

terms of economic and environmental perspective of a new terminal location 

makes thus full sense in these areas in need of intermodal network design 

expertise. 

5.6. Appendix A: Solution methodology 

 

This section aims at presenting the methodological issues used in the solution of 

the bi-objective model with economies of scale of intermodal transport. The 

resolution method of the bi-objective model is first presented. The way in which 

nonlinear economies of scale are dealt with is then explained. 

5.6.1. Bi-objective optimization 

 

The bi-objective terminal location-allocation model is a particular multi-objective 

problem. The resolution of such kinds of problems leads to the generation of so-

called Pareto optimal (or non-dominated) solutions, i.e. solutions for which none 

objective function value can be improved without worsening the value of another 

one.  

We solve the bi-objective problem by improving the exact Ɛ-constraint resolution 

technique of Chankong and Haimes (1983). The method consists in transforming 

a multi-objective problem into single-objective optimization by only keeping one 

objective function to optimize, and introducing the other objective function as 

constraints of the model, lower or equal to a value Ɛ (Rangaiah, 2009). In this 

study, we introduce the CO2 emission function as a constraint of the costs 

minimization problem. Instead of classically generating the Ɛ values by 

determining a range of values in which it should vary, we generate the next Ɛ 

value, directly based on the previous obtained optimal solution. 
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Algorithm 1 represents the methodology used for obtaining the different Pareto-

optimal solutions of the bi-objective model thanks to the exact Ɛ-constraint 

method. Here are some details about its content: 

 MC(E) (respectively MC’(E)) is the following model: 

Min 𝑓𝑐𝑜𝑠𝑡𝑠 

s.t. (3)-(21) 

 𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 < 𝐸 (respectively 𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ≤ 𝐸) 

 ME(C) is the model:  

Min 𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠  

s.t.  (3)-(21) 

 𝑓𝑐𝑜𝑠𝑡𝑠  𝐶 

 i is the index of the step of the algorithm. 

 
Solve ME() 

if ME() has a solution then 

minEValue[𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠] 

Solve MC’(minE) 

C’Value[𝑓𝑐𝑜𝑠𝑡𝑠] 

 i=0 

E[0]=  

 while (EminE) do 

  Solve MC(E) 

if MC(E[i]) has a solution then 

   C[i]Value[𝑓𝑐𝑜𝑠𝑡𝑠] 

Solve ME(C[i]) 

E[i] Value[𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠] 

P[i]=(C[i],E[i]) 

ii+1 

E[i] Value[𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠]-s 

end if 

end while 

P[i]=(C’,minE) 

else  
Stop 

end if 

Algorithm 1: Generation of Pareto optimal solutions 

 

A minimization of emissions is performed, with costs set to infinite. The resulting 

emission value is assigned to the variable 𝑚𝑖𝑛𝐸. The minimum cost related to this 

minimum amount of emissions 𝑚𝑖𝑛𝐸 is then computed and assigned to the 

variable 𝐶′. We thus have one of the two extreme points of the Pareto curve 
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(C',minE), which corresponds to the minimum possible emissions. The algorithm 

then initializes the value of the emissions to infinite. The loop starts with the 

generation of the other extreme point of the Pareto curve, with the minimum 

possible costs. For this purpose, costs are minimized and no constraints are 

applied on the emissions. Even if this solution is optimal in terms of costs, it is 

not necessarily optimal for the minimization of emissions. To ensure Pareto 

optimality, the model where emissions are minimized subject to the fact that costs 

are equal to or lower than the obtained cost value is thus solved. The other 

extreme point of the Pareto curve (C[0],E[0]) is thus generated. E[0] is the first 

value of epsilon that is identified. Based on the optimal solution at the previous 

iteration, another Pareto optimal solution is generated by solving the model where 

the costs are minimized, subject to the fact that the emission values should be 

strictly lower than the ones obtained at the preceding iteration of the optimization 

(E[0]).  Solving this model gives a cost value C[1]. To ensure the Pareto 

optimality, the same model is again solved by minimizing emissions, subject to 

the fact that the costs are less or equal to C[1]. A second Pareto optimal solution 

(C[1],E[1]) is then generated. E[1] is the second identified epsilon value. The 

value of C[1] is higher than the one of C[0] but the value of E[1] is smaller than 

the one of E[0]. One thus goes down along the Pareto front. 

The loop goes on until the minimum value of emissions by the step size 𝑠 is 

reached. This step size is used in order to avoid generating infinity of Pareto 

optimal solutions. 

5.6.2. Piecewise linear functions 

 

In the literature, economies of scale of transport are generally represented using a 

classical discount factor for the axes with high quantities of flows. The problem 

of this modeling is that this discount factor is often fixed, whatever the quantity 

transported, and does not really reflect the benefits generated for different levels 

of utilization (Kimms, 2006). There is therefore a need to integrate economies of 

scale in a different way. To account for economies of scale of rail transport, we 

use nonlinear functions of the weight transported. The concave increasing cost 

terms are approximated by a piecewise-linear function so as to permit the use of 

linear programming solvers for its resolution.  
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Two methodological steps must be performed in order to generate the piecewise 

linear function: identification of the piecewise linear function and modeling of the 

piecewise linear function. 

Identifying the piecewise linear function consists in determining the different 

segments that define the piecewise linear function, by isolating several 

breakpoints. The piecewise linearization is done in the simplest way (Belotti et 

al., 2012), by cutting the function in segments of equal size. This is performed by 

choosing a set of breakpoints, uniformly distributed in the interval, between the 

minimum and maximum flows that are transported yearly.  

The piecewise linear function is modeled using the multiple choice model 

introduced by Jeroslow and Lowe (1984). 

∑ 𝑤𝑘 = 𝑥      𝑑
𝑘=1    

 

(24) 

∑ 𝑧𝑘 = 1   ;𝑑
𝑘=1   (25) 

𝑏𝑘−1𝑧𝑘 ≤ 𝑤𝑘 ≤ 𝑏𝑘𝑧𝑘   ;    ∀𝑘 = 1, … , 𝑑 (26) 

∑ (𝑚𝑘𝑤𝑘 + 𝑎𝑘𝑧𝑘) = 𝑦   ;  𝑑
𝑘=1     (27) 

 𝑧𝑘 ∈ {0,1}   ;    ∀𝑘 = 1, … , 𝑑  (28) 

The modeling is based on the introduction of two additional sets of variables. The 

value of 𝑤𝑘 is equal to 𝑥, if 𝑥 lies in the k
th
 interval and 0 otherwise. The value of 

𝑧𝑘 is equal to 1 if 𝑥 lies in the k
th
 interval and 0 otherwise. The combination of 

constraints (24) and (26) ensures that only one 𝑤𝑘 is equal to 𝑥, and that this 

happens only if 𝑥 is in the k
th
 interval. The combination of (25) and (28) makes 

sure that only one 𝑧𝑘 is equal to 1 and that this happens when 𝑥 is in the k
th
 

interval. Finally, constraint (27) determines the value of 𝑦 as the linear 

combination of 𝑚𝑘 and 𝑎𝑘, where 𝑚𝑘 is the slope of the k
th
 segment and 𝑎𝑘 is the 

interception of this segment with the 𝑦-axis, when it is extended until reaching the 

𝑦-axis.  
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5.7. Appendix B: Cost and emission functions of the linear approach 

 

Unit costs functions for road are based on Janic (2007) and Janic (2008). Unit 

road operational costs for long-haul travels (𝐶𝑖𝑚
𝐿 ) are computed as 

0.2676𝑑𝑖𝑚
−0.278/t.km, where 𝑑𝑖𝑚 stands for the road distance between origin 𝑖 and 

destination 𝑗 and an average load factor of 0.85 (European Commission, 2001) is 

assumed. Unit road operational costs for collection/distribution travels (𝐶𝑖𝑗
𝑃) are 

equal to 0.3791𝑑−0,278, with a considered load factor of 0.6 (European 

Commission, 2001). Unit road costs are nonlinear with the distance traveled. 

Unit IWW costs (𝐶𝑗𝑘
𝑡𝑊) for a barge of size 𝑡 are based on a study of PWC (2003). 

In this approach, a single type of barge is considered. In this approach, a single 

type of barge is considered. The capacity of this boat is determined as the 

maximum capacity of the European Conference of the Ministers of Transport 

(ECMT) class Va of barges, i.e. 3,000 t. The IWW costs for this average size 

barge are estimated to 0.02285 €/t.km., i.e. 68.55 €/barge.km.  

Unit rail costs (𝐶𝑗𝑘
𝑅 ) in €/t.km are given in Janic (2008) and are estimated using 

the following formula (29). 

0.8899 + 0.0275𝑠𝑗𝑘 + 0.0024(
𝑠𝑗𝑘

ln(𝑠𝑗𝑘)
) 

𝑠𝑗𝑘
 

(29) 

 

𝑠𝑗𝑘 refers to the rail distance between terminals 𝑗 and 𝑘. This function has been 

obtained by considering several hypotheses such as an average load factor of 0.5 

per train (Hoen et al., 2010, Hoen et al., 2014). Please refer to Janic (2008) for the 

detailed explanation of the numerical values of other parameters. 

Transshipment costs (𝐶𝑗
𝑇) are based on Janic (2007) and are assumed, for both rail 

and IWW, equal to 2.8 €/t (Janic, 2007). 

Emission functions are based on the NTM methodology. They are obtained from 

the work of Hoen et al. (2010) and Hoen et al. (2014) for road, rail and water 

transportation.  
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Unit road transport emissions (𝐸𝑖𝑚
𝐿 ) for long-haul travels and for 

collection/distribution travels (𝐸𝑖𝑗
𝑃) are expressed in kg of CO2/t.km and are 

determined by expression (30). 

𝛾. 𝐶𝐹 . 𝐸𝐹

𝐾𝑇 . 𝜆
 

 

(30) 

𝐾𝑇 is the maximum capacity of one truck and 𝜆 is the load factor of the truck. 

Emissions also depend on the fuel consumption (𝐶𝐹), on a terrain factor (𝛾) which 

reflects the different consumption levels over hilly or flat terrains, and on the fuel 

emissions (𝐸𝐹). It is assumed that a single truck transports two twenty feet 

equivalent units (2 TEU). Since a TEU contains on average 12 tonnes of freight, 

𝐾𝑇 is thus equal to 24 tonnes. A load factor of 0.85 is considered for long-haul 

travels and 0.6 for short-haul travels (European Commission, 2001). Fuel 

consumption is assumed to be equal to 0.3399 l/km for long-haul travels and 

0.4175 l/km for short-haul travels. A terrain factor of 1.05 is considered. Fuel 

emissions are taken as 2.621 kg of CO2/l of fuel. The unit road emissions are thus 

computed as 2.7440 ∗  10−2 kg of CO2/t.km for long-haul travels and as 

4.7886 10−2 kg of CO2/t.km for collection/distribution travels. 

Unit IWW emissions of a barge of size 𝑡 (𝐸𝑗𝑘
𝑡𝑊) in kg of CO2/barge.km are based 

on the NTM methodology developed in the paper of Hoen et al. (2014). 

According to this methodology, unit IWW emissions are obtained using equation 

(31). 

𝐶𝐹 . 𝐸𝐹  (31) 

 

Fuel consumption of 0.007 t/km and fuel emissions of 3,178 kg of CO2/t are taken 

into account. Considering that a medium barge has a maximum capacity of 3,000 

t, the unit IWW emissions for this barge size are thus equal to 7.145 ∗ 10−3 kg of 

CO2/t.km. 

Unit rail emissions (𝐸𝑗𝑘
𝑣𝑅) of a train 𝑣, loaded with a predetermined amount of 

freight, are expressed in kg of CO2/ton.km using equation (32) for electrical trains 
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and equation (33) for diesel trains. Rail emissions are also based on the NTM 

methodology.  

𝑇 ∗ 𝛾 ∗ 𝐸𝐸

1000 ∗ 𝜆 ∗ (1 − 𝐿) ∗ √𝑔
 

 

 (32) 

𝑇 ∗ 𝛾 ∗ 𝐸𝐹

106 ∗ 𝜆 ∗ √𝑔
 

 

 (33) 

𝑇 stands for the energy consumption for a flat region. As for road transport, 𝛾 

reflects the topography of the studied area. 𝐸𝐸 represents the energy efficiency i.e. 

the quantity of CO2 emissions required for producing one kWh. 𝜆 is the load 

factor of the train and 𝐿 is a percentage representative of the energy loss, when 

transferring the energy from the power plant to the train. 𝑔 is the gross weight of a 

full train. Finally, 𝐸𝐹 stands for the amount of CO2 released in the atmosphere for 

one unit of fuel burnt.  

In this section, we assume that there is only one type of loaded train 𝑣. We 

consider a load factor of 0.5, a gross weight of the train of 1,371 tonnes and a 

topography factor equal to 1.25 (Hoen et al., 2010, Hoen et al., 2014). For 

electrical trains, the energy consumption for a flat region is assumed to be 540 

Wh/km and the energy efficiency is set to 0.41 kg/kWh (average value for 

Europe). The energy loss factor is fixed to 0.1. For diesel trains, the fuel 

consumption factor is taken as 122.46 and the fuel emissions as 3,175 g of CO2/kg 

of diesel consumed. Results of equations (32) and (33) are finally weighted by the 

average proportion of train technology in Europe for obtaining the emission ratio 

by t.km. 75.4% of the European rail network operates using electricity whereas 

24.6% uses the diesel technology. This leads to unit rail emissions for an average 

train of 1.638 ∗ 10−2 kg of CO2/t.km 

Transshipment emissions at the terminal are based on te Loo (2009). They are 

estimated at 0.002 tonnes of CO2/handling of a container with cranes. 

In the following analysis, we assume that there is no storage at the terminal and 

that goods only have to be transshipped using cranes. Considering that a container 
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contains on average 12 tonnes of freight (Janic, 2007), one determines the 

transshipment emissions (𝐸𝑗
𝑇) at the terminal as 1.67 ∗ 10−4 t of CO2/t of handled 

goods. 

5.8. Appendix C: Cost and emission functions of the nonlinear 

approach 

 

Cost functions for road are still based on the work of Janic (2007, 2008).  Unit 

road operational costs for long-haul (𝐶𝑖𝑚
𝐿 ) and collection/distribution travels (𝐶𝑖𝑗

𝑃) 

are determined as in the NES approach. Indeed, we neglect the potential 

economies of scale related to road transport since we consider that a truck either 

transports its TEUs or it does not travel.  

In the literature, no general nonlinear formulation for IWW costs has been found, 

which was modelling IWW costs as a nonlinear function of the weight transported 

(Mostert and Limbourg, 2016). In order to remain coherent in the formulation of 

IWW functions, we modelled IWW economies of scale through the use of three 

different barge sizes, both for costs and emissions. 

Unit IWW costs (𝐶𝑗𝑘
𝑡𝑊) of a barge of size t are computed as in the linear approach. 

In this first scenario, only one average medium barge is taken into account 

whereas three sizes of barges are considered in the current nonlinear approach, 

which leads to three different costs. PWC (2003), based on data from Voies 

Navigables de France, assumes that the unit costs of barges vary between 0.0076 

(large barges) and 0.0381 (small barges) €/t.km. One can therefore deduct that the 

cost for an average medium barge is 0.02285 €/t.km.  

Small ships are represented by the ECMT class IV boats, i.e. Johann Welker type 

(maximum capacity of 1,500 t). Medium barges correspond to the ECMT class 

Va, i.e. large Rhine ships (maximum capacity of 3,000 t).  Finally large barges are 

assumed to be part of the ECMT class VIIb, i.e. pushed convoys (maximum 

capacity of 12,000 t). These specific vessels' sizes have been chosen as reference 

for the representation of small, average and large barges because they correspond 

to the most often IWW capacities encountered in Belgium. Therefore, we assume 

a barge capacity of 1,500, 3,000 and 12,000 t, respectively for small, medium and 

large size barges. Taking into account these capacities, we determine that unit 
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IWW costs are around 57 €/barge.km for small ships, 69 €/barge.km for medium 

ships and 91 €/barge.km for large ships. 

Transshipment costs (𝐸𝑗
𝑇) are valued as in the linear approach.  

Unit rail operational costs (𝐶𝑗𝑘
𝑅 ) in €/t.km come from Janic (2007) and are 

determined by equation (34). 

√2

2𝑋𝑗𝑘
𝑖 . 𝑠𝑗𝑘

. 0.58(𝑔. 𝑠𝑗𝑘)
0,74

. [
𝑋𝑗𝑘

𝑖 . 𝑇. (𝛼𝑏1 + 𝛼𝑏2) 

0.58(𝑔. 𝑠𝑗𝑘)
0,74

+ 0.57(𝑔. 𝑠𝑗𝑘)
0,6894]

0,5

 (34) 

 

𝑋𝑗𝑘
𝑖  refers to the amount of goods (in tonnes) that is really transported from origin 

node 𝑖 and that passes though rail terminals 𝑗 and 𝑘. 𝑠𝑗𝑘 represents the rail 

distance between terminals 𝑗 and 𝑘. 𝑔 is the gross weight of a full train and is 

equal to 1,371 tonnes (Janic, 2007).   Given the cost function formulation, it is to 

notice that an increase of the transported quantity 𝑋𝑗𝑘
𝑖   leads to economies of scale 

and therefore to reduced average costs per tonne.kilometer. Rail costs thus take 

into account economies of scale related to the bundling of flows in terms of 

weight. Parameter 𝑇 represents the network operating time. It is fixed and 

supposed equal to five days a week multiplied by 52 weeks a year, i.e. 6,240 

hours. Finally, 𝛼𝑏1 and 𝛼𝑏2 stand for the unit cost of time per units in zones 1 and 

2 and are assumed to be 0.028 €/hour.tonne. 

Unit road transport emissions (𝐸𝑖𝑚
𝐿 ) for long-haul travels and for 

collection/distribution travels (𝐸𝑖𝑗
𝑃) are expressed as in the linear approach. As for 

road costs, we neglect potential economies of scale in terms of emissions for road 

transport. 

