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Abstract

With the rising focus towards more sustainable transport systems, intermodal trans-

port is a promising alternative for unimodal road transport. However, it also presents

a number of challenges for intermodal operators and planners who are in charge

of executing transport planning in an increasingly dynamic environment. As mul-

tiple transport modes and decision makers are involved, intermodal transport is more

complex. Moreover, the level of integration of different transport modes and decision

levels influences the attractiveness of intermodal transport. Innovative and integrated

transport systems reflecting real-life problems should be developed in order to provide

adequate decision support tools for intermodal planners.

This dissertation aims at offering intermodal planning support in order to minimise

total transport costs and maximise service capacity utilisation, which in turn decreases

costs of the transport system. Two decision support tools are proposed by means

of fast planning algorithms which include real-life characteristics. These concepts

are inherent to the synchromodal vision in order to encourage a modal shift away

from unimodal road transport. After a literature review on intermodal routing and

vehicle routing in intermodal transport, two problems usually considered separately,

an integrated intermodal routing problem is presented. By including information of

local vehicle routes in the assignment of transport requests to long-haul routes through

a service network, better-informed decisions can be obtained. Insights are presented

on how such integrated approach can be used in practice by means of a real-life case.

With transport requests assigned to intermodal routes through an intermodal rail

service network, they should be assigned to specific locations on an intermodal train,

which is the train load planning problem. It includes detailed loading restrictions,

as omitting relevant loading constraints could result in infeasible solutions. Both an

exact and a heuristic solution approach with multiple objectives and additional real-

life loading constraints are presented, resulting in multiple feasible train load plans.

Routes might still change for some transport requests and information about future

orders should be accounted for. By providing multiple plans, planners can select the

most appropriate load plan at a specific moment in time. The problem is applied to

a real-life case to demonstrate advantages for practitioners.
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Chapter 1
Introduction and problem

statement

1.1 Intermodal freight transport

Forecasts indicate that freight transport by road is expected to increase by 40% by

2030 and even by over 80% by 2050 compared to 2005. Despite the fact that road

transport is less sustainable and environmentally friendly, it has the largest share in

the modal split with 76.4%, followed by 17.4% and 6.2% for rail and waterways re-

spectively (Eurostat, 2016). This expected continued growth in freight transport and

its associated environmental impact present one of the major challenges in the trans-

port sector (European Commission, 2011a; ITF, 2015). In this context, the European

Commission (2011b) aims at shifting 30% of road freight transport over 300 kilometres

to other transport modes by 2030, and more than 50% by 2050, to increase the sustain-

ability of our transport system. In order to stimulate this modal shift, the European

Commission (2011b) launched a roadmap to remove regulatory barriers towards an

integrated European transport area. Despite this clear European strategy, the modal

split has not significantly changed since 2008 (European Commission, 2016). Within

this aim, the European platform ALICE has been set up to develop a comprehensive

strategy for research, innovation and market deployment of logistics and supply chain

management in Europe, and advise the European Commission (Alliance for Logistics

Innovation through Collaboration in Europe, 2014).

A promising opportunity to achieve this modal shift may be intermodal transport,

which is strongly supported by the European Commission (2009, 2011b). It is defined

as the movement of goods in the same load unit through a combination of transport

3



4 Chapter 1

modes in a single transport chain without handling the goods themselves, with most of

the route travelled by rail, inland waterway or ocean-going vessel and with the shortest

possible initial and final journeys by road (Bontekoning et al., 2004). It is aimed at

integrating the various transport modes to provide a door-to-door delivery (Reis et al.,

2013). Intermodal transport increases sustainability and relieves congested highways

as the long distance is covered by rail or barge, which is especially an important aspect

in the centre of Europe (Boysen et al., 2013).

Intermodal rail transport involves the combination of rail and road transport.

Bontekoning et al. (2004) indicate that this type of intermodal transport is attractive

because shippers in most countries have access to rail, whereas fewer have access to

sea and inland shipping. They also describe the path usually followed by load units

in the intermodal rail transport chain. Load units are transported by truck for the

pre-haulage from their origin to the terminal of departure and for the end-haulage

between the destination terminal and their final destination, which is also known as

drayage or pickup and delivery. For the long haul, load units are bundled and shipped

via rail. In between, terminals serve as transshipment points between road and rail

transport.

Intermodal rail transport has several advantages over unimodal road transport.

Although road transport is flexible, fast and requires low capital investments, fuel

costs and congestion on the roads are rising and thus the attractiveness of this trans-

port mode decreases. Reis et al. (2013) state that transport is responsible for ap-

proximately 25% of European global CO2-emission. This may be reduced by a modal

shift from road to rail transport, as rail transport is more green and sustainable

compared to road transport. Rail-road transport combines the accessibility of road

transport with economies of scale of rail transport. Furthermore, bundling load units

on trains over long distances also reduces CO2-emissions and thus releases pressure

on the environment (European Commission, 2009).

However, the combination of rail and road transport is subjected to a different

cost pattern compared to unimodal road transport. For intermodal rail transport to

become advantageous compared to unimodal road transport, a number of additional

costs need to be reduced. Drayage accounts for 25% to 40% of the total transport

costs, while the distance travelled by truck is relatively small (Bontekoning et al.,

2004). A reduction in pre- and end-haulage costs can be obtained by reducing the

distance to the closest rail terminal and organising truck routes more efficiently. A

second option is to reduce transhipment costs by striving for fast, easy and reliable

transshipment. Another possibility is to make the train transport cheaper by in-

creasing the efficiency of operations in organisations. Together with these costs, the
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time required for intermodal rail transport must be reduced, as rail transport is cur-

rently slower (Reis et al., 2013), which can for example be obtained by more frequent

services.

Furthermore, in order to achieve a sustainable transport system, the full cost of

transport should be accounted for. This means that external costs should be intern-

alised. Internal costs consist of direct costs such as fuel costs, wages and equipment

costs. External costs include costs of congestion, noise, emissions, accidents and air

pollution. Despite the fact that vehicles on the road are becoming greener (e.g., low

emission vehicles), external costs of congestion and, related to that, costs of pollution

increase. Internalising these external costs may encourage a shift towards intermodal

transport (Macharis et al., 2010; Pinto et al., 2018).

Ambra et al. (2019) emphasise the need for innovative integrated support sys-

tems with a focus on cost efficiency in order for intermodal transport to increase its

competitiveness. One innovative, recent solution concerns synchromodality. It is an

extension of intermodal transport, which is often perceived as too static. Synchro-

modal transport emphasises the dynamics and flexibility which should be incorporated

in decisions on routing and rerouting load units using multiple transport modes. In a

synchromodal view, ideally, load units are routed through an interconnected network

of hubs depending on the network capacity, where the sender is not concerned about

the route of its packages (Ambra et al., 2019). Synchromodal transport requires an

integrated view on the transport chain as a whole. Multiple complimentary transport

modes and connections should be available, such that the most appropriate route can

be selected based on the customer requirements and available transport options at a

specific moment in time (Behdani et al., 2016). This requires flexible and real-time

planning, which poses a number of challenges for planners. In this context, adequate

decision support and fast planning algorithms with real-life characteristics are needed

to support this synchromodal vision.

1.2 Decision support

Caris et al. (2008) divide the current literature on intermodal freight transport into

three planning levels based on the time horizon of decision impact. Strategic, tactical

and operational decision problems can be distinguished. Each planning level can be

divided into four categories based on the type of decision maker involved. Drayage

operators are concerned with the planning of trucks performing the transport between

the terminal and the shipper or receiver. Terminal operators are responsible for the
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transshipment of load units. Network operators are occupied with the infrastructure

planning and organise the rail or barge transport. Finally, intermodal operators use

the intermodal infrastructure and services. They select the most appropriate routes

throughout the available intermodal network.

Caris et al. (2013) stress the fact that intermodal transport has a higher degree of

complexity than unimodal transport, because more transport modes and consequently

more decision makers are involved. The degree of complexity increases even further in

the most recent synchromodal concept. Synchromodality takes intermodal transport

one step further; as with intermodal transport, two or more transport modes are

combined, however, synchromodality allows for flexible mode selection based on the

operational circumstances and customer requirements (SteadieSeifi et al., 2014). This

implies that integration, synchronisation, and alignment of processes and operations

are crucial factors to guarantee a stable and efficient service to the customer. In other

words, instead of optimising their processes individually, operators should integrate

their activities and coordinate the entire process. For instance, ICT innovations

can support the exchange of real-time information and integration to support more

efficient decision making.

One key aspect of synchromodality concerns real-time switching, due to which

assignment decisions are proactive, taking decisions based on available data feeds, and

more responsive to internal and external perturbations compared to a more classical

approach. This leads to more complex operational decision processes requiring more

flexibility. Therefore, existing planning and transport management systems should

be adapted accordingly. Furthermore, unexpected events may have a high impact

on the chain performance due to interdependencies in the transport connections and

therefore, should be managed carefully (Behdani et al., 2016). Changes to the initial

planning can only be performed with knowledge on the current availability of capacity

for the various transport modes at hand. Consequently, the planning performance of a

capacity management system is highly dependent on the availability of adequate and

efficient planning algorithms. With amodal booking, the logistics service provider,

instead of the shipper, is allowed to choose the modality. A resulting flexible mode

and service selection further increases the planner’s responsibilities.

1.3 Research objectives

Innovative transport systems should be developed in order to stimulate a modal shift

towards intermodal transport with synchronised services. Such transport systems
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require an integrated view on the transport network, and can be facilitated by in-

formed and flexible planning (Alliance for Logistics Innovation through Collaboration

in Europe, 2014). The number of research papers focusing on synchromodal transport

and its prerequisites is rising. However, a gap between academic research and practice

can be observed, because real-life characteristics of intermodal transport companies

are ignored. Therefore, the focus of this thesis is on decision support for human plan-

ners at the operational decision level during the planning process of intermodal rail

transport.

In order to stimulate intermodal transport, on the one hand, additional costs

should be reduced, while on the other hand fast planning algorithms with real-life

problem characteristics should be available to accommodate decisions in a complex

intermodal planning environment. The central research objective of this thesis is

to offer intermodal planning support in order to minimise total transport costs and

maximise service capacity utilisation, which in turn results in decreasing costs of the

transport system.

This central research objective is dealt with by addressing two intermodal planning

problems from the viewpoint of an intermodal operator: intermodal routing and train

load planning (TLP). The first contribution of this thesis is the introduction of an

integrated intermodal routing problem. After a transport order is received, planners

must assign each load unit to an intermodal long-haul service to maximise the overall

network capacity utilisation, and local drayage routes must be established to transport

load units between load and unload locations and the transhipment terminals for

long-haul transport. Usually, these decisions are made in a sequential way. As the

level of integration of different transport modes and decision levels influences the

attractiveness of intermodal transport, an integrated intermodal routing problem is

proposed. By taking local truck routing and long-haul transport planning decisions

simultaneously, the aim is to reduce total transport costs. In a second contribution,

the intermodal routing model is applied to a real-life intermodal network to support

the analysis of the impact of tactical service network design decisions made by an

intermodal operator. Insights will be presented on how to best utilise a given service

network, in order to reduce total transport costs and synchronise available services

to the expected demand of orders. The approach aims at reducing the number of

road kilometres and increases bundling opportunities by maximising the long-haul

capacity utilisation. In this way, it contributes to the modal shift towards intermodal

transport and a more sustainable transport system.

At a more operational level, train load planning is concerned with the assignment

of load units to specific locations on intermodal trains, accounting for real-life loading
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restrictions in order to maximise the on-train capacity utilisation. As including these

real-life aspects are key to deciding which load units will be assigned to which location,

the third contribution is the introduction of an exact and heuristic algorithm with real-

life train load problem characteristics. It can be used as a decision support tool to

provide human planners with a number of load plans from which they can choose

the best one for a specific moment in time. Early-stage planning assistance during

the booking process may improve the overall capacity utilisation of the available rail

services. Terminal operations required to execute the train load plan are usually

optimised once the load units to be loaded are fixed.

The viewpoint considered in this dissertation is the one of an intermodal operator

which owns own rail services and purchases slots on rail services of other parties. Train

load planning only has to be performed for rail services owned by the company. For

intermodal routing, both types of services are considered. This provides flexibility for

using the proposed model both in the case of an intermodal operator which leases slots

on trains of other parties, as well as service providers which offer rail services. Both

problems studied in this dissertation occur at the operational planning level. While

the intermodal routing problem usually occurs in weekly planning cycles, train load

planning takes place at the very detailed, almost real-time, planning level. Besides,

while intermodal routing is an operational problem, the solution method can be used

to analyse the impact of small changes related to tactical service network decisions

on the operational costs.

Decisions on these two planning problems, intermodal routing and train load plan-

ning, influence the throughput of the intermodal transport system and aim at min-

imising overall transport costs while accounting for customer service requirements.

Fast decision support by means of planning algorithms are provided for improved,

more efficient planning. Results contribute to a better understanding of the way in

which intermodal operators can maximise their service network's transport capacity

based on the expected demand of transport orders, and lead to an increased transport

capacity utilisation and a minimisation of total transport costs.

1.4 Thesis outline

Figure 1.1 presents the general thesis overview. After an introductory chapter (Part I),

Chapters 2 and 3 (Part II) focus on integrated, operational decision support for rout-

ing transport orders using trucks and multiple available long-haul services. Chapters

4 to 6 (Part III) relate to operational decision support with a shorter planning hori-
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zon, during the train load planning phase, in which load units are assigned to specific

locations on an intermodal train. Conclusions of both subjects studied are presented

in a final Part IV.

Figure 1.1: Thesis summary.

In Chapter 2, a new integrated intermodal routing problem is proposed, combining

drayage and long-haul rail network flow planning decisions. In practice, requests are

assigned first to long-haul routes, after which truck routes are composed. However,

an integrated approach for both decisions is appropriate. While customer pickup and

delivery locations of full-container requests are known, the departure and arrival ter-

minals through which each request travels depend on the selected long-haul service.

Consequently, the delivery location for pickup tasks and pickup location for deliv-

ery tasks are unknown in advance. Therefore, changes in long-haul routing decisions

imply different combinations of pickup and delivery locations and thus impact total

trucking costs. In this dissertation, an integrated intermodal routing problem, in-

cluding a multi-day scheduling of trucks, is proposed for the first time. Mathematical

formulations of a sequential and integrated approach with real-life problem character-



10 Chapter 1

istics are presented. Chapter 3 proposes a large neighbourhood search (LNS) heuristic

algorithm to solve the problem. The building blocks consist of operators dedicated

to the integrated nature of the problem. The heuristic algorithm is used to compare

both approaches and to analyse the impact of decisions related to the service network

design on total transport costs. This differs from current research because the impact

of costs at the operational level is usually ignored when decisions at the tactical level

on the design of a service network are made.

Chapter 4 introduces the train load planning problem and its relevance for inter-

modal transport. It presents a classification and a state of the art of factors influen-

cing train load planning, and results in an identification of opportunities for future

research. Based on the conclusions of this chapter, real-life characteristics of the

train load planning problem are introduced into a problem formulation in Chapter

5. The train load planning problem is considered from a multi-objective perspective,

enabling planners to account for various objectives during the train planning phase

within the context of intermodal rail transport. For the first time, a multi-objective

approach for train load planning with real-life characteristics is proposed. The ad-

aptive ε-constraint method is used to solve the problem exactly and computational

results are presented. In Chapter 6, a multi-objective heuristic for the train load

planning problem is proposed. A multi-directional local search (MDLS) heuristic is

developed to solve problems of realistic size. Its performance is demonstrated by

comparing results with optimal results obtained using the exact ε-constraint method.

The algorithm provides solutions of good quality for real-world problems in short

computation times.

Finally, Chapter 7 presents the main conclusions of this thesis and opportunities

for future research.
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— Introduction to Part II: Intermodal container routing —

Part II consists of Chapters 2 and 3, in which a new, integrated intermodal routing

problem is presented and solved using metaheuristics. The problem aims at providing

integrated decision support for routing containers through a service network in the

context of intermodal transport. It is situated at a operational level, using a weekly

planning cycle. The focus is on the integration of decisions on local drayage within

service regions of terminals and long-haul routing decisions in which transport orders

are assigned to long-haul services.
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Chapter 2
Integrating local drayage and

intermodal long-haul routing:

related literature and problem

formulation

2.1 Introduction

Intermodal transport involves multiple actors and decision makers, resulting in a

more complex planning environment compared to unimodal road transport. Synchro-

modal transport further increases this complexity as it requires informed and flexible

planning (Alliance for Logistics Innovation through Collaboration in Europe, 2014).

As the level of integration of different transport modes and decision levels influences

the attractiveness of intermodal transport, adequate decision support systems for hu-

man planners at the operational decision level should be developed. Fast planning

algorithms with real-life problem characteristics should be available to accommodate

decisions in a complex intermodal setting.

Intermodal logistics service providers must decide on the planning of drayage and

main-haul transport. Tactical decisions are related to the selection of intermodal

transport services and the allocation of existing resources (Caris et al., 2008). The

This chapter is based on the following paper: Heggen, H., Molenbruch, Y., Caris, A., Braekers,

K., 2019. Intermodal Container Routing: Integrating Long-Haul Routing and Local Drayage De-

cisions. Sustainability, 11, 1634.

15
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service network design determines the routes on which services are offered and the

characteristics of each service (Caris et al., 2013). Characteristics of regular long-haul

services include the route, intermediary stops, frequency, vehicle and convoy type,

capacity and speed. Most of these characteristics are unchanged for a given scheduling

period (Crainic and Kim, 2007). Often, weekly planning cycles are fixed for at least

six months. At the operational decision level, policies have to be determined for

routing containers throughout the given intermodal network and services (Caris et al.,

2013). Intermodal routing or route selection is concerned with the selection of routes

or itineraries for individual containers over a given intermodal network (Caris et al.,

2013; Li et al., 2015), related to a planning horizon of one or several days. The problem

also includes real-time itinerary replanning and asset management (SteadieSeifi et al.,

2014). Next, during train load planning, containers are assigned to specific locations

on intermodal trains while including detailed capacity considerations related to the

wagon and slot length and weight restrictions, as discussed in Part III (Chapters 4

to 6). The fact that these problems and decision levels are interrelated is recently

stressed by several authors (e.g., van Riessen et al. (2016); Zhang and Pel (2016)).

