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1 Introduction

The Support Vector Machine (SVM) is widely used as a simple and efficient tool
for linear and nonlinear classification as well as for regression problems. The basic
training principle of SVM, motivated by statistical learning theory Vapnik (1998), is
that the expected classification error for unseen test samples is minimized, so that,
SVMs define good predictive models.

In this paper we focus on supervised (linear and nonlinear) binary SVM classi-
fiers, whose task is to classify objects (patterns) into two groups using the features
describing the objects and a labelled dataset (the training set). We will not enter into
the details of statistical issues concerning SVM models, nor we will analyze the stan-
dard cross-validation techniques used for adjusting SVM hyperparameters in order
to optimize the predictive performance as machine learning models. A suitable anal-
ysis of statistical and machine learning issues can be found, for instance, in Bishop
(2006), Scholkopf and Smola (2001), Shawe-Taylor and Cristianini (2004). Here we
will limit our analysis to theoretical, algorithmic and computational issues related to
the optimization problem underlying the training of SVMs.

SVM training requires solving (large-scale) convex programming problems, whose
difficulties are mainly related to the possibly huge number of training instances, that
leads to a huge number of either variables or constraints. The particular structure of
the SVM training problems has favored the design and the development of ad hoc
optimization algorithms to solve large-scale problems. Thanks to the convexity of
the constrained problem, optimization algorithms for SVM are required to quickly
converge towards any minimum. Thus the requirements are well-defined from an
optimization point of view, and this has motivated a wide research activity (even of
the optimization community) to define efficient and convergent algorithms for SVM
training (see, for instance, Astorino and Fuduli 2015; Boser et al. 1992; Byrd et al.
2011; Carrizosa and Romero Morales 2013; Cortes and Vapnik 1995; Fan et al. 2008;
Ferris and Munson 2004; Franc and Sonnenburg 2009; Fung and Mangasarian 2001;
Gaudioso et al. 2017; Hsu and Lin 2002a; Keerthi and Lin 2003; Lee et al. 2015;
Lee and Mangasarian 2001; Mangasarian and Musicant 2001; Mangasarian 2006;
Mavroforakis and Theodoridis 2006; Osuna et al. 1997; Glasmachers and Dogan
2013; Tsang et al. 2005; Wang and Lin 2014; Wang et al. 2012). We observe that in
neural network training, where the unconstrained optimization problem is nonconvex
and suitable safeguards (for instance, early stopping) must be adopted in order to
avoid converging too quickly towards undesired minima (in terms of generalization
capabilities), the requirements of a training algorithm are not well-defined from an
optimization point of view.

The SVM training problem can be equivalently formulated as a (linearly con-
strained) quadratic convex problem or, by Wolfe’s duality theory, as a quadratic convex
problem with one linear constraint and box constraints. Depending on the formulation,
several optimization algorithms have been specifically designed for SVM training.
Thus, we present the most important contributions for the primal formulations, i.e.,
Newton methods, least-squares algorithms, stochastic sub-gradient methods, cutting
plane algorithms, and for the dual formulations decomposition methods. Interior point
methods were developed both for the primal and the dual formulations. We observe
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that the design of convergent and efficient decomposition methods for SVM training
has yielded relevant advances both from a theoretical and computational point of view.
Indeed, the “classical” decomposition methods for nonlinear optimization, such as the
successive over-relaxation algorithm and the Jacobi and Gauss-Seidel algorithms, are
applicable only when the feasible set is the Cartesian product of subsets defined in
smaller subspaces. Since the SVM training problem contains an equality constraint,
such methods cannot be directly employed, and this has motivated the study and the
design of new decomposition algorithms improving the state-of-art.

The paper is organized as follows. We formally introduce in Sect. 2 the concept of
optimal separating hyperplane underlying linear SVM, we give the primal formulation
of the linear SVM training problem, and we recall the fundamental concepts of the
Wolfe’s dual theory necessary for defining the dual formulation of the linear SVM
training problem. The dual formulation allows us, through the so-called kernel trick,
to immediately extend in Sect. 3 the approach of linear SVM to the case of nonlinear
classifiers. Sections 4 and 5 contain the analysis of unconstrained and constrained
methods, respectively, for the primal formulations. The wide class of decomposition
methods for the dual formulation is analyzed in Sect. 6. Interior point methods are
presented in Sect. 7. Finally, in Sect. 8 we direct the reader to the available software
for SVM training related to the presented methods. In the appendices we provide the
proofs of important results concerning: (1) the existence and uniqueness of the optimal
hyperplane; (2) Wolfe’s dual theory both in the general and in the quadratic case; (3)
the kernel functions. As regards (1), although the result is well-known, we believe that
the kind of proof is novel and technically interesting. Concerning (2) and (3), they
represent pillars of SVM methodology, and a reader might find them of interest to
obtain some related technical insights.

2 The optimal separating hyperplane and linear SVM
The Training Set (TS) is a set of / observations:
TS ={(',y), x*eXCH, yyevyCh i=1,...,1}.

The vectors x' are the patterns belonging to the input space. The scalars y' are the
labels (targets). In a classification problem we have that y' € {—1, 1}, in a regression
problem y' € 9. We will focus only on classification problems.

Let us consider two disjoint sets A and B of points in " to be classified. Assume
that A and B are linearly separable, that is, there exists a hyperplane H = {x €
R : wlx + b = 0} such that the points x' € A belong to one half-space, and the
points x/ € B belong to the other half-space. More precisely, we can assume that
there exist a vector w € N" and a scalar b € N such that

wixl4+b >1, Vx' € A
wix/+b<—1,Vx/ € B

ey

A hyperplane will be indicated by H(w, b). We say that H(w, b) is a separating
hyperplane if the pair (w, b) is such that (1) holds. The decision function of a linear
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classifier associated with a separating hyperplane is f;(x) = sgn(w’x + b). We
introduce the concept of margin of a separating hyperplane.

Definition 1 Let H (w, b) be a separating hyperplane. The margin of H (w, b) is the
minimum distance p between points in A U B and the hyperplane H (w, b), that is

{ lwTx? + b }

p(w,b) = min
wll

xieAUB

It is quite intuitive that the margin of a given separating hyperplane is related
to the generalization capability of the corresponding linear classifier, i.e., to cor-
rectly classify unseen data. The relationship between the margin and the gen-
eralization capability of linear classifiers is analyzed by the statistical learning
theory Vapnik (1998), which theoretically motivates the importance of defining the
hyperplane with maximum margin, the so-called optimal separating hyperplane.

Definition 2 Given two linearly separable sets A and B, the optimal separating hyper-
plane is a separating hyperplane H (w*, b*) having maximum margin.

It can be proved that the optimal hyperplane exists and is unique (see “Appendix A”).
From the above definition we get that the optimal hyperplane is the unique solution
of the following problem

_ { lwTx? + b }

max min | ———

weNR" beR xicAUB (2)
sty [wlx!+b6] =120 i=1,...,L

It can be proved that problem (2) is equivalent to the convex quadratic programming

problem

1
. 2
min F(w) = —|w
weR" beh (w) 2|| |

3)
s.t.yi [wai+b]—l >0,i=1,...,1.
Now assume that the two sets A are B are not linearly separable. This means that

the system of linear inequalities (1) does not admit solution. Let us introduce slack
variables &;, withi =1, ..., [:

yi[wai+b]—1+$i20,i=1,...,l. (4)

Note that whenever a vector x' is not correctly classified the corresponding variable
&' is greater than 1. The variables &; corresponding to vectors correctly classified and
belonging to the “separation zone” are such that 0 < &' < 1. Therefore, the term

1

Z, 15,- is an upper bound on the number of the classification errors on the training
1=

vectors. Then, it is quite natural to add to the objective function of problem (3) the
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!

term C Z IEi, where C > 0 is a parameter to assess the training error. The primal
1=

problem becomes

. - !
ur)n;ns F(w, &) = E||w|| + CZiZIEi

s.t. yi[wai—i—b]—l—i-Eiz() i=1,...,1 ©)
&>0 i=1,...,1

For reasons explained later, the dual problem of (5) is often considered. We direct
the reader to Bertsekas (1999), Mangasarian (1994), Fletcher (1987) for insights on
duality in nonlinear programming. Let us consider the convex programming prob-
lem

min f (x)

6
Ax — b <0, ©

where f : M" — N is a convex, continuously differentiable function, A € RN"*",
b € M. Introducing the Lagrangian function L(x, 1) = f(x) + 2 (Ax —b), Wolfe’s
dual of (6) is defined as follows

max L(x, A)
XA

ViL(x,2)=0 @)
A>0.