IWW emissions of a barge (𝐸𝑗𝑘
𝑡𝑊) in kg of CO2/barge.km are based on the NTM 

methodology. Three emission levels are considered for small, medium and large 

size barges, which reflects the potential economies of scale obtained when using 

larger vehicles, on different sizes of IWW. 

As in the linear approach, medium barges are supposed to emit 7.145 ∗ 10−3 kg 

of CO2/t.km. We assume that small size barges have a unit emission rate 20% 
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higher, while we consider that that large size boats generate 20% less emissions 

than medium barges. Knowing the capacities of each boat, we can deduct the 

values of emissions as 12.86 kg of CO2/t.km for small barges, 21.43 kg of 

CO2/t.km for medium barges, and 68.52 kg of CO2/t.km for large barges. 

Unit rail emissions (𝐸𝑗𝑘
𝑣𝑅) are expressed in kg of CO2/ton.km using equation (35) 

for electrical trains and (36) for diesel trains. 

𝑇 ∗ 𝛾 ∗ 𝐸𝐸

1000 ∗ (1 − 𝐿) ∗ √𝑊𝑒𝑚𝑝𝑡𝑦 + 𝑋𝑗𝑘
𝑣𝑖

 
(35) 

𝑇 ∗ 𝛾 ∗ 𝐸𝐹

106 ∗ √𝑊𝑒𝑚𝑝𝑡𝑦 + 𝑋𝑗𝑘
𝑣𝑖

 
(36) 

 

Compared to the linear approach, by 𝑊𝑒𝑚𝑝𝑡𝑦 and 𝑋𝑗𝑘
𝑣𝑖. 𝑊𝑒𝑚𝑝𝑡𝑦 refers to the tare of 

the train, i.e. the weight of a train, i.e. the weight of a train with no merchandise 

loaded on it. It is assumed equal to 903 tonnes (Janic, 2007, Janic, 2008). 𝑋𝑗𝑘
𝑣𝑖 is 

the net weight of freight transported by train 𝑣  between terminals 𝑗 and 𝑘. This 

amount is limited to the maximum capacity of one train (𝐴)  i.e. 468 tonnes 

(Janic, 2007, Janic, 2008). 

Finally, transshipment emissions at the terminal (𝐸𝑗
𝑇) are valued exactly as in the 

linear approach. 

The nonlinear functions presented here above are approximated using piecewise 

linear functions, to permit the use of linear programming solvers for the resolution 

of the model. The next paragraphs detail how this piecewise linearization is 

practically performed. 

Janic (2007) states that one train a day, i.e. five trains a week, is the most 

common train frequency in many trans-European intermodal markets-corridors. 

One train a day is thus the unit chosen as the increment between two segments of 

the piecewise linear function for rail that approximates the nonlinear costs.  Using 



125 

 

this method thus allows cutting the function between the minimum and maximum 

flows, according to the benchmark situation. 

The first segment of the function therefore contains the annual flows which 

correspond to zero trains a day until one train a day. The second segment focuses 

on the annual flows equivalent to one train until two trains a day. And the cut is 

iteratively continued, until reaching the last segment, which contains the 

additional capacity required for achieving the maximum flows value. 

In this case study, the cost function is divided into seven segments. The first six 

ones are equal and their size corresponds to the annual flows transported if one 

train a day is used.  The last segment of the function contains the annual flows 

corresponding to more than six trains a day. 

Rail emissions are computed thanks to equations (35) and (36), respectively for 

electrical and diesel trains. 

The specificity of these functions is that the value of 𝑋𝑗𝑘
𝑣𝑖, the weight transported, 

cannot exceed the maximum amount transportable in a single train. The emissions 

generated are thus nonlinear with the weight transported inside a specific train. 

However, the total emissions generated by a flow equivalent to an integer number 

of trains are linear with the number of trains. In this work, we determine the 

different segments of the piecewise linear function using breakpoints equivalent 

to an integer multiple of trains. Since the economies of scale are developed inside 

a specific train and not from one train to another, the obtained piecewise linear 

function is thus simply linear. 

In Belgium, in 2008 and 2009, around 80% of the travels were performed using 

electric locomotives whereas 20% of these travels were done with the help of 

diesel machines (Eurostat, 2014). 

The nonlinear emissions functions for electrical and diesel trains are thus reduced 

to a linear emission value, based on an 80-20 repartition key. 
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Chapter 6 

Intermodal transport and air pollution 
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In a complementary approach to chapter 5, this chapter identifies the links 

between intermodal transport and another type of externality: air pollution. It 

evaluates the flow distribution between road and intermodal transport under 

economic and environmental policies on the Belgian case study. 

6.1. Abstract
4
 

 

The transportation of goods is essential for the economy, but it also contributes to 

air pollution which, in turn, affects human health. These negative impacts 

                                                           
4
 This chapter is based on the paper published under the reference: “Mostert, M., Caris, A. & 

Limbourg, S. (2017). Road and intermodal transport performance: the impact of operational costs 

and air pollution external costs. Research in Transportation Business and Management, In Press.” 
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generate additional costs for society that are not necessarily taken into account in 

public transportation policies and in private transportation decisions of companies 

and individuals. This leads to inefficient transportation systems where the social 

equilibrium is not reached. Intermodal transport is promoted by the European 

Commission to reduce these negative externalities. The objective of this research 

is to analyze at a strategic level the effect on modal split between road, intermodal 

rail and intermodal IWW transport of several economic or environmental policies. 

An intermodal allocation model is applied to the Belgian case in order to identify 

the modal split changes between the single minimization of costs (operational or 

health-related external) and the introduction of additional road taxes.  

6.2. Introduction 

 

Transportation activities have been increasing in the last years. Between 1995 and 

2010, an annual transportation growth rate of 1.5% for freight (road, rail, IWW, 

oil pipelines, intra-EU air, intra-EU sea) and 1.3% for passengers has been 

observed in the European Union’s 27 countries (European Commission, 2012).  

Transportation of goods and people brings several advantages to society, both 

from the personal and the economic side. Freight transportation in particular 

allows access to previously unreachable goods, but also enables cost reduction for 

products developed in further regions at a lower price. Unfortunately, these 

benefits are also counterbalanced by undesirable features. Ricardo AEA (2014) 

states that “when side effects of a certain activity impose a cost upon society, 

economists speak of such a cost as an external cost”. The negative effects 

generated by transport but not directly supported by the related sector are 

therefore known as transport external costs. The latter can be of various types 

such as climate change, air pollution, water pollution, congestion, accidents or 

noise. 

Among these externalities, air pollution is receiving increasing interest. This is 

observable through several policy measures applied at different levels of decision. 

Some examples of these measures to mitigate air pollution are the development of 

European air pollutant standards, the introduction of low emissions zones or 

alternate traffic circulation in European city centers, the introduction in some 

countries of stronger speed limitations on highways when pollutant thresholds are 

reached, or the development and encouragement to use alternative transportation 

modes like rail or IWW (European Commission, 2011). 
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The World Health Organization (WHO) estimates that air pollution is now “the 

world’s largest single environmental risk.” In 2012, one out of eight people who 

passed away died because of air pollution exposure (WHO, 2014). Indeed, the 

emissions generated during the movement of goods directly affect air quality. A 

higher level of exposure to these chemical components increases the percentage 

of disease development and aggravation. Heart attacks, cancers and respiratory 

system illnesses are some of the negative impacts on human health generated by 

transport.  

Human health external costs are divided into two categories: mortality and 

morbidity costs. Mortality costs reflect the reduction in life expectancy due to 

acute and chronic effects and are often computed through values of statistical 

lives (Ricardo AEA, 2014). The monetization of mortality costs is important since 

they represent the most important part of human health external costs (Ricardo 

AEA, 2014). Morbidity costs refer to the other costs generated by air pollution, 

such as costs of curing, costs of hospitalization, and costs of restricted activity 

days (Ricardo AEA, 2014). These consequences of transportation are not 

supported by transportation companies and impose a cost on society. For this 

reason, the limitation and reduction of transport air pollution are encouraged by 

the European Commission in its White Paper on Transport (European 

Commission, 2011). 

Road is currently the most used mode for freight transport in Europe. Europe is 

willing to decrease its modal share and to go for more environmentally friendly 

modes in order to restrict the negative impacts of transport on its environment 

(European Commission, 2011). This objective can be achieved by the use of rail 

and IWW in the framework of an intermodal transport. Intermodal transport is 

defined as the transportation of goods using two or more modes of transport, in 

the same loading unit, without handling the goods themselves (United Nations, 

2001).  

Intermodal transport is generally composed of five main stages. Goods are first 

transported by truck for the pre-haulage from the origin node to the first 

intermodal terminal. At this first terminal, goods are transferred from truck to 

train or to barge. The long-haul transport by the more environmentally friendly 

mode is then performed on rail or IWW. At the second terminal, freight is 

transferred from train or barge to truck. The post-haulage, i.e. the last part of the 

travel, is done by truck until the final destination node. The main benefits of 
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intermodal transport lie in the reduced costs and externalities of the 

environmentally friendly long-haul transport (Mostert and Limbourg, 2016). 

Analyses of the relation between transport, air pollution, and human health are 

often performed at the urban level (de Leeuw et al., 2001, Costabile and Allegrini, 

2008, Bagienski, 2015, Lozhkina and Lozkhin, 2015, Tainio, 2015, Aggarwal and 

Jain, 2015). The focus is often, therefore, on a restricted mode and case study. 

However, a wider perspective of analysis at the strategic level is also needed to 

develop long-term transportation policies which account for human health 

impacts.  

How do different modes of transport perform regarding human health external 

costs? Does the modal split between road and intermodal transport vary, when 

economic or human health objectives are followed? In an economic optimization 

strategy, can the intervention of states (for instance through the implementation of 

taxes) lead to the same modal split, as an environmental optimization strategy? 

Which modes of transport should be promoted in order to ensure reduced human 

health external costs?  In which infrastructure projects should public authorities 

invest? What is the implication on modal split of external costs variations, 

resulting, for instance, from technological improvement or traction mix 

modifications? 

This research aims to respond to these questions by filling the gap which exists in 

linking transport and human health external costs at a strategic level of decision 

making.  This is done with tools of the operations research domain. For this 

purpose, an intermodal allocation model is used to compare the modal split 

between road, intermodal rail and intermodal IWW transport, under economic and 

environmental optimization strategies. An intermediate policy between economic 

and environmental optimization is also studied. This policy consists of public 

intervention through additional road taxes in a system which follows an economic 

optimization strategy.  

The resulting flow distribution under operational costs or human health external 

costs minimization is analyzed. Sensitivity analysis of transportation external 

costs is also performed in order to evaluate how modifications of these costs 

influence the market shares of road and intermodal transport. The mathematical 

model is applied to the case of Belgium in order to practically emphasize which 

kinds of policy-related decisions can be provided. 
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The next section provides a literature review on the links between the modeling of 

freight transport and its impact on air pollution and human health, and a 

positioning of our research in this framework. Section 6.4 details the model 

formulation and elaborates on the used methodology. Section 6.5 concentrates on 

the used data for the case study. Section 6.6 focuses on the case study findings. 

Discussion of these results is provided in Section 6.7. Conclusions are drawn in 

section 6.8. 

6.3. Freight transport, air pollution and human health impacts: what 

are the implications for business and stakeholders? 

 

Transportation directly influences human health through the emission of chemical 

components which affect air quality. According to the Update of the Handbook on 

External Costs of Transport (Ricardo AEA, 2014), the most important emissions 

related to transport are sulfur dioxide (SO2), nitrogen oxides (NOx), Non-

Methane Volatile Organic Compounds (NMVOCs) and particulate matters (PM). 

Particulate matters are divided into two categories: PM2.5 and PM10, 

representing the particles of a diameter size of less than 2.5 and 10 micrometers, 

respectively.  

These gases emitted by transport are responsible for several harmful impacts such 

as asthma, inflammation of the respiratory system, headaches, anxiety, 

cardiovascular diseases, effects on the central nervous system, lung diseases, 

cancers and premature mortality (EEA, 2013a). The combination of some of these 

emissions also contributes to the generation of ground-level ozone (O3), leading 

to breathing difficulties, especially for young, old or sensitive (for instance, 

asthmatic) people.  

Since these emissions are generated by the transportation companies, but impose 

a cost on other economic actors of society, they are recognized as externalities or 

external costs. The non-consideration of externalities on the economic market 

leads to the production of a higher quantity of transport services than the optimal 

societal one. As transport externalities can be considered to be market failures, 

they might provide a rationale for government intervention (for instance through 

the introduction of additional taxes) in order to reach the societal optimal level of 

transport.  
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Several stakeholders like shippers, public authorities, private individuals and 

private companies may benefit from introducing external costs in transportation 

planning policies. 

Shippers may take advantage of an improvement in their transportation mode 

attractiveness. This can increase the market share revenues of owners of more 

environmentally friendly modes.  

Government and public authorities mainly support the costs of public health care 

and hospitals. By ensuring a restricted amount of transport externalities, public 

authorities could reduce the budget assigned to these services. In Europe, between 

46% and 66% of total healthcare expenses were used for curative and 

rehabilitative care in the different states in 2012 (European Commission, 2015c). 

Limiting health-related externalities may thus help states better control healthcare 

expenditures. This is still a major problem in all types of healthcare systems 

(Wendt, 2009). Some public deficits may thus be recovered, or some money could 

be transferred to other areas of expenses. These savings are welcome in times of 

economic crisis when the European Union encourages the reduction of public 

debt of the member states (European Commission, 2016d).  

Private individuals also benefit from transport externalities being taken into 

account in transportation policies. The potential advantages happen at two levels. 

First, by explicitly making decisions related to the restriction of these external 

effects, people may enjoy a healthier way of life. Second, households need to 

invest less money in healthcare expenses, which alleviates their global budget.  

Finally, private companies may also benefit from reduced externalities through 

transportation policies. Indeed, air pollution is responsible for the development of 

serious health problems such as cancers or heart attacks. The latter often imply 

sickness absences for employees who do not work anymore. This has a cost for 

companies which pay sick leave to their members (Gimeno et al., 2014). In 

addition, new employees might need to be hired and trained to replace the sick 

person, which also represents an indirect cost to support. Consequently, even if 

the effects of air pollution related to transport are not directly noticeable, their 

impact on society is not marginal and concerns a lot of economic actors. 

The enhancement of human health preservation is currently done through the 

setting of global reduction targets for air pollutant emissions. At the world level, 

air pollution matters are consolidated in the United Nation Economic Commission 
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for Europe (UNECE) Convention on Long-range Transboundary Air Pollution 

(LRTAP). Introduced in 1979, this convention is the first international legally 

binding tool developed to limit air pollution. It has been followed by a set of 

protocols aiming at enforcing the transboundary air pollution abatement (UNECE, 

2015). At the European level, the National Emission Ceilings Directive sets 

national emission objective values for four pollutants, i.e. NOx, SO2, NMVOC 

and NH3 for the year 2010. These maximum ceilings are more restrictive than 

those of the LRTAP convention (European Commission, 2015d). 

According to Ricardo AEA (2014), the best-known and recommended method for 

evaluating the impact of emissions of air pollutant is the Impact Pathway 

Approach developed in the context of the ExternE project (Bickel et al., 2005). 

This method follows a bottom-up approach, which evaluates the external effect 

from the lowest level, i.e. the micro level. The analysis is based on the definition 

of the external effects of a particular object and how it affects its direct 

environment. This approach focuses on determining the marginal external costs. 

The specific parameters related to externalities (e.g. the speed of a vehicle or the 

slope on which it evolves for emissions) can be taken into account precisely. 

Nevertheless, since this method focuses on very specific cases, it might be 

difficult to translate the obtained results into policy measures (Van Essen et al., 

2007). The Impact Pathway Approach is constructed around five main steps: 

identification and quantification of the emissions, evaluation of the dispersion of 

the pollutants around its source, determination of the extent to which a population 

is exposed to the burdens, identification of the impact in terms of premature 

deaths and ill health, and finally monetary evaluation of the damage using the 

damage cost approach (EEA, 2014). The latter defines the real damages caused by 

the externalities to its surrounding environment. 

As the Impact Pathway Approach suggests an evaluation of external costs at the 

micro-level, the evaluation of the impact of land transportation on air pollution is 

often considered in urban contexts. The particular attention to these zones mainly 

lies in the higher concentration of both gases and human beings in these areas. 

The intensity of exposition as well as the number of people exposed are increased, 

which generates a higher interest in these regions. 

Road transport is the most concerning mode in urban zones. According to EEA 

(2013b), 10.8% of the PM10 and 16.1% of the PM2.5 emissions are attributed to 
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road transport. As a comparison, only 1.7 and 2.9% of emissions can be attributed 

to non-road transport, for PM10 and PM2.5, respectively.  

Air pollution deterioration in cities may be performed by evaluating a posteriori 

how pollutant values exceed the legal sanitary thresholds that are imposed by 

authorities (de Leeuw et al., 2001). A more proactive approach consists of better 

understanding the source-receptor relationship related to traffic air pollution 

(Costabile and Allegrini, 2008). The traffic density is not the only parameter 

influencing air quality. Indeed, the interaction between road transport emissions 

and street structures also plays an important role (Bagienski, 2015). The correct 

modeling of transport emissions and their effects on air pollution remains one of 

the most challenging and important issues (Sen et al., 2010, van Lier and 

Macharis (2014), Lozhkina and Lozkhin, 2015). 

The relationship between transport, air pollution and its effect on human health is 

modeled through various statistical tools, for instance for determining the impact 

of transport pollution on breast cancers (Hystad et al., 2015), on non-elective 

hospitalizations for pneumonia (Devos et al., 2015) or on cardio-respiratory risk 

(Aggarwal and Jain, 2015). Expression of transport impact on human health can 

also be assessed through exposure-response functions, with a disease burden 

evaluated in terms of Disability Adjusted Life Years (Tainio, 2015). 