In current literature, decisions with respect to the long-haul transport and vehicle

routing of trucks in a service region are usually considered independently. The dis-

tance or travel time between each customer location and the available terminals is

taken into account when solving the intermodal routing problem. The truck cost is

approximated by the direct distance between a customer and a terminal location.

Pre- and end-haulage is arranged in a second phase by combining pickup and delivery

operations between customer locations and terminals into routes. In this sequen-

tial approach, the combination of pickup and delivery tasks in truck routes (i.e., the

real total drayage cost) is ignored initially. However, the integration of vehicle routing

problems into the intermodal terminal selection and container routing throughout the

network may provide important cost savings and a better utilisation of the available

transport capacity.

In a sequential approach, the long-haul service for each request is selected in a

previous phase, and results in a single drayage task in each region. In an integrated

approach, the long-haul service is not fixed in advance, which results in multiple

feasible drayage tasks per region, of which one per region has to be selected simultan-

eously with the decision on the long-haul service. Figure 2.1 shows a possible truck

cost reduction for the request indicated in black symbols by using an integrated ap-

proach. The vehicle routing problem in each region consist of a full-truckload problem

in which trucks wait for containers to be fully loaded or unloaded before travelling

to any other location. The selected long-haul service is indicated by the bold line
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between both regions. Whereas a sequential approach would select the long-haul ser-

vice connecting both upper terminals, an integrated approach might select the lower

service which does not have the lowest direct trucking distance, but results in the

lowest total cost.

Figure 2.1: The sequential and the integrated approach - example.

In this chapter and the next, a model formulation and algorithm will be developed

to compare the sequential and integrated approach, and quantify these potential sav-

ings. The aim is to provide an operational decision support tool for transport planners

of an intermodal operator. Moreover, the planning tool is able to include the impact
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of operational costs in tactical decisions when adapting the offered transport service

network. A heterogeneous fleet of trucks and load units, multi-day truck scheduling

and long-haul service capacity limits are considered. The focus is on rail transport for

the long-haul, as most countries in the EU have access to an extensive rail network,

whereas waterways are not always available. The proposed integrated approach con-

tributes to a more sustainable transport system by reducing the distances travelled

using road transport. Moreover, by maximising the long-haul capacity utilisation,

bundling opportunities can be fully deployed.

In this chapter (Figure 2.2), literature on both intermodal routing for the long-haul

and intermodal vehicle routing problems is discussed, and the focus of the remainder

of this chapter is presented (Section 2.2). The considered integrated planning prob-

lem is based on a real-life case study from the viewpoint of the transport planning

department of an intermodal service operator with a network of long-haul services

consisting of either own trains, purchased services which are managed by external

parties, or a combination of both. A more detailed problem description is provided

in Section 2.3. Formulations for both subproblems in the sequential approach, as well

as an integrated intermodal routing problem with real-life problem characteristics in

which truck routing and long-haul routing decisions are made simultaneously, are

proposed in Section 2.4.

2.2 Related literature

The integrated intermodal routing problem relates to two problem settings in current

literature which are usually solved independently: on the one hand routing containers

(or load units) throughout the long-haul network, including service network design

problems at the tactical level and intermodal routing at the operational level, and on

the other hand vehicle routing problems in the context of drayage operations around

terminals. Recent advances in literature on both types of problems are discussed in

Section 2.2.1 and 2.2.2 respectively. Section 2.2.3 presents the closest related research

for integrating both problems and the focus of the remainder of this chapter.

2.2.1 Long-haul service network design and intermodal rout-

ing

Tables 2.1 and 2.2 provide an overview of (intermodal) service network design and

intermodal routing problems considering rail, road and/or water transport modes.

A distinction is made between tactical problems aimed at the selection of a service
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Figure 2.2: Thesis summary - Chapter 2.
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network (Table 2.1), and operational problems which determine the routing of indi-

vidual shipments (Table 2.2). The left-hand side of the tables displays different prob-

lem characteristics, whereas the right-hand side indicates information with respect

to the objectives, where problems not solved using a weighted objective function are

indicated as ‘multi-objective’.

Decision levels Current research indicates that operational and tactical problems

are interrelated. Operational intermodal routing problems may include real-time plan-

ning and replanning (Grasman, 2006; Bock, 2010; Li et al., 2015; van Riessen et al.,

2016; Di Febbraro et al., 2016) and asset management (and repositioning) decisions

(Erera et al., 2005; Grasman, 2006; Assadipour et al., 2015; Li et al., 2015; Jiang et al.,

2017). They sometimes include fixed costs for selecting services, which relates to the

tactical service network design. This can be explained by the fact that routes selected

at the tactical decision level may no longer be feasible if disruptions occur at the op-

erational level (Grasman, 2006). Tactical problems usually assume that delivery time

windows can be violated, whereas at the operational phase, time windows are usually

constraints. However, some operational problems allow late delivery at a penalty cost

(Bock, 2010; Verma et al., 2012; Assadipour et al., 2015; van Riessen et al., 2016).

This shows that different decision levels are linked. Although some papers include

more than one decision level, most research focuses on a single problem and decision

level. This research combines two operational problems. The integrated problem is

used to study the influence of changes in tactical decisions on operational transport

costs.

Service characteristics and objectives A mix of different types of transport ser-

vices may be used, such as flexible or fixed, and own or externally managed services

(e.g., Moccia et al. (2011)). Flexible services can be activated ad hoc in accord-

ance with the requirements, such as the decision to operate trucks or purchase slots

on trains during peak periods, while fixed services usually provide a fixed capacity

between a given departure and arrival location with a given schedule. Operators

need to determine the capacity of own means and negotiate slot contracts with third

parties based on estimated future demand. While services operated by other parties

are generally purchased at a fixed cost per container, own services may be subject to

economies of scale (e.g., Chang (2008); Caramia and Guerriero (2009); Moccia et al.

(2011)).

For each service offered, current literature generally includes high-level capacity

restrictions such as a maximum ‘flow’ or ‘quantity’ (these cases are indicated with (1)
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Table 2.1: Tactical service network design problems.
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Andersen and Christiansen (2009) T 1 x − x − x − − − x − x − −

Pedersen et al. (2009) T 1 x − x − − − − − x − − − −

Andersen et al. (2009a) T 1 x − x − x − − − x − − − −

Andersen et al. (2009b) T 1 x − x − x − − − x − − − −

Bai et al. (2010) T 1 x − x − − − − − x − − − −

Vu et al. (2013) T 1 x − x − − − − − x − − − −

Zhu et al. (2014) T #wgns x − x − x − − − x x − − −

Chouman and Crainic (2015) T 1 x − x − − − − − x − − − −

van Riessen et al. (2015) T 2,3 x − − − x − − − x − − − −

Baykasoğlu and Subulan (2016) T 1 x − − − − − − x x x − − x

Qu et al. (2016) T 1 x − − − − − − − x x − − x

Demir et al. (2016) T 3 x x − − x x − − x x − − x

Rudi et al. (2016) T 1,2 − − − − − − x − x x − − x

Li et al. (2017) T 1 x − x − x − − − x − − − −

SteadieSeifi et al. (2017) T/O 1 x − x x x − − − x x − − −

O = Operational

T = Tactical

1 = limit on the number of containers

2 = weight limit

3 = length limit
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Table 2.2: Operational intermodal routing problems.

Problem characteristics Objectives
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Barnhart and Ratliff (1993) O − − − − x* − − − − x − − − −

Boardman et al. (1997) O − − − − − − − − − x x − − −

Ziliaskopoulos and Wardell (2000) O − − − − − x x − − − x − − −

Erera et al. (2005) O 1 − − x x* x − − − x − − − −

Grasman (2006) O/T − x x x x* − − − x x x − − −

Chang (2008) O 1 x − − x x − x x x x − − −

Caramia and Guerriero (2009) O/T 2 x − − x x − x x x x − − −

Bock (2010) O 2, 3 − x − − − − − − x − − − −

Moccia et al. (2011) O 1, 2, 3 x − − x x − x − x − − − −

Yang et al. (2011) O − x − − − − − − x x x x − −

Gromicho et al. (2011) O − − − − x x − − − x − − − −

Cho et al. (2012) O − − − − − x − − x x x − − −

Verma et al. (2012) O 1 x − − − − − x x − − x −

Assadipour et al. (2015) O 1 x − x − − − − x x − − x −

Li et al. (2015) O 3 − x x − x x − − x x − − −

Resat and Turkay (2015) O 1 − − − − x x − x x x − − −

Zhang and Pel (2016) O 3 − − − − x − − − x x − − −

Behdani et al. (2016) O 1 − − − x x − − − x x − − −

van Riessen et al. (2016) O 2, 3 − x − − x − − − x − − − −

Di Febbraro et al. (2016) O 1; #wgns − x − x x − − − x x − − −

Jiang et al. (2017) O 1 x − x − − − − − x − − − −

O = Operational

T = Tactical

1 = limit on the number of containers

2 = weight limit

3 = length limit

x*: only delivery time
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in Table 2.1, i.e., a limited number of containers that can be loaded). Some papers

include a total allowed maximum length in twenty foot equivalent units (TEU) or

weight per service. From contacts with the transport sector, we learned that rail

transport contracts with external parties include agreements which stipulate how

much transport capacity is purchased. Slot agreements include detailed information

on the number of slots, their (length) dimensions and the allowed weight for each

selected slot. For own services, wagons are leased for a longer period based on expected

transport requests. These aspects related to the determination of the mix of slot

types should be determined at the medium term (i.e., tactical decision level). At

the operational level, multiple types of capacity limits are included by Bock (2010);

Moccia et al. (2011); van Riessen et al. (2016) and Di Febbraro et al. (2016). At the

tactical level, van Riessen et al. (2015) and Rudi et al. (2016) consider a maximum

weight and length, and number of containers and weight respectively.

Pre- and end-haulage costs are part of the total route costs, and are usually

considered as direct links between shipper or receiver nodes and terminal nodes in

the transport network. Combinations of pickup and delivery tasks during drayage

operations are not accounted for, but occur in practice.

2.2.2 Pre- and end-haulage transport

Intermodal local drayage operations are concerned with the pickup and delivery of

full-truckload inbound and outbound containers in the service region of an intermodal

terminal within time windows at terminals and customer locations (Caris and Jans-

sens, 2009). The aim is to find efficient truck routes between intermodal terminals

and customer locations, where truck typically have a capacity of a single full con-

tainer. For example, Figure 2.3 shows that the total transport distance and cost can

be reduced allowing direct transport between customer locations (i.e., street turns),

in comparison to transport between terminals and customers (where street turns are

not considered), by reducing empty transport distances.

An overview of intermodal drayage problems and their characteristics in the lit-

erature is provided in Table 2.3. For a state of the art on general vehicle routing

problems the reader is referred to Toth and Vigo (2014) and Braekers et al. (2016b).

The vehicle fleet is often considered homogeneous; only two papers discuss a het-

erogeneous fleet (Dotoli and Epicoco, 2016; Pérez Rivera and Mes, 2017). Multiple

vehicle depots can be included (Zhang et al., 2009, 2010; Nossack and Pesch, 2013;

Sterzik and Kopfer, 2013; Reinhardt et al., 2016; Shiri and Huynh, 2016). Moreover,

to cope with imbalances between demand and supply of containers at different loca-
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Table 2.3: Intermodal drayage problems.
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Wang and Regan (2002) 1 1 − − x* −

Francis et al. (2007) M 1 − x x x

Imai et al. (2007) 1 1 − − − −

Caris and Janssens (2009) 1 1 − − x −

Zhang et al. (2009) 1 M − x x x

Caris and Janssens (2010) 1 1 − − x −

Zhang et al. (2010) M M − x x x

Braekers et al. (2013) M 1 − x x x

Escudero et al. (2013) 1 1 − − − x

Nossack and Pesch (2013) M M − x x x

Sterzik and Kopfer (2013) M M − x x x

Dotoli et al. (2015) 1 1 − − − −

Dotoli and Epicoco (2016) 1 1 x − x −

Reinhardt et al. (2016) M M − x x −

Shiri and Huynh (2016) 1 M − x x x

Pérez Rivera and Mes (2017) M 1 x x x x

* = only pickup time window

M = multiple

HE = heterogeneous
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Figure 2.3: Intermodal drayage: street turns.

tions, the allocation of empty containers can be modelled (Francis et al., 2007; Zhang

et al., 2009, 2010; Braekers et al., 2013; Nossack and Pesch, 2013; Sterzik and Kopfer,

2013; Reinhardt et al., 2016; Shiri and Huynh, 2016; Pérez Rivera and Mes, 2017).

Time windows at intermodal terminals reflect either opening hours of terminals or

ultimate arrival times for a long-haul service selected in advance. In the latter case,

the long-haul service network and routing characteristics are implicitly included and

assumed to be given.

Although a number of papers include multiple terminals (Francis et al., 2007;

Zhang et al., 2010; Sterzik and Kopfer, 2013; Nossack and Pesch, 2013; Braekers

et al., 2013; Shiri and Huynh, 2016; Pérez Rivera and Mes, 2017), it is generally

assumed that the pickup location (i.e., arrival terminal) of inbound full containers

and delivery location (i.e., departure terminal) of outbound full containers are known

and fixed. This implies that long-haul routing decisions are assumed to be given.

2.2.3 Research opportunities

Integrating the decision on which pickup tasks and delivery tasks to combine in truck

routes when making intermodal routing decisions may lead to reduced trucking costs

and possibly different long-haul itineraries for individual containers. The integration

of both interdependent problems, the determination of long-haul routes and drayage

routes, into an integrated intermodal container routing problem may result in im-

portant cost savings. However, research efforts which simultaneously consider both

decisions are still limited.

In the literature on dial-a-ride problems, Posada et al. (2017) integrate transfers

to and from timetabled public transport into demand-responsive passenger transport.
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Similarly, decisions on which transfer terminals to use (and thus which public trans-

port line) are made simultaneously with vehicle routing decisions. Public transport

offers a high frequency and many intermediate stops compared to freight transport by

rail, and the public transport capacity is generally very high. These characteristics

imply an inherent difference in the problem setting. The closest related research on

freight transport consists of a number of recent research efforts. Medina et al. (2018)

synchronise the service network design and vehicle routing problem by assigning each

customer location to a single terminal. Dragomir et al. (2018) formulate a less-than-

truckload (LTL) pickup and delivery problem with interregional lanes for long-haul

vehicles between multiple regions, using multiple depots transport modes. No solu-

tion method is provided. Soriano et al. (2018) solve a two-region LTL multi-depot

pickup and delivery problem. However, long-haul schedules and capacity limits for

the main-haul, multi-day truck scheduling and heterogeneous vehicles are not con-

sidered. Wolfinger et al. (2018) also consider transport over longer distances using

multiple transport modes. They include a limited daily active time, but no min-

imum overnight’s rest. Further, as schedules or capacity restrictions for the long-haul

are ignored, trade-offs between drayage costs and long-haul routing cannot be ex-

amined. Current research on integrating short- and long-haul flows in intermodal

freight transport is still very recent and scarce. The fact that long-haul transport

capacity is usually limited and operates according to service schedules is generally

ignored. No research exists in which realistic truck driving hours with respect to the

daily active time as well as a minimum amount of rest are included.

Moccia et al. (2011) focus on the decision of which mix of fixed and flexible (re-

quested ad hoc) services should be activated from other operators, given the fact

that certain train services are purchased with train weight and length limits. Their

problem is clearly related. However, truck routing in a service region and detailed ca-

pacity considerations are not included. With respect to intermodal drayage, only one

paper (Pérez Rivera and Mes, 2017) includes a flexible terminal assignment cost in a

vehicle routing problem within the service region of an intermodal terminal. However,

no long-haul service characteristics are incorporated. To the best of our knowledge,

no paper considers both real-life rail service and drayage characteristics and handles

intermodal routing and drayage in an integrated way.

With respect to capacity levels, clear differences exist between literature on in-

termodal routing and train load planning. Current research on train load planning

includes detailed capacity requirements (i.e., size and weight) when containers are

already assigned to specific rail routes. On the other hand, problems aimed at rout-

ing containers throughout a service network generally consider a very high-level view
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on capacity (e.g., a number of containers). Furthermore, in practice, at the tactical

decision level, the intermodal operator determines slots to be purchased on externally

managed trains and wagon lease agreements of own services. This relates to the phys-

ical dimensions of transport requests at the operational level (e.g., 30ft, 45ft). When

demand for transport requests is high, capacity limits of slots of each dimension on

external services or the total available length or weight for own services may influence

the selected long-haul route for individual requests (e.g., if not enough capacity is

available of a specific dimension at one service, another should be selected). Within

this regard, a heterogeneous fleet of trucks is also employed for containers of varying

dimensions. These more detailed capacity requirements related to the dimensions of

slots, wagons and trucks must be integrated into container routing decisions.

In the remainder of this chapter, the intermodal local drayage problem with a

heterogeneous truck fleet is combined with a long-haul routing problem with detailed

capacity considerations into an integrated intermodal routing problem. The vehicle

routing problem includes multiple depots located at terminal locations and a flexible

departure and arrival terminal allocation, which implies flexible delivery and pickup

locations in each region.

2.3 Problem description

Direct freight transport between (large-volume) terminals is usually operated based

on weekly planning cycles with fixed, regular service schedules and capacity for each

connection (Crainic and Kim, 2007), which can be established if high volumes are

available to be transported between two regions. These schedules include cut-off

times, indicating the latest moment at which freight must be available at the departure

terminal to meet the scheduled departure, and release times, at which freight becomes

available at the destination terminal.

The planning department of an intermodal service provider must decide on the

tactical service network design as well as daily operational routing of individual con-

tainers. The service network indicates which and how many terminals are operated in

a service region, and connects these terminals in different service regions by long-haul

services. The transport of individual requests (cfr. freight containers) from their cus-

tomer origin to their customer destination relates to two decision. On the one hand,

intermodal routing decisions should be made. For each container, the departure and

arrival terminals have to be decided upon, taking into account the long-haul connec-

tions, schedules and capacities in the network. On the other hand, drayage operations
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should be arranged accordingly. Inbound containers are picked up by trucks at in-

termodal terminals while outbound containers must be delivered at terminals. This

involves solving a vehicle routing problem in each service region.