It can be proved (see “Appendix B”) that, if problem (6) admits a solution x*, then
there exists a vector of Lagrange multipliers A* such that (x*, A*) is a solution of
).

In the general case, given a solution (x, A) of Wolfe’s dual, we can not draw conclu-
sions with respect to the primal problem (6). In the particular case of convex quadratic
programming problems the following result holds (see “Appendix B”).

Proposition 1 Let f(x) = %xT Ox+c! x, and suppose that the matrix Q is symmetric
and positive semidefinite. Let (X, 1) be a solution of Wolfe’s dual (7). Then, there exists
a vector x* (not necessarily equal to X ) such that

) 0(x* =x)=0;
(i1) x* is a solution of problem (6); and .
(iii) x™* is a global minimum of (6) with associated multipliers ).

Now let us consider the convex quadratic programming problem (5). Here the primal
variables are (w, b, £), and the condition Vy L(x, A) = 0 gives two constraints

[

w = Zi:lkiyixi Zizlkiyi =0.

Then, setting X = [ylxl, ...,ylxl], AT = [Al, e, Al], Wolfe’s dual of (5) is a
convex quadratic programming problem of the form
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1
m)jn ro) = EATXTXA —el'a

b i (8)
s.t. Zizlk,y =0
0<i=<C,

where e =1[1,...,1].
Once a solution A* is computed, the primal vector w* can be determined as follows

l
* * 0.1
w =E ATy X,
i=1

i.e., w* depends only on the so-called (support vectors) x' whose corresponding mul-
tipliers A} are not null. The support vectors corresponding to multipliers A* such
that 0 < A} < C are called free support vectors, those corresponding to multipliers
A7 = C are called bounded support vectors. We also observe that assertion (iii) of
Proposition 1 ensures that an optimal solution (w*, b*) satisfies the complementarity
conditions with multipliers equal to A*. Thus, by considering any free support vector
x', we have 0 < A¥ < C, which implies

yi ((w*)Txf+b*)—1=o, i=1,....1, 9)

so that, once w* is computed, the scalar b* can be determined by means of the corre-
sponding complementarity condition defined by (9).
Finally, we observe that the decision function of a linear SVM is

1
fa(x) = sgn ((w*)Tx n b*) — sgn (Z Ay () x + b*) .

i=1

Summarizing, we have that the duality theory leads to a convenient way to deal with
the constraints. Moreover, the dual optimization problem can be written in terms of
dot products, as well as the decision function, and this allows us to easily extend the
approach to the case of nonlinear classifiers.

3 Nonlinear SVM

The idea underlying the nonlinear SVM is that of mapping the data of the input space
onto a higher dimensional space called feature space and to define a linear classifier
in this feature space.

Let us consider a mapping ¢ : X" — H where H is an Euclidean space (the feature
space) whose dimension is greater than n (the dimension can be even infinite). The
input training vectors x’ are mapped onto ¢ (x'), withi =1, ..., .

We can think to define a linear SVM in the feature space by replacing x’ with ¢ (x7).
Then we have

@ Springer



Nonlinear optimization and support vector machines

e the dual problem (8) is replaced by the following problem

1 1 l
min [(0) =33 ) vy oD g (DA =D h
i=1 j=1 i=1
! (10)
s.t. Ay =

e the optimal primal vector w* is

I
wh =) AR

i=1

e given w* and any 0 < A} < C, the scalar b* can be determined using the comple-
mentarity conditions

1
yi Zk;yj¢(x-j)T¢(xi)+b* —1=0; and (11)
j=I

e the decision function takes the form
fat) = sgn (@ @00 +57) (12)

Remark 1 The primal/dual relation in infinite dimensional spaces has been rigorously
discussed in Lin (2001a).

From (12) we get that the separation surface is:

— linear in the feature space;
— non linear in the input space.

It is important to observe that both in the dual formulation (10) and in formula (12)
concerning the decision function it is not necessary to explicitly know the mapping
¢, but it is sufficient to know the inner product ¢(x)T¢(z) of the feature space. This
leads to the fundamental concept of kernel function.

Definition 3 Given a set X € 0", a function
K: XxX—->N

is a kernel if
Kx,y)=¢x) ¢k Vx,yeX, (13)

where ¢ is an application X — H and H is an Euclidean space, that is, a linear space
with a fixed inner product.
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We observe that a kernel is necessarily a symmetric function. It can be proved that
K (x, 7) is a kernel if and only if the [ x [ matrix

l Kl xh .. K&l xh
K xh) = :
( )”:1 Kl xl) . K@l x)

is positive semidefinite for any set of training vectors {x, ..., x'}. The kernel is often
referred to as the Mercer kernel in the literature. We have the following result, whose
proof is reported in “Appendix C”.

Proposition 2 Let K : X x X — N be a symmetric function. Then K is a kernel if

and only if, for any choice of the vectors x1, ..., x" in X the matrix

K = [K(x,,xj)]l] Lot

is positive semidefinite.

Using the definition of kernel problem (10) can be written as follows

l 1
min I'(3) = %ZZ Y K x ) —Zx
i=1 j=I i=1
! . (14)
s.t. Ay =0

i=1
<A

IA

c i=1,...,1L

By Proposition 2 it follows that problem (14) is a convex quadratic programming
problem.
Examples of kernel functions are:

K (x,z) = (xTz 4+ 1)? polynomial kernel (p integer >1)
K (x,2) = e~ 177171207 Gayssian kernel (o > 0)

K (x,z) = tanh(BxT z + y) hyperbolic tangent kernel (for suitable values of 8 and
Y)

It can be shown that the Gaussian kernel is an inner product in an infinite dimensional
space. Using the definition of kernel function the decision function is

!
fa(x) = sgn (Zx;yil((x, x') + b*) .

i=1
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4 Unconstrained primal formulations

Let us consider the linearly constrained primal formulation (5) for linear SVM. It can
be shown that problem (5) is equivalent to the following unconstrained nonsmooth
problem

l
1 ) .
111”1971 E||w||2 + CX; max{0, 1 — y' (w”x’ + b)}. (15)
1=
The above formulation penalizes slacks (§) linearly and is called L{-SVM. An

unconstrained smooth formulation is that of the so-called L,-SVM, where slacks
are quadratically penalized, i.e.,

!
1 2 2 i T i
r£}£5||w|| +CE max“{0, 1 — y'(w" x" + b)}. (16)

i=1
Least Squares SVM (LS-SVM) considers the primal formulation (5), where the
inequality constraints
yiw x! +b)>1—¢,
are replaced by the equality constraints
yiwlxt +b)=1-¢".

This leads to a regularized linear least squares problem

l
N - i T i 2
rllul’lfl)lzllwll +C2(y (w'x" +b) — 1)~ a7)

i=1

The general unconstrained formulation takes the form

!
inR(w,b)+CY  L(w, b; x', y"), 18
r;}ul? (w, b) + Z (w,b; x', y") (18)

i=1

where R(w, b) is the regularization term and L(w, b; xt, yi ) is the loss function asso-
ciated with the observation (x', yi ).

We observe that the bias term b plays a crucial role both in the learning model,
i.e., it may be critical for successful learning (especially in unbalanced datasets),
and in the optimization-based training process. The simplest approach to learn the
bias term is that of adding one more feature to each instance, with constant value
equal to 1. In this way, in L1-SVM, L>-SVM and LS-SVM, the regularization term

becomes — (||w]]| 2y bz) with the advantages of having convex properties of the objec-

tive function useful for convergence analysis and the possibility to directly apply
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algorithms designed for models without the bias term. The conceptual disadvantage
of this approach is that the statistical learning theory underlying SVM models is based
on an unregularized bias term. We will not go into the details of the issues concerning
the bias term.