Beyond the direct analysis between transportation emissions, air pollution, and 

human health, other studies focus on the impact of transportation policies on air 

pollution and human health. Policy recommendations for reducing the human 

health impact of transport in urban areas often concern passenger transport (Smith 

et al., 2013, Aggarwal and Jain, 2015, Perez et al., 2015, Xia et al., 2015).  

In a complementary approach to research methodologies which concentrate on 

dose-response functions, GIS-based models (Macharis and Pekin, 2009, Macharis 

et al., 2010, Meers and Macharis, 2014) or tools of the operations research 

domain can be used to identify the effect of different freight transportation 

policies on the flow distribution between several modes of transport. For decision 

support tools relating to optimization, this analysis is performed through network 

design models which determine the flow distribution between road and 

intermodal transport, as well as the location of intermodal terminals. Most of the 

research concentrates on the minimization of the operational costs on the network 

(for instance Arnold et al. 2004, Racunica and Wynter, 2005, Limbourg and 
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Jourquin, 2009, Limbourg and Jourquin, 2010, Ishfaq and Sox, 2011, Sörensen et 

al., 2012, Sörensen and Vanovermeire, 2013, Ghane-Ezabadi and Vergara, 2016); 

however, some models focus on CO2 emissions (Mostert et al., 2017a) or on 

generalized costs of transport, including transport externalities (Iannone, 2012, 

Zhang et al., 2013, Santos et al., 2015, Zhang et al., 2015).  

The impact of transport on human health is an important topic of research in the 

framework of urban passenger transportation. However, freight transportation is 

also responsible for negative human health effects and even if pollution is 

generated at a local and operational level, it is not restricted to urban areas. Many 

other areas can be impacted by the transportation travels that happen with longer 

distances. It is, therefore, interesting to identify how air pollution can be dealt 

with at a more global and strategic level. As highlighted here above, not only are 

stakeholders who are related to the transport sector concerned with transport air 

pollution. Private individuals and companies are concerned as well, as they face 

an economic impact due to the non-integration of air pollution externalities in 

transport policies.  

Some contributions in the literature define models that focus on all kinds of 

externalities (e.g. Macharis et al., 2010 and Santos et al., 2015), providing a 

global insight but making it impossible to assess the specific impact of each 

specific external cost (congestion, accident, air pollution, water pollution, noise, 

etc.). Others account mainly for CO2 emissions (Zhang et al., 2013, Mostert et al., 

2017a, Zhang et al., 2015) in order to analyze how the integration of global 

warming influences the location of intermodal terminals, and the allocation of 

flows.  However, no study was found that specifically focused on the trade-offs 

between economic and human health interests of freight transport at a strategic 

level of decision making, using an optimization approach. This paper therefore 

aims at closing this gap by proposing a model which allows assessing at the 

global level the effect on modal split of economic or human health transportation 

policies. 

6.4. Intermodal allocation model formulation 

 

The following formulation is based on the intermodal location-allocation model 

developed by Mostert et al. (2017a). In this paper, we consider that intermodal 

terminals are already located on the studied geographical zone. This formulation 
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is thus an intermodal allocation model, i.e. a simplification of the intermodal 

location-allocation model developed by Mostert et al. (2017a).   

The model minimizes the total operational or external costs of air pollution of 

transport companies. These costs are divided into four main parts: door-to-door 

road operational/external costs, transshipment operational/external costs between 

sea and road, rail-road intermodal operational/external costs and IWW-road 

intermodal operational/external costs. Rail-road and IWW-road operational and 

external costs are subdivided into (a) pre-haulage operational/external costs by 

road, (b) transshipment operational/external costs at origin intermodal terminal, 

(c) long-haul travel operational/external costs by rail or IWW, (d) transshipment 

operational/external costs at the destination terminal and (e) post-haulage 

operational/external costs by road. The focus is on containerized flows of 

transport between several origin-destination pairs. 

The main decisions that are made concern the choice of the mode for achieving 

the best objective value, subject to several constraints. The decision variables are 

the amount of flows transported directly by road, by intermodal rail transport, and 

by intermodal IWW transport. Classically, intermodal flows passing through two 

terminals are modelled using one variable with four indices (indicating origin, 

first terminal, second terminal, and destination). We use another approach (based 

on Ernst and Krishnamoorthy, 1998) which models intermodal flows using two 

variables with three indices each. The first variable indicates origin, first terminal, 

and second terminal of the origin-destination pair. The second variable indicates 

origin, second terminal, and destination of the origin-destination pair. The joint 

reading of these two variables describes the total travel of the flows, with origin, 

first terminal, second terminal, and destination. This formulation allows reducing 

the size of the problem to solve. 

The mathematical formulation of the model is described hereafter.  
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Sets: 

N node set consisting of n demand nodes, indexed by i, m {1, …, n} 

H existing terminal (hub) set, (H ⊆ N) consisting of h nodes, indexed by 

 j, k {1, …, h} 

N0 set of port nodes, existing rail and IWW terminals, inside the studied 

geographical area 

N1 set of demand nodes, with rail-road terminals inside the studied 

geographical area 

N2 set of demand nodes, with IWW-road terminals inside the studied 

geographical area, 

N3 set of demand nodes, with rail-road terminals located outside the studied 

geographical area 

N4 set of demand nodes, with IWW-road terminals located outside the 

studied geographical area 

N5 set of demand nodes inside the studied geographical area 

N6 set of demand nodes outside the studied geographical area 

Thus N = ⋃ Ni
6
i=0 ;  H = ⋃ Ni

4
i=0 ; HR = N0 ∪ N1 ∪ N3 and  HW = N0 ∪ N2 ∪ N4 

Parameters: 

𝑑𝑖𝑚 road distance between demand nodes 𝑖 and 𝑚 (in km) 

𝑠𝑗𝑘  rail distance between terminals 𝑗 and 𝑘 (in km) 

𝑙𝑗𝑘 IWW distance between terminals 𝑗 and 𝑘 (in km) 

𝐷𝑖𝑚 cargo demand from demand node 𝑖 to demand node 𝑚 (in t) 

𝛽𝑘 =1 if a terminal is located at k 

 =0 otherwise 



138 

 

The value of the following parameters depends on the type of optimization that is 

performed. If the focus is on economic optimization, the following parameters 

take the value of operational costs. If the focus is on environmental optimization, 

the following parameters take the value of external costs. 

𝐶𝑖𝑚
𝐿  long-haul road transportation operational or external costs for travelling 

from node 𝑖 to node 𝑚 (in €/t.km) 

𝐶𝑖𝑗
𝑃 collection/distribution road transportation operational or external costs for 

travelling from node 𝑖 to terminal 𝑗 (in €/t.km) 

𝐶𝑗𝑘
𝑅  long-haul rail transportation operational or external costs for travelling 

from terminal j to terminal k (in €/t.km) 

𝐶𝑗𝑘
𝑊 long-haul IWW transportation operational or external costs for travelling 

from terminal j to terminal k (in €/t.km) 

𝐶𝑗
𝑇 handling operational or external costs at terminal 𝑗 (in €/t) 

Variables: 

𝑊𝑖𝑚 road flows from demand origin 𝑖 and destination 𝑚 (in tonnes),  

∀ 𝑖, 𝑚 ∈ 𝑁 

𝑋𝑗𝑘
𝑖  flows from node 𝑖 firstly routed through origin rail terminal 𝑗 and then 

through destination rail terminal 𝑘 (in tonnes), ∀ 𝑖 ∈ 𝑁, ∀ 𝑗, 𝑘 ∈  𝐻𝑅  

𝑄𝑘𝑚
𝑖  flows from origin 𝑖 to destination 𝑚 that are routed through rail 

destination terminal in 𝑘 (in tonnes), ∀ 𝑖, 𝑚 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑅 

𝐹𝑗𝑘
𝑖   flows from node 𝑖 firstly routed through origin IWW terminal 𝑗 and then 

through destination IWW terminal 𝑘 (in tonnes), ∀ 𝑖 ∈ 𝑁, ∀ 𝑗, 𝑘 ∈  𝐻𝑊 

𝑉𝑘𝑚
𝑖  flows from origin 𝑖 to destination 𝑚 that are routed through IWW 

destination terminal in 𝑘 (in tonnes), ∀ 𝑖, 𝑚 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑊 
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Mathematical formulation: 

Minimize  

 

𝑓 = 

∑ ∑ 𝑑𝑖𝑚. 𝐶𝑖𝑚
𝐿 . 𝑊𝑖𝑚

𝑚∈𝑁𝑖∈𝑁

 

+ ∑ 𝐶𝑖
𝑇 . 𝑊𝑖𝑚

𝑖∈𝑁0

+ ∑ 𝐶𝑚
𝑇 . 𝑊𝑖𝑚

𝑚∈𝑁0

 

+ ∑ ∑ ∑ (𝑑𝑖𝑗 . 𝐶𝑖𝑗
𝑃 + 𝐶𝑗

𝑇). 𝑋𝑗𝑘
𝑖

𝑘≠𝑗∈𝐻𝑅𝑗∈𝐻𝑅𝑖∈𝑁

 

+ ∑ ∑ ∑ 𝑠𝑗𝑘 . 𝐶𝑗𝑘
𝑅 . 𝑋𝑗𝑘

𝑖

𝑘≠𝑗∈𝐻𝑅𝑗∈𝐻𝑅𝑖∈𝑁

 

+ ∑ ∑ ∑ (𝑑𝑘𝑚. 𝐶𝑘𝑚
𝑃 + 𝐶𝑘

𝑇). 𝑄𝑘𝑚
𝑖

𝑚∈𝑁𝑘∈𝐻𝑅𝑖∈𝑁

 

+ ∑ ∑ ∑ (𝑑𝑖𝑗 . 𝐶𝑖𝑗
𝑃 + 𝐶𝑗

𝑇). 𝐹𝑗𝑘
𝑖

𝑘≠𝑗∈𝐻𝑊𝑗∈𝐻𝑊𝑖∈𝑁

 

+ ∑ ∑ ∑ 𝑙𝑗𝑘 . 𝐶𝑗𝑘
𝑊. . 𝐹𝑗𝑘

𝑖

𝑘≠𝑗∈𝐻𝑊𝑗∈𝐻𝑊𝑖∈𝑁

 

+ ∑ ∑ ∑ (𝑑𝑘𝑚. 𝐶𝑘𝑚
𝑃 + 𝐶𝑘

𝑇). 𝑉𝑘𝑚
𝑖

𝑚∈𝑁𝑘∈𝐻𝑊𝑖∈𝑁

 

 

(37) 
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Subject to   

𝐷𝑖𝑚 = 𝑊𝑖𝑚 + ∑ 𝑄𝑘𝑚
𝑖

𝑘∈𝐻𝑅

+ ∑ 𝑉𝑘𝑚
𝑖

𝑘∈𝐻𝑊

 ∀ 𝑖, 𝑚 ∈ 𝑁 (38) 

∑ 𝐷𝑖𝑚 = ∑ 𝑊𝑖𝑚 + ∑ 𝑋𝑗𝑘
𝑖

𝑗,𝑘∈𝐻𝑅𝑚∈𝑁𝑚∈𝑁

+ ∑ 𝐹𝑗𝑘
𝑖

𝑗,𝑘∈𝐻𝑊

 ∀ 𝑖 ∈ 𝑁 (39) 

∑ 𝑋𝑗𝑘
𝑖

𝑘∈𝐻𝑅

≤ 𝛽𝑗 ∑ 𝐷𝑖𝑚

𝑚∈𝑁

 ∀ 𝑖 ∈ 𝑁, ∀ 𝑗 ∈ 𝐻𝑅 (40) 

∑ 𝑋𝑗𝑘
𝑖

𝑗∈𝐻𝑅

≤ 𝛽𝑘 ∑ 𝐷𝑖𝑚

𝑚∈𝑁

 ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑅 (41) 

∑ 𝐹𝑗𝑘
𝑖

𝑘∈𝐻𝑊

≤ 𝛽𝑗 ∑ 𝐷𝑖𝑚

𝑚∈𝑁

 ∀ 𝑖 ∈ 𝑁, ∀ 𝑗 ∈ 𝐻𝑊 (42) 

∑ 𝐹𝑗𝑘
𝑖

𝑗∈𝐻𝑊

≤ 𝛽𝑘 ∑ 𝐷𝑖𝑚

𝑚∈𝑁

 ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑊 (43) 

∑ 𝑋𝑗𝑘
𝑖

𝑗∈𝐻𝑅

= ∑ 𝑄𝑘𝑚
𝑖

𝑚∈𝑁

 ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑅 (44) 

∑ 𝐹𝑗𝑘
𝑖

𝑗∈𝐻𝑊

= ∑ 𝑉𝑘𝑚
𝑖

𝑚∈𝑁

 ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑊 (45) 

𝑊𝑚
𝑖 ≥ 0 ∀ 𝑖, 𝑚 ∈ 𝑁 (46) 

𝑋𝑗𝑘
𝑖 ≥ 0 ∀ 𝑖 ∈ 𝑁, ∀ 𝑗, 𝑘 ∈ 𝐻𝑅 (47) 

𝑄𝑘𝑚
𝑖 ≥ 0 ∀ 𝑖, 𝑚 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑅 (48) 

𝐹𝑗𝑘
𝑖 ≥ 0 ∀ 𝑖 ∈ 𝑁, ∀ 𝑗, 𝑘 ∈ 𝐻𝑊 (49) 

𝑉𝑘𝑚
𝑖 ≥ 0 ∀ 𝑖, 𝑚 ∈ 𝑁, ∀ 𝑘 ∈ 𝐻𝑊 (50) 

The model structure can be summarized as follows: 
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Minimize  

Operational or air pollution external costs (37) 

Subject to 

Demand should be satisfied for each origin-destination pair (38) 

All the flows should leave their origin (39) 

Flows cannot go through a closed terminal (40)-(43) 

Flows should be conserved between the intermodal variables of a specific origin-

destination pair (44)-(45) 

Flow variables should be nonnegative (46)-(50) 

The model is applied to the Belgian case and considers all flow exchanges at the 

third-level of Nomenclature of Territorial Units for Statistics (NUTS 3) 

represented in figure 11. Sea flows originating from or leaving the country at 

maritime ports are also taken into account. The problem is solved on a personal 

computer (Windows 10 Dual-Core 2.5 GHz, 8 GB of RAM) and with CPLEX 

12.61. 

6.5. Data of the Belgian case 

 

The model presented above is applied to the Belgian case for analyzing how 

economic and health objectives impact the modal split between road and 

intermodal freight transport. Belgium is chosen for its very dense network of 

road, rail and IWW, as well as for its characteristic of being one of the least 

performant European countries in terms of air quality (European Commission, 

2015b). The strategic location of Belgium at the heart of Europe also makes it an 

interesting case regarding flow volumes passing through it. A map of the Belgian 

terminals and NUTS 3 regions is presented in figure 12. 

The Belgian case has already been analyzed several times in the literature. 

Besides other studies focusing on the Belgian flows from and to the port of 

Antwerp (Macharis and Pekin, 2009, Macharis et al., 2010, Meers and Macharis, 

2014), this research evaluates the flow distribution between NUTS 3 regions in 

Belgium. Flow exchanges between Belgian NUTS 3 regions and some NUTS 3 

regions of neighboring countries (the Netherlands, Germany, France and 

Luxembourg) are also taken into account. Our study differs from the analysis of 
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Santos et al. (2015) since it allows the intermodal IWW option, whereas Santos et 

al. (2015) focus on road and intermodal rail transport. 

 

Figure 12: Map of the rail-IWW, IWW and rail terminals in Belgium (source: 

Eurostat and own setup) 

The analysis of this application should provide insights on the relationship 

between economic or human health goals and the allocation of containerized 

flows between the different modes of transport. The study identifies the 

distribution of the total containerized flows sent to and from the considered 

NUTS 3 regions by road, rail and IWW. The demand of each region is 

concentrated on a single generation node, i.e. a city of this region which is chosen 

for its economic and population importance, and for the existence of a rail/IWW 

platform nearby. References and additional comments related to the parameters 

used in this case study are listed in table 16. 
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Data Source Comment 

Demand for 

containerized road, rail 

and IWW flows 

Mostert et al. (2017a) The original 2005 database has been 

extrapolated to 2010, based on 

aggregated flow values available from 

Eurostat and from Belgian ports' annual 

outlooks. Data at the NUTS 2 level 

have been disaggregated to a NUTS 3 

level within Belgium and the 

neighboring regions, using the number 

of companies of productive sectors in 

these regions as the proxy indicator. An 

origin-destination pair is constituted by 

any combination of two nodes in 

Belgium or in its surrounding NUTS 3 

regions. 

Road and rail network Carreira et al. (2012)  

IWW network Promotie Binnenvaart 

Vlaanderen (2015) 

 

Road, rail, IWW and 

transshipment 

operational costs 

BRAIN-TRAINS 

study (Troch et al., 

2015) 

Road, rail and transshipment 

operational costs originate from Janic 

(2007, 2008). IWW costs are based on 

PWC (2003). Road and rail operational 

costs are nonlinear with the distance 

traveled, assuming economies of 

distance. 

Road, rail and IWW 

external costs of air 

pollution 

Ricardo-AEA (2014) Damage cost values of air pollutants 

for road and rail are based on the 

European New Energy Externalities 

Development for Sustainability 

(NEEDS) study (Preiss and Klotz, 

2007). IWW values originate from CE 

Delft (2011) and Brons and Christidis 

(2013). 

Transshipment 

external costs of air 

pollution 

Baccelli et al. (2001) Marginal external costs related to the 

transshipment of goods from one mode 

to another are small and negligible 

compared to other externalities of 

intermodal transport. They are equal to 

zero both for intermodal rail and IWW 

transport. 

Table 16: References and comments related to the used parameters 
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One particularity of this research is to account for human health external costs 

related to air pollution. Air pollution external cost values of this case study are 

computed based on a tank-to-wheel approach. More detailed information 

regarding road, rail and IWW external costs calculations is provided in the 

following paragraphs. 