The intermodal routing problem deals with own rail services (i.e., the company

owns a train and rents a railway path), as well as the fact that slots may need to be

purchased on rail services managed by other parties. At the tactical level, this means

that for own trains, the company should negotiate with infrastructure managers on

the rented railway paths. For rail services managed by other parties, the company

should decide how many slots of each container length are rented for a fixed period.

Both decisions are fixed for multiple months. At the moment of renegotiating both

types of transport contracts, the proposed solution method provides decision support.

For example, the impact of expectations about future demand or tactical decisions

on the offered services and used terminals can be evaluated.

Context Given a long-haul service network with fixed schedules, the aim is to op-

timally utilise the available intermodal network in order to minimise the total trans-

port cost of the complete system, which consists of rail transport costs and truck

routing costs. Within this objective, no unimodal direct trucking between customer

origins and destinations is allowed, which is acceptable if the distance between two

freight regions is relatively high. Moreover, within the scope of this chapter, it is

assumed that empty container repositioning between terminals is determined after-

wards in accordance with the demand for empty containers. An example of a network

is visualised in Figure 2.4.

Figure 2.4: Two-region intermodal network.

Contributions To the best of our knowledge, a new, integrated intermodal rout-

ing problem is proposed and compared with a sequential approach in which first
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intermodal routing decisions and next decisions on drayage operations are made.

An integrated planning approach simultaneously decides on the routing of containers

throughout the network and local truck routing in each service region. By considering

drayage and long-haul costs simultaneously, total transport costs may be reduced. In

this integrated approach, the customer pickup location for outbound containers and

the customer delivery location of inbound containers within each service region are

known and time windows at customer locations are fixed. A container can be trans-

ported via any available long-haul connection, implying that the departure and arrival

terminal are not fixed.

Service contracts with other transport operators include detailed capacity inform-

ation, such as a number of slots per length type and weight category. Moreover, not

all containers can be carried by any truck, depending on the dimensions of containers

and trucks. This may result in separate routes for different types of containers and

trucks. Different container types related to the physical dimensions are assigned to

the appropriate slot dimensions for long-haul rail services and with the routing of a

heterogeneous fleet of trucks for pre- and end-haulage operations. While trucks start

and end their route at a depot located at a terminal, they can be out for multiple days

before returning to the depot. An overnight’s minimum resting period is enforced at

any location after a maximum daily active time. These operational considerations

influence the routing decisions and should therefore be included.

In the next sections, operational capacity requirements are included in decisions

on both routes of containers throughout a service network and intermodal drayage

routes for pickups and deliveries. The aim is to analyse potential savings by using

an integrated approach, and to provide insights in how to best utilise the current

network for intermodal activities.

2.4 Problem formulation

An intermodal service operator considers a number of full-container requests which

should be transported from their customer origin location to their customer destina-

tion location through an intermodal network with two large service regions. Within

each service region, local pre- and end-haul operations should be performed. Between

both service regions, long-haul transport is available. The aim is to minimise the total

transport cost, which consists of both rail transport and trucking costs.

Each request has a known weight, length (or container type), and time window

within which it can be transported, and must be routed throughout the intermodal
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network from its customer origin location to its customer destination location. Time

windows consist of an earliest pickup time at the customer origin location (i.e., release

time of a request) and a latest arrival at the customer delivery location (i.e., due time

of a request).

The long-haul network consists of a number of terminals in each service region.

Links representing available services connect the terminals in periodical, usually

weekly, planning cycles. Each rail service is characterised by a capacity limit, a de-

parture terminal and an arrival terminal, a cutoff time before which containers using

that service must arrive at the departure terminal and a time at which the containers

are released at the arrival terminal, after which the containers are available for pickup

by trucks for last-mile drayage. Multiple services with the same departure and arrival

terminal may exist with different departure days and times. It is assumed that the

available scheduled services are known and a long-haul service has to be selected for

each load unit. The rail haul cost for transporting a request using a service depends

on the service and the container type of each request.

Within each service region, trucks perform pickup and delivery operations. Each

request requires two truck drayage tasks, one pickup task from its customer origin

location to any terminal in the service region, and one delivery task from any terminal

in another region to its customer destination location. In between two terminal nodes,

different rail connections may be available. Truck depots are located at some of the

terminals. Containers never stay at a customer location, as trucks wait for loading

or unloading. A limited, heterogeneous fleet of trucks, with a capacity of a single

container, is available, with as many container types as truck types. Two types of

dimensions are considered, and this is assumed for each of the two service regions.

This results in four sets of vehicles, each with a limited capacity. Separate truck

routes for each type of container must be established. Truck costs are assumed to

be proportional to the travelled distance. Trucks depart at the start of the planning

horizon at a depot and return before the end of the planning horizon, consisting of

multiple consecutive days, to the same depot. After performing pickup an delivery

operations during a maximum daily active time, trucks should spend the night at any

node in the network for a minimum overnight’s rest time.

Flows in both directions between the service regions are considered to route con-

tainers in two ways between the regions, which implies that the truck routing in each

of the regions includes both pickup tasks of containers at customers to deliver at ter-

minals and delivery tasks of containers picked up at terminals to customer locations.

pickup and delivery locations of containers are known while containers can be flexibly

routed throughout the rail network.
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This results in the following notation.

Sets and indices

K = {1, ..., |K|} = set of vehicles, index k

D = {1, ..., |D|} = number of days in the planning horizon, index d

R = {1, ..., |R|} = set of containers (requests), index r

NP = {1, ..., |R|} = set of customer pickup locations, index g, h, one per request

ND = {|R|+ 1, ..., 2|R|} = set of customer delivery locations, index g, h,

one per request, with delivery node |R|+ g related to pickup node g ∈ NP

NT = {2|R|+ 1, ..., 2|R|+m} = set of m terminal nodes, index g, h

N = {1, ..., 2|R|+m} = node set with terminals, pickup and delivery nodes

= NP ∪ND ∪NT

V = {1, ..., |V |} = possible physical dimensions for containers/trucks/slots,

index v

Sown = set of own long-haul services

Sext = set of externally owned long-haul services

S = set of long-haul services with index s between terminals,

where S = Sown ∪ Sext

Parameters

ar = release time of container r ∈ R

br = due time of container r ∈ R

lr = length dimension of container/truck/slot r ∈ R, with lr ∈ L

wr = weight of container r ∈ R

regg = region in which node g ∈ N is located, regg ∈ {1, 2}

tg = service duration at node g, i.e., (un)load time

tgh = truck travel time between two nodes g and h,

with tgh =∞ if regg 6= regh

cgh = truck travel cost between two nodes g and h

Ls = maximum length allowed on service s ∈ Sown
Ws = maximum weight allowed on service s ∈ Sown
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Csl = maximum number of containers of dimension l on service s ∈ Sext
λdeps = departure terminal of service s ∈ S with λdeps ∈ NT

λarrs = arrival terminal of service s ∈ S with λarrs ∈ NT , regλarrs
6= regλdeps

T deps = cut-off time for load units to be at departure terminal for service s ∈ S

T arrs = release time of load units at arrival terminal for service s ∈ S

The problem will be solved in the following two ways in order to compare an

integrated approach with a sequential approach. The sequential method first assigns

each request to a long-haul service. At this point, only direct truck cost from customer

origin to departure terminal and from arrival terminal to customer destination are

accounted for. A request can only be assigned to a service if the departure terminal

can be reached in time with a direct truck route from the customer pickup location

to the departure terminal, and the customer delivery location can be reached in time

with a direct truck route from the arrival terminal to the customer delivery location.

Furthermore, capacities of the services are accounted for. The objective is to find

the least-cost assignment, where trucking costs are approximated using the direct

distances between customer locations and the selected terminals. Consequently, a

single pickup task - from a customer pickup location to a known departure terminal

- and a single delivery task - from a known arrival terminal to a customer delivery

location - are defined for each request. In a second phase, after the assigned service

is fixed for each request, for each region these drayage tasks are combined into truck

routes which minimise the total trucking cost. Only in this second phase, empty truck

movements are accounted for. The integrated approach considers both the service

selection and the truck routing simultaneously. Besides direct truck costs, costs for

constructing vehicle routes, i.e., also costs for the movement of empty trucks, are

accounted for in the decision on the long-haul rail service. This implies that the

entire truck route costs are considered when assigning requests to services, instead of

just the transport costs incurred by travel between a customer location and a terminal.

Both subproblems of the sequential approach are discussed in Section 2.4.1. The

section presents a mathematical formulation for the intermodal long-haul routing

problem for routing containers through a given intermodal network of long-haul ser-

vices, as well as the vehicle routing problem used to minimise trucking costs for local

pickups and deliveries of full containers. Finally, both problems are considered sim-

ultaneously in Section 2.4.2 in order to minimise the total operational cost of the

intermodal truck-rail transport network using an integrated approach.
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2.4.1 The sequential approach

2.4.1.1 The intermodal long-haul routing problem

Given the available periodic service schedules and characteristics, the aim of the

intermodal routing problem is to determine the movement of requests throughout the

given network in order to minimise total transport cost, consisting of the pre-haul

trucking cost from a customer pickup location and the departure terminal, long-haul

rail costs, and end-haul trucking from the arrival terminal to the customer delivery

location. Each container r departs from a single, unique pickup node g ∈ NP (i.e., the

customer origin location) after its release time ar. First-mile local drayage is used for

transport to a rail terminal node h ∈ NT in the same region. After arriving at a rail

terminal in another region, the container is transported by truck to a unique delivery

node |R|+ g ∈ ND, located at the customer destination location, before its due time

br. Trucking costs are included by means of a cost which depends on the distance

between a customer location and the selected terminal. Moreover, time windows and

service departure times are accounted for. Our problem is formulated as follows:

Parameters

cprers = trucking cost between customer origin location of r and departure

terminal of service s

cendrs = trucking cost between arrival terminal of service s and customer

destination location of r

crailrs = rail cost for container r on service s

tprers = trucking time between customer origin location of r and departure

terminal of service s

tendrs = trucking time between arrival terminal of service s and customer

destination location of r

Decision variables

Xrs =

1, if container r uses rail service s,

0, else

For a single planning period, which consists of a one-week planning cycle, the

following problem can be formulated.

Problem P1:

min
∑
r∈R

∑
s∈S

(cprers + crailrs + cendrs ) ·Xrs (2.1)
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subject to∑
s∈S

Xrs = 1 ∀r ∈ R (2.2)∑
r∈R|lr=l

Xrs ≤ Csl ∀s ∈ Sext; l ∈ L (2.3)

∑
r∈R

lr ·Xrs ≤ Ls ∀s ∈ Sown (2.4)∑
r∈R

wr ·Xrs ≤Ws ∀s ∈ Sown (2.5)

ar + tr + tprers + tλdeps
≤ T deps + (1−Xrs) ·M1

rs ∀r ∈ R; s ∈ S (2.6)

T arrs + tλarrs
+ tendrs + tr+R ≤ br + (1−Xrs) ·M2

rs ∀r ∈ R; s ∈ S (2.7)

Xrs ∈ {0, 1} ∀r ∈ R; s ∈ S (2.8)

The objective is to minimise total transport costs (2.1). Exactly one service is

to be selected for each load unit, as indicated by constraints (2.2). The total capa-

city between two rail nodes is limited by constraints (2.3)–(2.5). The heterogeneous

slots purchased on external long-haul services are linked with containers of the same

dimensions by constraints (2.3). For own long-haul services, constraints (2.4) and

(2.5) impose a maximum length and weight respectively. It is assumed that a feas-

ible assignment of containers to the specific locations on wagons can be found using

a detailed train load planning algorithm as for example proposed in Chapters 4 to

6. Furthermore, each container r can only be assigned to a specific rail service if

its release time ar at the customer increased with the time needed to arrive at the

considered terminal allows the container to arrive before the service departure (2.6).

Each container can only leave a terminal after release at the arrival terminal of the se-

lected service, and must arrive at its customer delivery location before its due date br

(2.7). For these time constraints, M1
rs = max{0; ar + tr + tprers + tλdeps

− T deps }, and

M2
rs = max{0;T arrs + tλarrs

+ tendrs + tr+R − br} respectively. Finally, the decision

variables Xrs are binary (2.8).

2.4.1.2 Vehicle routing problem in each region

Within the scope of this problem, it is assumed that the terminal at which each con-

tainer should be picked up or delivered, is known and fixed because the long-haul

problem has been solved first. Total truck route costs in each of the service regions

should be minimised, given pickup and delivery locations of containers. Additionally,

separate truck routes are established for each vehicle type and related container di-
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mensions v. This results in 2 · |V | routing problems, one for each vehicle type in each

region. The proposed formulation can solve these problems all at once.

Each container (or request) requires two drayage tasks. Each drayage task has

a pickup node g and delivery node h, of which one is always a customer pickup or

delivery location and the other a terminal location to drop off or pick up a container.

Depots i ∈ NDep at which trucks must start and end their routes are located at

at least one terminal location per region. The resulting problem is a full-truckload

pickup and delivery problem with time windows.

The problem can be formulated as an asymmetric multiple vehicle travelling sales-

man problem with time windows (am-TSP-TW) (Braekers et al., 2013), in which a

pickup node g and its corresponding delivery node h are merged into a single node i

and the distance between two nodes i differs depending on the travel direction. Using

the notation of Braekers et al. (2013), each node i ∈ O can be:

� a depot node (i ∈ ODep), ODep identical to NDep

� a pickup task (i ∈ Oprer ), which consists of a customer pickup location (g ∈ NP )

and a terminal (h ∈ NT ), both located in the same service region.

� an delivery task (i ∈ Oendr ), which consists of a terminal (g ∈ NT ) and a

customer delivery location (h ∈ ND).

This implies the following characteristics of each node i:

� a service time ti = tg + tgh + th, with ti = 0 ∀i ∈ ODep.

� a cost of visiting a node ci = cgh, with ci = 0 ∀i ∈ ODep.

� a node type li, related to the request dimensions. If the node is a pickup task

(g ∈ NP , and consequently h ∈ NT ), li = lg, while li = lh if it is a delivery task

(h ∈ ND, and consequently g ∈ NT ).

� a time window [ai, bi] within which service at node i should start. For pickup

tasks (g ∈ NP ): ai = ag, bi = T deps −ti. For delivery tasks (h ∈ ND): ai = T arrs ,

bi = bh − ti.

� a rail service σi ∈ S, related to node i.

As a rail service σi is selected for each request in a previous phase, a single pickup

and a single delivery node related to each request are known. Routes have to be

established in which different nodes are linked, and each truck must start and end its

route at a depot. In order to be able to limit the total maximum duration of a truck
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route, each depot node i ∈ NDep is duplicated two times the maximum number of

vehicles of the considered type available at the depot. This results in d depot nodes,

with d = 2 ∗ V ehicles ∗Depots, as each route k must start at start depot i = ODepsk ,

and end at its related end depot j = ODepek = i+ d/2. Physical dimensions differ per

truck, and the number of trucks of each dimension is limited in each region.

It would not be realistic to assume that drivers can continue their routes infinitely

until the end of the planning horizon. To guarantee a limited daily active route

duration and impose a minimum overnight rest, variable md
ki is added, which is a

binary variable that indicates whether truck k spends the night following day d at

node i. A binary variable αdi indicates whether the service in node i is performed at

any day or time before night d (αdi = 1) or after night d (αdi = 0). In the formulation,

the value of the variable αdi is only relevant if
∑
k∈K

md
ki = 1. During the execution of

a single drayage task (represented by the service of node i), the truck is loaded, and

trucks are not allowed to take an overnight rest. As the last night of the planning

horizon constitutes the end of the planning horizon, no overnight stay is included for

the night after the last day of the planning horizon.

The compatibility between two nodes in a given route (i.e., for a single truck) cpijk

indicates whether the truck type available for a route k is compatible with two nodes

i and j. Depot nodes are characterised by the dimensions v of the truck linked to that

route. Therefore, node i and j are compatible in the route of truck k (cpijk = 1) if

their dimensions are identical (li = lj = lk), i.e., two identical types of requests with

the same dimensions and a truck with the same dimensions, and if they are located

in the same region (i 6= j, regi = regj , regi = regk). Finally, M is a sufficiently large

number.

The following additional notation is used.