The extension of the unconstrained approach to nonlinear SVM, where the data
x' are mapped onto the feature space H by the mapping ¢ : R" — H, are often
done by means of the representer theorem Kimeldorf and Wahba (1970). Using this
theorem we have that the solution of SVM formulations can be expressed as a linear
combination of the mapped training instances. Then, we can train a nonlinear SVM
without direct access to the mapped instances, but using their inner products through

the kernel trick. For instance, setting w = Z lﬂ,d)(x '), the optimization problem

corresponding to L»-SVM with regularized bias term is the following unconstrained

problem
1

m1n ,3 TKB+CY max*(0.1 -y 7K}, (19)
i=1

where K is the kernel matrix associated to the mapping ¢ and K; is the i —th column.
Note that both (16) and (19) are piecewise convex quadratic functions.

4.1 Methods for primal formulations

First let us consider the nonsmooth formulation (15) without considering the bias term
b. A simple and effective stochastic sub-gradient descent algorithm has been proposed
in Shalev-Shwartz et al. (2011). The vector w is initially set to 0. At iteration ¢, a pair
(x'r, y'r) is randomly chosen in the training set, and the objective function

Fw) = 3wl + ;imax{o, =y )
i=1
is approximated as follows
fws i) = %||w||2+max{o,1 Y (w/ X)),
The sub-gradient of f(w;i;) is
V, = Aw; — 1 [y”wT i < 1] yixlr,

where 1 [y"wT i < 1] is the indicator function which takes the value one if its
argument is true and zero otherwise. The vector w is updated as follows

Wiy = wy — N Vi,
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where 1; = /\—lt, and A > 0. A more general version of the algorithm is the one based on

mini-batch iterations, where instead of using a single example (x'7, yr) of the training
set, a subset of training examples, defined by the set A; C {1, ..., P}, with |A;| = r,
is considered. The objective function is approximated as follows

fwum)=%ww2+}§:mmwﬂ—w%w%5}

i€A;

whose sub-gradient is

V; = Aw; — — 1[ il Xl < 1] iyt
t t rZ yiw, y

i€A;
The updating rule is again
Wiyl = wr — N Vi

In the deterministic case, that is, when all the training examples are used at each

iteration, i.e., A, = {1,...,1}, the complexity analysis shows that the number of
iterations required to obtain an € —approximate solution is O (1/A€). In the stochastic
case, i.e., A; C {1,...,1}, asimilar result in probability is given. We observe that the

complexity analysis relies on the property that the objective function is A—strongly
convex, 1.e.,

A 2
fw) = Zlwll

is a convex function.
The extension to nonlinear SVM is performed taking into account that, once mapped
the input data x* onto ¢ (x"), thanks to the fact that w is initialized to 0, we can write

I
1 . .
wipr = —> enplily' (),

i=1

where a;1[i] counts how many times example i has been selected so far and we had
a non-zero loss on it. It can be shown that the algorithm does not require the explicit
access to the weight vector w. To this aim, we show how the vector «, initialized to
zero, is iteratively updated. At iteration ¢, the index i, is randomly chosenin {1, ..., /},
and we set

a1[i] = ali] i #ip.
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If

1
1 I
y"ﬂzat[l]y’K(X”,X’) <1

i=1

then set a;1[i;] = a[i;]+ 1, otherwise set o;41[i;] = o4 [i;]. Thus, the algorithm can
be implemented by maintaining the vector «, using only kernel evaluations, without
direct access to the feature vectors ¢ (x).

Newton-type methods for formulation (16) of L>-SVM have been proposed first in
Mangasarian (2002) and then in Keerthi and DeCoste (2005). The main difficulty of
this formulation concerns the fact that the objective function is not twice continuously
differentiable, so that the generalized Hessian must be considered. Finite convergence
is proved in both papers. The main peculiarities of the algorithm designed in Keerthi
and DeCoste (2005) are: (1) the formulation of a linear least square problem for
computing the search direction (i.e., the violated constraints, depending on the current
solution, are replaced by equality constraints); (2) the adoption of an exact line search
for determining the stepsize. The matrix of the least square problem has a number of
rows equal to n + n,,, where n, is the number of violated inequality constraints, i.e.,
the constraints such that y'w’ x’ < 1.

Newton optimization for problem (19) and the relationship with the dual formula-
tion have been deeply discussed in Chapelle (2007). In particular, it is shown that the
complexity of one Newton step is O (Ing, + ”3u)’ where again ng, is the number of
violated inequality constraints, i.e., the constraints such that y' (87 K;) < 1.

In Chang et al. (2008), the primal unconstrained formulation for linear classification
(18) is considered, with L2 regularization and L2 loss function, i.e., f (w) = % lwl?+

C Y _ max{0, 1 — y'w” x7}2. The authors propose a coordinate descent algorithm,
where w¥*! is constructed by sequentially updating each component of w*. Define
k k+1 k+1 .k

o k s
wh =, w L wp, L, wy) fori =2,

with w®! = wk and wk"*1 = w*+1 In order to update the i-th component defining
w5t the following one variable unconstrained problem is approximately solved:

min Fwh + zep)

The obtained function is a piecewise quadratic function, and the problem is solved by
means of a line search along the Newton direction computed using the generalized
second derivative proposed in Mangasarian (2002). The authors prove that the algo-
rithm converges to an € accurate solution in O (nC 3PO(#nz)’ log(%)) where #nz is
total number of nonzero values of training data, and P = max EAN

Finally, standard algorithms for the least squares formulation (17) concerning LS-
SVM have been presented in Suykens and Vandewalle (1999) and in Cassioli et al.
(2013). In this latter paper an incremental recursive algorithm, which requires storing
a square matrix (whose dimension is equal to the number of features of the data), has
been employed and could be used, in principle, even for online learning.

@ Springer



Nonlinear optimization and support vector machines

5 Constrained primal formulations and cutting plane algorithms

A useful tool in optimization is represented by cutting planes technique. Depending
on the class of problems, this kind of tool can be used for strengthening a relaxation,
for solving a convex problem by means of a sequence of LP relaxations, or for making
tractable a problem with an exponential number of constraints.

This type of machinery is applied in Joachims (2006), Joachims et al. (2009),
Joachims and Yu (2009) for training an SVM. The main idea is to reformulate SVM
training as a problem with quadratic objective and an exponential number of con-
straints, but with only one slack variable that measures the overall loss in accuracy
in the training set. The constraints are obtained as the combination of all the possible
subsets of constraints in problem (5). Then, a master problem that is the training of a
smaller size SVM is solved at each iteration, and the constraint that is most violated
in the solution is added for the next iteration.

The advantage is that it can be proved that the number of iteration is bounded and
the bound is independent on the size of the problem, but depends only on the desired
level of accuracy.

More specifically, in Joachims (2006), the primal formulation (5) with b = 0 is
considered where the error term is divided by the number of elements in the training
set, i.e.,

/
. 1 2 C
minF (w, §) = 3llwl* + 7;&

4 4 = (20)
s.t. y’[wal]—l—l-éizo i=1,...,1
>0 i=1,...,L
Then, an equivalent formulation called Structural Classification SVM is defined:
. 1 )
minF(w, §) = ~[lw||” + C§
w,& 2
1 o | o @1
s.t. ve e {0, 1} : 7wT Zciy’x’ > 7 Zci —£.
i=1 i=1
£>0

This formulation corresponds to summing up all the possible subsets of the con-
straints in (20), and has an exponential number of constraints, one for each vector
¢ € {0, 1}, but there is only one slack variable . The two formulations can be shown
to be equivalent, in the sense that any solution w* of problem (21) is also a solution
of problem (20), with £* = % Y&} The proof relies on the observation that for any
value of w the slack variables for the two problems that attain the minimum objective
value satisfy & = % > &. Indeed, for a given w the smallest feasible slack variables in
(20) are & = max{0, 1 — y’w’ x’}. In a similar way, in (21) for a given w the smallest
feasible slack variable can be found by solving

1 .
£ = max T;Ci—TZciyinx’ . (22)
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However, problem (22) can be decomposed into [/ problems, one for each component
of the vector ¢, i.e.,

1 1 1

!
minézz;qlg{%ﬁ}{fci —Cciyiw x} Zmax{ ———y,w x} mm—Zél,
1=

so that the objective values of problems (20) and (21) coincide at the optimum. This
equivalence result implies that it is possible to solve (21) instead of (20).

The advantage of this problem is that there is a single slack variable that is directly
related to the infeasibility, since if (w, &) satisfies all the constraints with precision
€, then the point (w, & + ¢€) is feasible. This allows one to establish an effective and
straightforward stopping criterion related to the accuracy on the training loss.