Road external costs related to air pollution are differentiated according to the size 

of the truck, the Euro norms of the diesel technology, and the region in which 

pollutants are emitted (urban, suburban, interurban or highways). Urban external 

costs are considered for short-haul travels whereas highway external costs are 

used for long-haul travels by trucks. PPH travels of intermodal transport are 

considered to be short-haul travels. It is assumed that most of these travels happen 

in urban zones, leaving companies/intermodal terminals or arriving at 

customers/intermodal terminals that are located in cities. This assumption is 

supported by the fact that an important part of economic activities happens in 

cities. Moreover, since the model aims at minimizing costs, it tries to reduce as 

much as possible the road PPH travels. It is, therefore, common to observe flows 

sent through terminals located in the same city as its origin or destination, 

implying urban travels.  

In order to avoid underestimating intermodal PPH costs, all short-haul travels are 

considered with urban external cost values. Average road external costs are 

computed as air pollution costs of the different EURO standard categories, 

weighted by the proportion of vehicles in each category for 2014 (Emisia, 2015). 

These costs are presented in Table 17. Road costs provided in Ricardo AEA 

(2014) are expressed in vehicle-kilometer. The translation into t.km is based on 

load factors of 0.85 for long-haul and 0.6 for short-haul travels (Janic, 2007) for a 

truck transporting two TEUs of 12 tonnes each. 
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Rail external costs related to air pollution are given for different categories of 

technology (diesel versus electricity traction). Air pollution external costs for 

diesel traction contain exhaust and non-exhaust emission costs. Since electric 

traction does not generate exhaust emissions during the transportation of goods, 

only non-exhaust costs of wear and tear PM emissions are taken into account. Air 

pollution external costs are 0.7 €cents/t.km for diesel traction and 0.1 €cents/t.km 

for electric traction, considering trains loaded with 500 tonnes of goods. The 

diesel-electric traction ratio is 17%-83% (Eurostat, 2016a).  

IWW external costs related to air pollution are expressed for motor vessels and 

barges of freight capacity between 1,000 and 3,000 tonnes.  

The already existing terminals in Belgium and in its neighboring countries are 

considered to be open in the model. Based on the references described in Table 

12, the values given to each operational and external unit cost are provided in 

Table 18. 

  

EURO Standard Share of 
the fleet 
(%) 

Long-haul air 
pollution external 
costs 
(€cents/vehicle.km) 

Short-haul air 
pollution external 
costs 
(€cents/vehicle.km) 

HD Euro I - 91/542/EEC 
Stage I 

4.53 11.06 26.66 

HD Euro II - 91/542/EEC 
Stage II 

17.43 11.10 22.07 

HD Euro III - 2000 Standards 25.49 8.82 18.41 

HD Euro IV - 2005 Standards 20.63 5.97 10.43 

HD Euro V - 2008 Standards 26.67 2.40 7.98 

HD Euro VI 5.26 0.49 1.75 

Table 17: EURO standards shares (Emisia, 2015) and costs (Ricardo AEA, 2014) 

for the truck fleet in Belgium in 2014 
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6.6. Findings of the Belgian case 

 

This section details the findings of the application of the model to the Belgian 

case study. It focuses on the analysis of the resulting flow distribution of goods 

between road and intermodal transport when different policies are followed. The 

economic optimization of transport operational costs is first analyzed. The 

environmental optimization of transport human health external costs related to air 

pollution is then evaluated. An intermediate policy consisting of the economic 

optimization of transport operational costs with the introduction of additional road 

taxes is then assessed. Finally, sensitivity analysis of the main hypotheses of the 

Belgian case study is also performed. 

6.6.1. Economic optimization 

 

When operational costs are minimized, one notices that most of the flows are 

transported by road (figure 13), which is what currently happens in Belgium and 

in Europe. The intermodal modal share provided by the model is around 27%. 

This is 5% lower than the observed rail and IWW market share in 2013 for 

Belgium and its surrounding countries (Eurostat, 2016b). Within the intermodal 

market, and compared to reality, the model underestimates the IWW share in 

relation to the rail component. This might be explained in several ways. First, 

regarding flows, we only took containerized transport into account. However, a 

lot of travels performed by IWW are bulk transport. Moreover, the initial model 

does not account for the different policies introduced by public authorities. 

Nevertheless, the attribution of taxes or subsidies for specific transportation 

Mode Operational costs 
(€/t.km) 

Air 
pollution 
external 
costs 
(€/t.km) 

Road – short-haul From 0.04 to 0.1 0.00692 

Road – long-haul From 0.02 to 0.07 0.00323 

Rail From 0.019 to 0.025 0.00202 

IWW 0.02285 0.00229 

Table 18: Operational and external costs of transportation modes 
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modes impacts the modal choice and thus influences the general flow distribution 

(Santos et al., 2015). 

 

Figure 13: Flow distribution for operational costs minimization. 

6.6.2. Air pollution optimization 

 

When human health external costs related to air pollution are considered to be the 

objective to minimize, the optimal solution suggests a more intensive use of 

intermodal transport, to the detriment of road (figure 14). Market shares of both 

rail and IWW increase. The predominance of rail is explained by its lower 

external costs compared to IWW. Nevertheless, this predominance should be 

balanced, since this model considers a tank-to-wheel approach, and therefore does 

not reflect the externalities related to the production of electricity for running 

trains. In practice, this high modal share for rail could be limited by technical 

issues, such as capacity restrictions of rail lines and terminals. Capacity 

restrictions on the network may in particular be encountered because of the 

priority rule of passenger over freight trains. Road transport becomes the second 

mode of transport. According to the cost data used in the model, a minimization 

of the human health external costs of transport would, therefore, be achieved with 

a higher proportion of intermodal than road transport. Similar to the results of 

Macharis et al. (2010), this shows that taking into account externalities in 

transportation policies increases the use of intermodal transport.  

73% 

23% 

4% 

Road

Intermodal rail

Intermodal IWW
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Figure 14: Flow distribution for air pollution external costs minimization. 

6.6.3. Economic optimization with taxation system 

 

This section analyzes the impact on flows of the introduction of an additional tax 

on the road network, when operational costs are optimized. This analysis takes its 

sources from the recent introduction of the “Viapass” road tax on highways and 

denser roads by the Belgian public authorities (April 2016). The objective of this 

tax is to allocate fairly the different damages provoked by trucks to the 

infrastructure and to the environment (Viapass, 2015). The Viapass road tax 

replaces the Eurovignette system, which was previously in place in Belgium. It is 

a kilometer-based charge for trucks only. The paid tax thus reflects the intensity 

of use of the vehicles. Different kilometric tax rates are applied based on the 

weight and EURO norm of the vehicle. 

The tax per kilometer is applied to each truck with a permissible weight greater 

than 3.5 tonnes. A Viapass tariff of 0.14€/km is assumed, which corresponds to 

the average existing rates, weighted by the number of vehicles in each category 

for 2014 (Emisia, 2015). The Walloon/Flemish fees are considered in this case, 

since their respective highways represent the major part of the Belgian network. 

Supposing that an average truck carries 20.4 tonnes (2 TEU*12 tonnes/TEU*0.85 

of load factor), this leads to a tax of 0.007€/t.km. The flow distribution when 

operational costs are minimized under the introduction of the Viapass road tax for 

the long-haul travels by road is given by figure 15. 

30% 

62% 

8% 

Road

Intermodal rail

Intermodal IWW
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Figure 15: Flow distribution for operational costs minimization with road tax on 

the long-haul travels. 

Compared to the operational costs minimization policy, an increase of intermodal 

flows is noticed. By charging an additional cost to the direct road transport, more 

flows are transported using the rail and IWW infrastructure. The amount of t.km 

transported by IWW is almost doubled while a relative increase of around 25% is 

observed for intermodal rail transport. With this additional tax, road transport still 

remains the most used mode. 

Sensitivity analysis has been performed in order to identify how flows are 

distributed if the value of the road tax is increased. Figure 16 compares the modal 

split of the economic and environmental objectives, as well as the resulted modal 

split when the road tax is increased compared to the initial tax scenario. 
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Figure 16: Flow distribution under different values of road tax 

Results show that the current value of the road tax should be multiplied by six, in 

order to obtain the same intermodal market share as in the case of the 

minimization of air pollution external costs. This result underlines that the current 

road tax is still low compared to the optimal tax needed for ensuring a purely 

environmental optimization. In practice, the implementation of such an important 

increase of the tax value seems difficult, in view of the already high number of 

protests from the road sector related to the implementation of the current Viapass 

tax. Results also underline that implementing an additional road tax does not 

necessarily lead to the same modal split between intermodal rail and intermodal 

IWW transport. The intermodal market share of the situation in which the road 

tax is multiplied by six is equal to the intermodal market share under 

environmental optimization. However, more flows are sent by IWW under the 

implementation of the tax than under the environmental optimization. This is 

explained by the fact that the road tax favors rail and IWW in the same way, 

whereas rail is favored in the environmental optimization, due its low value of air 

pollution external costs. If the road tax is also included for short-haul travels of 

the intermodal transport, the flow distribution is as given in Figure 17. Applying 

the road fees on the short-haul travel corresponds to the assumption that all urban 

travels are affected by the tax, whereas this is presently only the case for the 

urban area of Brussels. This situation does not correspond to the current reality 

but the results of this analysis are interesting since they show that, even if this 
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short part of the trip is impacted by the Viapass tax, more intermodal transport 

would nevertheless be used when compared to the single operational cost 

minimization problem. Indeed, the kilometers performed by road inside the 

intermodal travel are much fewer than the kilometers for door-to-door transport 

by truck. Intermodal transport is, therefore, less impacted by the Viapass fee per 

kilometer than road-only transport. 

 

Figure 17: Flow distribution for operational costs minimization with road tax on 

long-haul and short-haul travels. 

6.6.4. Sensitivity analysis 

 

This section identifies the impact on the modal split of variations of some of the 

main hypotheses related to the Belgian case study. The effects of road, rail and 

IWW external costs changes are evaluated. A comparison between the effects of 

IWW operational and external costs variation is also provided. 

6.6.4.1. Road external costs 

This section analyzes the effects on modal split of a variation of road air pollution 

external cost parameters. In particular, the effect of truck fleet structure on flow 

distribution is evaluated.  

The fleet constitution influences the average air pollution external cost value. 

Fleets are evolving with technological improvement. Progressively, old and more 

polluting trucks are replaced with cleaner vehicles. This sensitivity analysis 

evaluates the change of modal split when cleaner vehicles of EURO VI type are 

progressively replacing the oldest trucks in the Belgian territory. The reference 

case is compared to three scenarios: EURO VI proportion of 10%, 15% and 20% 

of the fleet. These scenarios reflect potential increases of the EURO VI vehicle 
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share in the fleet. This progressive replacement of old vehicles with new vehicles 

is indeed expected in the future. The fleet structure of these scenarios as well as 

their resulted modal split are given in Table 19. 

Results show that fleet structure affects modal split in terms of environmental 

perspective. The road market share increases with a greater proportion of EURO 

VI vehicles in the fleet. The introduction of cleaner road vehicles leads to 

solutions in which road transport is more and more included. Both rail and IWW 

lose market share when the road fleet becomes cleaner. A replacement of older 

trucks for reaching a 25%-share of EURO VI vehicles (starting from a 5%-share 

in the reference scenario) leads to an increase of 8% of the road market share. 

Therefore, improving the technology of trucks makes road transport more 

competitive on certain connections, from the perspective of air pollution external 

costs minimization. If the technology of trains and barges remains constant, 

intermodal rail and IWW attractiveness can subsequently be limited by an 

environmental improvement in truck technology. This scenario is plausible since 

renewal rates for barges and trains are much slower than for trucks. Truck 

technology is therefore more quickly adapted on the market than rail and IWW 

technological improvements. 

Scenario EURO 

Standard 

Share of the 

fleet (%) 

Modal split of air 

pollution external 

cost min. (road - 

intermodal rail - 

intermodal IWW in 

%) 

EURO VI = 5% -  Reference 

scenario 

HD Euro I 4.53 30-62-8 

HD Euro II 17.43 

HD Euro III 25.49 

HD Euro IV 20.63 

HD Euro V 26.67 

HD Euro VI 5.26 
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EURO VI = 10% HD Euro I 0.00 31-62-7 

HD Euro II 17.21 

HD Euro III 25.49 

HD Euro IV 20.63 

HD Euro V 26.67 

HD Euro VI 10.00 

EURO VI = 15% HD Euro I 0.00 33-59-8 

HD Euro II 12.21 

HD Euro III 25.49 

HD Euro IV 20.63 

HD Euro V 26.67 

HD Euro VI 15.00 

EURO VI = 20% HD Euro I 0.00 35-59-7 

HD Euro II 7.21 

HD Euro III 25.49 

HD Euro IV 20.63 

HD Euro V 26.67 

HD Euro VI 20.00 

EURO VI = 25% HD Euro I 0.00 38-57-5 

HD Euro II 2.21 

HD Euro III 25.49 

HD Euro IV 20.63 

HD Euro V 26.67 

HD Euro VI 25.00 

Table 19: Sensitivity of flow distribution to truck fleet structure 

6.6.4.2. Rail external costs 

This section presents the effects on modal split of a variation of rail air pollution 

external cost parameters. In particular, the impact on modal split of a modification 

of the electric-diesel traction ratio is studied.  
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Two scenarios are compared to the reference scenario. These scenarios show the 

potential evolution of the traction mix in Belgium, where most diesel traction is 

used for shunting activities at the intermodal terminals. The choice for electric or 

diesel traction may be driven by various criteria such as physical (some slopes on 

the network imply the use of electric locomotives) or financial (diesel 

locomotives are cheaper than electric locomotives) constraints. The modal split of 

the scenarios is presented in Table 20. 

Scenario Modal split of air pollution external cost 

min. (road - intermodal rail - intermodal 

IWW in %) 

17% diesel – 83% electric - Reference 

scenario 

30-62-8 

15% diesel – 85% electric 29-64-7 

10% diesel – 90% electric 26-69-5 

Table 20: Sensitivity of flow distribution to rail traction mix 

The train traction mix between diesel and electricity influences the flow 

distribution. As expected, an increase of electricity use implies a bigger rail 

market share, since rail air pollution external costs decrease. The rail market share 

increase happens with a reduction of both IWW and road market shares. 

However, the road is a little bit more impacted than intermodal IWW transport. 

Consequently, reductions in the average unit external costs, through a higher use 

of electric traction, may be a solution to achieving part of the flow transfer from 

road to more environmentally friendly modes, as expected by the European 

Commission in its White Paper on Transport (European Commission, 2011). 

6.6.4.3. IWW operational and external costs 

This section develops the effects on modal split of a variation of IWW operational 

and air pollution external cost parameters. 

In the literature, usually only the road and intermodal rail transport are compared. 

This is not surprising since a lot of regions are connected through road and rail, 

but are not necessarily equipped with waterways. This paper includes the 

intermodal IWW option. Belgium is well-connected through IWW, with around 

1,500 km of waterways for a total surface of 31,000 km² (Eurostat, 2016c).  
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In order to identify how the flow distribution is impacted by the specific costs of 

IWW in this region, we perform a sensitivity analysis by increasing and 

decreasing successively the operational and external IWW costs by 10%, 20% 

and 30%. These theoretical variations aim at estimating the flow distribution 

when the IWW input parameter varies. This helps assess the robustness of the 

model and also provides information on how results could evolve with other 

IWW cost values. The flow distribution for these different scenarios is given in 

Table 21. The first column provides the results of the operational/external cost 

minimization, whereas the second column shows the results of the external cost 

minimization when the operational/external IWW costs are modified.  

Results show that variations of the operational and external costs of IWW play a 

role in modal split. Road market share seems more sensitive to IWW operational 

than external costs variations. Focusing on air pollution’s external costs would 

lead to a higher proportion of intermodal transport than focusing on operational 

costs. However, reductions in IWW external costs, resulting from, for instance, 

technological improvement, would lead to flow transfers from rail to IWW, inside 

the intermodal market share, rather than from road to intermodal transport. This 

risk of flow transfer within the intermodal market share has also been highlighted 

by Macharis and Pekin (2009) and Mostert et al. (2017a). 

In terms of operational costs, intermodal IWW transport never exceeds 18% of 

the market share, remaining the least used mode in most of the scenarios. 

However, intermodal IWW transport may reach 41% of the market share when 

external costs are optimized. In this case, intermodal IWW transport is the most 

used mode in only one out of the seven analyzed scenarios. These results are 

explained by the lower values of rail air pollution external costs. 
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IWW cost value Modal split of 
operational 
cost min. 
(road-
intermodal 
rail-intermodal 
IWW in %) 

Modal split of 
air pollution 
external cost 
min. (road-
intermodal 
rail- 
intermodal 
IWW in %) 

0.7* IWW cost 67-15-18 28-31-41 

0.8* IWW cost 68-18-14 29-40-31 

0.9* IWW cost 72-19-9 30-50-20 

1.0* IWW cost - Reference scenario 73-23-4 30-62-8 

1.1* IWW cost 74-23-3 30-65-5 

1.2* IWW cost 74-24-2 30-66-4 

1.3* IWW cost 75-24-1 30-67-3 

Table 21: Sensitivity of flow distribution to IWW operational and air pollution 

external costs 

6.7. Discussion of the Belgian case 

 

The analysis of the Belgian case study shows that the optimal flow distribution 

differs according to the objective that is pursued and according to the policies that 

are implemented. Following an economic optimization strategy by considering 

only operational costs leads to a high proportion of direct door-to-door road 

transport. On the contrary, optimizing human health external costs of transport 

related to air pollution provides a system where intermodal transport has the 

largest market share. Economic and health objectives thus lead to different trends 

in terms of flow allocation. 

Introducing an additional road tax per kilometer allows a slight reduction in the 

road market share. Even when the additional tax is introduced for both short-haul 

and long-haul travels, an increase in the intermodal market share is noticed. Of 

course, this increase is greater when no tax is applied for the PPH travels by truck 

in the framework of an intermodal trip. Nevertheless, the introduction of a tax on 

roads never allows reaching the intermodal market share of the external costs 

minimization strategy. 