Sets:

ODeps = set of start depots, index i, j

ODepsk = start depot of vehicle k, index i, j

ODepe = set of end depots, index i, j

ODepek = end depot of vehicle k, index i, j

ODep = set of depots, index i, j

=
⋃
k

ODepsk ∪
⋃
k

ODepek ,with one duplicate depot per route/vehicle k

Oprer = pickup task for request r, indices i, j

Oendr = delivery task for request r, indices i, j
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O = ODep ∪
⋃
r

Oprer ∪
⋃
r

Oendr , set of nodes, indices i, j

Parameters:

Qad = earliest time at which trucks can depart after an overnight’s rest

at the end of day d, with 1 ≤ d < |D|

Qbd = latest time at which trucks finish their active time before an overnight’s

rest at the end of day d, with 1 ≤ d < |D|

Tmax = maximum daily duration of a single truck route

Tmin = minimum night’s rest between routes on two consecutive days

cpijk =

1, if nodes i ∈ O, j ∈ O in route k are compatible

0, else

cTij = trucking cost of travelling from the end of node i to the start of node j

ci = cost of serving node i

ti = service time at node i

σi = rail service related to pickup or delivery node i ∈ O \ODep

tij = trucking time between nodes i and j

Decision variables

Ai = arrival time at node i ∈ O

Bi = begin time of service at node i ∈ O

Di = time at which a vehicle leaves the destination location of task i ∈ O

BT dk = start time of route k on day d+ 1, with 1 ≤ d < |D|

ET dk = end time of route k on day d, with 1 ≤ d < |D|

md
ki =

1, if vehicle k spends the night following day d at node i

0, else

αdi =

1, if service of i is performed before the night following day d

0, else

Yijk =

1, if arc (i, j) is used in route k, with cpijk = 1

0, else

The am-TSP can be formulated as follows:
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min
∑
k∈K

∑
i∈O

∑
j∈O

(cTij + ci) · Yijk (2.9)

subject to

Yijk ≤ cpijk ∀i, j ∈ O, k ∈ K (2.10)∑
k∈K

∑
j∈O

Yijk = 1 ∀i ∈ Oprer , i ∈ Oendr , r ∈ R (2.11)

∑
j∈O

Yijk =
∑
j∈O

Yjik ∀i ∈ O \Odep, k ∈ K (2.12)

∑
j∈O\Odep

Yi1jk =
∑

j∈O\Odep
Yji2k ∀k ∈ K, i1 ∈ ODepsv , i2 ∈ ODepev (2.13)

∑
k∈K

∑
j∈O

Yijk ≤ 1 ∀i ∈ ODeps (2.14)

∑
i∈O

md
ki = 1 ∀1 ≤ d < |D|, k ∈ K (2.15)

md
ki ≤

∑
j∈O

Yijk ∀i ∈ O, k ∈ K, 1 ≤ d < |D| (2.16)

ai ≤ Bi ≤ bi ∀i ∈ O (2.17)

Ai ≤ Bi ∀i ∈ O (2.18)

Bi + ti ≤ Di ∀i ∈ O (2.19)

Di + tij ≤ Aj + (1−
∑
k∈K

Yijk) ∀i ∈ O, j ∈ O (2.20)

Bi ≥ Qad − (1−
∑
k∈K

md
ki)M − αdi ·M ∀i ∈ O, 1 ≤ d < |D| (2.21)

Bi + ti ≤ Qbd
+ (1−

∑
k∈K

md
ki)M + (1− αdi )M ∀i ∈ O, 1 ≤ d < |D| (2.22)

BT dk ≤ Di + (1−md
ki)M + (1− αdi ) ·M ∀i ∈ O, k ∈ K, 1 ≤ d < |D| (2.23)

BT dk ≤ Bi + (1−md
ki)M + αdi ·M ∀i ∈ O, k ∈ K, 1 ≤ d < |D| (2.24)

ET dk ≥ Ai − (1−md
ki)M − αdi ·M ∀i ∈ O, k ∈ K, 1 ≤ d < |D| (2.25)

ET dk ≥ Bi + ti − (1−md
ki)M − (1− αdi )M ∀i ∈ O, k ∈ K, 1 ≤ d < |D| (2.26)

BT dk ≥ Qad ∀k ∈ K, 1 ≤ d < |D| (2.27)

ET dk ≤ Qbd ∀k ∈ K, 1 ≤ d < |D| (2.28)

ET 1
k −Di ≤ Tmax ∀k ∈ K, i ∈ Odepsk (2.29)
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ET dk −BT d−1
k ≤ Tmax ∀k ∈ K, 1 < d < |D| − 1 (2.30)

Aj −BT |D|−1
k ≤ Tmax ∀k ∈ K, j ∈ Odepek (2.31)

BT dk − ET dk ≥ Tmin ∀k ∈ K, 1 ≤ d < |D| (2.32)

BT dk , ET
d
k ≥ 0 ∀k ∈ K, 1 ≤ d < |D| (2.33)

αdi ∈ {0, 1} ∀i ∈ O, 1 ≤ d < |D| (2.34)

md
ki ∈ {0, 1} ∀i ∈ O, k ∈ K, d ∈ D (2.35)

Yijk ∈ {0, 1} ∀i, j ∈ O, k ∈ K (2.36)

The objective is to minimise total trucking costs (2.9) for the pickup and delivery

of customer requests. Two nodes can only be connected if physical dimensions of

nodes and vehicles are compatible (2.10). Each pickup and delivery node is visited

once by a compatible vehicle (2.11). Constraints (2.12) imply at most one entering

and one leaving vehicle for each pickup and delivery node. Constraints (2.13) link the

start depot and end depot of each route. Only one route can depart from each start

depot (2.14), which results in a single entering arc for each related end depot.

Constraints (2.15) determine for each vehicle and day in the planning horizon

the node at which a night’s rest is included, while this can only occur if that node

has an outgoing arc (constraints (2.16)). Time windows for feasible service starts at

each node must be respected (2.17)–(2.19). Constraints (2.20) set the time variables

between subsequent nodes.

Constraints (2.21)–(2.26) represent three pairs of constraints of which either one

or the other must hold, depending on whether a service in a node is executed at any

time or day before or after spending a particular night at that node. They determine

the service start within daily time windows (constraints (2.21)–(2.22)), daily route

start times (constraints (2.23)–(2.24)) and daily route end times (constraints (2.25)–

(2.26)). Constraints (2.27)–(2.28) imply a departure after the start of day d and a

finish of the daily active time before the end of that day.

Furthermore, a limit is placed on the time a truck can operate in a single daily

route (2.29)–(2.31). The minimum night’s rest between arrival and departure for a

given node at which a night’s rest is spent is included by means of constraints (2.32).

Finally, the decision variables BT dk and ET dk are defined as positive real numbers

(2.33), and αdi , m
d
ki and Yijk must be binary (2.34)–(2.36).

2.4.2 The integrated intermodal container routing problem

In the integrated approach, truck routing and rail planning decisions are interde-

pendent and made simultaneously. Now, truck cost are immediately defined as the
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total cost of combining pickup and delivery tasks into truck routes as considered

in the VRP. In the sequential problem, initially solely transport operations between

each customer location and the assigned terminal are included in the long-haul rout-

ing problem, after which only the second subproblem (i.e., the VRP) considers total

trucking distances.

For a single request r, multiple pickup tasks Oprer and delivery tasks Oendr are

available, related to the available services. A single, feasible pickup and delivery task

have to be performed in order to transport a request from its customer origin to

its destination. A new variable Zi = 1 if a drayage task i should be performed as

a consequence of selecting the related long-haul service. All feasible drayage tasks

serve as input to the problem and are defined as follows. A drayage task i for pickup

operations (i.e., a combination of a pickup location g ∈ NP with a rail departure

terminal h ∈ NT related to available service s, i.e., λdeps = h) is feasible if the pickup

location and departure terminal of a service are located in the same service region

(regg = regλdeps
), and if a timely arrival at the delivery location g+n is possible (i.e.,

ag + tg + tg,λdeps
+ tλdeps

≤ T deps and T arrs + tλarrs
+ tλarrs ,g+n + tg+n ≤ bg).

A drayage task i for delivery operations (i.e., a combination of a rail arrival ter-

minal g ∈ NT of an available service s, i.e., λarrs = g, with a delivery location

h ∈ ND) is feasible if the pickup location and departure terminal of a service are

located in the same service region (regλarrs
= regh), and if a timely arrival at the

delivery location h is possible (i.e., ah−|R| + th−|R| + th−|R|,λdeps
+ tλdeps

≤ T deps and

T arrs + tλarrs
+ tλarrs ,h + th ≤ bh). The following additional notation is used:

Decision variables:

Zi =

 1 if node i is visited

0 else

The problem is formulated as follows:

min
∑
r∈R

∑
s∈S

crailrs ·Xrs +
∑
k∈K

∑
i∈O

∑
j∈O

cTij · Yijk +
∑
i∈O

ci · Zi (2.37)

subject to

Rail constraints:∑
s∈S

Xrs = 1 ∀r ∈ R (2.38)
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∑
r∈R|lr=l

Xrs ≤ Csl ∀s ∈ Sext; l ∈ L (2.39)

∑
r∈R

lr ·Xrs ≤ Ls ∀s ∈ Sown (2.40)∑
r∈R

wr ·Xrs ≤Ws ∀s ∈ Sown (2.41)

Trucking constraints:

Yijk ≤ cpijk ∀i, j ∈ O, k ∈ K (2.42)∑
k∈K

∑
j∈O

Yijk = Zi ∀i ∈ O (2.43)

∑
j∈O

Yijk =
∑
j∈O

Yjik ∀i ∈ O \Odep, k ∈ K (2.44)

∑
j∈O\Odep

Yi1jk =
∑

j∈O\Odep
Yji2K ∀k ∈ K, i1 ∈ ODepsk , i2 ∈ ODepek (2.45)

∑
i∈O

md
ki = 1 ∀1 ≤ d < |D|, k ∈ K (2.46)

md
ki ≤

∑
j∈O

Yijk ∀i ∈ O, k ∈ K, 1 ≤ d < |D| (2.47)

ai ≤ Bi ≤ bi ∀i ∈ O (2.48)

Ai ≤ Bi ∀i ∈ O (2.49)

Bi + ti ≤ Di ∀i ∈ O (2.50)

Di + tij ≤ Aj + (1−
∑
k∈K

Yijk) ∀i ∈ O, j ∈ O (2.51)

Bi ≥ Qad − (1−
∑
k∈K

md
ki)M − αdi ·M ∀i ∈ O, 1 ≤ d < |D| (2.52)

Bi + ti ≤ Qbd
+ (1−

∑
k∈K

md
ki)M + (1− αdi )M ∀i ∈ O, 1 ≤ d < |D| (2.53)

BT dk ≤ Di + (1−md
ki)M + (1− αdi ) ·M ∀i ∈ O, k ∈ K, 1 ≤ d < |D| (2.54)

BT dk ≤ Bi + (1−md
ki)M + αdi ·M ∀i ∈ O, k ∈ K, 1 ≤ d < |D| (2.55)

ET dk ≥ Ai − (1−md
ki)M − αdi ·M ∀i ∈ O, k ∈ K, 1 ≤ d < |D| (2.56)

ET dk ≥ Bi + ti − (1−md
ki)M − (1− αdi )M ∀i ∈ O, k ∈ K, 1 ≤ d < |D| (2.57)

BT dk ≥ Qad ∀k ∈ K, 1 ≤ d < |D| (2.58)

ET dk ≤ Qbd ∀k ∈ K, 1 ≤ d < |D| (2.59)

ET 1
k −Di ≤ Tmax ∀k ∈ K, i ∈ Odepsk (2.60)
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ET dk −BT d−1
k ≤ Tmax ∀k ∈ K, 1 < d < |D| − 1 (2.61)

Aj −BT |D|−1
k ≤ Tmax ∀k ∈ K, j ∈ Odepek (2.62)

BT dk − ET dk ≥ Tmin ∀k ∈ K, 1 ≤ d < |D| (2.63)

Linking constraints:

Zi = Xrσi ∀r ∈ R; i ∈ Oprer , i ∈ Oendr (2.64)

Domains:

BT dk , ET
d
k ≥ 0 ∀k ∈ K, 1 ≤ d < |D| (2.65)

αdi ∈ {0, 1} ∀i ∈ O, 1 ≤ d < |D| (2.66)

md
ki ∈ {0, 1} ∀i ∈ O, k ∈ K, d ∈ D (2.67)

Xrs ∈ {0, 1} ∀r ∈ R; s ∈ S (2.68)

Yijk ∈ {0, 1} ∀i, j ∈ O, k ∈ K (2.69)

Zi ∈ {0, 1} ∀i ∈ O (2.70)

The objective is to minimise total trucking and rail costs (2.37) for the delivery of

customer requests. Constraints (2.38)–(2.41) relate to (2.2)–(2.5) of the intermodal

routing problem, where one of the feasible services for each request must be selected

(with for each feasible service, one feasible pickup and one feasible delivery task).

Trucking operations are modelled by means of constraints (2.42)–(2.63), related to

constraints (2.10)–(2.32). As multiple pickup and delivery tasks are often available

for each request r, a single pickup node i ∈ Npre
r and delivery node i ∈ Nend

r should

be visited, which is implicitly included. The link between truck route times and rail

departures and arrivals are included in the definition of the TSP-nodes. Precedence

constraints (2.64) link a single pickup and delivery task per request to its related rail

service. Finally, the decision variables must be positive real numbers (2.65), or binary

(2.66)–(2.70).

2.5 Conclusions

Many intermodal planning problems and decision levels are interrelated, as recently

stressed in literature. In this chapter, literature related to decisions on local drayage

routes and on long-haul intermodal routes is described and research gaps related to

the level of integration between both problems are identified.

Both local drayage and intermodal long-haul routing problems are formulated in a

sequential approach. In this approach, pickup and delivery tasks for truck routes are
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fixed and known, as long-haul routing decisions have been made in advance. Next,

both decisions are made simultaneously in an integrated approach. Its formulation is

presented as an integrated intermodal routing problem. In that case, pickup and de-

livery tasks are not known in advance, as the departure and arrival terminals through

which each request travels depend on the selected long-haul service. Furthermore,

capacity considerations are added which are generally not dealt with in intermodal

routing, such as length and weight limits. This is in line with operational problems

such as the train load planning problem, which does include a very detailed level

of capacity limits. The integrated planning approach, with capacity considerations

for trucking and rail planning, is aimed at maximising the overall long-haul network

capacity utilisation and minimising total transport costs.

For intermodal transport to be advantageous, an integrated planning should be

executed efficiently in order to minimise total transport costs and maximise service

capacity utilisation, which in turn also results in decreasing costs of the transport

system. Costs related to the execution of first- and last-mile drayage operations are an

important aspect within this regard. At the same time, customer requirements should

be respected. Preliminary experiments showed that even problems with a very small

number of requests (i.e., 10 to 15 requests) could not be solved to optimality in short

computation times. As the underlying vehicle routing problem is NP-hard (Lenstra

and Kan, 1981), solving the problem exactly for realistic instance sizes would result

in very large computation times. Additionally, the scheduling, and more specifically

the timing and multi-day aspects of the vehicle routing problem make the integrated

intermodal routing problem hard to solve. The number of feasible drayage tasks (i.e., a

pickup and a delivery task for each service to which a request can be feasibly assigned)

increases substantially with the number of requests and the number of feasible services

per request. Although the number of drayage tasks executed per day will be relatively

low, the vehicle schedule of one day impacts the next day’s schedule start due to a

maximum daily active time and a minimum amount of overnight’s rest. Therefore, a

heuristic algorithm is developed in Chapter 3 to solve the integrated as well as the

sequential planning problem in order to provide decision support for planners in such

complex environment, and quantify potential savings of an integrated approach.
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Chapter 3
A large neighbourhood search

heuristic for the integrated

intermodal routing problem

3.1 Introduction

In Chapter 2, the integrated intermodal routing problem is introduced, which focuses

on the simultaneous decision on intermodal routing and local drayage. A mathemat-

ical formulation for both the sequential and integrated approach are presented. In the

current chapter (Figure 3.1), a large neighbourhood search algorithm is developed to

solve the problem using both approaches. Section 3.2 proposes the structure of the

large neighbourhood search heuristic, including a discussion on the multi-day schedul-

ing procedure required to find feasible truck schedules. A feasible truck schedule has

to respect a minimum overnight’s rest and a maximum daily active time of trucks,

due to the fact that trucks can be out for multiple days. In Section 3.3, the generated

instances and the parameter tuning phase are discussed. Next, the sequential and

integrated approach are compared by conducting computational experiments. Using

the integrated approach, Section 3.4 presents a real-life case study and focuses on ana-

lysing the impact of tactical service network design decisions made by an intermodal

service operator on the total operational costs. The main conclusions are summarised

in Section 3.5.

This chapter is based on the following paper: Heggen, H., Molenbruch, Y., Caris, A., Braekers,

K., 2019. Intermodal Container Routing: Integrating Long-Haul Routing and Local Drayage De-

cisions. Sustainability, 11, 1634.

45
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Figure 3.1: Thesis summary - Chapter 3.

3.2 Large neighbourhood search heuristic

A large neighbourhood search (LNS) (Shaw, 1998) algorithm is developed to solve

the intermodal routing, in which a large number of requests is removed, and next

reinserted into the solution in each single iteration. The framework has proven to

lead to good results for vehicle routing problems and pickup and delivery problems

(Ropke and Pisinger, 2006). Such large changes are desirable in the intermodal routing

problem due to dependencies of different problem aspects, related to the integrated

nature of the problem. Both a sequential and an integrated version of the heuristic

algorithm are presented. The sequential approach serves as a benchmark for the

improvements that may be obtained by the integrated intermodal routing problem.

The heuristic building blocks are similar for both approaches, but different parts of the

solution are destroyed and repaired. For each request, one pickup drayage task (from

a customer pickup location to a departure terminal) and one delivery drayage task

(from an arrival terminal to a customer delivery location) have to be executed. Both

tasks relate to the selected long-haul service. Whereas operators in a sequential setting

remove and reinsert individual, fixed drayage tasks (with predetermined terminals),
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an integrated setting removes and inserts both the pickup and delivery task of any

request simultaneously, as well as the selected long-haul service.

Moreover, in practice, the planning for one time period is executed, while an

initial planning for future time periods is included, to be used as a starting point for

the following time period. We pay attention to this dynamic nature of the problem

by including information from past week’s planning as well as the initial planning

for the following week. If this information would be excluded, besides the fact that

this is unrealistic, many pickup tasks would occur at the beginning of the current

week, and many delivery tasks would need to be executed at the end of the week.

Moreover, this would result in a limited choice of long-haul services, with a lower

capacity utilisation for long-haul services with departure in the beginning and at the

end of the week, compared to long-haul services in the middle of the week. First, we

include requests which were already assigned to a long-haul service with departure

in the previous week. For these requests, only the truck delivery task still has to be

executed after arrival at the destination terminal. In practice, this is given input for

current week’s planning. Therefore, it is assumed that these requests are assigned to

long-haul services in advance, and only the delivery trucking cost is relevant for this

week’s problem. The assigned long-haul service and related delivery task do not vary

during the execution of the heuristic. The delivery task should only be assigned to

a position in a truck route. Second, some requests are assigned to long-haul services

which depart in the current planning cycle and arrive in the next. For this type of

assignment, the long-haul service is selected by the heuristic. Only the pickup task

should be included in truck routes. Delivery tasks in the next week are included

by means of the two-way direct distance between the destination terminal and the

customer destination, plus a high value M in order to avoid postponing requests.

At the same time, this ensures that if postponement is required, a smaller end-haul

trucking distance is preferred. For these requests, total assignment costs consist of

costs for including the pickup task in truck routes (VRP), long-haul service costs, and

direct two-way end-haul truck costs.