The cutting plane algorithm for solving problem (21) is the following:

Cutting Plane Algorithm

Data. The training set TS, C, €.
Inizialization. YV = (/.
Repeat

1. update (w, &) with the solution of

T
min - w|® + C&

- o (23)
st Vee W Jw ch.ylxl ZTZQ’—%'

2. fori=1,...,1

[ rifywlxi <1
= { 0 otherwise.
end for
3. set W= WU ({c}.
Until (% Zi:l ci — %Zi:l ciy'wlx! <& +4e¢)
Return (w, &)

This algorithm starts with an empty set of violated constraints, and then iteratively
builds a sufficient subset of the constraints of problem (21). Step 1 solves the problem
with the current set of constraints. The vector ¢ computed at Step 2 corresponds to
selecting the constraint in (21) that requires the largest £ to make it feasible given the
current w, i.e., it finds the most violated constraint. The stopping criterion implies that
the algorithm stops when the accuracy on the training loss is considered acceptable.
Problem (23) can be solved either by solving the primal or by solving the dual, with
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any training algorithm for SVM. It can be shown that the algorithm terminates after at
R2

most max § —, iterations, where R = max; ||x;||, and this number also bounds
€

€2
the size of the working set JV to a constant that is independent on n and /. Furthermore,
for a constant size of the working set W, each iteration takes O(sl), where s is the
number of nonzero features for each element of the working set. This algorithm is thus
extremely competitive when the problem is highly sparse, and has been extended to
handle structural SVM training in Joachims et al. (2009). It is also possible to obtain
a straightforward extension of this approach to non linear kernels, defining a dual
version of the algorithm. However, whereas the fixed number of iteration properties
does not change, the time complexity per iteration worsens significantly, becoming
O(m3 + ml 2) where m is the number of constraints added in the primal. The idea in
Joachims and Yu (2009) is then to use arbitrary basis vectors to represent the learned
rule, not only the support vectors, in order to find sparser solutions and keep the
iteration cost lower. In particular, instead of using the Representer Theorem, setting
w = Zﬁ:l oziyiqb(xi) and considering the subspace F = span{¢(xl), e, ¢(xl)},
they consider a smaller subspace F' = span{¢ (b'), ..., ¢ (b))} for some small k and
the basis vectors b’ are built during the algorithm. In this setting, each iteration has
time complexity at most O (m> + mk> + kl).

Finally in Teo et al. (2010) and Le et al. (2008) a bundle method is defined for
regularized risk minimization problems, that is shown to converge in O (1/¢) steps for
linear classification problems, and that is further optimized in Franc and Sonnenburg
(2009) and Franc and Sonnenburg (2008), where an optimized choice of the cutting
planes is described.

6 Decomposition algorithms for the dual formulation

Let us consider the convex quadratic programming problem for SVM training in the
case of classification problems:

min f (o) = %(XTQOZ —ela
o

s.t. yla =0 (24)
0<a=<C(C,

where & € %, [ is the number of training data, Q is al x [ symmetric and positive
semidefinite matrix, e € R’ is the vector of ones, y € {—1, 1}, and C is a positive
scalar. The generic element g;; of Q is y; yjK(xi, x7), where K (x,2) = ¢(x) ¢ (2)
is the kernel function related to the nonlinear function ¢ that maps the data from the
input space into the feature space. We prefer to adopt here the symbol « (instead of A
as in (14)) for the dual variables, since it is a choice of notation often adopted in the
SVM literature.

The structure of problem (24) is very simple, but we assume that the number / of
training data is huge (as in many big data applications) and the Hessian matrix Q, which

@ Springer



V. Piccialli, M. Sciandrone

is dense, cannot be fully stored so that standard methods for quadratic programming
cannot be used. Hence, the adopted strategy to solve the SVM problem is usually based
on the decomposition of the original problem into a sequence of smaller subproblems
obtained by fixing subsets of variables.

We remark that the need to design specific decomposition algorithms, instead
of the well-known block coordinate descent methods, arises from the presence of
the equality constraints that, in particular, makes the convergence analysis difficult.
The classical decomposition methods for nonlinear optimization, such as the succes-
sive over-relaxation algorithm and the Jacobi and GaussSeidel algorithms Bertsekas
(1999), are applicable only when the feasible set is the Cartesian product of subsets
defined in smaller subspaces.

In a general decomposition framework, at each iteration k, the vector of variables
ok is partitioned into two subvectors (al‘jv, aﬁ), where the index set W C {1,...,[}
identifies the variables of the subproblem to be solved and is called working set, and
W ={1,...,1}\ W (for notational convenience, we omit the dependence on k).

Starting from the current solution ak = (oz"jv, akW), which is a feasible point, the

subvector a];VH is computed as the solution of the subproblem

min £ (e, ok )
awy w

0<aw =<C.

The variables corresponding to W are unchanged, that is, al“; = akW and the cur-
rent solution is updated setting a¥*! = (oel‘}}L " ozEr ). The general framework of a

decomposition scheme is reported below.
Decomposition framework

Data. A feasible point o (usually «® = 0).
Inizialization. Set k = 0.
While ( the stopping criterion is not satisfied )

1. select the working set wk.
2. set W = W¥ and compute a solution ay, of the problem (25);

af forieW

1
3. set ak+1 =
otl(‘ otherwise;
4. set Vf(akth) = V() + O (f ! — o).
5. setk=k+1.
end while

Return o* = of
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The choice «® = 0 for the starting point is motivated by the fact that this point is a
feasible point and such that the computation of the gradient V f («”) does not require
any element of the matrix Q, being V f(0) = —e. The cardinality g of the working
set, namely the dimension of the subproblem, must be greater than or equal to 2, due
to the presence of the linear constraint, otherwise we would have aktl = ok,

The selection rule of the working set strongly affects both the speed of the algorithm
and its convergence properties. In computational terms, the most expensive step at
each iteration of a decomposition method is the evaluation of the kernel to compute
the columns of the Hessian matrix, corresponding to the indices in the working set W.
These columns are needed for updating the gradient.

We distinguish between:

— Sequential Minimal Optimization (SMO) algorithms, where the size of the working
set is exactly equal to two; and

— General Decomposition Algorithms, where the size size of the working set is
strictly greater than two.

In the sequel we will mainly focus on SMO algorithms, since they are the most used
algorithms to solve large quadratic programs for SVM training.

6.1 Sequential Minimal Optimization (SMO) algorithms

The decomposition methods usually adopted are the so-called “Sequential Minimal
Optimization” (SMO) algorithms, since at each iteration they update the minimum
number of variables, that is two. At each iteration, an SMO algorithm requires the
solution of a convex quadratic programming of two variables with one linear equality
constraint and box constraints. Note that the solution of a subproblem in two variables
of the above form can be analytically determined (and this is one of the reasons motivat-
ing the interest in defining SMO algorithms). SMO algorithms were the first methods
proposed for SVM training and the related literature is wide (see, e.g., Joachims 1999;
Keerthi and Gilbert 2002; Lin 2001b; Osuna et al. 1997; Platt 1999).

The analysis of SMO algorithms relies on feasible and descent directions having
only two nonzero elements. In order to characterize these directions, given a feasible
point ¢, let us introduce the following index sets

R@) =Lt @) UU (e)U{i: 0<a; <C)
(26)
S@ =L " @uUT@UuUl{i: 0<a <C},
where
LY@ ={i:a=0,y;>0}, L=(@)=1{i:a =0, y; <0}

Ut@ ={i:a=C, yy>0,U(@=1{i:a=C, y <0J.
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Note that
Ra@)NnS@) ={i: 0<a; <C} R@)US(@) ={1,...,1}.

The introduction of the index sets R(«) and S(«) allows us to state the optimality
conditions in the following form (see, e.g., Lucidi et al. 2007).

Proposition 3 A feasible point a* is a solution of (24) if and only if
\v/ *\Y . \V/ *\Y .
max {_( f e ))z}S min {_( fa ))]}' 27
ieR(a*) Vi JES(a*) Yj

Given a feasible point &, which is not a solution of problem (24), a pair i € R(x),
Jj € S(a) such that

{_(Vf(&))i} - {_(Vf(&))j}
Yi yj
is said to be a violating pair.