The introduction of cleaner vehicles in the truck fleet increases the road market 

share under the air pollution external cost minimization strategy. The 

development of improved environmental technologies for trucks therefore makes 
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road transport competitive regarding air pollution optimization. This trend tends 

to reduce the rail and IWW market shares and the transfer from road to 

intermodal solutions. 

Variations in rail external costs imply changes in the modal split. Some road 

flows are transferred to rail, which increases the intermodal market share. 

Reducing rail external costs also slightly reduces the market share of intermodal 

IWW transport. Decreasing rail pollution external costs by increasing the 

electricity share in rail traction mix is, therefore, a potential solution for 

transferring goods from road to intermodal transport.  

This case shows that road market share seems more sensitive to IWW operational 

than external costs variations. If policies were focusing on air pollution external 

costs, rather than on operational costs, decreases of IWW external costs (for 

instance, resulting from technological improvement) would have a low impact on 

flow distribution between road and intermodal transport. On the contrary, changes 

in unit IWW external costs would lead to flow transfers between rail and IWW, 

within the intermodal market share, rather than between road and intermodal 

transport. This switch between two intermodal modes is not aligned with the 

willingness of the European Commission to transfer freight flows from road to 

other environmentally-friendly transportation means by 2030 et 2050 (European 

Commission, 2011). If an air pollution costs minimization strategy is followed, 

policy makers should be aware that reducing unit IWW external costs will not 

contribute to major flow transfers from road to intermodal transport. 

More generally, results of the sensitivity analysis show that modal split depends 

on the value of the respective operational and external costs of transportation 

modes. Consequently, the precise valuation of these costs is necessary for 

ensuring good results of the model. The valuation of operational costs is easier 

than the valuation of external costs since operational costs are more tangible. 

Mortality external costs related to air pollution are based on statistical tools such 

as value of statistical life or value of a life year (Ricardo AEA, 2014). The current 

recommended studies evaluate morbidity external costs related to air pollution 

through stated preference surveys (Ricardo AEA, 2014). The continuous 

development of such valuation methods is necessary for ensuring accurate 

decision support systems for long-term transportation planning policies. 
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Several intermodal stakeholders can gain insight from the results of this case. 

First, intermodal operators are able to identify the effect on their market share of a 

potential improvement of their technology, reflected in a decrease of their 

operational or external costs. Public leaders can assess the impact of their 

transportation policies on the flow distribution, and thus identify how a taxation 

system would, for instance, support the development and extension of intermodal 

transport. Terminals managers are also concerned with the results. Indeed, they 

can evaluate the evolution of the flows passing through their terminals, and 

therefore determine the potential investments for matching the terminal capacity 

with its future demand. Finally, infrastructure managers are also able to determine 

the modal split and thus, for instance, to forecast which further railway or IWW 

connections should be developed or removed, according to the decided policy for 

transport planning. 

6.8. Conclusions 

 

In a complementary approach to studies focusing on the effects of transport in 

urban contexts, this paper develops an analysis of the flow distribution between 

road and intermodal transport at the strategic level. This study contributes to the 

development of decision-support tools for long-term transportation policies, by 

allowing the identification of the effects of current (economic) and expected 

future (human-health) objectives. The performance of road and intermodal 

transport regarding operational costs and human health external costs related to 

air pollution can be identified. This study improves the understanding of the 

impact that public authorities can have on modal split using taxation systems. The 

trends in the evolution of flow distribution under technological improvement or 

modifications of traction mix can also be deduced. 

An intermodal allocation model is applied to the Belgian case in order to highlight 

which kinds of policy measures can be evaluated. The outcome is interesting for 

public authorities, terminal operators, intermodal carriers, and shippers, as well as 

for infrastructure managers.  

Results show that intermodal transport performs better than road regarding human 

health external costs. The modal split between road and intermodal transport is 

affected by the followed economic or environmental policy. Indeed, the external 

costs’ minimization strategy leads to a configuration where intermodal transport 
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has the most important market share. On the contrary, the operational costs 

minimization strategy defines road transportation as the most competitive mode.  

The introduction of road taxes under economic optimization decreases the road 

market share in relation to intermodal transport. Nevertheless, this decrease leads 

to an underuse of intermodal transport, compared to the environmental 

optimization strategy.  

Under an environmental optimization strategy, sensitivity analyses demonstrate 

that modifications of external cost values of the three modes imply variations of 

the modal split.  

An improvement in the environmental friendliness of road transport through the 

introduction of cleaner vehicles in the truck fleet makes road competitive 

regarding human health external costs. The environmental improvement in truck 

technology, therefore, restricts the potential for flow transfer from road to rail or 

IWW. A reduction in rail air pollution external costs, through an increased use of 

electricity in the traction mix, increases the intermodal market share.  

Sensitivity analysis of IWW external costs underlines the possibility of flow 

transfers within the intermodal market share between rail and IWW rather than 

between road and intermodal transport. This effect is in contradiction to the 

willingness of the European Commission to transfer freight flows from road to 

more environmentally friendly modes. Therefore, this topic should be carefully 

analyzed when implementing measures aimed at reducing road freight flows. 

The chosen transport policy definitely influences the modal split. This implies 

that, according to the environmental or economic strategy that is followed, 

different kinds of investments might need to be performed. If the focus is on 

environmental optimization, money should be spent on rail or IWW 

infrastructure, to support intermodal development. If the focus remains on 

economic optimization, or if cleaner trucks progressively replace older 

technology vehicles, road investments should be reinforced. 

This research compares the economic and air pollution external costs 

minimization strategies. Further research work should be performed regarding the 

analysis of other intermediate policies such as the introduction of subsidies or the 

economic optimization with an internalization of external costs. This study only 

analyzes the effects of human health external costs related to air pollution. 



160 

 

However, other external costs like noise could also be integrated in policy 

analysis. Results of the model are influenced by the value given to external costs 

and other studies focusing on the precise valuation of these costs are, therefore, 

necessary. This paper does not account for intermodal terminal capacity. This 

helps intermodal stakeholders identify the most important connections in terms of 

flows. However, further work should also be done to identify the match between 

flows and terminal capacity. 
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Chapter 7 

Several intermodal transport chains 
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8. Conclusions 

 

This chapter enlarges the modeling of intermodal transport developed in chapters 

5 and 6, and provides an intermodal allocation formulation that allows the choice 

between direct transport and intermodal chains of up to three modes. The model 

identifies the effects on modal split of policies which optimize operational costs, 

CO2 emissions and air pollution external costs. The formulation is applied for 

experimental results on a case at the European level. 

7.1. Introduction 

 

With the opening of borders and the always greater decentralization of 

production, the transportation of goods increased a lot in the last years. In Europe, 

road remains the most used mode for freight transportation (Eurostat, 2016). Even 
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if it is appreciated for its responsiveness, flexibility, and quickness, road transport 

is however responsible for negative impacts on its environment like air pollution 

or climate change. In order to reduce these damages of road transport, there is an 

increasing interest in sustaining alternative transport solutions like intermodal 

freight transport (European Commission, 2011).   

Intermodal transport requires intermodal terminals, where the transfer from one 

mode to another can be achieved. Intermodal terminals can act as dry ports of sea 

ports, offering services such as stuffing, stripping and repair of containers, 

customs clearance or even storage areas (Roso et al., 2009).  

Intermodal transport can be analyzed at several levels and according to different 

perspectives (Bontekoning et al., 2004; Mathisen and Sandberg Hanssen, 2014). 

The correct location of intermodal terminals and allocation of flows on an 

intermodal network have been studied using various methods: agent-based models 

(Sirikijpanichkul et al., 2007), GIS-based models (Macharis and Pekin, 2009; 

Macharis et al., 2010; Zhang et al., 2013; Meers and Macharis, 2014) or 

programming models (Arnold et al., 2001; Arnold et al., 2004; Racunica and 

Wynter, 2005; Ishfaq and Sox, 2011; Sörensen et al. 2012; Sörensen and 

Vanovermeire, 2013; Lin et al., 2014; Bouchery and Fransoo, 2015; Santos et al., 

2015, Mostert and Limbourg, 2016).  

In the traditional modeling of intermodal transport, pre- and post-haulage travels 

are supposed to be short, and to be performed by road transport, whereas the long-

haul travel is done using rail or IWW (SteadieSeifi et al., 2014). Intermodal 

allocation or location-allocation models generally consider intermodal terminals 

with two modes of transport (Arnold et al., 2001, Arnold et al., 2004, Racunica 

and Wynter, 2005, Ishfaq and Sox, 2011, Limbourg and Jourquin, 2009, Sörensen 

et al., 2012, Santos et al., 2015, Mostert et al., 2017a, Mostert et al., 2017b).  

Some works deal with intermodal network design with more than two modes 

(Zhang et al. 2015, Ghane-Ezabadi and Vergara, 2016, Mostert et al., 2017a, 

Mostert et al., 2017b). Zhang et al. (2015) analyze the effects on CO2 emissions 

and total (internal and external) network costs of several policies in a bi-level 

intermodal network model applied to the Dutch hinterland, while this work 

identifies the resulting behavior of flows when allowing any combination of up to 

three modes on a case at the European level with several origins and destinations. 

Ghane-Ezabadi and Vergara (2016) provide a path-based formulation of 
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intermodal network design. This approach differs from Ghane-Ezabadi and 

Vergara (2016) since it does not determine feasible paths in advance and it 

decides on the transportation mode between any combinations of up to three 

modes. An application is provided based on European data whereas Ghane-

Ezabadi and Vergara (2016) apply a decomposition-based search algorithm for 

solving randomly generated instances. Mostert et al. (2017a, 2017b) consider 

“road-rail-road” or “road-WW-road” intermodal travels, while this study allows 

for other combinations of modes. 

The environmental impact of freight transportation is increasingly considered in 

decision-making related to transport (Bouchery and Fransoo, 2015, Zhang et al., 

2013 , Mostert et al., 2017a, Mostert et al., 2017b) or supply chain network design 

(Wang et al., 2011, Chaabane et al., 2012, Martí et al., 2015).  

This work develops a new mathematical intermodal allocation model applied to a 

network at the European level. This model questions the “road-rail/IWW-road” 

modeling of intermodal transport and evaluates the effects on modal split of 

economic and environmental policies when several intermodal chains are 

available. The model is based on the theory of intermodal network design, and 

aims at identifying how the flows are distributed, when all possible combinations 

of up to three modes are allowed for intermodal transport. Three main 

transportation formulas are included in the model, considering flow exchanges 

between road, rail, and IWW transport: 

- A direct door-to-door transport using one single mode (road, rail or 

IWW) 

- An intermodal transport passing through one intermodal terminal, and 

thus using two different modes of transport 

- An intermodal transport passing through two intermodal terminals, and 

thus using at most three different modes of transport. 

The transportation solution between an origin and a destination is constituted by 

one or several legs. A direct transport is constituted by one leg. An intermodal 

transport with one terminal has two legs. An intermodal transport with two 

terminals has three legs. Two consecutive legs of an intermodal transport cannot 

be performed by the same mode of transport. 

The various possibilities that are evaluated by the model in terms of flow 

transportation between each origin and destination are given in table 22. 
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Direct Transport Intermodal transport with 

one terminal 

Intermodal transport with 

two terminals 

Road Road-Rail Road-Rail-Road 

Rail Road-IWW Road-Rail-IWW 

IWW Rail-Road Road-IWW-Road 

 Rail-IWW Road-IWW-Rail 

 IWW-Road Rail-Road-Rail 

 IWW-Rail Rail-Road-IWW 

  Rail-IWW-Road 

  Rail-IWW-Rail 

  IWW-Road-Rail 

  IWW-Road-IWW 

  IWW-Rail-Road 

  IWW-Rail-IWW 

Table 22: Transportation possibilities for each origin-destination pair 

Even if intermodal transport provides several benefits compared to the current 

transportation system mainly driven by road, transshipping goods from one mode 

of transport to another has a cost, both in terms of operations and externalities. In 

the model, intermodal transport is assumed to pass through a maximum of two 

terminals to better match reality. This restriction reflects the cost of transshipment 

activities, which should not be repeated too many times, in order to remain 

efficient and competitive regarding a direct transportation mode. 

Allowing any combination of modes on the network may remind the concept of 

synchromodality (Zhang and Pel, 2016). However, this approach differs from 

synchromodal transport, since it relates to the strategic and not to the operational 

level of decision, and therefore does not focus on the dynamic choice of a 

transport service provider between several transportation opportunities at a 

precise moment in time. 

This research provides a new tool to identify the impact of economic (operational 

costs) and environmental (CO2 emissions and air pollution external costs) policies 

on the modal split between transportation solutions which account for several 

intermodal chains. The objective is to reflect the possibilities to use a combination 

of the three inland modes (road, rail, and IWW) on different legs of the 

intermodal path, for a same origin-destination pair. This concept could for 

instance be applied between a sea port and its hinterland, i.e. the “continental 

area of origin and destination of traffic flows through a port” (van Klink and van 

den Berg, 1998). The model allows analyzing the flow distribution of an already 

established network, by taking the open terminals into account. On the contrary of 
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what is generally done in the literature, the model accounts for intermodal 

terminals where two and three modes of transport are available. Terminal can be 

classified into three categories: road-rail, road-IWW, and road-rail-IWW. In the 

model, no terminal rail-IWW is accounted for, since in real life, intermodal 

terminals always have a road access. This work aims at identifying whether 

different combinations than the “road-rail/IWW-road” modeling of intermodal 

transport are used, in order to reach an economic or an environmental optimum. 

This study compares the results of intermodal structure in terms of operational 

costs, CO2 emissions, and human health external costs related to air pollution. 

This research therefore extends the studies developed in chapter 5 (Mostert et al., 

2017a) and chapter 6 (Mostert et al., 2017b) of the thesis. 

In addition to the mathematical formulation, this paper provides some first 

experimental results on a case at the European level to evaluate the potential flow 

transfers between direct and intermodal transport. These experimental results aim 

at providing a first overview of the behavior of the flow distribution between 

direct transport and intermodal transport with one and with two terminals, when 

any combination of modes is allowed. The objective is therefore not to provide 

precise policy-oriented advice on a specific case study, but rather to identify and 

illustrate the general behavior and potential insights of the model using data on an 

extended territory.  

The next section details the mathematical formulation of the model. Section 7.3 

elaborates on the experimental data at the European level. Section 7.4 analyzes 

the types of insights that can be provided by the model, through the evaluation of 

the results of three different policies in terms of modal split between direct 

transport, intermodal transport with one terminal, and intermodal transport with 

two terminals. Section 7.5 discusses the results provided by the model. Finally, 

section 7.6 provides the main conclusions. 

7.2. Model formulation 

 

In this model, flows are aggregated at NUTS 2 level and the demand for each 

region is concentrated on a single generation node, called centroid, chosen for the 

importance of the cities in the NUTS 2 region and the existence of a rail/IWW 

platform nearby. The centroids are always connected to the road network and, 

depending on their geographical location, can also be connected to the rail and to 
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the IWW network. The origin and destination centroids are however not the initial 

origin and final destination of goods.  

Two categories of initial/final nodes within the zone represented by the centroid 

can be identified: initial/final nodes that can be reached only by road and 

initial/final nodes that be reached by road and rail or IWW. To ensure that goods 

can always be delivered between their initial origin node and their initial centroid, 

or between their final centroid and their final destination node, it is assumed that 

all the deliveries from initial or to final nodes are performed by road. Since a 

centroid city is always connected to the road network, there is no need to 

introduce additional road transport connectors to virtually link the centroid to the 

closest node of the road network.  

Since all initial/final deliveries are assumed to be transported by road, these 

deliveries represent fixed costs and can be omitted because they do not influence 

the resulting modal split. However, if goods are leaving an origin centroid or 

arriving at a destination centroid by rail or IWW, additional transshipment costs 

have to be included in the objective function. 

The mathematical formulation of the model is developed here below. 

Sets 

N node set consisting of n demand nodes, indexed by i, j, k, m {1, …, n} 

S set of modes, indexed by c, l {1, …, s}, where the mode 1 of the set is 

road 

Parameters 

𝛽𝑖𝑐 =1 if a terminal is located at 𝑘 with mode 𝑐 ≠ 1 available,  

 =0 otherwise 

𝑠𝑖𝑚𝑙 distance between demand nodes 𝑖 and 𝑚 using mode 𝑙 (in km) 

𝐷𝑖𝑚 cargo demand from demand node 𝑖 to demand node 𝑚 (in t) 
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The following parameters represent the value of operational costs, of CO2 

emissions, or of human health external costs related to air pollution, depending on 

the optimization under study (operational costs, CO2 emissions or air pollution 

external costs respectively). 