The general heuristic structure is presented in Section 3.2.1, after which the re-

moval and insertion operators are described in Section 3.2.2. Preliminary feasibility

checks for inserting a single node into a candidate solution are explained in Section

3.2.3. If these checks do not indicate an infeasible solution, a more complex, multi-

day scheduling procedure aims at finding a feasible truck schedule for the candidate

solution. The procedure is discussed in detail in Section 3.2.4. These checks are per-

formed in this sequence, with the least time-consuming checks first, as it is hard to

determine in advance whether a solution is feasible in a multi-day scheduling context
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with a minimum overnight’s rest and a maximum daily active duration.

3.2.1 General structure of the LNS

Algorithm 1 provides the general heuristic structure. It includes a constructive heur-

istic (lines 2–4) as well as a framework with a number of removal operators (lines

9–13) and insertion operators (lines 14–17).

Algorithm 1 Heuristic structure.

1: Set parameters: maxIt, deviation

2: Construct initial solution sol0

3: Solve exact sequential long-haul problem

4: Apply random order best insertion

5: solbest = sol0; solcurr = sol0

6: Large neighbourhood search

7: for it = 0 to maxIt do

8: solnew = solcurr

9: Randomly select a destroy operator d(·) from:

10: Random removal

11: Worst removal

12: Random order removal of linked tasks or requests

13: Related removal of tasks or requests from related long-haul services

14: Randomly select a repair operator r(·) from:

15: Random order best insertion

16: Greedy insertion

17: Two-regret insertion

18: solnew ← r(d(solnew)

19: if solnew is complete and

20: solnew.vrpCost+ solnew.directTruckCost+ solnew.railCost

21: < solcurr.vrpCost(1+deviation)+solcurr.directTruckCost+solcurr.railCost

22: then

23: solcurr = solnew

24: if solnew.T otalCost < solbest.T otalCost then

25: solbest = solnew

26: end if

27: end if

28: end for
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The constructive heuristic consists of first assigning requests to long-haul services

by solving the long-haul routing problem using integer linear programming using

ILOG Cplex 12.6 in C++, and next inserting for each request its pickup and delivery

task - related to the known, assigned long-haul services - into truck routes. These given

drayage tasks are inserted in a random order at their best feasible insertion position,

i.e., with the lowest additional cost, in order to obtain a good initial solution. This

corresponds to the random order best insertion operator of the sequential approach.

In each iteration, one removal operator is selected randomly in which requests are

removed until a given threshold is reached with respect to the number of removed

requests or tasks. Next, one insertion operator is selected randomly. Requests are

reinserted in order to obtain a new, complete solution. In a sequential approach (Seq.),

after requests are assigned to long-haul services in the constructive phase, minimum-

cost truck routes are established with known pickup and delivery tasks. Sequential

operators aim at removing or inserting single drayage tasks, instead of requests, and

the assigned long-haul services remain unchanged. In an integrated approach (Int.),

destroy and repair operators consider removing and reinserting requests from the

solution. More information on these integrated operators is presented in Section

3.2.2.

The acceptance criterion for moves includes a function with multiple cost com-

ponents (lines 19–21). The total costs of each solution consist of vehicle routing

costs in both service regions (solnew.vrpCost), two-way direct truck costs for dray-

age tasks to be executed in the next planning period as a result of long-haul services

with arrival in the next week (solnew.directTruckCost), and long-haul transport costs

(solnew.railCost). In comparison with the objective function, this cost function omits

the artificially high value assigned to load units with an arrival in the future plan-

ning period to avoid postponement as much as possible. This value is excluded from

the acceptance criterion in order to avoid having an extensive impact on the eval-

uation of each solution due to its relatively high value. Moreover, for accepting

new solutions, a percentage deviation is only included for the vehicle routing cost

(solnew.vrpCost · (1 + deviation)) in order to focus on the optimisation of vehicle

routes in each service region. A small percentage allowed deviation in a cost with a

higher value, such as the two-way direct truck cost, would always be beneficial, while

the aim is also to reduce routing costs in each region.
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3.2.2 Integrated operators

In this section, the operators used within the large neighbourhood search framework

are described. Operators which are well-known and have shown to obtain good results

for pickup and delivery problems (random and worst removal, random order best

insertion, greedy and two-regret insertion) (Ropke and Pisinger, 2006), as well as

operators designed to fit the characteristics of the problem are included (random order

removal of linked tasks/requests, related removal from related long-haul services).

Integrated operators, which are dedicated to the integrated nature of the problem,

are explained in this section. Sequential operators are not discussed individually, but

use the same building blocks. The only difference is that in the sequential approach,

improvements in truck routes are considered without changing selected long-haul ser-

vices, as this decision is made in advance. To summarise, sequential operators focus

on individual drayage tasks, whereas integrated operators address the entire inter-

modal route of a request, i.e., the pickup and delivery task as well as the assigned

long-haul service. Four removal operators and three insertion operators are included

and described next. The removal procedure is repeated until the number of removed

requests or drayage tasks, for the integrated and sequential approach respectively,

reaches a given threshold. The process of inserting uninserted requests or drayage

tasks is repeated until either all requests are inserted or no feasible insertion can be

found for a request. If no feasible insertion can be found, the solution is incomplete

and the iteration ends.

Random removal of requests: Randomly selected requests are removed from the

solution until a given threshold is reached. This implies removal of its drayage tasks

from truck routes in the pickup and delivery region, as well as removal from its

assigned long-haul service.

Worst removal of requests: Requests are ordered based on the savings that

could be obtained by excluding that request from the solution, i.e., if its pickup task

and delivery task are omitted from truck routes and the request is removed from the

previously assigned long-haul service. The request with the largest savings is removed

and savings are updated.

Random order removal of linked requests: Randomly selected requests are re-

moved from the solution. For each randomly selected request r, both the pickup and

delivery task are removed, and the request is removed from its assigned long-haul

service. Further, if any delivery task immediately precedes the pickup task of request

r in its current truck route, the request related to that delivery task is removed too.

Similarly, if any pickup task immediately succeeds the delivery task of request r, the
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request related to that pickup task is removed. Obviously, in the sequential variant

of this operator, if a pickup task is selected, the delivery task executed right before

is removed if available. For selected delivery tasks, a single pickup task executed af-

terwards is removed, again if available. By removing subsequent pickup and delivery

tasks, subroutes (or street turns) between two terminal visits can be removed from

the solution.

Related removal of requests: This operator removes similar requests assigned to

similar long-haul services, as this might increase the probability of finding new solution

structures in a reinsertion phase. Selecting requests on similar long-haul services is

also likely to result in available capacity on long-haul services which are more likely

to be feasible for the removed requests. In each iteration, one long-haul service is

selected randomly, as well as its two most related long-haul services. Obviously, a

long-haul service can only be selected if at least some of the available capacity is used.

The relatedness between two long-haul services s1 and s2 is measured by means of

four concepts: the absolute difference in departure time T dep, the absolute difference

in arrival time T arr, the distance between the locations of the departure terminals

λdep and the distance between the locations of the arrival terminals λarr. Next,

each value is normalised (i.e., each measure is divided by its maximum dissimilarity

value maxdissim), and the four values are summed up. Noise for selecting long-

haul services is added by multiplying the overall dissimilarity score of two long-haul

services dissim(s1, s2) with a random number between 0.8 and 1.2, in order to allow

for more variation in the solution space. A higher dissimilarity score indicates a

larger dissimilarity between two long-haul services. Consequently, a smaller value is

preferred during the selection of similar long-haul services. The dissimilarity between

two long-haul services s1 and s2 can be calculated as follows:

dissim(s1, s2) = dissimT dep(s1, s2) + dissimT arr(s1, s2) + dissimdepDist(s1, s2)

+ dissimarrDist(s1, s2)

The calculation of each term is presented below:

dissimT dep(s1, s2) =
|T deps1 − T

dep
s2 |

maxdissimT dep(s1, s2)

dissimT arr(s1, s2) =
|T arrs1 − T

arr
s2 |

maxdissimT arr(s1, s2)

dissimdepDist(s1, s2) =
dist(λdeps1 , λdeps2 )

maxdissim.depDist(s1, s2)
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dissimarrDist(s1, s2) =
dist(λarrs1 , λarrs2 )

maxdissim.arrDist(s1, s2)

Next, from the pool of requests assigned to these selected, similar long-haul ser-

vices (with low dissimilarity scores), requests with the highest relatedness are removed

first until either all requests on these long-haul services are removed or the threshold

of requests to remove is reached. The relatedness of two requests r1 and r2 is based

on the average distance between pickup and delivery locations of both requests in

the same service region, with distRegion1(r1, r2) the distance between the tasks of

both requests located within the same region (similar for the second region), and the

average percentage overlap in time window between two requests TWoverlap(r1, r2).

Noise is included during this process in a similar way as for the dissimilarity of long-

haul services. The dissimilarity between two requests dissim(r1, r2) is calculated as

follows:

dissim(r1, r2) = dissimloc(r1, r2) + dissimTW (r1, r2)

with the definition of each term calculated indicated below:

dissimloc(r1, r2) =
(|distRegion1(r1, r2)|+ |distRegion2(r1, r2)|)/2

maxdissimloc(r1, r2)

TWoverlap(r1, r2) = max{0;min{br1 , br2} −max{ar1 , ar2}}

dissimTW (r1, r2) =
1− (TWoverlap(r1,r2)

br1−ar1
+ TWoverlap(r1,r2)

br2−ar2
)/2

maxdissimTW (r1, r2)

In the sequential approach, the dissimilarity between two drayage tasks is re-

lated to the average of the distance between two customer locations and the distance

between two terminals. As the long-haul service is fixed in advance and cannot

change, this calculation is not explicitly based on long-haul service characteristics.

The time window dissimilarity is measured using max{0;an1−an2}
maxdissimTW (n1,n2) , using the dif-

ference between the release times of two nodes n1 and n2.

Random order best insertion of requests: Uninserted requests are selected ran-

domly. For each request, the best long-haul service is selected, defined by taking an

integrated perspective. The sum of the long-haul rail cost and the best corresponding

pre- and end-haul cost for inserting tasks into truck routes determine the total cost of

assigning a request to a long-haul service and inserting it into a route in each region.

Greedy insertion of requests: First, for all uninserted requests, the best insertion

is calculated, defined by the best long-haul service, insertion of the pickup node and
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insertion of delivery node, again taking an integrated perspective. Next, requests are

inserted based on their insertion costs. The request with the lowest total insertion

cost is inserted in the solution, after which insertion costs for the remaining requests

are updated if required.

Two-regret insertion of requests: The two-regret insertion operator works similar

to the greedy insertion. However, in this case both the best and second-best insertion

cost are calculated. Next, the request with the highest difference between the lowest

and the second-lowest total insertion cost is inserted in the solution. Again, insertion

costs are updated if required. The idea is to first insert the requests which are the

most difficult to insert in order to avoid that they cannot be inserted feasibly anymore

if more requests are inserted.

3.2.3 Preliminary checks for inserting a node

Inserting a node n at its best insertion position, i.e., after predecessor i currently

assigned to a route, can only be feasible if a number of conditions hold. These

conditions focus on a single insertion. First, only insertion positions within the same

service region are considered (regi = regn). Next, an initial check on the time windows

examines whether ai + ti + tin ≤ bn between a predecessor i and n, and whether

an + tn + tnj ≤ bj for inserting n before the current successor of i (denoted with

j). If also the dimensions of both nodes match (li = ln), it is checked whether a

node n can be feasibly inserted between node i and its current successor j based

on a regular calculation of the earliest start ES (forward from predecessor i, with

ESn = max{an;ESi + ti + tin}) and latest start LS (backward from the current

successor of i, with LSn = min{bn;LSj − tnj − tn}), respecting its time window

[an, bn].

3.2.4 Feasibility of new routes

Only if all conditions in the preliminary check are satisfied (see Section 3.2.3) – which

are required, but insufficient conditions for feasibility –, another procedure determines

whether a feasible schedule can be found for a certain truck with a given sequence

of nodes in a candidate solution. As trucks can be out for multiple days, it would

not be realistic to assume that they are active for an entire week. Therefore, the

scheduling procedure for multiple days should include a minimum overnight’s rest and

a maximum daily active time, as considered in the problem formulation in Chapter

2. The day at which a task should be executed is not fixed in advance (within given

release and due times of a request) and, as such, is part of the decision process.
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Nodes in a given sequence are added to a given day’s route using the earliest

feasible start as long as the daily limit on the route duration Tmax is not violated. If

not feasible, the forward time slack principles, explained in detail later on, are used to

shift the route schedule within a single day. It is always better to travel to and serve

a node on the current day than shifting one or both of these activities to a future

day. Therefore, if a feasible route can be composed on a particular day by reducing

that day’s route duration, and thus postponing the start of that route, this is always

executed. In this part of the procedure, the earliest possible arrival in the last node of

the day is assumed to be given and does not shift. Hence, the shift does not restrict

the feasibility of the next day. Only if shifting the start of the route is not feasible,

travel to and/or service of the node under consideration is tried to be performed on

a future day and the entire procedure is repeated for that future day. If all nodes

in a route can be feasibly visited, the procedure provides a schedule which satisfies

a maximum daily route duration Tmax, a minimum night’s rest Tmin and daily time

windows Qbd and Qad between which trucking is allowed.

Within this procedure, four types of feasible scheduling options are considered for

each node to be added to a route. These are explained below. The procedure evaluates

a given sequence of nodes, where nodes i and j are assumed to be two subsequent

nodes in the sequence. If adding a new node j does not result in any infeasibility, the

next node in the sequence will be evaluated (i.e., i = j and j = successorj , and the

procedure is repeated).

The procedure requires two modifications to the forward time slack (F ) principles

of Savelsbergh (1992) and Vidal et al. (2015). The forward time slack (F ) indicates

the time with which each node served on a particular day can be shifted later in time

such that a feasible route can be composed serving all nodes before (and including)

the currently considered node based on the earliest start procedure, which calculates

the earliest feasible start of a task at any node in a sequence using time windows,

service times and travel times. In order to calculate the forward time slack, both the

earliest feasible execution date Ti and the cumulative idle time Wi are required for a

given node i. A first modification, F∗service, is explained in case 2 below. A second

modification, F∗noservice is used in case 3.

Case 1: Travel and service on current day d without changing service start

of nodes in route of current day If adding travel to and service of node j to

the current day’s route results in a feasible route duration (i.e., Tservice ≤ Tmax, with

Tservice equal to the route duration of the current day) and if it can be performed

before the end of the current day Qbd, node j is added to the current day’s route if
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this does not result in any infeasibilities of the route of future nodes.

Case 2: Travel and service on current day d with removal of excess waiting

time in route of current day If adding a node j with the regular earliest feasible

start results in a violation of the maximum daily route duration (Tservice > Tmax), it

is checked whether it is possible to postpone the service start of previous nodes in the

route of the current day such that node j can be feasibly included on the current day’s

route within the maximum daily route duration. If feasible, this is always preferred

compared to serving it on a future day.

In this case, a first modification to the regular forward time slack F∗service =

min{Fi,Wj} is performed. Using the regular time slack F could influence the start

of the minimum overnight rest and consequently the start time of the next day, which

might lead to an infeasible schedule on the next day. Therefore, one difference with

the regular time slack principles is the fact that the service start of the currently

considered node j remains unchanged when attempting to shift the start of a day’s

route. In order to feasibly include travel to and service at node j, the maximum

daily route duration should be respected after shifting the current route (F∗service ≥
Tservice− Tmax), and the truck should be able to finish service before the end of that

day (ESj + tj ≤ Qbd). Figure 3.2 visualises such a feasible shift. Initially, inserting

node j is infeasible with a given start of the day, in this case represented by the start

of service in node i. However, by postponing the start of a route on a given day

with F∗service, it becomes feasible to travel to and serve node j, without changing its

earliest feasible service start. At the same time, excessive wait time on the route of

the current day is reduced.

Figure 3.2: Shift the start of a route on a single day with F∗service, including travel

to and service of node j on the current day.
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Case 3: Travel on current day d with removal of excess waiting time in

route of current day, service on a future day If adding a node j with the cur-

rent earliest feasible start results in a violation of the maximum daily route duration

(i.e., case 2 is infeasible), it is checked whether it is possible to postpone the service

start of previous nodes in the route of the current day such that the travel to node j

can be feasibly included on the current day within the maximum daily route duration.

An important aspect within this regard is the fact that a minimum night’s rest

might need to be added before or after serving (i.e., travel towards a node can occur

on that day, before actually serving that node on a future day). However, a truck is

only allowed to rest with an empty container. Therefore, if postponing the route with

F∗service is infeasible, a second modification to the forward time slack F∗noservice =

min{Fpredeci ,Wi} is performed, which is equal to zero if no predecessor of i is available

on the current day (i.e., no node is served before this node on the current day). It

is used to check whether it is feasible to only include the travel to node j on the

current day, while service occurs on any future day. Furthermore, the service start of

the last node on the current day (represented by node i in Figure 3.3) is not allowed

to shift, as this could influence the feasibility of the next day’s route. Again, three

conditions must hold: the current day should not be the last day in the planning

horizon (d < D), the current day’s route can be feasibly shifted such that it does

not exceed the maximum daily active time (F∗noservice ≥ Tnoservice − Tmax), where

Tnoservice denotes the total active time of a truck on the current day with travel to

but without service of node j, and travel should be finished before the end of the

current day (Ti + ti + tij ≤ Qbd).

Figure 3.3: Shift the start of a route on a single day with F∗noservice, including travel

to node j on the current day, and service of j on a following day.
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If a single overnight’s rest is required before service at node j occurs on the fol-

lowing day, max{ESj ;max{Qad;Ti + ti + tij + Tmin}} defines the earliest start. If

more than one day passes between travel to and service at node j, the service start

is calculated by max{Qad;Tj}. If the service start resulting from this procedure turns

out to be infeasible, the solution is infeasible.

Case 4: Travel on next day d + 1, service on future day ≥ d + 1 If cases

1, 2 and 3 are not feasible, it is tested whether it would be feasible to include a

night’s rest after serving node i on day d. Travel to node j is performed on the next

day d + 1 and service of node j occurs on any future day d ≥ d + 1. If travel and

service can be feasibly inserted on the same future day, after a minimum night’s rest,

the service start is defined by max{Qad + tij ;ESj} if this is on the next day, or by

max{ESj ;max{Qad + tij ;Ti + ti + Tmin + tij}} any day after the next. Identical to

case 3, if one or more days pass between travel and service, the service start of node

j as a first activity on any day further in the future depends on the number of days

that pass between travel to and service of node j.