Given a violating pair (i, j), let us consider the direction d*/ with two nonzero
elements defined as follows

d)) =1 -1/y; ifh=j
0 otherwise.

It can be easily shown that @’/ is a feasible direction at @ and we have V f (@) T d*/ < 0,
i.e., d"/ is a descent direction. This implies that the selection of a violating pair of an
SMO-type algorithm implies a strict decrease of the objective function. However, the
use of generic violating pairs as working sets is not sufficient to guarantee convergence
properties of the sequence generated by a decomposition algorithm.

A convergent SMO algorithm can be defined using as indices of the working set
those corresponding to the“maximal violation” of the KKT conditions. More specif-
ically, given again a feasible point @ which is not a solution of problem (24), let us
define

I(x) = {i ;[ € arg max {—M}}
ieR(a) Vi

s =i e min [-OL1)
jeS(a) Vj

Taking into account the KKT conditions as stated in (27), a pairi € I (), j € J(«)
most violates the optimality conditions, and therefore, it is said to be a maximal
violating pair. Note that the selection of the maximal violating pair involves O([)
operations. An SMO-type algorithm using maximal violating pairs as working sets
is usually called most violating pair (MVP) algorithm which is formally described
below.
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SMO-MVP Algorithm

Data. The starting point & = 0 and the gradient V f (a¢?) = —e.
Inizialization. Set k = 0.
While ( the stopping criterion is not satisfied )

1. selecti € I(ock),j € J(ozk), and set W = {i, j};

T
2. compute analytically a solution o* = (a;' oz}) of (25);

af for h=i
3. set ozl,fr] = oz;? for h=j
a’g otherwise;

4. set V(@) = Vi) + @ —af) 0 + (o) =)0

5. setk=k+1.
end while

Return o* = of

The scheme requires storing a vector of size [ (the gradient V f (*)) and 10 gettwo
columns, Q; and @, of the matrix Q.

We remark that the condition on the working set selection rule, i.e., i € [ (ock),
jeJ (ak ), can be viewed as a Gauss-Soutwell rule, since it is based on the maximum
violation of the optimality conditions. It can be proved (see Lin 2001b, 2002a) that
SMO-MVP Algorithm is globally convergent provided that the Hessian matrix Q is
positive semidefinite.

A usual requirement to establish convergence properties in the context of a decom-
position strategy is that

lim (! = ok) =0. (28)
k— 00

Indeed, in a decomposition method, at the end of each iteration &, only the satisfaction
of the optimality conditions with respect to the variables associated to W is ensured.
Therefore, to get convergence towards KKT points, it may be necessary to ensure that
consecutive points, which are solutions of the corresponding subproblems, tend to the
same limit point.

It can be proved (Lin 2002a) that SMO algorithms guarantee property (28) (the
proof fully exploits that the subproblems are convex, quadratic problems into two
variables).

The global convergence result of SMO algorithms can be obtained even using
working set rules different from that selecting the maximal violating pair. For instance,
the so-called constant-factor violating pair rule (Chen et al. 2006) guarantees global
convergence properties of the SMO algorithm adopting it, and requires to select any
violating pair u € R(a¥), v € S(a¥) such that
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. A kY. kyy .
(V@) (V@) <0 ((Vf(ot i (Vf(a ))J>7 (29)
Yu v Vi Vi

where 0 < o < 1 and (i, j) is a maximal violating pair.

The SMO-MVP algorithm is globally convergent and is based on first order infor-
mation, since the maximal violating pair is related to the minimization of the first order
approximation:

f*+d) ~ F@®) + V4.

An SMO algorithm using second order information has been proposed in Fan et al.
(2005), where the designed working set selection rule takes into account that f is
quadratic and we can write

fe+d)y=f@) +VfETd+ %dT 0d. (30)

In particular, the working set selection rule of Fan et al. (2005) exploits second order
information using (30), requires O(l) operations, and provides a pair defining the
working set which is a constant-factor violating pair. Then, the resulting SMO algo-
rithms, based on second order information, is globally convergent.

Other convergent SMO algorithms, not based on the MVP selection rule, have been
proposed in Chang et al. (2000), Lin et al. (2009), and Lucidi et al. (2007).

We conclude the analysis of SMO algorithms focusing on the stopping criterion.
To this aim let us introduce the functions m(«), M («):

X — m if R(w) #0
m(a) _ heR(x) y
—00 otherwise
min — —(Vf(a))h if S(w) #0
M) = heS(a) Vh
+00 otherwise,

where R(«) and S(«) are the index sets previously defined. From the definitions of
m(«) and M («), and using Proposition 3, it follows that « is solution of (24) if and
only if m(&x) < M(a).

Let us consider a sequence of feasible points {a¥} converging to a solution &. At
each iteration k, if «* is not a solution then (using again Proposition 3) we have
m(e®) > M(b).

Therefore, one of the adopted stopping criteria is

m(a®)y < M@*) +e, (31)

where € > 0.
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Note that the functions m («) and M («) are not continuous. Indeed, even assuming
ok — @ for k — oo, it may happen that R(c%) # R(a@) or S(@®) # S(a) for k
sufficiently large. However, it can be proved (Lin 2002b) that an SMO Algorithm using
the constant-factor violating pair rule generates a sequence {«*} such that m(«¥) —
M(a*) — 0 for k — oo. Hence, for any € > 0, an SMO algorithm of this type
satisfies the stopping criterion (31) in a finite number of iterations. To our knowledge,
this finite convergence result has not been proved for other asymptotically convergent
SMO algorithms not based on the constant-factor violating pair rule.

6.2 General decomposition algorithms

In this section we briefly present decomposition algorithms using working sets of size
greater than two. To this aim we will refer to the decomposition framework previously
defined. The distinguishing features of the decomposition algorithms are:

(a) the working set selection rule; and
(b) the iterative method used to solve the quadratic programming subproblem.

The dimension of the subproblems is usually on the order of ten variables. A working
set selection rule, based on the violation of the optimality conditions of Proposition 3,
has been proposed in Joachims (1999) and analyzed in Lin (2001b). The rule includes,
as particular case, the one selecting the most violating pair and used by SMO-MVP
algorithm. Let ¢ > 2 be an even integer defining the size of the working set W. The
working set selection rule is the following.

(i) Select ¢ /2 indices in R(a¥) sequentially so that

{_(Vf(a"))i] } - {_(Vf(ak))i2} @,
yil B yi2 - yiq/z
with i1 € I (ay).
(i) Select ¢/2 indices in S(a*) sequentially so that

IAZECR)N I IAZECO)TN R B ACTA
Vi B Y B B Yia2
with j1 € J (o).
>iii) Set W = {iy, ip, ..., iq/z, J1s J2s e jq/z}.

Note that the working set rule employed by the SMO-MVP algorithm is a particular
case of the above rule, with ¢ = 2. The asymptotic convergence of the decomposition
algorithm based on the above working set rule and on the computation of the exact
solution of the subproblem has been established in Lin (2001b) under the assumption
that the objective function is strictly convex with respect to block components of
cardinality less than or equal to g. This assumption is used to guarantee condition (28),
but it may not hold, for instance, if some training data are the same. A proximal point-
based modification of the subproblem has been proposed in Palagi and Sciandrone
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(2005), and the global convergence of the decomposition algorithm using the above
working set selection rule has been proved without strict convexity assumptions on
the objective function.

Remark 2 'We observe that the above working set selection rule (see (i)—(ii)) requires
considering subproblem variables that mostly violate (in a decreasing order) the opti-
mality conditions. This guarantees global convergence, but the degree of freedom for
selecting the whole working set is limited. An open theoretical question concerns the
convergence of a decomposition algorithm where the working set, besides the most
violating pair, includes other arbitrary indices. This issue is very important to exploit
the use of a caching technique that allocates some memory (the cache) to store the
recently used columns of the Hessian matrix, thus avoiding in some cases the recom-
putation of these columns. To minimize the number of kernel evaluations and to reduce
the computational time, it is convenient to select working sets containing as many ele-
ments corresponding to columns stored in the cache memory as possible. However, to
guarantee the global convergence of a decomposition method, the working set selec-
tion cannot be completely arbitrary. The study of decomposition methods specifically
designed to couple both the theoretical aspects of convergence and an efficient use of
a caching strategy has motivated some works (see, e.g., Glasmachers and Igel 2006;
Lin et al. 2009; Lucidi et al. 2009).