𝑎𝑙
𝑅 transportation operational costs or CO2 emissions or air pollution external 

costs for travelling with mode 𝑙  (in €/t.km) 

𝑎𝑇 transshipment operational costs or CO2 emissions or air pollution external 

costs (in €/t) 

Decision variables 

𝑊𝑖𝑚𝑙 direct flows from demand origin 𝑖 and destination 𝑚 with mode 𝑙 (in 

tonnes), ∀ 𝑖, 𝑚 ∈ 𝑁, ∀ 𝑙 ∈ 𝑆 

𝑋𝑖𝑗𝑘
𝑐𝑙   intermodal flows from origin 𝑖 routed through first terminal 𝑗 with mode 𝑐 

(first leg) and then through second terminal 𝑘, with mode 𝑙 (second leg) 

(in tonnes), ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑁, ∀ 𝑐, 𝑙 ∈ 𝑆 

𝑄𝑖𝑘𝑚
𝑙𝑐  intermodal flows from origin 𝑖 to destination 𝑚 routed through second 

terminal 𝑘 with mode 𝑙 (second leg) and with mode 𝑐 (third leg) (in 

tonnes), ∀ 𝑖, 𝑘, 𝑚 ∈ 𝑁, ∀ 𝑐, 𝑙 ∈ 𝑆 

𝑈𝑖𝑘𝑚
𝑐𝑙  intermodal flows from origin 𝑖 to destination 𝑚 that are routed through 

single terminal 𝑘 with mode 𝑐 (first leg) and with mode 𝑙 (second leg) (in 

tonnes), ∀ 𝑖, 𝑘, 𝑚 ∈ 𝑁, ∀ 𝑐, 𝑙 ∈ 𝑆 
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Objective function 

∑ ∑ ∑ 𝑠𝑖𝑚𝑙 ∗ 𝑎𝑙
𝑅 ∗ 𝑊𝑖𝑚𝑙

𝑙∈𝑆𝑚∈𝑁𝑖∈𝑁

 

+ ∑ ∑ ∑ ∑ ∑(𝑠𝑖𝑗𝑐 ∗ 𝑎𝑐
𝑅 + 𝑎𝑇) ∗ 𝑋𝑖𝑗𝑘

𝑐𝑙

𝑙∈𝑆𝑐∈𝑆𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

 

+ ∑ ∑ ∑ ∑ ∑ 𝑠𝑗𝑘𝑙

𝑙∈𝑆

∗

𝑐∈𝑆𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

𝑎𝑙
𝑅 ∗ 𝑋𝑖𝑗𝑘

𝑐𝑙  

+ ∑ ∑ ∑ ∑ ∑(𝑠𝑘𝑚𝑐 ∗ 𝑎𝑐
𝑅 + 𝑎𝑇) ∗ 𝑄𝑖𝑘𝑚

𝑙𝑐

𝑐∈𝑆𝑙∈𝑆𝑚∈𝑁𝑘 ∈ 𝑁𝑖∈𝑁

 

+ ∑ ∑ ∑ ∑ ∑(𝑠𝑖𝑘𝑐 ∗ 𝑎𝑐
𝑅 +  𝑠𝑘𝑚𝑙 ∗ 𝑎𝑙

𝑅 + 𝑎𝑇) ∗ 𝑈𝑖𝑘𝑚
𝑐𝑙

𝑙∈𝑆𝑐∈𝑆𝑚∈𝑁𝑘∈𝑁𝑖∈𝑁

 

+ ∑ ∑ ∑ 2 ∗ 𝑎𝑇 ∗ 𝑊𝑖𝑚𝑙  

𝑙≠1∈𝑆𝑚∈𝑁𝑖∈𝑁

 

+ ∑ ∑ ∑ ∑ ∑ 𝑎𝑇 ∗ 𝑋𝑖𝑗𝑘
𝑐𝑙

𝑙∈𝑆𝑐≠1∈𝑆𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

 

+  ∑ ∑ ∑ ∑ ∑ 𝑎𝑇 ∗ 𝑄𝑖𝑘𝑚
𝑙𝑐

𝑐≠1∈𝑆𝑙∈𝑆𝑚∈𝑁𝑘 ∈ 𝑁𝑖∈𝑁

 

 

+ ∑ ∑ ∑ ∑ ∑ 𝑎𝑇 ∗ 𝑈𝑖𝑘𝑚
𝑐𝑙

𝑙∈𝑆

 

𝑐≠1∈𝑆𝑚∈𝑁𝑘∈𝑁𝑖∈𝑁

 

+ ∑ ∑ ∑ ∑ ∑ 𝑎𝑇 ∗ 𝑈𝑖𝑘𝑚
𝑐𝑙

𝑙≠1∈𝑆𝑐∈𝑆𝑚∈𝑁𝑘∈𝑁𝑖∈𝑁

 

 

(51) 

Subject to 

𝐷𝑖𝑚 =  ∑ 𝑊𝑖𝑚𝑙

𝑙∈𝑆

 

+ ∑ ∑ ∑(𝑄𝑖𝑘𝑚
𝑙𝑐 + 𝑈𝑖𝑘𝑚

𝑐𝑙 )

𝑙∈𝑆𝑐∈𝑆𝑘∈𝑁

 
∀ 𝑖, 𝑚 ∈ 𝑁 (52) 

∑ ∑ 𝑋𝑖𝑗𝑘
𝑐𝑙

𝑙∈𝑆𝑘∈𝑁

≤ 𝛽𝑖𝑐𝛽𝑗𝑐 ∑ 𝐷𝑖𝑚

𝑚∈𝑁

 ∀ 𝑖, 𝑗 ∈ 𝑁, ∀ 𝑐 ≠ 1 ∈ 𝑆  (53) 

∑ 𝑋𝑖𝑗𝑘
𝑐𝑙

𝑐∈𝑆

≤ 𝛽𝑗𝑙𝛽𝑘𝑙 ∑ 𝐷𝑖𝑚

𝑚∈𝑁

 ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑁, ∀ 𝑙 ≠ 1 ∈ 𝑆   (54) 

∑ 𝑄𝑖𝑘𝑚
𝑙𝑐

𝑙∈𝑆

≤ 𝛽𝑘𝑐𝛽𝑚𝑐 ∑ 𝐷𝑖𝑚

𝑚∈𝑁

 ∀ 𝑖, 𝑘, 𝑚 ∈ 𝑁, ∀ 𝑐 ≠ 1 ∈ 𝑆  (55) 
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∑ ∑ 𝑋𝑖𝑗𝑘
𝑐𝑙

𝑐∈𝑆

=  ∑ ∑ 𝑄𝑖𝑘𝑚
𝑙𝑐

𝑐∈𝑆𝑚∈𝑁𝑗∈𝑁

 ∀ 𝑖, 𝑘 ∈ 𝑁, ∀ 𝑙 ∈ 𝑆 (56) 

∑ ∑ 𝑈𝑖𝑘𝑚
𝑐𝑙

𝑚∈𝑁𝑙∈𝑆

≤ 𝛽𝑖𝑐𝛽𝑘𝑐 ∑ 𝐷𝑖𝑚

𝑚∈𝑁

  ∀ 𝑖, 𝑘 ∈ 𝑁, ∀ 𝑐 ≠ 1 ∈ 𝑆 (57) 

∑ 𝑈𝑖𝑘𝑚
𝑐𝑙

𝑐∈𝑆

≤ 𝛽𝑘𝑙𝛽𝑚𝑙 ∑ 𝐷𝑖𝑚

𝑚∈𝑁

 ∀ 𝑖, 𝑘, 𝑚 ∈ 𝑁, ∀ 𝑙 ≠ 1 ∈ 𝑆 (58) 

𝑊𝑖𝑚𝑙 ≤ 𝛽𝑖𝑙𝛽𝑚𝑙𝐷𝑖𝑚  ∀ 𝑖, 𝑚 ∈ 𝑁, ∀ 𝑙 ≠ 1 ∈ 𝑆 (59) 

𝑊𝑖𝑚𝑙 ≥ 0 ∀ 𝑖, 𝑚 ∈ 𝑁, ∀ 𝑙 ∈ 𝑆 (60) 

𝑋𝑖𝑗𝑘
𝑐𝑙 ≥ 0 ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑁, ∀ 𝑐, 𝑙 ∈ 𝑆 (61) 

𝑄𝑖𝑘𝑚
𝑙𝑐 ≥ 0 ∀ 𝑖, 𝑘, 𝑚 ∈ 𝑁, ∀ 𝑐, 𝑙 ∈ 𝑆 (62) 

𝑈𝑖𝑘𝑚
𝑐𝑙 ≥ 0 ∀ 𝑖, 𝑘, 𝑚 ∈ 𝑁, ∀ 𝑐, 𝑙 ∈ 𝑆 (63) 

 

Figure 18 illustrates the flow variables of the model. Direct flows are modeled 

using variables 𝑊𝑖𝑚𝑙. Intermodal flows through one terminal are modeled using 

variables 𝑈𝑖𝑘𝑚
𝑐𝑙 . Intermodal flows through two terminals are modeled using 

variables 𝑋𝑖𝑗𝑘
𝑐𝑙  and 𝑄𝑖𝑘𝑚

𝑙𝑐 . 

 

Figure 18 : Flow variables of the model 

The objective function (51) consists in the total transportation costs or CO2 

emissions or air pollution external costs between all the origin-destination pairs. 

They are constituted by four main categories of transportation costs: (i) costs for 

direct transport through a unique mode, (ii) costs for intermodal transport with 

one terminal, (iii) costs for intermodal transport with two terminals, and (iv) 

additional transshipment costs if goods leave an origin node or arrive at a 

destination node using another mode of transport than road. 
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 For direct transport (i), costs include the travel between the origin and the 

destination, with the unique mode.  

 For intermodal transport with one terminal (ii), costs include the travel 

from the origin to the terminal with the first mode, the transshipment at 

the terminal, and the travel from the terminal to the destination with the 

second mode.  

 For intermodal transport with two terminals (iii), costs include the pre-

haulage travel from the origin to the first terminal with the first mode, the 

transshipment at the first terminal, the long-haul travel between the two 

terminals with a second mode, the transshipment at this second terminal, 

and the post-haulage travel between the second terminal and the 

destination with a mode different from the second one.  

 Additional transshipment costs for goods leaving an origin or arriving at a 

destination node with another mode of transport than road (iv) are 

introduced to take into account the aggregation of flows.  

Several issues constrain the objective function. Demand should be satisfied, either 

through a direct transport, an intermodal transport with one terminal, or an 

intermodal transport with two terminals (52). When intermodal transport with two 

terminals is used, flows cannot go through two consecutive terminals if these 

terminals are not open and if they do not own the same mode of transport (53)-

(55). A constraint similar to (55) regarding the availability of mode 𝑙 at terminal 𝑘 

for variables 𝑄𝑖𝑘𝑚
𝑙𝑐  is not needed thanks to constraints (54) and (56). When 

intermodal terminal with two terminals is chosen, flows between the terminals 

should be conserved (56). In the case of an intermodal travel with one terminal, 

flows cannot transit through two consecutive terminals if they are not open and if 

they do not own the same mode of transport (57)-(58). If direct transport is used, 

flows cannot go from the origin to the destination terminal if they are not open 

and if do not own the same mode of transport (59). Non-negativity constraints 

have to be respected for the flows sent using direct transportation (60), for 

intermodal flows using two terminals (61)-(62) and for intermodal flows 

transiting through one terminal (63). 
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7.3. Experimental data at the European level 

 

The objective of this section is to detail the data used to test the model. The 

experimental results related to the used data aim at providing a first overview of 

the behavior of the flow distribution between direct transport and intermodal 

transport with one and with two terminals, when any combination of modes is 

allowed. The objective is therefore to illustrate how the model can be used, and 

which kinds of results can be retrieved. These experimental tests aim at 

identifying how the model works on a network with medium to long distances and 

with already existing terminals. To this effect, data rely on values retrieved from 

the European network. 

Europe is a vast territory connected through an important number of links on the 

road, rail and IWW networks. Several intermodal terminals already exist on the 

land. Since intermodal transport is often recommended for medium to long 

distances (European Commission, 2011), the European territory allows analyzing 

the variations of flow distribution, when any possible combination of up to three 

modes is available.   

The choice for the analysis at the European level is driven by several elements, 

which allow considering Europe as a unique entity, rather than a simple 

combination of different countries which cooperate from time to time. 

The political willingness of creating an open market on the European territory is 

clearly observed through different policies put into practice. The first and most 

important one is the free circulation of goods in Europe. It is one of the four 

fundamental freedoms that define the single market of the European Commission, 

besides the freedom of movement for workers, the right of establishment and the 

freedom to provide services, and the free movement of capital (European Policy 

Center, 2016). The free circulation of goods has come into effect on the 1
st
 July 

1968, by suppressing customs duties and quantitative restrictions (contingents) 

between the member states (European Parliament, 2016). The elimination of 

physical and technical barriers between countries (such as interoperability issues, 

please refer to section 2.2 SWOT analysis of intermodal freight transport) is also 

part of the measures taken for ensuring the free circulation of goods. In addition, 

legislative barriers have been removed, by harmonizing as much as possible the 

rules between the different member states. 
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The development of the single market in terms of freight flows is highlighted by 

the definition of the nine TEN-T core network corridors, which cover the whole 

European territory from North to South and from East to West. The objective of 

the definition of these corridors is to facilitate the coordinated implementation of 

the core network. Each corridor brings together public and private actors who aim 

at removing bottlenecks, building missing cross-border connections, and 

promoting modal integration and interoperability (European Commission, 2016). 

Specific measures related to the willingness of creating a single European market 

can be identified for the road, rail, and IWW networks. 

On the road network, harmonization measures have taken place, such as the 

introduction of European rules for the maintenance of the security patterns of the 

vehicles and road infrastructure. This implies, for instance, the regular technical 

control of vehicles and their trailers, the introduction of cruise control systems for 

vehicles heavier than 3.5 tonnes, and the introduction of directives related to 

security measures for road tunnels. The development of the European Agreement 

concerning the International Carriage of Dangerous Goods by Road (ADR) also 

defines specific rules to follow on the whole European territory, concerning the 

transportation of hazardous goods by road. Even if some standardization trend is 

observed on the road market, the member states remain sovereign, i.e. they can 

still decide to adhere or not to the propositions made by Europe. This 

characteristic explains the remaining differences in different policies from one 

country to another. Some examples are the authorization or not of circulation of 

longer and heavier trucks (Eco-combi) on the different networks of the European 

countries, the fees to pay to use the national highway network, as well as the 

authorizations/interdictions for trucks to drive on highways during specific days 

or periods of time. Despite these differences, the European road market is quite 

accessible by any member of the Union, and remains the most used of transport 

for the transfer of goods. Indeed, in 2014, 75.5% of the freight t.km in Europe (28 

countries) were transported by road (Eurostat, 2016). 

The opening of the European rail network to international freight services started 

in 2008. Some standardization willingness is clearly observed since then. This 

passes through the introduction of interoperable systems, with the replacement of 

the national systems by a unique and coherent European Rail Traffic Management 

system. The objective is to standardize rail in terms of signaling systems, security 

and braking rules, rolling stock, maximum speed limits, communication 
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technology, and traction electricity. The use of information technology has an 

important role to play in the standardization procedure of rail. Indeed, it allows 

more fluidity on the network, through the improvement of the communication 

capacities. 

Some approaches have also been undertaken on the IWW network, in order to 

allow a better communication between the different axes throughout the European 

territory. Contrary to the road network, where axes are generally standardized and 

normalized, IWW axes suffer from very diverse sizes and depths, due to their 

different times of construction, or to the natural characteristics to which they are 

constrained. European IWWs have been classified by the European Conference of 

Ministers of Transport (CEMT) into several classes, according to their capacity of 

welcoming barges and ships of specific dimensions and weights. This has been 

done to provide better information on the kind of ships and barges that could be 

transported on specific axes, based on dimension and load restrictions. The access 

to locks and bridges is also established based on these references. At the IWW 

level, the development of River Information Services, “the information 

technology designed to optimize traffic and transport processes in inland 

navigation” (Schilk and Seemann, 2012), also contributes to the unification of the 

European IWW market. 

Since the European willingness is to create a unique open market which ensures 

the freedom of movement of goods, and due to the adequacy of the use of 

intermodal transport on medium to long distances, the European network is an 

interesting application to study. 

The experimental results of the model have been tested at the European level on 

the basis of flows exchanges between NUTS 2 regions close to the nine European 

TEN-T core network corridors.  The origin/destination matrix is constituted by 

these NUTS 2 regions that are crossed by the corridors. 

The rail and IWW terminals have been retrieved from Agora (2016). The 

distances by road between any origin-destination pair has been computed using 

GoogleMaps (2016). The IWW network distances are obtained through Periskal 

(Promotie Binnenvaart Vlaanderen, 2016). The rail segments originate from 

TENTec Interactive Map Viewer developed by the European Commission 

(2016b). Demand for total containerized flows by road, rail, and IWW originates 

from the Worldnet database (Newton, 2009). 
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Table 23 provides the values and sources of unit operational costs, CO2 emissions, 

and human health external costs related to air pollution used for the European 

data. 

Parameter 
Operational 

costs 
CO2 emissions 

Air 

pollution 

external 

costs 

Source 

Road 
0.045 

€/t.km 

0.027440  

kg CO2/t.km 

0.00323 

€/t.km 

Operational costs: Janic 

(2007, 2008) 

CO2 emissions: Hoen et 

al.  (2010, 2014) 

External costs: Ricardo-

AEA (2014) 

Rail 
0.032 

€/t.km 

0.01638  

kg CO2/t.km 

0.00202 

€/t.km 

Operational costs: Janic 

(2007, 2008) 

CO2 emissions: Hoen et 

al.  (2010, 2014) 

External costs: Ricardo-

AEA (2014) 

IWW 
0.02285 

€/t.km 

0.007145  

kg CO2/t.km 

0.00229 

€/t.km 

Operational costs: PWC 

(2003) 

CO2 emissions: Hoen et 

al.  (2010, 2014) 

External costs: Ricardo-

AEA (2014) 

Transshipment 
2.8  

€/t 

0.167  

kg CO2/t 

0  

€/t 

Operational costs: Janic 

(2007, 2008) 

CO2 emissions: te Loo 

(2009) 

External costs: Baccelli 

et al., 2001 

 

Table 23: Unit operational costs, CO2 emissions, and air pollution external costs 

values 
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7.4. Experimental results at the European level 

 

The application at the European level has been solved on a workstation (Windows 

10 Pro, Intel Xeon 2.1 GHz, 32 GB of RAM) with CPLEX 12.63. The objective 

of this section is twofold. First it is to test the model in order to identify which 

kinds of results can be retrieved from the model (evolution of flow exchanges). 

Second, it is to provide insights on methodological issues related to the structure 

of the model and its application. This section is therefore focused on testing the 

model and identifying its behavior rather than analyzing precisely a case study in 

order to provide policy oriented decision support. 

For illustrating how the model can be used, three optimization policies are 

compared: operational costs, CO2 emissions, and human health external costs 

related to air pollution. The distribution of flows when any combination of up to 

three modes is allowed on the intermodal travel is studied. A sensitivity analysis 

of the results to variations of the unit operational costs, CO2 emissions, air 

pollution external costs and transshipment parameters is then developed. 