3.3 Comparison of the sequential and integrated ap-

proach

The large neighbourhood search heuristic is used to compare results of a sequential

and integrated approach. Realistic instances based on a real-life case study are used

as input. An experimental design is proposed to determine an appropriate parameter

setting. With these parameter values, the added value of the integrated approach

is demonstrated. The experiments in this chapter are conducted on an Intel Xeon

E5-2680v3 processor at 2.5 GHz of the Flemish Supercomputer Center (VSC).

3.3.1 Generated instances

A real-life case study is investigated in order to provide realistic input to the problem.

In the case study, the intermodal operator offers direct rail connections between mul-

tiple terminals located within two service regions, the Benelux and Northern Italy.

Trains are operated based on given periodical schedules with a cycle of one week, using

both own trains and slots on trains operated by other companies. For own trains, the

available loading metres and path weight restrictions limit the flows on each route,

while for long-haul services managed by other parties the number of slots per length
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type and their weights must be accounted for. The costs for using long-haul services

are fixed once available long-haul services are known.

Long-haul services: The long-haul rail network in this case study consists of real-

life long-haul services between two service regions with both forward and backward

flows between the regions. This results in 84 unique long-haul services in total, of

which multiple long-haul services could consist of the same connection between two

terminals, with different departure times. All service characteristics, such as the

capacity, departure time, travel time and arrival time of each service are based on real-

life data of weekly rail services. The terminals are located at their real-life locations,

four within each of the two service regions of 300 km by 250 km (Figure 3.4). One

terminal per region is selected as a truck depot, and a sufficient number of trucks is

assumed to be available at each depot. Trucking distances are calculated by means

of the euclidean distance between two points.

Figure 3.4: Terminals in two service regions.

Requests: Pickup and delivery locations for a request are either defined randomly

or clustered within each square service region, as visualised in Figure 3.5. Clustered

request locations are obtained using intermodal terminals as cluster centres based on
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the procedure explained by Cordeau et al. (1997), with phi = 0.08. By considering

both clustered and random customer locations, the influence of customer locations

can be analysed. In real-life, a scenario in between both cases occurs, and companies

can relate to the scenario which is most realistic for their customer base.

Figure 3.5: Visualisation of customer pickup and delivery locations in two regions:

random or clustered around terminals.

Moreover, the demand level is varied between a relatively low and high capa-

city utilisation, with a maximum long-haul capacity of 470 requests for all long-haul

services with departure in a single week (and arrival this week or the next). It cor-

responds to a scale of 1:3 in comparison with real-life problems. Additional requests

are generated to account for last week’s planning. Requests should be picked up and

delivered at customer locations within 5 days after their release date. It is assumed

that requests are released equally divided over the extended planning horizon. An

equal demand of two types of container requests and trucks (30ft and 45ft) is assumed.

The variation in demand characteristics results in 2x3 instance classes, with either

randomly generated or clustered customer locations and the demand (in number of

requests to be transported) set to either 75%, 85% or 95% of the overall long-haul

service capacity. The case with 95% capacity utilisation relates the most to the cir-

cumstances a real-life intermodal operator deals with in practice.
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Other input: Values for remaining input parameters are summarised in Table

3.1. Depot opening hours [ag; bg], g ∈ Ndep are set to the length of current week’s

planning horizon. Service times for pickup and delivery operations at customers

tg, g ∈ NP , ND, and load and unload operations at terminals tg, g ∈ NT are added.

Service time at the depot tg, g ∈ NDep is assumed to be zero, as it is assumed that no

operations occur at the depot. A trucking cost cij of one Euro per kilometre travelled

is assumed.

While a real-life setting is used to perform the case study, the proposed solution

method is able to deal with various realistic characteristics of both the long-haul ser-

vice network and the local service regions. Multiple truck depots and more transport

modes can be included, and the number of local service regions can be extended.

Table 3.1: Input parameters for intermodal routing.

Input parameter Value

[ag; bg], g ∈ Ndep [0;6*24] hours

tg, g ∈ NP , ND 2 hours

tg, g ∈ NT 1 hour

tg, g ∈ NDep 0 hours

Tmax 15 hours

Tmin 6 hours

cij 1 euro per km

3.3.2 Heuristic parameters

For the purpose of tuning the heuristic parameters, two instances are generated per

instance class, resulting in 12 instances (1a-12a). An overview is provided in Table

3.2.

The goal of this research is to explore and quantify the differences between a

sequential and integrated approach. Within this aim, the parameter setting should

allow a fair comparison of both approaches. Therefore, for each solution approach, the

best parameter setting is determined independently. This implies that the parameter

settings for the sequential and the integrated approaches may differ. An experimental

design is set up in order to obtain insights in the obtained results. In this way,

knowledge on the impact of variations in (combinations of) parameter values as well
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Table 3.2: Tuning instances for intermodal routing.

Class Instance Locations Demand level

1 1a-2a random 75%

2 3a-4a cluster 75%

3 5a-6a random 85%

4 7a-8a cluster 85%

5 9a-10a random 95%

6 11a-12a cluster 95%

Table 3.3: LNS algorithm parameters for tuning.

Input parameter Tested values

Number of iterations [0;3000]

Removal of requests 5%; 10%; 15%

Acceptance threshold of new solutions dev 0%, 1%, 3%, 5%

as additional insights into the functioning of the heuristic can be obtained.

To determine a parameter setting, tests are executed using various parameter

values for both the sequential and the integrated approach. Table 3.3 shows the

tested parameter values of the large neighbourhood search heuristic.

The result is an experimental design with 12 instances as input, with three factor

levels for the removal percentage when destroying part of the solution, and four factor

levels for the allowed percentage deviation from the best solution in order to accept

new moves. All combinations are tested. Five replications are performed for each

instance, for each combination of parameter values. Each replication of a single

instance is tested using both approaches.

Experimental results for the parameter tuning phase with respect to the solution

quality are summarised in Figure 3.6. Computation times are visualised for both

approaches in Figure 3.7 after 3000 iterations. For each instance class individually,

these results are shown in more detail in Figures C.1 and C.2 in Appendix C for the

sequential and integrated approach respectively. These figures indicate the solution

quality and computation time in seconds for different parameter settings.

For each combination of parameter values, Figure 3.6 displays the percentage re-



62 Chapter 3

0-18%

-17%

-16%

-15%

-14%

-13%

-12%

-11%

-10%

-9%

-8%

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

0% 1% 3% 5% 0% 1% 3% 5% 0% 1% 3% 5%

5% 10% 15%

C
o
st

 r
ed

u
ct

io
n
 (

%
 o

f 
in

it
ia

l 
so

l)

SEQ - Avg Improvement_obj (all)

SEQ - Avg Improvement_real (all)

INT - Avg Improvement_obj (all)

INT - Avg Improvement_real (all)

Figure 3.6: LNS parameter tuning: average solution quality (reduction in total costs

compared to initial solution) for the sequential (SEQ) and integrated (INT) approach

after 3000 iterations;

Improvement obj = reduction in total costs including high value for load units with

long-haul service arrival in next planning cycle;

Improvement real= reduction in real total costs.
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duction in the objective function value obtained after 3000 iterations in comparison

with the initial solution found by the constructive heuristic on the vertical axis, aver-

aged over all instances. The lower on the vertical axis, the larger the cost reduction,

and the higher the solution quality. The initial solution is identical in both approaches

for a single instance. On the horizontal axis, the percentage of requests or tasks that

is removed from the solution is indicated in the bottom. Above each removal percent-

age, variations in the allowed deviation for accepting new moves are reported. Results

of the sequential and integrated approach are shown in grey and blue respectively.

Dotted lines indicate the solution quality of the objective function, while real total

costs are illustrated using solid lines. The difference between both performance meas-

ures relates to the artificial, high value for load units assigned to long-haul services

with arrival in the next planning cycle. This high value is included in the objective

function, but excluded from the real total cost.
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Figure 3.7: LNS parameter tuning: average computation time for the sequential

(SEQ) and integrated (INT) approach.

Generally, it can be observed that, when the allowed deviation from the current

best solution is too small, changes in the long-haul service assignments are not pos-

sible, and reductions in the objective value are small. On the other hand, if the

allowed deviation is too big, this has a negative impact on the costs of truck routes,
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and thus on the real total costs.

For each parameter setting, the integrated setting (blue lines) shows a larger per-

centage reduction in the objective function (dotted lines) as well as total costs (solid

lines) in comparison with the sequential setting (grey lines). This is partly due to the

fact that more load units can be assigned to this week’s long-haul services. For the

same parameter setting, total costs for drayage operations are always smaller in an

integrated approach, and more drayage tasks are performed in the current planning

week.

Tuning results for the sequential approach show that small improvements in the

objective value are observed compared to the initial solution found by the construct-

ive heuristic (indicated by the grey dotted lines) for all combinations of parameter

settings. This demonstrates that the quality of the initial solution seems to be rather

high. The real total costs (grey solid lines) consistently increase as the allowed de-

viation for accepting new solutions increases. This can be observed for each value

of the removal percentage. A similar pattern is observed for the objective function

(grey dotted lines). A slight decrease in the performance of the sequential heuristic is

observed if the removal percentage is increased above 5%. This may be due to the fact

that a small removal percentage already relates to a high absolute number of drayage

tasks. Based on these observations, it can be concluded that total costs rise while the

number of tasks to plan does not change when either the acceptance threshold or the

removal percentage increases. Besides, computation times increase when removing

more drayage tasks. As the graph demonstrates a good overall performance when ac-

cepting only improving solutions, and real total costs are minimised at a 5% removal

rate, a 0%-acceptance threshold in combination with a removal of 5% of the drayage

tasks leads on average to a minimum-cost solution for the sequential approach.

For the integrated version of the heuristic, results show larger differences in the

objective and total cost values for varying parameter settings. For the objective func-

tion, it is clear that accepting improving solutions only (i.e., 0% deviation) results

in the worst objective value. Whether a 1%, 3% or 5% deviation provides the best

acceptance criterion, depends on the demand characteristics (see results in Appendix

C). When looking at the overall average real total cost (given by the blue solid lines), it

can be concluded that a 1% deviation is the best choice. Other values for the allowed

deviation when accepting new solutions (3% and 5%) result in the same objective

value, at a higher real total cost. With respect to the different removal percent-

ages, a very slight reduction in the objective value is observed when increasing the

removal percentage. As results are quite similar and the computation time increases

substantially when increasing the removal percentage, a 5% removal is selected.
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Additionally, the added value of each operator is analysed. Using the parameter

settings with the best heuristic performance – indicated by the squares in Figure 3.6

–, the heuristic is run multiple times, each time excluding a single operator. Results

are illustrated in Figure 3.8. Again, both the objective function (dotted lines) and the

real total cost (solid lines) are displayed for both the sequential and the integrated

version of the heuristic algorithm.

The base case in which all operators are included (ALL), is displayed on the

left. Then, from left to right, results for omitted removal operators and insertion

operators are illustrated. Improvements obtained in the objective function are the

main criterion to determine the added value of each operator. Slight variations in the

objective value can be observed, which are mainly visible in the integrated heuristic,

and which are in most cases enlarged in the real total cost. For two operators,

removal noRelated and insertion noGreedy, their omission causes a reduced objective

function value, indicating a higher solution quality. The related removal is one of the

new operators focused on the integrated characteristics of the problem, but decreases

the solution quality. The same holds for the greedy insertion operator. As the greedy

insertion operator works similar to the random order best insertion operator, it might

be omitted.

Results of a paired-samples t-test of the difference in the objective function when

excluding operators can be found in Table 3.4.

Table 3.4: Results of a two-way paired-samples t-test for differences in the objective

function (TC Obj) for excluding operators.

95% CI

Excluded operator Mean Std. Dev. Std. Error LB UB t df Sig.

removal noLinked -1912.26 6688.18 863.44 -3640.00 -184.53 -2.215 59 *0.031

removal noRelated 1269.50 6823.14 880.86 -493.11 3032.10 1.441 59 0.155

removal noWorst -353.36 5851.07 755.37 -1864.85 1158.13 -0.468 59 0.642

removal noRandom -1151.39 9041.98 1167.31 -3487.18 1184.40 -0.986 59 0.328

insertion no2regret -1151.39 9041.98 1167.31 -3487.18 1184.40 -0.986 59 0.328

insertion noGreedy 2593.27 6245.17 806.25 979.97 4206.57 3.216 59 *0.002

insertion noRndOrdBest -359.71 7387.33 953.70 -2268.06 1548.64 -0.377 59 0.707

omit greedyinsert relatedremoval 1801.87 5882.63 759.44 282.23 3321.52 2.373 59 *0.021

When looking at both scenarios with an increased objective function value, re-

moval noRelated and insertion noGreedy, only the exclusion of the greedy insertion

shows a significant decrease in the objective function at a 5% significance level. There-
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Figure 3.8: LNS parameter tuning: contribution of the operators.
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fore, the case which excludes both operators (omit greedyinsert relatedremoval) is ad-

ded after this first analysis of the contribution of each operator. Its performance is

shown in Figure 3.8 on the right, and as a bottom line in Table 3.4. As the removal of

both operators simultaneously also results in a significantly increased solution qual-

ity, the sequential and integrated heuristic without the greedy insertion and related

removal operator will be used in the remainder of this chapter.

Next, the stopping criterion is analysed. Figure 3.9 shows the relationship between

the solution quality and the number of executed iterations. The solution quality is

measured by means of the average percentage improvement (i.e., reduction) in the

objective value, and thus the artificial, high values for load units assigned to long-

haul services with arrival in the next planning cycle are included. It is an average

over all replications and all instances within a single instance class.
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Figure 3.9: LNS parameter tuning: evolution of the solution quality with the number

of iterations.

It can be observed that the largest improvements are obtained for realistic in-

stances with a demand at 95% of the available capacity, and thus the integrated

approach is most advantages for these realistic instances. In the integrated approach,

the solution quality increases consistently and flattens out around 3000 iterations.

The solution quality of the sequential heuristic levels out much earlier. However, in

order to maintain a fair comparison, 3000 iterations are used for both approaches.

Within the aim of this study, computation time is not the most critical criterion in

order to demonstrate the difference between two approaches. If the solution approach
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is to be used in practice and computation time is an issue, one could easily adapt the

stopping criterion to a maximum allowed computation time.

A summary of the selected parameter values for each approach can be found in

Table 3.5. The greedy insertion operator and related removal operator are excluded

from the final heuristic setting.

Table 3.5: LNS parameter setting for testing.

Input parameter Sequential Integrated

Number of iterations 3000 3000

Acceptance threshold of new solutions dev 0% 1%

Removal of requests 5% 5%

3.3.3 Experimental results

In order to compare the results of both approaches, experiments are performed with

the defined parameter setting using new instances with identical demand character-

istics. Within a single instance class, 10 instances are generated with the same com-

binations of input characteristics, as summarised in Table 3.6. Again, five replications

are performed for each instance.

Table 3.6: Test instances for intermodal routing.

Class Instance Locations Demand level

1 1-10 random 75%

2 11-20 cluster 75%

3 21-30 random 85%

4 31-40 cluster 85%

5 41-50 random 95%

6 51-60 cluster 95%

Figure 3.10 summarises the results obtained for the sequential (in grey) and in-

tegrated (in blue) intermodal routing heuristic for all demand characteristics. On the

primary vertical axis on the left, the reduction in the objective value (compared to
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the initial solution of the constructive heuristic) and total real cost are displayed by

means of rectangles (improvement obj ) and triangles (improvement real) respectively.

The improvement in the real total costs shown in blue (improvement real) are based

on the real total costs incurred, i.e., the sum of long-haul service costs for all depar-

tures in the current planning week, costs of truck routes in the current planning week,

and direct two-way trucking costs for delivery tasks in the future week (excluding the

artificially added high value for assigning requests to long-haul services with arrival

in the next week). The secondary vertical axis on the right shows the computation

times in seconds, displayed by means of bars for both approaches.
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Figure 3.10: LNS results for the integrated and sequential approach.
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Generally, the sequential approach leads to shorter run times, which is due to the

fact that drayage tasks are considered separately. Drayage tasks in different service

regions are known and planned independently, as the long-haul service is unchanged.

On the other hand, with a focus on changing the route of entire requests in the

integrated viewpoint, a larger computation time is required to find a feasible insertion

for both the pickup and delivery drayage task when considering assigning that request

to another long-haul service.

With respect to the objective function value (Improvement obj), few improve-

ments are obtained in the sequential approach, as long-haul services are already fixed

and known. Cost reductions are due to a reduction in drayage costs. The objective

value is clearly lower in an integrated approach, which demonstrates the advantage

of the integrated approach. It is partly due to the fact that more load units can be

assigned to long-haul services in the current planning week.

As illustrated by the improvement in the real total cost (Improvement real), the

integrated approach seems especially promising for instances with clustered demand

locations. More load units can be planned in the current planning cycle at a reduced

total cost. By introducing flexibility in the long-haul service, other drayage tasks can

be considered which provide more opportunities to further reduce trucking costs in

the service regions. A long-haul service is selected in which the drayage task is in the

vicinity of other existing tasks which should be executed, hereby resulting in a reduced

real total cost. For instances with random customer locations, more load units can

be planned, at the cost of an increased drayage cost. The additional cost for serving

more requests in the current planning week is larger for random locations. Note that

costs are identical for the 85%-random-case. For a smaller demand level, the closest

terminal can always be selected if enough capacity is available, and no trade-offs are

required. On the contrary, with a higher capacity utilisation, a decision should be

made based on the relationship between costs of truck routes and assigned long-haul

services, and the closest terminal cannot always be selected. In all demand scenarios,

the integrated approach postpones fewer load units to next week’s long-haul services

at a reduced or small additional truck cost.

Comparing both approaches, the difference in the number of load units assigned

to a long-haul service with arrival and departure in the current planning cycle can be

observed from Figure 3.11. Values larger than zero indicate a higher number of load

units assigned to this week’s long-haul services in the integrated approach compared

to the sequential approach.