Concerning point (b), we observe that a closed form of the solution of the subproblem
whose dimension is greater than two is not available, and this motivates the need to
adopt an iterative method. In Joachims (1999) a primal-dual interior-point solver is
used to solve the quadratic programming subproblems.

Gradient projection methods are suitable methods since they consist in a sequence
of projections onto the feasible region that are inexpensive due to the special structure
of the feasible set of (25). In fact, a projection onto the feasible set can be performed
by efficient algorithms like those proposed in Dai and Fletcher (2006), Kiwiel (2008),
and Pardalos and Kovoor (1990). Gradient projection methods for SVM have been
proposed in Dai and Fletcher (2006) and Serafini and Zanni (2005).

Finally, the approach proposed in Mangasarian and Musicant (1999), where the
square of the bias term is added to the objective function, leads by the Wolfe dual to a
quadratic programming problem with only box constraints, called Bound-constrained
SVM formulation (BSVM). In Hsu and Lin (2002b), this simpler formulation has been
considered, suitable working set selection rules have been defined, and the software
TRON Lin and More (1999), designed for large sparse bound-constrained problems,
has been adapted to solve small (say of dimension 10) fully dense subproblems.

In Hsieh et al. (2008), by exploiting the bound-constrained formulation for the
specific class of linear SVM, a dual coordinate descent algorithm has been defined
where the dual variables are updated once at a time. The subproblem is solved ana-
Iytically, the algorithm converges with convergence rate at least linear, and obtains
an e-accurate solution in O (log(1/€)) iterations. A parallel version has been defined
in Chiang et al. (2016). Also in Glasmachers and Dogan (2013) an adaptive coordi-
nate selection has been introduced that does not select all coordinates equally often
for optimization. Instead, the relative frequencies of coordinates are subject to online
adaptation leading to a significant speedup.
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7 Interior point methods

Interior point methods are a valuable option for solving convex quadratic optimization
problems of the form
min 5z7 Qz + 7z
Z
st. Az=0b (32)

0<z=<u

Primal-dual interior point methods consider at each step a perturbed version of the
(necessary and sufficient) primal dual optimality conditions,

Az=0b (33)

074+ ATA+s5s—v=—c (34)
ZSe = e 35)

(U—-2)Ve = e (36)

where S = Diag(s), V = Diag(v), Z = Diag(z), U = Diag(u), and solve this system
by applying the Newton method, i.e., compute the search direction (Az, AX, As, Av)
by solving:

A 00 0 Az —r,
—0AT 1 -1 A |-
S 0Z O As | 7| —rs 37)
-V 0 0U—-27] \Av —ry

for suitable residuals. The variables As and Av can be eliminated, obtaining the

augmented system:
—(Q+07YH AT\ (Az\ _ (—r (38)
A 0 AL) T \=rp

where ©® = Z71S + (U — Z)~'V and r, and r, are suitable residuals. Finally Az is
eliminated, ending up with the normal equations, that require calculating

M=AQ+6 H AT (39)

and factorizing it to solve M AA = —7y,.

The advantage of interior point methods is that the number of iterations is almost
independent of the size of the problem, whereas the main computational burden at
each iteration is the solution of system (38). IPMs have been applied to linear SVM
training in Ferris and Munson (2002), Fine and Scheinberg (2001), Gertz and Griffin
(2010), Goldfarb and Scheinberg (2008), Woodsend and Gondzio (2009), Woodsend
and Gondzio (2011). The main differences are the formulations of the problem con-
sidered and the linear algebra tools used in order to solve the corresponding system
(39).
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In Ferris and Munson (2002), different versions of the primal-dual pair for SVM
are considered: the standard one, given by (5) and (8), is one where the bias term is
included in the objective function:

[
. 1 2
min = > lw, b +CZ&

) . i=l1 40)
s.t. y’[wa’+b]—l+$[ZO i=1,...,1
=0 i=1,...,1
with corresponding dual
min %O[TYXTXY(X + %otTYeeTYot —elTa
@ 41
0<a<Ce,
and | c
min = - |lw, b|* + = [I£]3
wbE 20 2 (42)
s.t. y’[wa’—i—b]—l—}—éiZO i=1,...,1
>0 i=1,...,1
with corresponding dual
1T 1 TyyT 1T T T
min s~ ¢ + 50" Y X' XY+ 50" Yee' Ya — e’ «
o ac 2 2 (43)

o > 0.

The simplest situation for [IPMs is problem (43), where the linear system (38) simplifies
into
(C+RHRY AN =1y, (44)

with C = %I +©®7 ' H =Tand R = Y[XT —e¢]. The matrix C+ RR” can be easily
inverted using the Sherman-Morrison-Woodbury formula Golub and Loan (1996):

—1
(C+RHRT)'=c~'—c'R (H—l + RTC_1R> RTc™' 45

where C~! and H ! are diagonal and positive definite and the matrix H~'+RTC~'R
is of size n and needs to be computed only once per iteration. The approach can be
extended by using some (slightly more complex) variations of this formula for solving
(41), whereas for solving problem (8) some proximal point is needed.

In Gertz and Griffin (2010), an interior point method is defined for solving the
primal problem (5). In this case, we consider the dual variables « associated to the
classification constraints with the corresponding slack variables s, and  the multipliers
associated to the nonnegativity constraints on the & vector. In this case, the primal dual
optimality conditions lead to the following reduced system:
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I 0 —XTy\ [Aw —ry
0 0 T Ab = - |, (46)
Yx —y £ Ao —ro

where 2 = Diag(a)_IS + Diag(u)_lDiag(S ). By row elimination, system (46) can
be transformed into

I+ X"y 'vyx —xTy2='y 0\ [Aw —Fw
—yI'e-lyx yi=ly ollab]|=|-7|. 47)
YX -y 2 Aa —Fe

Finally, this system can be reduced into

1 s
J+XxTye 'vyx — T—_lyydTyd)Aw = —7y (48)

yi 2
1
Ab = ;(—fb +y5 Aw) (49)

where y; = XTY£2~'y. The main cost in solving this system is computing and
factorizing the matrix I + X7y 2~y X — ﬁ yg vq. In Gertz and Griffin (2010),
the idea is to solve system (48) by a preconditioned linear conjugate gradient that
requires only a mechanism for computing matrix-vector products of the form Mx,
and they define a new preconditioner exploiting the structure of problem (5). The
method is applicable when the number of features n is relatively large. Both the
methods proposed in Ferris and Munson (2002) and Gertz and Griffin (2010) exploit
the Sherman—Morrison—Woodbury formula, but it has been shown (see Goldfarb and
Scheinberg 2008) that this approach leads to numerical issues, especially when the
matrix ® (or £2) is ill-conditioned and if there is near degeneracy in the matrix XY,
which occurs if there are multiple samples close to the separating hyperplane.

In Goldfarb and Scheinberg (2008), an alternative approach is proposed for solving
problem (8) (note that in this section we stick to the notation « instead of 1) based on
Product Form Cholesky Factorization. Here it is assumed that the matrix ¥ X7 X ¥ can
be approximated by a low rank matrix V'V, and an efficient and numerically stable
Cholesky Factorization of the matrix V VT +Diag(a)~ IS+ (Diag(Ce) —Diag(a))~'Z
is computed. The advantage with respect to methods using the SMW formula is that the
LDLT Cholesky factorization of the IPM normal equation matrix enjoys the property
that the matrix L is stable even if D becomes ill-conditioned.

A different approach to overcoming the numerical issues related to the SMW for-
mula is the one described in Woodsend and Gondzio (2011), where a primal-dual
interior point method is proposed based on a different formulation of the training
problem. In particular, the authors consider the dual formulation (8), and include the
substitution

w=XYu

@ Springer



V. Piccialli, M. Sciandrone

in order to get the following primal-dual formulation:

min %wTw —ela

w,o

S.t. wT— XYa = O (50)
yia=0

0<a<Ce.

In order to apply standard interior point methods, that require all the variables to be
bounded, some bounds are added on the variable w, so that the problem to be solved

becomes:
T T

min%w w—e'a

w,o

st. w—XYa=0
yla=0 (51)
0<w=<uy,
0<a<Ce.