7.4.1. Three optimization policies 

 

This section analyzes the general flow behavior when operational costs, CO2 

emissions or human health external costs related to air pollution are optimized. 

Table 24 gives an overview of the modal split between road, rail, and IWW 

transport. 

Minimization Road flows 

(t.km) 

Rail flows 

(t.km) 

IWW flows 

(t.km) 

Operational 

costs 
50% 40% 10% 

CO2 

emissions 
25% 43% 32% 

Air pollution 

external costs 
32% 63% 5% 

Table 24: Modal splits between road, rail and IWW flows 

The economic optimization favors road, followed by rail and IWW. The 

environmental optimizations define rail transport as the preferred mode. This is 

explained by the lower unit environmental parameters of rail compared to road 

and IWW. The minimization of CO2 emissions gives a higher market share for 

IWW compared to the minimization of operational costs and CO2 emissions. CO2 
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emissions for IWW are computed based on the assumption that 3,000 tonnes of 

goods are transported by a medium barge, while air pollution external costs are 

given for boats transporting goods within a range of 1,000 and 3,000 tonnes. This 

assumption favors IWW in the CO2 emissions optimization case and explains why 

its use is increased compared to the air pollution external costs minimization. The 

share of IWW is lower in the optimization of air pollution external costs than in 

the optimization of operational costs. This comes from the fact that rail and IWW 

unit parameters are closer for air pollution external costs than for operational 

costs. It results that rail attracts most of the flows under the air pollution external 

costs optimization, to the detriment of IWW. 

Minimization Direct flows 

(t.km) 

Intermodal 

flows (t.km) 

Operational 

costs 
6% 94% 

CO2 

emissions 
2% 98% 

Air pollution 

external costs 
2% 98% 

Table 25: Modal split between direct and intermodal flows 

Table 25 identifies the flow distribution between direct transport and intermodal 

transport. 

Intermodal transport is preferred to direct transport in both economic and 

environmental optimizations. This is explained by three main factors: (i) the 

aggregation level of the data and the all-or-nothing characteristic of the model, (ii) 

the structure of the model which allows any mode of transport on any intermodal 

leg, and (iii) the structure of the data which considers regions located next to 

intermodal terminals.  

(i) The model is run with aggregate flows at the NUTS 2 level. Since a 

region is relatively large (in Belgium, a NUTS 2 level of aggregation 

corresponds to the provinces), this means that more centroids are 

assumed to have a rail or an IWW access. Hence, the relative number 

of rail and IWW terminals compared to the total number of nodes 

considered is increased. More nodes can be accessed by rail or IWW. 

Since rail and IWW unit parameters are lower than road parameters, 

more flows are sent using a combination of modes, to the detriment 

of direct transport. The all-or-nothing characteristic of the model also 



177 

 

impacts the flow distribution since all the flows between a single 

origin-destination pair are sent through the same path. If intermodal 

transport is the cheapest mode, all the flows will be sent through this 

mode. At the considered level of aggregation, it may clearly influence 

the proportion of flows transferred using a specific transport solution.  

(ii) Unlike the formulations developed in chapters 5 and 6 of the thesis, 

rail and IWW can be used for the first and last legs of an intermodal 

travel. There is therefore much more possibilities to use rail and IWW 

in combinations, which reduces the proportion of direct transport. 

(iii) The data consists in the NUTS 2 regions crossed by the core network 

corridors. The NUTS 2 centroids are close to intermodal terminals, 

which enhances the use of intermodal transport. The more intensive 

use of direct transport for the economic than for the environmental 

optimizations is explained by the relatively higher values for 

transshipment economic than environmental parameters. 

Within the intermodal market share, the three optimization policies provide 

similar flow distribution between intermodal transport with one terminal (59%) 

and intermodal transport with two terminals (41%). Intermodal transport with one 

terminal is preferred to intermodal transport with two terminals. This flow 

distribution highlights the preference for transportation solutions with fewer 

transshipments but also underlines that, for some connections, combining three 

modes of transport can compensate for the additional transshipment costs or 

emissions related to the transfer of goods between modes. 

For the three optimization policies, table 26 summarizes the flow distribution 

within direct transport between road, rail and IWW.  

Minimization Direct road 

flows (t.km) 

Direct rail 

flows (t.km) 

Direct IWW 

flows (t.km) 

Operational 

costs  
59% 35% 6% 

CO2 

emissions  
34% 41% 25% 

Air pollution 

external costs  
41% 57% 2% 

Table 26: Detailed modal split within direct transport 

Road is mostly chosen for direct transport under the optimization of operational 

costs. Rail is the preferred mode for direct transport for environmental 
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optimizations. The direct IWW market share is relatively low except for the CO2 

emissions minimization, which provides a more competitive unit value for IWW 

transport. 

 

 

         (a) 

 

 

 

 

         (b) 

 

 

Figure 19: Flow distribution of intermodal transport through one terminal (a) 

and through two terminals (b) for operational costs min. 

Under the operational costs minimization policy, the intermodal flows through 

one single terminal are mostly transported by rail on the first and second legs of 

the intermodal path (figure 19a). This contributes to the relatively high market 

share of rail. For intermodal flows through two terminals, most of the flows are 

transported by road on the first and third legs of the intermodal path, while the 

second leg of the transport is mainly performed by rail (figure 19b). 

 

 

 

 

 



179 

 

0%

20%

40%

60%

80%

100%

First leg Second leg

IWW

Rail

Road

0%

20%

40%

60%

80%

100%

First leg Second leg Third leg

IWW

Rail

Road

          

          

         (a)  

 

 

           

         (b) 

 

 

Figure 20: Flow distribution of intermodal transport through one terminal (a) 

and through two terminals (b) for CO2 emissions min. 

Under the CO2 emissions minimization policy, the first and second legs of 

intermodal transport with one terminal are dominated by rail and by IWW (figure 

20a). For intermodal transport with two terminals, the first leg is mainly 

performed by rail, followed by road and IWW (figure 20b). The second leg is 

shared by rail and IWW. The last leg is mostly done using rail, followed by road 

and IWW. These results explain the increased market share of IWW compared to 

the operational costs optimization policy. 
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Figure 21: Flow distribution of intermodal transport through one terminal (a) 

and through two terminals (b) for air pollution min. 

Under the air pollution external costs minimization policy, the first and second 

legs of the intermodal transport with one terminal are characterized by high rail 

flows (figure 21a). For intermodal transport with two terminals, rail is the 

dominant mode for the first and last legs, followed by road (figure 21b). The 

second leg of the intermodal transport is also mostly performed by rail, followed 

by IWW.  

Table 27 provides the flow distribution between “road-rail-road”, “road-IWW-

road” and “other” intermodal chains. 

Minimization Intermodal chain 

“road-rail-road” 

(t.km) 

Intermodal chain 

“road-IWW-

road” (t.km) 

Intermodal chain 

“other” (t.km) 

Operational 

costs  
52% 18% 30% 

CO2 emissions  24% 15% 61% 

Air pollution 

external costs  
37% 5% 58% 

Table 27: Detailed modal split within intermodal transport with two terminals 
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Other paths than the “road-rail/IWW-road” intermodal chain are effectively 

observed when up to three modes of transport are allowed for intermodal 

transport. 

The policy that optimizes operational costs reveals that most of the flows follow 

the “road-rail/IWW-road” modeling of intermodal transport. The predominance of 

this intermodal combination coincides with the previous results showing that most 

of the flows on the first and third legs of the intermodal chains are transported by 

road, while the second leg of the intermodal path is generally performed by rail. 

When CO2 emissions are optimized, the modal split between the intermodal 

chains is modified and more flows are transported using other combinations than 

the “road-rail/IWW-road” intermodal path. Compared to the operational costs 

optimization and thanks to the more advantageous unit values of IWW, the model 

increases the use of the other intermodal combinations, to the detriment of the 

“road-rail-road” intermodal chain. 

Under the optimization of air pollution external costs, most of the flows are 

transported using other combinations than the “road-rail/IWW-road” 

combination. These outcomes are similar to the results obtained for the 

optimization of CO2 emissions. 

Figure 22 provides an example of the flow distribution under the three 

optimization policies for the transportation of goods between two intermodal 

terminal centroids (Antwerp-Milan), two non-terminal centroids (Lyon-Florence) 

and one intermodal terminal and one non-terminal centroid (Antwerp-Florence). 

These particular results correspond to the general trends of modal split detailed in 

the previous paragraphs. 
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Figure 22: Examples of flow distribution for the three optimization policies 

Results demonstrate that, depending on the followed economic or environmental 

policy, allowing several combinations of modes for an intermodal transport may 

lead to other intermodal chains than the traditional “road-rail/IWW-road” 

modeling of intermodal transport.  

7.4.2. Sensitivity analysis 

 

This part of the study identifies the effects on flow distribution of theoretical 

variations of the unit operational (op.) costs, CO2 emissions, air pollution external 
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(ext.) costs and transshipment (transship.) parameters. The analysis is performed 

separately for the three optimization policies: operational costs minimization, CO2 

emissions minimization, and air pollution external costs minimization. 

7.4.2.1. Operational costs 

This section focuses on the relative (rel.) and absolute (abs.) variations of 

operational costs and modal split when the initial unit operational costs 

parameters are respectively increased and decreased by 20% (table 28). The 

analysis of this theoretical variation aims at determining which parameters most 

influence the flow distribution. 

 

Rel. op. 

cost Δ 

Abs. 

road 

flow Δ 

Abs. rail 

flow Δ 

Abs. 

IWW 

flow Δ 

Abs. 

direct 

flow Δ 

Abs. 

direct 

flow Δ 

Abs. 

inter-

modal 

flow 

with 1 

terminal 

Δ 

Abs. 

inter-

modal 

flow 

with 2 

terminals 

Δ 

Trans-

ship.: 

+20% 

1.40% 3.76% -2.11% -1.65% 1.01% -1.01% -0.36% 0.36% 

Trans-

ship.: 

-20% 

-1.70% -4.04% 2.59% 1.45% -0.99% 0.99% 1.38% -1.38% 

IWW: 

+20% 

0.79% 2.47% 3.52% -5.99% 1.29% -1.29% 4.63% -4.63% 

IWW: 

-20% 

-1.68% -4.22% -4.45% 8.67% -1.66% 1.66% -4.07% 4.07% 

Road: 

+20% 

9.31% -13.85% 10.97% 2.88% -0.50% 0.50% 7.79% -7.79% 

Road: 

-20% 

-13.74% 31.73% -26.22% -5.51% 2.55% -2.55% -14.90% 14.90% 

Rail: 

+20% 

4.81% 14.79% -18.56% 3.77% -1.00% 1.00% -12.12% 12.12% 

Rail: 

-20% 

-7.86% -11.66% 16.90% -5.24% 1.78% -1.78% 12.82% -12.82% 

Table 28: Sensitivity analysis of flows to operational costs variations 

Results highlight that the most important variations of the objective function 

(operational costs) are observed when road and rail unit costs are modified. The 

importance of the road parameters had already been underlined in chapters 5 and 

6. The emergence of the rail parameter as a determining factor of the objective 
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function is new and is explained by the increased possibilities of using rail, due to 

the model structure formulation (any combination of modes is allowed) and to the 

level of aggregation of data (relatively more rail terminals are open compared to a 

higher level of disaggregation). 

The distribution of flows between road, rail and IWW transport depends on the 

values of the unit cost parameters. Transshipment costs influence the modal split 

but to a lower extent than the unit operational costs of the different modes. 

Modifications of the road and rail costs induce the most important modal split 

variations for which most of the flow transfers happen between road and rail 

transport. When IWW unit costs are modified, flows are transferred to the rail and 

to the IWW market shares. 

The choice between a direct and an intermodal transport is affected by the unit 

costs of each mode and by the value of the transshipment costs. 

The choice for intermodal transport with one or two terminals is also affected by 

the transshipment cost value but higher flow variations are observed when the 

unit costs of the modes are modified. Increasing transshipment costs surprisingly 

leads to more intermodal flows through two terminals. Intermodal transport with 

one terminal is often done by rail and IWW, while the first and last legs of 

intermodal transport with two terminals are often performed by road. Intermodal 

flows passing through one terminal and leaving an origin node or arriving at a 

destination node by rail or IWW imply additional transshipment cost to road. This 

reduces the attractiveness of intermodal transport with one terminal, compared to 

intermodal transport with two terminals. 

Table 29 provides the aggregate elasticities related to the three modes of 

transport. 

  Cost increase of 20%  

  Road Rail IWW 

t.km Road -3.07 2.67 0.39 

 Rail 2.91 -6.57 0.75 

 IWW 2.96 3.19 -9.22 

Table 29: Aggregate elasticities of road, rail and IWW – several intermodal 

transport chains 
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As in chapter 5, relatively high values of elasticities are obtained. Again, the all-

or-nothing characteristic of the model and the aggregation level of the data imply 

high sensibilities of the demand when costs are modified. IWW is very sensitive 

to variations of its own cost and its use also varies when rail and road costs are 

modified. Road, rail and IWW flows are mostly influenced by modifications of 

the road and rail costs. Variations of the IWW costs have high impacts on the 

level of use of IWW transport but little effects on the demand for transport by 

road and rail. 

7.4.2.2. CO2 emissions 

This section identifies the variations of CO2 emissions and modal split when the 

initial unit CO2 emissions parameters are respectively increased and decreased by 

20% (table 30). 

 Rel. 

emis-

sion Δ 

Abs. 

road 

flow Δ 

Abs. rail 

flow Δ 

Abs. 

IWW 

flow Δ 

Abs. 

direct 

flow Δ 

Abs. 

inter-

modal 

flow Δ 

Abs. 

inter-

modal 

flow 

with 1 

terminal 

Δ 

Abs. 

inter-

modal 

flow 

with 2 

termi-

nals Δ 

Trans-

ship.: 

+20% 

0.47% 0.02% -0.01% -0.01% 0.01% -0.01% 0.08% -0.08% 

Trans-

ship.: -

20% 

-0.47% -0.04% -0.06% 0.10% -0.05% 0.05% -0.61% 0.61% 

IWW: 

+20% 

2.51% 0.96% 3.14% -4.10% 0.06% -0.06% -0.65% 0.65% 

IWW: -2.96% -1.19% -4.02% 5.21% -0.15% 0.15% 2.38% -2.38% 

-20% 

Road: 

+20% 

7.94% -2.68% 2.66% 0.02% -0.09% 0.09% -0.21% 0.21% 

Road: -9.05% 6.31% -5.64% -0.67% -0.15% 0.15% -5.03% 5.03% 

-20% 

Rail: 

+20% 

7.79% 2.99% -8.46% 5.47% -0.17% 0.17% -0.89% 0.89% 

Rail: 

-20% 

-9.12% -2.17% 6.48% -4.31% 0.08% -0.08% -0.58% 0.58% 

Table 30: Sensitivity analysis of flows to CO2 emissions variations 
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As for the optimization of operational costs, the objective function related to CO2 

emissions is mostly influenced by the emission values of road and rail transport. 

Variations of the transshipment CO2 emissions have almost zero effect on the 

modal split between road, rail and IWW. When rail or IWW unit emissions are 

varied, the largest flow transfers occur between rail and IWW transport. This 

result is different from the operational costs minimization, in which the main flow 

exchanges in case of rail emission variations happen between road and rail 

transport. Climate change optimization therefore increases the risk of flow 

transfer between environmentally friendly modes rather than between road and 

environmentally friendly mode. This is explained by the unit values of IWW, that 

are more competitive regarding CO2 emissions than regarding operational costs.  

Transshipment emission values are small compared to the unit emission values 

per mode. It results that a variation of 20% of these transshipment emissions does 

not modify a lot the modal split between direct and intermodal transport. 

Increases or decreases of the unit emissions of each mode have also little 

influence on the modal split between direct and intermodal transport. 

Finally, increasing or decreasing transshipment emissions by 20% does not really 

modify the modal split between intermodal transport with one terminal and 

intermodal transport with two terminals. The maximum transfers of flows 

between intermodal transport with one terminal and intermodal transport with two 

terminals happen when road emissions are modified. Decreasing the unit 

emissions of road allows more combinations of road with other modes of 

transport and leads to an increase of the market share of intermodal transport with 

two terminals. 

7.4.2.3. Air pollution external costs 

This section analyzes the variations of air pollution external costs and modal split 

when the initial unit air pollution external costs parameters are respectively 

increased and decreased by 20% (table 31). 
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 Rel. ext. 

cost Δ 

Abs. 

road 

flow Δ 

Abs. rail 

flow Δ 

Abs. 

IWW 

flow Δ 

Abs. 

direct 

flow Δ 

Abs. 

inter-

modal 

flow Δ 

Abs. 

inter-

modal 

flow 

with 1 

terminal 

Δ 

Abs. 

inter-

modal 

flow 

with 2 

terminals 

Δ 

IWW: 

+20% 

0.71% 0.89% 0.81% -1.70% 0.11% -0.11% 0.53% -0.53% 

IWW: -1.22% -1.24% -2.96% 4.20% -0.34% 0.34% -2.52% 2.52% 

-20% 

Road: 

+20% 

8.02% -4.64% 4.28% 0.36% 0.10% -0.10% 2.95% -2.95% 

Road: -9.68% 10.76% -9.31% -1.45% -0.08% 0.08% -7.81% 7.81% 

-20% 

Rail: 

+20% 

9.72% 7.27% -8.55% 1.28% -0.16% 0.16% -6.46% 6.46% 

Rail: 

-20% 

-11.19% -5.01% 5.77% -0.76% 0.50% -0.50% 6.86% -6.86% 

Table 31: Sensitivity analysis of flows to air pollution external costs variations 

As for the optimization of operational costs and CO2 emissions, the unit 

parameters of rail and road have the most important effects on the objective 

function. 

Increases or decreases of the road and rail unit parameters induce the major modal 

split variations between road, rail and IWW transport. As for the operational cost 

optimization strategy, the flow exchanges happen mainly between road and rail 

transport and the IWW market share remains small compared to road and rail.  