Clearly, as already suggested based on the general results, for all demand scenarios,

the integrated approach is able to process more requests in the current planning cycle.
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Figure 3.11: Average difference in the number of load units planned with departure

and arrival in the current planning week.

These differences can be explained by the fact that no feasible insertion to long-haul

services with departure and arrival in the current planning week is obtained for some

requests in the construction of the initial truck routes. Whereas in a sequential

viewpoint, no change to the assigned long-haul service is considered, the integrated

approach is able to find an assignment to a long-haul service with arrival in the current

planning week.

Figures 3.12 and 3.13 display the average absolute and percentage difference in

the cost per drayage task between the sequential and the integrated approach. A

positive value indicates a reduced cost for the integrated approach. The measures are

calculated under the assumption of one Euro per euclidean distance unit. For long-

haul services with departure in the past planning period and arrival in the current

period, only costs related to the delivery drayage task are included. For long-haul

services with departure and arrival in the current period, two drayage tasks – both

the pickup and delivery task – relate to this week’s truck routing costs. Long-haul

services with departure in the current period and arrival in the next also result in

costs related to both drayage tasks. While the pickup task is included in this week’s

truck routes, costs for the delivery task relate to its two-way direct distance.

Results show a lower trucking cost per drayage task for instances with clustered

customer locations in an integrated approach compared to a sequential approach.

The higher the capacity utilisation, the larger the savings. On the one hand, a cost

reduction is obtained by providing more efficient truck routes. On the other hand, this

effect is reinforced because of the fact that more load units are planned on a long-haul
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Figure 3.12: Average absolute difference in the cost per drayage task. Positive values

indicate a lower cost in the integrated approach.
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Figure 3.13: Average relative difference in the cost per drayage task. Positive values

indicate a lower cost in the integrated approach.
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service which departs and arrives in the current planning cycle. This further decreases

costs as this higher number of load units can also be planned more efficiently.

For demand with random customer locations, it becomes harder to combine dray-

age tasks in existing truck routes, as distances between the locations are relatively

larger. This is also reflected in the results by means of increased costs. Some cus-

tomer locations might be relatively far away from some terminals, which makes the

terminal selection a fixed choice. In these cases, the sequential approach is able to

focus on improving truck routes with the given drayage tasks, whereas the integrated

approach does not explicitly deal with optimising the truck routes for given drayage

tasks. Therefore, the sequential approach might be able to include tasks which are

harder to insert into truck routes in a more efficient way.

Trade-offs might exist between increasing the capacity utilisation in the current

planning week and reducing trucking costs. For some load units, it could be possible

to include these in this week’s planning. However, in order to plan these orders, a

higher trucking cost must be incurred, especially if the demand is spread randomly

across the service region.

To conclude, results of the integrated approach demonstrate that the largest sav-

ings are obtained for clustered instances with demand characteristics closest to real-life

cases (i.e., high capacity utilisation). In all cases, fewer load units are postponed, con-

sistent with an improved capacity utilisation. For these instances with high demand,

trucking costs per drayage tasks are reduced in the case of clustered instances, but

not for random customer locations. Furthermore, in an integrated approach, more

information is used to make better-informed decisions and increase this week’s capa-

city utilisation. This might indirectly reduce transport costs, as more load units can

be transported with the same long-haul capacity in a single planning cycle.

3.4 Case study: tactical service network design de-

cisions

Using the integrated approach for real-life data, insights can be obtained into how

operational transport costs are influenced by decisions concerning the service network

design at the tactical level. This section serves as an exploratory study on the impact

of small changes in the service network on operational costs.

In the medium term, decisions on the service network design are usually determ-

ined based on expected aggregate demand flows, without knowledge of their impact

on the operational planning. Besides, the decision on the offered service network
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may also be of strategical importance for reasons of competitiveness. This results

in sunk costs for operating long-haul services (e.g., wagon leases, costs of purchased

slots) in the short term, in addition to variable transport costs. The analyses in this

section aim to demonstrate an additional way in which the integrated intermodal

routing problem can be used in practice. Intermodal rail service operators can use

this modelling approach to optimise the utilisation of their service network and adapt

their services to their customers’ expectations by changing some of their decisions in

the future, for example when renegotiating transport contracts of slots on long-haul

services.

In this section, the effect of two possible changes in the service network is studied

in order to analyse their impact on the total operational transport costs of the system.

Section 3.4.1 examines the possible advantages of dividing the overall long-haul rail

capacity over a smaller number of long-haul services with a higher capacity per depar-

ture. Section 3.4.2 analyses the impact of congestion at and around terminals. The

impact of these small realistic adaptations to the current service network, related to

the long-haul network design and selection of long-haul rail services offered, on oper-

ational transport costs can be evaluated to provide decision support in an intermodal

transport planning environment. Finally, Section 3.4.3 concludes with managerial

insights on the service network design.

3.4.1 The impact of changes in the service network: removing

long-haul services with small capacity

Intermodal service operators decide which services they offer in order to minimise

costs and satisfy expected service levels of current or future customers at a tactical

level. The selected service network relates to characteristics of the transport requests,

such as the customer locations. For example, the distance between customer locations

and their closest terminal should not be too large.

Various reasons may exist for service network decisions on (not) opening certain

long-haul service connections. Economies of scale can be obtained if less services are

operated, resulting in a lower fixed cost for opening and maintaining these services,

determined at the tactical decision level. However, if more terminals are operated

from, this may reduce vehicle routing costs at the operational level. Therefore, the

impact of routing transport requests using a smaller number of long-haul services is

evaluated. Within this context, long-haul service connections with a smaller capacity

are excluded and its capacity is added to long-haul services which already own a

larger share of the capacity. Two cases are studied in which each time one connection
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between two terminals is removed in comparison to the base scenario. Case a omits

the connection between terminal 1C and 2D – which is the sole connection of 2D

–, while case b excludes the connection between terminal 1D and 2C, which is the

only existing long-haul service from terminal 1D. The most realistic instance classes

with a high capacity utilisation of 95% are used for these analyses. The capacity of

the excluded long-haul service is added to the other remaining services to ensure that

enough capacity is available for all requests. It is added to the remaining long-haul

services in proportion to the current capacity share of each long-haul service.

Table 3.7 displays the average results for both alternative scenarios, a and b, in

comparison with the base scenario which consists of the current service network of an

intermodal operator. Trucking costs are directly related to the euclidean transport

distances.

Table 3.7: Detailed results for the removal of a long-haul connection relative to the

base case, cases a and b.

base a b

Random TC obj 1,315,115.29 1,316,977.03 1,330,566.26

TC real 144,115.29 144,921.47 148,366.26

vrpCost 108,755.37 109,088.22 111,905.62

directTruckCost 21,381.42 21,959.91 22,486.64

Nbr LU d1-a1 257.10 253.57 255.78

Cluster TC obj 1,304,305.69 1,314,235.72 1,328,823.97

TC real 137,305.69 144,423.22 147,712.86

vrpCost 103,223.35 108,734.29 111,374.22

directTruckCost 20,145.84 21,832.68 22,380.31

Nbr LU d1-a1 256.30 253.52 255.67

Generally, a slight increase in the number of load units with long-haul service

arrival in the next week is observed in all cases, which partly explains the increase in

the total cost objective function (TC obj) in all cases. This also results in an increased

two-way direct truck cost (directTruckCost). Due to a lower overall frequency of

service obtained by omitting a long-haul service, a small number of requests cannot

be feasibly assigned to a long-haul service arriving in the current planning week.

Consequently, more load units arrive at their arrival terminal in the next planning
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cycle. Furthermore, the availability of fewer long-haul services results in fewer routing

possibilities for each request, and higher terminal-to-customer distances, and as such,

increases vehicle routing costs (vrpCost).

Operating a smaller number of services results in increased operational, variable

transport costs. However, at the medium term, fixed costs for operating these services

may be reduced. These costs are not included in the results. Case b involves a higher

increase in total costs, as the only connection to terminal 2D (which is not centrally

located) is excluded. In case a, two routing alternatives are available to the terminals

in Italy, while the only connection of terminal 1D is removed. However, another

terminal is closely located to terminal 1D, which explains the smaller increase in

total costs. When comparing instances with respect to their customer locations, the

increase in transport costs is clearly larger for clustered customer locations. For

requests with random customer locations, the number of alternative, feasible long-

haul services is often higher, resulting in more options and thus flexibility for routing

trucks, and lower additional trucking costs.

To conclude, multiple reasons exist for (not) opening long-haul service connections

between intermodal terminals. Operating to and from multiple terminals could results

in reduced trucking costs at the operational level and more flexibility in the assignment

of requests to long-haul services, and as such might increase customer service levels.

If the locations of these terminals are spread across the service area, operations can be

performed close to both customers and terminals. However, the more terminals are

used for transport, the higher the expected fixed costs related to operating long-haul

services between terminals. These costs are not included in the analyses. For a given

demand volume, costs of a higher long-haul service frequency with a smaller capacity

per departure – which may lead to a higher service level offered to customers – should

be weighed against the costs of a low departure frequency and a higher capacity per

departure. The latter is likely to reduce flexibility due to the fact that fewer long-haul

services are available and may result in increased trucking costs.

3.4.2 The impact of congestion around terminals

In practice, some terminals are much more congested compared to other terminals

and service operators might tend to avoid such terminals. In this alternative case, the

influence of congestion is analysed by means of a penalty time and cost for visiting

the direct service area of a single busy terminal, in this case terminal 1A. The true

costs of congestion may consist of truck driver wage costs, costs for not being in time

– such as planning time and additional costs for finding alternative routing options
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– and customer dissatisfaction. Therefore, an additional cost of 30 Euro per hour of

congestion is included for all trips to and from the congested terminal. As the amount

of congestion is uncertain and unknown in advance, scenarios are included with the

additional time varying from one hour to three hours, resulting in three congestion

scenarios. The goal is to show how the integrated approach can be used on given

input data to analyse the impact of congestion on planning decisions.

Experiments are conducted using a representative instance with respect to real-

istic input data. In real-life, customer locations are somewhere between random and

clustered. Therefore, both classes are presented, such that practitioners can select the

case which fits their customer base the most. In order to explore the full impact, ex-

periments are performed using an instance with 85% utilisation to ensure that enough

capacity is available at other long-haul connections. In this way, flexibility is allowed

in order to show possible routing scenarios, which can be used as the basis for renego-

tiating transport contracts. These analyses may show at which connections capacity

should be increased in order to avoid congested terminals.

Figure 3.14 displays the obtained results for an instance with random customer

locations. Possibly impacted terminals with a direct connection to terminals 1A are

terminal 2A and 2C. The throughput share of each terminal within each service re-

gion is indicated, calculated based on the sum of inbound and outbound requests for

each terminal. The base case represents the case without congestion.
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Figure 3.14: Difference in terminal throughput share due to congestion for random

customer locations.
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A structural decrease can be observed in the throughput of terminal 1A. The

terminal usage decreases further when congestion time increases. Due to the random

customer locations, an assignment to terminal 1A might be required for some requests

in order to be feasibly assigned and arrive in time at the customer destination location.

Impacted terminals with a connection to terminal 1A in service region 2 are terminals

2A and 2C.

In the Benelux region, terminals 1B and 1C are alternative routing options. They

are centrally located in the service region and present feasible alternatives for many

requests. The throughput of terminal 1B clearly increases the most as it is directly

connected to one of the impacted terminals in the second region. If requests originally

assigned to terminal 1A should be rerouted, terminals 1B and 1C are the closest

ones with similar connections. They pose plausible alternatives for feasibly routing

load units through the intermodal service network. In northern Italy, the relative

throughput clearly increases in terminal 2B, which is also centrally located with

multiple routing options. While terminal 2C is also characterised by a centralised

location, the throughput decreases due to its connection with the congested terminal.

This effect outweighs the possible advantages of its central location. Furthermore, due

to its direct link with the congested terminal, the share of terminal 2A also slightly

decreases. A steady throughput is observed for both terminals 1D and 2D. They are

not centrally located, they are less likely to present a feasible alternative for requests

which were initially transported via terminal 1A and both terminals each only have

a long-haul service connection to a single other terminal.

Figure 3.15 visualises the throughput changes due to congestion for clustered cus-

tomer locations.

Results for clustered customer locations show a similar pattern with respect to

the impact of a single congested terminal. In the Benelux, the relative increase in the

usage of terminal 1B is larger. Due to the clustered request customer locations and

the centralised location, this terminal might provide an interesting, feasible alternative

for more requests impacted due to congestion. For terminal 1C, the impact is smaller,

as in the base case, its share is already relatively high. In the second service region,

the decrease in the importance of terminal 2C is even larger.

The above analysis provides insights in alternative routing decisions in order to

avoid congested terminals. An additional cost was included in order to account for

the cost of congestion in order to show how routing decisions might change.
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Figure 3.15: Difference in terminal throughput share due to congestion for clustered

customer locations.

3.4.3 Managerial insights

Intermodal operators offer a service network through which transport requests are

routed for the long-haul transport. Tactical decisions on the design of the service

network are made in the long term using expectations about future demand, and

transport contracts for operating long-haul services or purchased slots on long-haul

services of other operators are fixed for multiple months. At the operational level,

transport requests are routed through this given service network offered by the inter-

modal operator.

Usually, transport requests are assigned to the long-haul service with the smal-

lest total terminal-to-customer distance. However, this might not always prove to

be the best decision as not all information is accounted for. Vehicle routing costs

are ignored, and initial assignments might not always be feasible, for example due to

customer-depot distances or trucking and driving constraints. By taking an integrated

perspective, infeasible long-haul routing decisions based on incomplete information

can be avoided. By including information on feasible vehicle and long-haul routes

and accounting for capacity restrictions on long-haul services and a heterogeneous

truck and container fleet, the integrated approach aims at providing better-informed

decisions in comparison with the traditional, sequential method. For example, when

setting pricing decisions for customers based on more complete information, a more

accurate price might be charged corresponding closer to real costs incurred. Further-
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more, ideally, the service network should evolve in time in order to adapt to expected

customer demand characteristics. The proposed integrated intermodal routing prob-

lem allows to evaluate the impact of variations in expected customer demand. Before

accepting new customers, the integrated method could analyse the possible impact

on transport costs and routing decisions. When renegotiating transport contracts on

purchased slots, such evaluation can be used to propose adaptations to the service

network accordingly.

3.5 Conclusions and future research

In this chapter, potential savings and advantages of an integrated approach for inter-

modal routing are examined. The proposed integrated intermodal routing heuristic

encourages a seamless integration of decisions on truck routing and long-haul inter-

modal service selection. A reduction of drayage costs and an improvement of the

capacity utilisation stimulate the use of intermodal transport. While this study fo-

cuses on a two-region truck-rail network, the solution approach can deal with other

transport modes and multiple regions.

It is demonstrated that cost savings can be obtained by the integrated approach in

which decisions on truck routing and long-haul container routing are made simultan-

eously. Although cost savings are not obtained for instances with customer locations

placed randomly in the service regions, more load units can be transported, indicating

a better use of the available long-haul capacity. Besides, for clustered instances, sav-

ings in trucking costs are obtained. Moreover, results indicate that a trade-off exists

between increasing the capacity utilisation in the current planning week and reducing

vehicle routing costs. An additional intensification phase in the large neighbourhood

search heuristic for integrated intermodal routing could further improve the transport

cost savings. In that case, the obtained results in this chapter could be a lower bound

on the possible advantages of the integrated approach. This can be studied in future

research.

An integrated perspective allows to make better-informed decisions, hereby avoid-

ing infeasible solutions. Moreover, computation times amount to a maximum of 1000

seconds, which is certainly acceptable for the design of the planning of an entire week.

Chapters 2 and 3 developed an integrated viewpoint on local drayage decisions

and the selection of long-haul service connections. The approach aims to foster a

synchromodal viewpoint on the transport chains by integrating decisions on different

transport modes. The approach can be adapted to a day-to-day or even real-time
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planning horizon. Future work may focus on a dynamic version of the problem.

Whereas the current approach serves the purpose of providing insights in the way

the current service network design impacts total transport costs, a more operational

approach considering planning on a daily basis could support the day-to-day planning

process even further. In line with a synchromodal view, such an approach could also

be able to deal with disruptions in real-time and shift transport modes and routes

whenever necessary.

In the current research setting, a single intermodal operator offers multiple ser-

vices between two service regions of a given corridor. If more services and flows can be

considered for routing a request for the long-haul, this may yield further cost reduc-

tions. Within this regard, one interesting future research direction consists of taking

a cooperative approach. If different decision makers would be willing to collaborate,

this might further improve the efficiency of the transport system as a whole.

In this chapter, a large neighbourhood search heuristic was proposed to solve the

integrated intermodal routing problem. For both the sequential and integrated solu-

tion approach, the same initial solution is constructed based on a sequential version of

the problem. Alternatively, the final solution of the sequential approach could be used

as initial solution to the integrated approach. Future research may investigate the

influence of this adaptation on the heuristic performance of the integrated approach.

Besides, the integrated problem can be decomposed into the two problems considered

separately in the sequential approach. The weekly vehicle routing problems might

also be decomposed into daily routing subproblems. Moreover, the number of vari-

ables increases strongly when the size of the problem instances increases. Because

of these problem characteristics, the use of column generation to solve the problem

presents a valuable opportunity for future research.

Finally, at the tactical level, the service network and its characteristics are variable.

In order to cope with occasional capacity shortages, overflow can be assigned to one-

time purchased slots at an additional cost. By optimally managing the own services

and services offered by other operators, the total costs of operating this transport

system could be minimised even further.
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— Introduction to Part III: Train load planning —

Part II (Chapters 2 and 3) focused on intermodal routing. In this problem context,

load units are assigned to services on a weekly basis, accounting for restrictions on the

total service network capacity. In Part III (Chapters 4 to 6) the train load planning

problem is studied. Compared to the intermodal routing problem, train load planning

occurs on a daily basis. Load units are assigned to specific locations on intermodal

trains using detailed, short-term information. Furthermore, some flexibility is allowed

in the decision process. For example, one could decide on which load units will be

postponed and which should certainly be assigned to ensure an optimal capacity util-

isation based on real-time information and satisfy axle weight constraints of wagons.