The advantage of this formulation is that the objective function matrix Q is sparse,
since it only has a non zero diagonal block corresponding to w (that is the identity
matrix). Specializing the matrix M in (39) for this specific problem, if we define

0" = (W', + (Diag(uw) = W)™'Vy)
©, ' = (Diag(@) 'Sy + (Diag(Ce) — Diag(@)) ' Vy)

we get

—1
M=A(Q+(~)—1) AT

_ ((In +0,") + XYO,rxT —XY@ay>
= T T T : (52
-y Oy Y X y' Oqy

Building the matrix M is the most expensive operation, of order O(l(n + 1)?) while
inverting the matrix is of order O((n + 1)3). In order to get the optimal hyperplane,
it is possible to directly get the bias b since it is the element of A corresponding to the
constraint y’ o = 0.

The method uses as stopping condition the stability of the set of support vectors
monitored by measuring the change in the angle ¢ of the normal to the hyperplane
between iterations i and i — 1:

(w(i—l))Tw(i)

Cos(®) = T w0

(53)

Furthermore the number of iterations of [IPMs can be reduced by using multiple correc-
tors (that all use the same factorization of M) to improve the centrality of the current
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point, and also an accurate estimate of the bounds on w can help to speed up the
approach.

A parallel version of this algorithm has been introduced in Woodsend and Gondzio
(2009).

8 Software

Most of the methods described in this survey are open source and can be downloaded.
Here we report for the reader’s convenience a list of the algorithms and the link to the
corresponding software.

Algorithms for solving SVM in the primal:

1. the stochastic sub-gradient methods described in Shalev-Shwartz et al. (2011)
are implemented in the software PEGASOS that can be downloaded from
https://www.cs.huji.ac.il/~shais/code/index.html

2. The cutting plane algorithm proposed in Joachims (2006) is implemented in
the software SVMP¢"/ that can be downloaded from http://www.cs.cornell.
edu/people/tj/svm_light/svm_perf.html

Interior point Methods:

1. The methods described in Ferris and Munson (2002); Gertz and Griffin (2010)
are part of the software for quadratic programming OOQP downloadable at
http://pages.cs.wisc.edu/~swright/ooqp/

2. The method described in Woodsend and Gondzio (2011) is implemented in
the software SVM-OOPS that can be downloaded at http://www.maths.ed.ac.
uk/ERGO/svm-oops/

Decomposition methods for solving SVM in the dual:

1. SMO-type algorithms and general decomposition algorithms have been imple-
mented both in the software SVM/8"" that can be downloaded at http:/
svmlight.joachims.org/ and in the software LIBSVM that can be downloaded
at https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html.

2. An efficient library for linear classification is implemented in the software
LIBLINEAR that can be downloaded at https://www.csie.ntu.edu.tw/~cjlin/
liblinear/

9 Concluding remarks

In this paper we have presented an overview of the nonlinear optimization methods
for SVM training, which typically involves convex programming problems, whose
difficulties are related to the dimensions, i.e., to the number of training instances,
and/or to the number of features. We have considered different equivalent formulations,
pointing out the main theoretical and computational difficulties of the problems. We
have described the most important and used optimization methods for SVM training,
and we have discussed how the algorithms have been specifically designed and adapted
to take into account the structure of the considered problems.
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In our analysis we have limited ourselves to models and algorithms for binary
classification since by nature SVM are mainly binary classifiers. Although the paper
is a survey, in a field as vast as SVM we had to leave out several related important
topics, such as Multiclass-Classification, One-Class SVM, Support Vector Regression,
Semi-Supervised SVM, and Online Incremental SVM. However, we believe that most
of the concepts, models and algorithms developed for SVM binary classification may
represent a sound and useful basis to analyze the other classes of SVM models.

Appendix A: Proof of existence and uniqueness of the optimal hyperplane
The idea underlying the proof of existence and uniqueness of the optimal hyperplane
is based on the following steps:

— for each separating hyperplane H(w, b), there exists a separating hyperplane
H (, b) such that

)

1
— < p(w,b) < —
lwll lwl

— the above condition implies that problem (2), i.e.,

max w, b
weNR" ben ,0( )

S.t. wixi +b>1, Vxli e A
wlix/+b<—-1, Vx/eB

admits solution provided that the following problem

|H

max
wenwn ben vl '
s.t. wixi+b>1, Vx' e A (54)
Txi4+b<—-1, Vx/eB
admits solution;
— problem (54) is obviously equivalent to
min lw]?
weN" ben ) )
S.t. wixi +b>1, Vxt € A (55

wlxl) +b < —1, Vx/ € B:

— then we prove that (55) admits a unique solution, which is also the unique solution
of (2).

Lemma 1 Let H(W, b) be a separating hyperplane. Then
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Proof Since

[wTxt +b] >1, Vx‘e AUB,

it follows

AT € 7
oA . w' x*+b 1
p(w,b) = min | ~ | > —.
xtcAUB lw]] lw]]
O

Lemma 2 Given any separating hyperplane H (W, b), there exists a separating hyper-

plane H(w, b) such that
1
— (56)

p(, b) < p(w,b) = —.
llw]]
Moreover there exist two points x* € A and x~ € B such that

Txt+b=1
Tv— 15 (57)

Proof Let £ € A and £/ € B be the closest points to H (i, b), that is, the two points

such that T .
VAR AT i
el (58)
aj:|w xA—{—b |w xA—I—bI’ Vol ¢ B
| wl

from which it follows

(W, B) = min{ds. d;} < ~(@di +d) BT = &) (59)
w —= min ; ; — ; )= .
p ’ RRed | — 2 1 J 2”11\)”
Let us consider the numbers « and 8 such that
AT 2 _
aw' x'+8 =1 (60)

a2 + B8 =-1

that is, the numbers

2
Wl (G- %)’

wl (& 4 x7)

BT (& — %)

o=

It can be easily verified that 0 < @ < 1. We will show that the hyperplane H (w, b) =
H(aw, B) is a separating hyperplane for the sets A and B, and it is such that (56)

holds. Indeed, using (58), we have
@ Springer



V. Piccialli, M. Sciandrone

wTxl >@TR, vxieA
wix/ <wT2/, Vx/ eB
As o > 0, we can write
aTxi+p>a’ +p=1 Vxi € A
) = ) - v X 61)
awTx/ +B8< awT 2 +B=—-1, Vx/ eB

from which we get that w and b satisifies (1), and hence, that H (w0, b) is a separating
hyperplane for the sets A and B.
Furthermore, taking into account (61) and the value of «, we have

(@, By |waf+15|}_ 1 1 wl (& —37)
U Tl

xt’eAuB{ llwll wl el 2wl

Condition (56) follows _from the abov_e equality and (59). Using (60) we obtain that
(57) holds with x* = X’ and x~ = %/. ]

Proposition 4 The following problem

min ||w|?
te. wixi+b>1, VxieA (62)
wlx) +b<—1, Vx/ €B

admits a unique solution (w*, b*).

Proof Let F the feasible set, that is,
F={(w,b)eW xR: wxi+b>1Vx' €A, wix/+b<—1,Vx/ € B}.
Given any (w,, b,) € F, let us consider the level set
Lo={w,b) € F: wl? < llw,l).

The set L, is closed, and we will show that is also bounded. To this aim, assume by
contradiction that there exists an unbounded sequence {(wg, bg)} belonging to L,.
Since ||wg || < |lwoll, Yk, we must have |bi| — oo. For any k we can write

wlxi+b =1, VxieA
w/x/ +by <—1, Vx/ €B

and hence, as |by| — oo, for k sufficiently large, we have ||wi||*> > ||w, ||, and this
contradicts the fact that {(wg, br)} belongs to £,. Thus £, is a compact set.

Weirstrass’s theorem implies that the function ||w||*> admits a minimum (w*, b*)
on L,, and hence, on F. As consequence, (w*, b*) is a solution of (62).
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In order to prove tha}t (w*, b*) is_the unique solution, by contradiction assume that
there exists a pair (0, b) € F, (w, b) # (w*, b*), such that ||w|*> = ||w*||>. Suppose
w # w*. The set F is convex, so that

Aw*, b*)+ (1 — 1) (w,b) € F, Vael0,1].
Since ||w/||? is a strictly convex function, for any A € (0, 1) it follows
Iaw* + (1 = V| < Alw*[* 4+ (1 = n)[w].