Similarly to the CO2 emissions optimization strategy, modifying the unit 

parameters of road, rail and IWW has little influence on the modal split between 

direct and intermodal transport. 

As for the CO2 emissions optimization policy, the most important flow transfers 

between intermodal transport with one terminal and intermodal transport with two 

terminals are observed when road external costs are modified. The influence of 

unit rail external costs on the modal split within the intermodal market share is 

higher than the influence of unit rail CO2 emissions.   
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7.5. Discussion 

For environmental optimizations, rail transport has the highest market share. The 

market share of rail is also important for the economic optimization policy. These 

results should be balanced with the aggregation level of the data. Indeed, 

aggregating flows relatively increases the number of available rail and IWW 

terminals, compared to analyses at a more disaggregated level. Rail and IWW 

transport can therefore be used more intensively. For large-scale location 

problems, the demand points are usually aggregated to reduce the size of the 

problem and make it easier to solve. However, aggregation of data introduces 

errors. Errors related to the aggregation of data in transport models are not new 

and have been for instance discussed in Limbourg and Jourquin (2007) for the p-

hub median problem. Further discussions on aggregation errors for locations 

models can be found in Francis et al. (2009). 

Moreover, the all-or-nothing characteristic of the model definitely influences the 

results since modifications in the unit costs or emissions parameters may make 

one mode more competitive than another. This implies that all of the flows on a 

certain connection may change their mode. This change may quickly influence 

the modal split results since large quantities of goods are transported at the NUTS 

2 level. Results of the application at the European level should therefore not be 

taken for granted but should provide insights on the kinds of behaviors that can be 

observed regarding modal splits. 

The general preference for intermodal transport over direct transport is also 

partially explained by this aggregation level. Since more rail and IWW terminals 

are accessible, combining these modes together with road can more easily 

contribute to reduce the global impact on operational costs, CO2 emissions or air 

pollution external costs.  

Errors related to the aggregation of data can be solved by disaggregating flows at 

the NUTS 3 level. Because of the number of indices related to each variable of 

the problem, some problems were already encountered for solving instances 

larger than 85 nodes. Disaggregating data implies increasing the number of nodes 

under study and generating larger problems that can potentially not be solved 

using exact methods. This opens the way to the use and development of heuristic 

methods. Focusing on a reduced geographical region at a lower level of 

aggregation can be a solution to make the balance between aggregation errors and 

exact resolution methods.   



189 

 

Besides the aggregation level, the effects of transshipment activities are also 

relevant in the determination of the modal split. Results have shown the 

importance of transshipment operational costs on the choice between intermodal 

and direct transport. If operational costs are minimized, more direct transport is 

performed than in the environmental optimizations. Indeed, the economic benefits 

of transferring goods between several modes have to be balanced with the 

additional costs generated by the transshipment of goods. For CO2 emissions and 

air pollution external costs, the values of transshipment activities are low 

compared to the unit parameters of each mode. It results that more combinations 

of modes are used for reaching the optimal objective function. The low effects of 

transshipment activities on external costs have already been highlighted in 

Baccelli et al. (2001). 

Economic and environmental optimizations provide different outcomes regarding 

the chosen intermodal chain. The economic optimization favors the “road-

rail/IWW-road” combination, while environmental optimizations encourage other 

intermodal chains. Modeling intermodal transport as a “road-rail/IWW-road” 

combination therefore seems judicious from an economic point of view. This 

hypothesis may however reduce the adequacy of the model with reality regarding 

environmental perspectives.   

7.6. Conclusions 

 

This research has developed a new intermodal allocation model which allows for 

several intermodal transport chains, using a combination of up to three modes 

between road, rail and IWW transport. The model has been tested with 

experimental data at the European level. Three optimization policies and their 

sensitivity analysis have been evaluated: optimization of operational costs, 

optimization of CO2 emissions and optimization of air pollution external costs. 

Results of the application the European level highlight the important market share 

of rail transport. Rail is the dominant mode for environmental policies and is well 

represented under economic optimization. The predominance of rail is explained 

by the structure of the model. The formulation allows the use of any mode on any 

leg of the intermodal path, compared to the “road-rail/IWW-road” modeling, 

where rail and IWW can only be used on the second leg of the intermodal chain. 

Moreover, the aggregation level of the data relatively increases the access to rail 

and IWW compared to a higher disaggregation level of data. Reaching rail 
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terminals is therefore easier, which increases the rail market share. Since the 

model is characterized by an all-or-nothing assignment method, high aggregation 

levels clearly influence and may have a big impact on the modal split results. 

Finally, the structure of the application at the European level also influences 

results since most of the considered regions are located next to an intermodal 

terminal, which increases the potential use of rail and IWW. 

Results underline the preference for intermodal than for direct transport. This 

outcome means that transshipment unit parameters are low enough to make a 

combination of modes attractive compared to the direct transport of goods. The 

large market share of intermodal transport is also explained by the level of 

aggregation of the data, which induces a larger access to the rail and IWW 

terminals, compared to a higher disaggregation level. This increases the potential 

for mode combination. 

Transshipment values are important in the determination of the flow distribution. 

This has been observed when comparing the modal split of economic and 

environmental optimization policies. For economic optimization, more direct 

transport is used. Transshipment environmental effects are low compared to the 

respective unit CO2 emissions and air pollution external costs parameters of road, 

rail and IWW. For environmental aspects, combining several modes is therefore a 

competitive solution compared to direct transport. 

For economic optimization policies, most of the flows follow the “road-rail/IWW-

road” intermodal chain. For environmental optimization policies, flows rather 

follow other types of combinations. Modeling intermodal transport as a “road-

rail/IWW-road” combination therefore seems judicious from an economic point 

of view. This hypothesis may however reduce the exactitude of the modeling 

regarding environmental perspectives. 

Further research work should be performed to study the impact on flow 

distribution of errors related to data aggregation. This can be done through the 

development of a reduced network at a more disaggregated level. Since 

transshipment values influence the flow distribution between direct, intermodal 

transport with one terminal, and intermodal transport with two terminals, further 

studies confirming the values of CO2 emissions and air pollution external costs of 

transshipment are still needed. 
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PART IV 

CONCLUSIONS 

This last part summarizes the general conclusions of 

the thesis and identifies the future research 

perspectives. 
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8. Conclusions 

 

The purpose of this final chapter is twofold. First, it aims at summarizing the 

main research contributions and conclusions of the thesis. Second, it details the 

limitations of the performed studies, and elaborates on further research activities. 

8.1. General conclusions 

 

This thesis deals with freight transportation systems. It evaluates the interest of 

using intermodal transport as an alternative solution to road transport. The study 

integrates economic and environmental considerations, so as to reflect today’s and 

tomorrow’s preoccupations. Intermodal attractiveness is assessed from the 

economic and environmental perspectives by considering four different kinds of 

objectives: operational costs (economic perspective), full costs (economic and 



194 

 

environmental perspective), CO2 emissions (climate change perspective) and 

human health external costs related to air pollution (air pollution perspective). 

This research provides four main contributions:  

1) First, it offers a state of the art of land transport external costs and their 

effects on the competitiveness of intermodal transport in relation to road. 

2) Second, it develops a new intermodal bi-objective location-allocation 

model, which accounts for three modes of transport and intermodal 

nonlinear economies of scale. It also provides an application of this 

model to the Belgian case study to evaluate the trade-offs between 

economic and climate change objectives. 

3) Third, it applies a simplification of the above intermodal location-

allocation model to the Belgian case study, to assess the effects on flow 

distribution of several transport policies related to economic and air 

pollution objectives. 

4) Finally, it generates a new intermodal allocation model which allows 

several intermodal transport chains. The model is tested with data on the 

European newtork with economic and environmental objectives to 

identify which combinations of modes can be considered in an intermodal 

path. 

The results in terms of these four contributions are summarized in the following 

paragraphs. 

1) Freight transport external costs 

Results show that, in the last years, there has been an increasing interest in 

studying freight transport externalities. The major part of the literature on the 

topic involves application papers which evaluate the amount and value of 

transport external costs, on the basis of recognized methodological papers. An 

important part of the literature consists in project-related studies, which highlights 

not only the scientific but also the real interest of societies in better understanding 

these issues. Very few papers deal with the development of generic mathematical 

functions of external costs. However, it has been shown that these generic 

functions are useful since they allow determining the main factors which 

influence the competitiveness of a mode of transport over another one. An 

application of generic mathematical functions for road and rail costs has 

highlighted the importance of drayage operations external costs in the 
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competitiveness of intermodal transport regarding road. The correct location of 

intermodal terminals is therefore essential for ensuring intermodal attractiveness 

from the economic and environmental perspectives. 

2) Intermodal transport and climate change 

The bi-objective intermodal location-allocation model evaluates the trade-offs 

between operational costs minimization and CO2 emissions minimization. The 

application of the model to the Belgian case study reveals that the locations of 

terminals are quite stable, whatever the followed policy (operational costs or CO2 

emissions minimization). Terminal types and modal split between road and 

intermodal transport are however sensitive to the objective that is considered. The 

chosen policy also influences the modal split inside the intermodal market share. 

Results of the sensitivity analysis reveal that variations of the road parameters 

lead to flow transfers between road and intermodal transport. On the contrary, 

modifications of the rail and IWW parameters induce flow transfers between rail 

and IWW, within the intermodal market share. Road remains the preferred 

solution regarding economic objectives. An increase of the intermodal market 

share is observed going from cost to emission minimization.  A more intensive 

use of intermodal transport is thus suggested for achieving the environmental 

objectives related to climate change.  

3) Intermodal transport and air pollution 

The application of the intermodal allocation model for evaluating economic and 

air pollution policies reveals that intermodal transport performs better than road 

regarding human health external costs of air pollution. Intermodal transport has 

indeed the largest market share under the policy which minimizes air pollution 

external costs. On the contrary, road transportation has the main market share 

under the policy which minimizes operational costs. Including additional road 

taxes in a policy which optimizes operational costs leads an increase of the 

intermodal market share compared to the single economic optimization. The 

intermodal market share obtained when additional road taxes are introduced is 

nevertheless lower than the one obtained under external costs optimization. The 

introduction of cleaner vehicles in the truck fleet increases the competitiveness of 

road over intermodal transport regarding air pollution. It restricts the potential for 

flow transfer from road to rail or IWW. An increased used of electricity in the rail 

traction mix has positive effects on the intermodal market share. IWW cost 
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variations lead to flow transfers between intermodal rail and intermodal IWW 

transport, rather than between road and intermodal transport. This risk of flow 

exchange within the intermodal market had already been highlighted in the model 

which focuses on how intermodal transport can be useful regarding climate 

change impacts. 

The analyses with respect to climate change and air pollution provide similar 

results in terms of modal split between road and intermodal transport. Indeed, 

compared to an economic optimization, minimizing CO2 emissions or air 

pollution external costs leads to a greater market share for intermodal than for 

road transport. The intermodal market shares under climate change and air 

pollution optimization are very close. The modal split within the intermodal 

market share is however different. Intermodal rail transport is preferred when 

optimizing air pollution and intermodal IWW is preferred when optimizing 

climate change. These variations can be explained by the scope of each model. 

The model focusing on climate change decides on the location of IWW terminals 

within a set of feasible locations, whereas the model focusing on air pollution 

only considers the existing terminals. Flow distribution therefore does not happen 

on exactly the same network. In addition, CO2 emissions for IWW are computed 

based on the assumption that 3,000 tonnes of goods are transported by a medium 

barge, while air pollution external costs are given for boats transporting goods 

within a range of 1,000 and 3,000 tonnes, which favors IWW in the CO2 

emissions optimization. Analyses regarding climate change and air pollution both 

highlighted the risk of flow exchange within the intermodal market share, rather 

than between road and intermodal transport. 

4) Several intermodal chains 

The model allows choosing between direct transport and intermodal transport 

chains of up to three modes. The experimental results at the European level 

highlight that rail has an important market share in all kinds of optimizations. 

Intermodal transport is also preferred to direct transport. This is explained by the 

aggregate level of the data and by the structure of the model which allows any leg 

of the intermodal chain to be performed by any mode of transport. Since the 

NUTS 2 regions considered in the analysis are crossed by the core network 

corridors, the centroids are close to intermodal terminals. This also enhances the 

use of intermodal transport. The impact of transshipment activities on flow 

distribution has been underlined. From an economic perspective, results show that 
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most of the intermodal flows follow the “road-rail/IWW-road” path, while other 

intermodal combinations own a higher market share for environmental 

optimizations. Modeling intermodal transport as a “road-rail/IWW-road” 

combination therefore seems more relevant for economic than for environmental 

optimizations. 

8.2. Future research perspectives 

 

Future research perspectives can be classified into short-term and long-term 

perspectives. 

8.2.1. Short-term perspectives 

 

Short term perspectives imply additional studies related to the intermodal 

location-allocation problem. The models of this thesis can be developed in several 

directions. 

The all-or-nothing characteristic of the models could be improved by dealing with 

modal choice models, which do not assign the whole flows of an origin-

destination pair to the same mode of transport. In this way, the perception of 

routes by the user could be integrated on the basis of several parameters. 

The data source related to the case studies can be improved. The development of 

data source by Eurostat is necessary for increasing the quality of the decision 

tools.  Results of this study are based on quite old freight flows (2005 

extrapolated to 2010) and variations of the demand may have been noticed since 

then. The economic crisis is one of the parameters that could impact the demand 

distribution. Indeed, it has potentially led to the restructuration of some businesses 

and to the disappearance or displacement of flows from one region to another. 

Variations of the demand between origin and destination nodes may modify the 

results in terms of modal split, especially when economies of scale of intermodal 

transport are taken into account. 

The experimental data at the European level should be improved and completed 

to build a real European case study that can serve as the basis for policy analysis. 

Improved European data related to specific core network corridors can be used to 

calibrate and validate the results of the model on the European network. 
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If economies of scale of intermodal rail transport have been modeled using 

dedicated nonlinear functions, intermodal IWW economies of scale have been 

represented using three different sizes of barges. This has been done because, as 

far as I know, no other formulation taking into account the different parameters of 

IWW costs existed in the literature. Generating formulations which account for 

nonlinear economies of scale of intermodal IWW transport is important to 

increase the coherence between intermodal rail and intermodal IWW costs. 

Intermodal rail and intermodal IWW transport can be better compared, which 

ensures a more accurate choice between the two modes. 

This thesis takes into account the environmental issues related to climate change 

and to air pollution. However, other types of externalities can be considered in 

order to evaluate the attractiveness of intermodal transport in relation to road. 

Noise and congestion could in particular be considered as other objectives to 

optimize. The evaluation of noise implies nonlinear scales. The techniques used in 

this thesis to solve nonlinear issues could be transposed to noise, to assess its 

effect on intermodal and road flow distribution. The evaluation of congestion and 

its impact of flow distribution require the development of more dynamic models, 

which take the value of time into account. Externalities could also be integrated 

by considering general endpoint categories of impacts such as damage to human 

health (i.e. climate change, ozone depletion, human toxicity), damage to 

ecosystem diversity (i.e. acidification, eutrophication), or resource scarcity (i.e. 

land use, water resource depletion, resource depletion). 

This study has evaluated the effects on modal split of the optimization of 

operational costs, of CO2 emissions, of air pollution external costs, and of 

operational costs with additional road taxes. The developed models can be useful 

to evaluate the effects on modal split of different types of policies. Other 

intermediate policies can be assessed such as the introduction of subsidies, the 

economic optimization under the internalization of external costs, a limitation of 

the amount of allowed externalities or the introduction of alternative fleet 

structures including electric, biogas or biodiesel vehicles.  

The formulations of the location-allocation or allocation models have been 

applied to case studies with a maximum of 88 nodes. Difficulties have been 

encountered for solving larger problems using exact methods. The resolution of 

real case studies with exact methods implies the balance between disaggregation 

level and size of the studied geographical area. Small geographical areas can be 
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solved with a higher level of precision. Larger case studies have to be studied at a 

more aggregate level. Solving larger instances with a higher degree of 

disaggregation implies the use of alternative resolution methods, such as heuristic 

techniques which provide good (and not necessarily optimal) solutions in 

reasonable computational times. 

8.2.2. Long-term perspectives  

 

Long-term research perspectives imply using other approaches than the single 

optimization of economic or environmental objectives to promote intermodal 

attractiveness.  

Road and intermodal rail transport have been studied quite a lot in the literature 

and their related costs and externalities have been modeled using mathematical 

functions. However, intermodal IWW transport is much less considered regarding 

these aspects, and a specific focus on this mode can still be achieved. In 

particular, the modeling of IWW external costs using dedicated mathematical 

functions should be further developed. This could help understanding the key 

parameters that play a role on the competitiveness of intermodal IWW transport 

regarding environmental issues. Better identifying these factors is necessary to 

determine how to improve and expand this transportation mode.  

This thesis has highlighted the risk of flow exchanges within the intermodal 

market share, rather than between road and intermodal transport. Indeed, results 

have shown that traditional policies aiming at enhancing intermodal transport (i.e. 

technical improvement of the different modes or introduction of road taxes) may 

lead to situations where rail and IWW have to compete. These outcomes 

demonstrate the need for newer innovative policies and initiatives which enhance 

the development of intermodal transport. 

The expansion of the intermodal market share in relation to road is not only 

driven by economic and environmental costs. Other parameters such as 

transportation flexibility and reliability play a critical role on the decision of 

customers to use intermodal transport. Reliability of flows is also an important 

factor for intermodal transport providers which should be able to count on 

sufficient and regular flows to provide attractive and profitable transportation 

activities. The commitment of customers and service providers to flows and 

schedules seems important to improve intermodal attractiveness. Synchromodal 
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transport can be useful to ensure more reliable flows. The development of 

synchromodal transport probably passes through efficient communication 

methods and implies the use of information technology. Further research studies 

focusing on the quantitative and qualitative expectations of each category of 

intermodal stakeholders are necessary to better identify the societal factors that 

contribute to intermodal attractiveness. 
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