- 1 1_1
Getting A = 1/2, which corresponds to consider the pair (w, b) = (5 w* + 512), Eb*

1- -
+§b), we have (w, b) € F and

1

=12 2
SIwl* = w7,

1
~ 12 2
o)1= < Slw*[I” +
2
and this contradicts the fact that (w*, b*) is a global minimum. Therefore, we must
have w = w*.
Assume b* > b (the case b* < b is analogous), and consider the point ' € A such
that

w i bt =1
(the existence of such a point follows from (57) of Lemma 2). We have
l=w'd 4+ =03 +b* > w2 +b

and th_is contradicts the fact that W’ x +b > 1, Vx! € A. As consequence, we must
have b = b*, and hence the uniqueness of the solution is proved. O

Proposition 5 Let (w*, b*) be the solution of (62). Then, (w*, b*) is the unique solu-
tion of the following problem

max p(w, b)
te. wixi+b>1, VaiecA (63)
wix/+b<—-1, Vx/ B

Proof We observe that (w*, b*) is the unique solution of the problem

1
max -
lwll

te. wixi+b>1, VxleA
wlx)+b<—-1, Vx/ eB.
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Lemmas 1 and 2 imply that, for any separating hyperplane H (w, b), we have

1

lwll — [[w*l
. . 1
and hence, for the separating hyperplane H (w*, b*) we obtain p(w*, b*) = m,
w
which implies that H (w*, b*) is the optimal separating hyperplane. O
Appendix B: The Wolfe dual and its properties
Consider the convex problem
min f(x)
st. g(x) <0 (64)
hix) =0

with f : " — N convex and continuously differentiable, g : " — R™ convex and
continuously differentiable, and & : W' — NP affine functions. Then its Wolfe dual

is
max L(x, A, u)
X, A1

st. VoL(x,A,pn)=0 (65)
A>0,

where L(x, A, ) = f(x) + AT g(x) + uh(x).

Proposition 6 Let x* be a global solution of problem (64) with multipliers (\*, 1*).
Then it is also a solution of problem (65) and there is zero duality gap, i.e., f(x*) =
L(x™, 2%, ub).

Proof The point (x*, 1*, u*) is clearly feasible for problem (65) since it satisfies the

KKT conditions of problem (64). Furthermore, by complementarity (A*)” g(x*) = 0)
and feasibility (h(x*) = 0)

Lx* 25 1) = f +05HTgx™) + wHTh(x*) = f(x*)

so that there is zero duality gap. Furthermore, for any A > 0, u € R?, by the feasibility
of x*, we have

L %5 1% = f(x*) > f*) + 2T g™ + ul h(x*) = Lex*, A, ). (66)

By the convexity assumptions on f and g, the nonnegativity of A and by the linearity of
h,we getthat L(-, A, u) is a convex function in x and hence, for any feasible (x, A, ),
we can write

L(x*, h, ) = L(x, Ay ) + Vi L (e, A )" (2" —x) = L(x, 4, ), (67)
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where the last equality derives from the constraints of problem (65). By combining
(66) and (67), we get

L(x*, A*, u*) > L(x, A, p) for all (x, A, ) feasible for problem (65)

and hence (x*, A*, u*) is a global solution of problem (65). O

A stronger result can be proved when the primal problem is a convex quadratic pro-
gramming problem defined by (6).

Proposition 7 Let f(x) = %xT Ox+cT x, and suppose that the matrix Q is symmetric
and positive semidefinite. Let (X, 1) be a solution of Wolfe’s dual (7). Then, there exists
a vector x* (not necessarily equal to x) such that

i) 0(x*—x)=0;
(ii) x* is a solution of problem (6); and B
(iii) x* is a global minimum of (6) with associated multipliers .

Proof First, we show how in this case problem (7) is a convex quadratic programming
problem. In particular, problem (7) becomes for the quadratic case:

1

mekxszQx +cTx + 2T (Ax = b) (68)
X,
Ox+c+ATr=0 (69)
1> 0. (70)

Multiplying the constraints (68) by x7 we get
xTQx +clx+xTATA = 0,

which implies that the objective function (68) can be rewritten as
1 1
max —ExTQx +cTx =ATh = —min ExTQx +27b,

which shows how problem (68) is actually a convex quadratic optimization problem.
For this problem, the KKT conditions are necessary and sufficient for global optimality,
and, if we denote by v the multipliers of the equality constraints (69) and by z the
multipliers of the constraints (70), we get that there must exist multipliers v and z such
that the following conditions hold;

Q%X —Qu=0 (71)
b—Av—z=0 (72)
ZIa=0 (73)
2>0 (74)
Qi +c+ATx=0 (75)
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x> 0. (76)

The expression of z can be derived by constraints (72), and substituted in (73) and
(74), implying:
Av—>b <0 a7
2T (Av —b) = 0. (78)

Furthermore by subtracting (71) from (75), we get
Quv+c+ATra=0. (79)

By combining (79), (78), (77) and (76) we get that the pair (v, 1) satisfies the KKT
conditions of problem (6), and hence setting x* = v we get the thesis, keeping into
account that point (i) derives from (71). O

Appendix C: Kernel characterization

Proposition 8 Ler K : X x X — R be a symmetric function. Function K is a kernel
if and only if the | x | matrix
Kl xh ... Kl xl)

L=

(K(xi,xj)>l = :
= K xh K (x!, xh

is positive semidefinite for any set of training vectors {x', ..., x'}.

Proof necessity Symmetry derives from the symmetry of the function K. To prove
positive semidefiniteness we look at the quadratic form, for any v € R!:

l 1

! I
vIKv =% uw Ky =) ) viv{e ), ()

i=1 j=1 i=1 j=1

1 1
= <Z vip(x), Y vj¢(xj)>

i=1 j=1
=(z,2)>0

sufficiency Assume

Kb xh o K@ xh
: >0 (80)
K xh oK xh
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We need to prove that there exists a linear space H, a function ¢ : X — H
and a scalar product (-, -) defined on H such that k(x, y) = (¢ (x), ¢(y)) for all
x,y € X.

Consider the linear space

H=Ilin{K(,y) : ye X}

with the generic element f(-)

f=) aiK(,x)

i=1

forany m € N, witho; € R fori = 1,..., m. Given two elements f, g € H,
with g(-) = ZT:] B;K (-, x7), define the function p : H x H — R defined as

m m

p(fr8) =) > aifiKx' x))

i=1 j=I

It can be shown that the function p is a scalar product in the space H, by showing
that the following properties hold:

1) p(f,8) =p, f)
i) p(f'+ 2 9 =p(fl9) +0(f% g
(i) p(Af, ) = ro(f, &)
(iv) p(f, f) = 0and p(f, f) = 0 implies f =0

The first three properties are a consequence of the definition of p and can be easily
verified. We need to show property (iv). First, we observe that, given f Lo, fP
in ‘H the matrix with elements ps; = p(f*, f7) is symmetric (thanks to property
(1)) and positive semidefinite. Indeed,

P 14 P P P
vivie =YY vivie(f D =p [ D vifl Y vifl | =0
— i=1 =1

1 i=1 j=1

i=1j
This implies in turn that all principal minors have non negative determinant. Con-

sider any 2 x 2 principal minor, with elements p;; = p(f !, f7). The nonnegativity
of the determinant, and the symmetry of the matrix imply

lo(flv fl)p(fjv fj) _Io(fl7 fj)/o(fjv f[)
:p(fi’ fl)p(f]’ f]) _p(fiv fj)2 >0
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so that
p(fL 2 < o(fL fHe(f, f7) (81)

We note that, setting m’ = 1, g(-) = k(-, x), f(x) can be written as

fO) =) K (x,x") = p(K (-, x), f)

i=1

with K (-, x) € ‘H. Furthermore, for any x, y € X, we get

p(K('7-x)aK('v J’)) = K(-xv y)

Using (81) with f! = K (-, x) and f/ = f(x) we get

F?=p(K (¢ x), £) < p(f o7, f1) = p(K(,x),
K, x))p(f, f) =K, )p(f, f)

that implies, thanks to (80), both po(f, f) > 0 and that if p(f, f) = O, then
f(x)? <0forall x € X and hence f = 0. O
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