Trucks carrying specific load units might not arrive in time, urgent transport orders

arrive into the system and the impact of cancellations of other long-haul transport

services or information about future transport orders should be included.
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Chapter 4
Factors influencing the train load

planning process: literature review

and classification

4.1 Introduction

By significantly raising the efficiency and capacity of rail transport over long dis-

tances, intermodal rail freight transport can be encouraged (Boysen, 2014). One

factor determining the railway system capacity concerns the load capacity per train

(Boysen, 2012). However, on-train capacity utilisation has not received much research

attention in comparison to route and network capacity (Woodburn, 2015), discussed

in Chapters 2 and 3. For an overview of literature on this topic, the reader is referred

to Crainic (2000) and Chapter 2. Improved capacity utilisation per train can increase

rail freight volumes, and consequently the overall railway system capacity utilisation,

without adding expensive network capacity. Therefore, it is important to determine

which load units will be loaded, and on which location on the train, to maximise

the train’s loading degree and minimise costs per load unit. This is the train load

planning problem.

This chapter presents a literature classification and review of train load planning

problems (Figure 4.1). The train load planning problem is situated at the operational

decision level and is related to two types of decision makers, the intermodal operator

This chapter is an updated version of the following paper:

Heggen, H., Braekers, K., Caris, A., 2016. Optimizing Train Load Planning: Review and Decision

Support for Train Planners. Lecture Notes in Computer Science, 9855, pp. 193-208.
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and the terminal operator. The intermodal operator organises transport and often

deals with a large variety of wagon and load unit types. This increases the com-

plexity of train load planning (Macharis and Bontekoning, 2004). Given a number

of outbound load units, available wagons and their corresponding characteristics, the

intermodal operator’s train planner typically has to determine which load units will

be loaded on which train, and establish a feasible train load plan. The second decision

maker involved is the terminal operator, who is responsible for transshipment from

one mode to another. Given the load units to be loaded as provided by the inter-

modal operator, he focuses on the efficient allocation of resources at the terminal,

for example to minimise handling costs. The transshipment process increases the

chain lead time and total transport cost. Hence, it needs to be executed fast and

efficiently (Macharis and Bontekoning, 2004). Transshipments can be made by means

of a gantry crane, which is able to transport load units very fast, but is very capital

intensive. Alternatively, mobile instruments such as reach stackers can be used. They

are slower and require driving lanes, but they are cheaper and more flexible (Reis

et al., 2013). The train load plan serves as an input for the planning of both types

of handling equipment. Given the assignment of load units to a location on an inter-

modal train, the sequence of load unit moves per crane or mobile instrument can be

decided (Boysen et al., 2010). The areas cranes operate in can be either fixed or free.

In the latter case cranes are allowed to move freely along the yard. When more than

one crane is available, interference should be avoided.

Intermodal transport companies often perform the assignment of load units to a

specific location on an intermodal train manually. Automation of this task can assist

train planners in their decision-making process. It may result in large cost savings by

increasing the number of load units assigned and consequently, decreasing the cost

per load unit, and by avoiding costs for the removal of a wagon and the transfer of

its cargo due to excess axle loads at certain measure points. Moreover, substantial

time savings can be gained in the planning process. Finally, it can have a significant

influence on the time and energy spent on handling load units (Corry and Kozan,

2008).

A lot of research has already been conducted on crane and storage planning in

container terminals. An overview of literature on container terminals is provided

by Steenken et al. (2004), and is updated by Stahlbock and Voß (2008). Further,

Boysen et al. (2013) provide an overview of processes at railway yards. Train loading

is part of the land-side operations in a container terminal, but has not been discussed

extensively so far (Corry and Kozan, 2008). Whereas most literature focuses on

a more general view on capacity at the level of network capacity, the train load
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Figure 4.1: Thesis summary - Chapter 4.

planning problem considers a more detailed definition of train capacity utilisation.

The aim of train load planning is to find an assignment of load units to the available

locations or slots on a train. The objective can be based on either capacity utilisation

or handling operations at the intermodal terminal. At the same time, axle payloads,

wagon weights and total train weights are restricted, a balance should exist between

the payloads on the adjacent axles of each wagon, and possibly other operational

constraints are applicable.

This chapter is structured as follows. Section 4.2 presents literature on train load

planning. Current research is categorised using three groups of problem characterist-

ics: objectives, constraints and the planning environment in which train load planning

is carried out. Other problems closely related to train load planning are also discussed.

Conclusions and research opportunities are presented in Section 4.3.
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4.2 Classification of train load planning problems

A major contribution to the development of the train loading problem has been

provided by Corry and Kozan (2008), who developed a realistic model which can

be extended to various specific environments. Furthermore, Bruns and Knust (2012)

are the first - and currently still the only ones - to adopt continuous weight restric-

tions in a train load planning problem. Both works (Bruns and Knust, 2012; Corry

and Kozan, 2008) laid the groundwork for realistic train load planning problems. Re-

cently, the optimisation of train load planning has been integrated with optimisation

of other operational decisions in an intermodal seaport terminal. This integration is

first introduced by Ambrosino et al. (2011), who simultaneously optimise crane and

storage planning. The overview in this section discusses both types of container load-

ing problems, namely problems focusing on pure train load planning and problems

integrating train load planning with crane and storage planning.

The composition and revision of train load plans is influenced by three groups

of factors. Models can be distinguished by their defined objectives (Section 4.2.1).

Furthermore, train load planning is affected by characteristics inherent to the train

components and operational constraints related to the specific environment in which

train loading takes place (Section 4.2.2). Section 4.2.3 introduces the influence of the

planning environment on the load plan.

4.2.1 Objectives

Objectives of train load planning problems in current literature can be divided into

four categories. An overview is presented in Table 4.1.

A first measure for the intermodal operator to define its performance is the train

utilisation or loading degree. It can be expressed in number of load units, total weight

or length of the load units. The urgency for load units to arrive at their destination

can also be accounted for. This objective can be implemented in two ways. On the

one hand, the number of load units assigned can be maximised, where a large number

of load units serve as input. This is sometimes achieved by penalising containers

left behind or adding a profit for assigning a load unit. On the other hand, a fixed

number of load units can be used as input, which all must fit on the train using the

least possible number of wagons, or minimising train length.

In a second category of objectives, the terminal operator aims at minimising costs

of handling operations at the terminal during execution of the load plan. Corry and

Kozan (2008) divide handling into three components: double handling, carry travel
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Table 4.1: Objectives for the train load planning problem.
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Max nbr of load units � � � � � � � � � � �

Max nbr of urgent load units � � � � � � � �

Max load unit length � � �

Max load unit weight � � �

Min nbr of wagons � � � � �

Handling costs

Min changes in pin position � � � � � �

Min transport cost � � � � � �

Min double handling � � �

Opt weight distribution � � � �

Unproductive moves

Min rehandles in storage area � � � � � � �

Min backward empty moves � � �
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and pin changes. Double handling occurs when a load unit is not directly transferred

from the truck to a wagon, which means that excess handling occurs (Corry and

Kozan, 2006a). It is only considered in cases in which loading and unloading are

executed simultaneously. In these cases uncertainty exists about the occurrence of

double handling for each load unit, because truck arrivals and move sequences of

handling material are uncertain. As inbound load units are unloaded, slots become

vacant. Consequently, the probability of double handling for outbound load units

which are assigned to these slots but did not arrive yet by truck becomes zero. Another

definition of double handling may be unloading a loaded load unit. Carry travel or

handling equipment travel corresponds to the transport cost from the storage position

to the assigned location on the train (Bruns and Knust, 2012). Uncertainty about

this performance indicator exists if not all load units arrive before loading starts.

Furthermore, each load unit is fixed on a wagon by means of four pins, which must

be aligned with castings located at certain points on load units (Corry and Kozan,

2008). Changing the pin positions of a wagon is labour-intensive and occurs when

the pin positions from the inbound wagons do not satisfy the pins needed to lock an

outbound load unit on the wagon. In that case, set-up costs occur.

A third performance indicator is related to the weight distribution of the train

(Corry and Kozan, 2006a). A good weight distribution may reduce the wear of the

brakes. The weight is optimally distributed if the distance from the centre-of-mass to

the front of the train is minimised. This objective can be included as a second step

(Upadhyay et al., 2017), after the load units to be loaded are known.

The fourth category aims at minimising unproductive movements as a result of

using multi-level container stacks at the terminal. Rehandles or reshuffles are un-

productive movements required in multilevel stacking areas when the load unit to be

picked up is not on top of the stack. This can be reduced by performing non-sequential

or backward empty crane movements when loading the train, which is a second type

of unproductive operations (Ambrosino and Siri, 2015).

Clearly several of these objectives may be relevant in a specific situation. The type

of operator which has the responsibility of constructing and revising the load plan (i.e.,

the terminal operator or the intermodal operator) influences the considered objectives.

Handling cost minimisation is the most common objective in pure train load planning

problems. Current models in literature typically use a weighted-sum approach to

aggregate the objectives in a single objective function. Anghinolfi et al. (2014) include

multiple objectives, but also use a single objective function with a multiplication of the

commercial value - representing the load unit urgency - and the weight and length

of the load units assigned to a location on the train. To our knowledge, only one
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paper (Ambrosino et al., 2016) applies multi-objective optimisation to the train load

planning problem. Furthermore, the minimisation of unproductive moves in multi-

level stacking areas is only considered in combination with problems which integrate

train load planning optimisation with crane and storage planning. No further patterns

seem to exist with respect to combinations of objectives. However, optimisation of

the weight distribution has not been considered in recent problems.

4.2.2 Constraints

Train component characteristics restrict loading possibilities. As defined by Corry

and Kozan (2006a), a load plan provides an assignment of load units to slots on a

train, where each slot equals one load unit length. Load units can be divided into

three types: trailers, containers and swap bodies (Bruns and Knust, 2012). Each load

unit is further characterised by its length, commercial value or urgency, and loaded

weight.

Trains have a limited weight and length. They consist of a number of wagons

of a specific length and tare wagon weight. Each wagon can carry a limited weight,

and has a limited draw gear capacity, which means that the mass that is allowed to

trail behind the wagon is limited (Corry and Kozan, 2006b). Each wagon is restricted

to a finite number of possible loading patterns or configurations (Corry and Kozan,

2008). They specify how many and which types of load units can be loaded on a

wagon. The maximum weights per slot and wagon are limited based on the allowed

axle loads. Every change in the configuration implies a set-up cost for changing pin

positions (Bruns and Knust, 2012). Bruns and Knust (2012) suggest two options to

limit axle loads. The first option models weight distributions discretely. It is based on

loading pattern descriptions provided by wagon manufacturers, as is most common in

practice. For the second option, axle loads are calculated based on continuous weight

distributions instead of using a set of allowed patterns. The authors also mention

two ways of categorising load units into types. The first approach considers length-

types, where each length-type corresponds to exactly one load unit length. The second

approach is based on fixation-types. Load units with the same fixation-type may have

various lengths, as long as they fit the same wagon pin configuration. This implies

variable overhangs for load units belonging to one fixation type. For example, both a

20 and a 24-feet load unit could be attached to the same pin fixation. Finally, some

papers mention the possibility of double stacking, in which more than one load unit

can be stacked on a single slot (Bruns and Knust, 2012; Corry and Kozan, 2008).

In that case, the train height may be limited for some routes due to the fact that



94 Chapter 4

trains pass low bridges on their route (Corry and Kozan, 2006b). Additional safety

constraints relate to the vertical centre-of gravity and stacking rules. A detailed

discussion on the loading of double-stack trains is provided by Upadhyay et al. (2017)

and Mantovani et al. (2018). However, in Europe this is not allowed due to the

presence of low bridges and tunnels and electrical wires above the rails.

Figure 4.2 visualises a number of possible configurations or loading patterns. At

the top, the side view of a wagon is shown, indicating the length of the wagon, the

length of the loading space and the distance in between bogie attachments in which

axles are fixed. In the dashed circles trailer wheels can be attached. In the front

of the wagon, a coupling plate is put in place to fix trailers. Next, a top view is

shown, presenting the possible pin positions (*). Two boxes (K1 and K2) show two

possible configurations. An arrow ends at a configuration when the pins are used

in this configuration. Each configuration defines a maximum number of slots. For

example, configuration K1 consists of two slots, while K2 consists of a single slot.

Furthermore, possible lengths per slot are identified (e.g., 20–24 feet), as well as

discrete weight restrictions per slot (e.g., a combination of a weight of 0 ton for slot

one and 36 ton for slot two).

Depending on the operational environment, additional constraints must be satis-

fied. Certain types of dangerous goods must be separated by a minimum distance,

or at least they cannot be located next to each other on the same wagon. A train

can have more than one destination. In that case, wagons must be grouped per des-

tination. Load units carrying refrigerated goods must be attached to wagons with

power supply (Corry and Kozan, 2006b). Finally, incompatibilities between certain

load units and wagons may exist (Corry and Kozan, 2004).

Corry and Kozan (2004) mention that some factors might conflict with the min-

imisation of double handling, such as the weight distribution of the train, the wagon

axle load, the separation of dangerous goods and the train height limit, as well as

aspects related to container handling, such as the travel of equipment and changes in

the pin configuration. The authors stress the fact that it may be beneficial to incur

carry travel if it results in improvements in double handling or weight distribution

(Corry and Kozan, 2006a).

An overview of all train component characteristics and other operational con-

straints included in current literature is provided in Table 4.2.

Factors influencing the load plan which are related to the train components are

now well established. However, pure train load planning models do not account for the

urgency with which load units must be shipped, whereas models integrating train load

planning with crane and storage planning do not add specific operational constraints.
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Figure 4.2: Possible configurations (adapted from Bruns and Knust (2012)).
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Table 4.2: Constraints for the train load planning problem.
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Weight limit � � � � � � � � � �

Length limit �

Height limit � � �

Double stacking � � �

Other operational constraints

Dangerous goods separation (�) � � � �

Destination grouping �

Incompatibility wagons & load units (�) � �

Refrigerated containers with power supply � �

(�) = Formulated as a restriction, but not used to solve the model



Factors influencing the train load planning process: literature 97

Finally, the draw gear capacity is only considered in a single article (Corry and Kozan,

2006b).

4.2.3 Planning environment

In practice, train load planning starts with the first booking of a load unit on a train.

More load units are assigned to the train until no feasible load plan can be established

by adding another load unit, which marks the last booking and the end of the booking

process. When the load plan is finalised, it is communicated to the terminal operator

and loading starts. In the meantime, load units arrive at the terminal until closing

time. The process ends just before train departure, when all load units are loaded

onto the train.

We categorise train load planning into three types of planning environments, as

presented in Table 4.3.

Table 4.3: Static and dynamic train load planning problems.

Authors Static Dynamic

Train planning operations: Terminal operations:

Uncertainty about information Uncertainty related to

on load units loading operations

Feo and González-Velarde (1995) �

Corry and Kozan (2006a) � �

Corry and Kozan (2004) �

Corry and Kozan (2006b) �

Corry and Kozan (2008) � �

Aggoun et al. (2011) (�)

Bruns and Knust (2012) �

Bruns et al. (2014) �

Upadhyay et al. (2017) �

Mantovani et al. (2018) �

(�) = Changes are performed by planners and imposed as constraints in the formulation

Static plans are used when terminals receive all load units before the loading

process starts, the train is initially empty and all information is known with certainty.

A static load plan can also be used as a guide in the booking process each time a

load unit is booked to check whether enough capacity is available (Corry and Kozan,
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2006b). Problems integrating train load planning with crane and storage planning are

all static, as is more common in seaport terminals, with large numbers of available

load units, and are not shown in the overview.

Caris et al. (2013) mention that intermodal transport has grown into a dynamic

research field. This is even more important in the context of synchromodal transport,

which allows for flexible mode selection based on the operational circumstances and

customer requirements, and which is currently receiving increased research attention

(SteadieSeifi et al., 2014). Uncertain events can occur in the last hours of the planning

process and between the moment the load plan is sent to the terminal operator and

train departure. They are related to the train planning environment and make the

load planning a dynamic process. An initial load plan is established before loading

starts, after which revisions can occur. These revisions may be necessary whenever

certain events arise that change the suitability of the current load plan (Corry and

Kozan, 2006a). More urgent transport orders can emerge, planned load units might

not arrive in time at the terminal and information on the type of load unit may be

updated. Moreover, the quality of the input data differs depending on the moment of

planning (Bruns et al., 2014). Real weights can differ from the initial data, wagons

can be damaged and thus cannot be used temporarily and overhangs can change in

comparison with available data, as considered by Bruns et al. (2014). Aggoun et al.

(2011) consider the case in which train planners perform changes to the load units to

be assigned. The changes are imposed as constraints to the problem, after which a

new load plan is generated. In summary, input data adaptations and the occurrence

of unexpected events trigger revisions to the load plan, complicating the load planning

process.

Another type of dynamic planning occurs when unloading and loading are per-

formed simultaneously, the train is initially not empty and load units arrive while

loading (Corry and Kozan, 2004). In that case, it is assumed that all load units are

booked and known in advance. It is related to the environment in which terminal

operations are performed to execute the load plan. Arrival times of trucks at the

terminal are random (within a predefined time window) and thus uncertain. It is

impossible to pre-plan train loading and still minimise handling time, because un-

certainty exists about the occurrence of double handling. Outbound load units may

arrive faster than inbound load units are unloaded. Consequently, a number of out-

bound load units must be stored in a temporary storage area. Hence, when a truck

arrives to collect or deliver a load unit or a load unit is being unloaded from a train

(in which case free space becomes available), the load plan is revised.
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4.2.4 Related problems

This section provides an overview of literature on related problems. The main focus

of these papers is mostly not to establish a train load planning, but the discussed

problems are closely associated.

Bostel and Dejax (1998) describe the problem of allocating load units to a location

on an arriving train and their location on a departure train to minimise the number of

load unit moves as well as the use and sizing of handling equipment in a rapid highly

standardised rail-rail transshipment yard. The authors assume that only one type of

load unit exists. In a similar context Souffriau et al. (2009) assign containers to slots on

trains with different destinations such that the lateral cost of transshipment operations

is minimised, without considering detailed load planning or due date restrictions.

Powell and Carvalho (1998) aim to optimally employ the equipment and flow

of flatcars, and consequently to manage the size of the fleet. A decision is made

on the loaded or empty repositioning of railroad owned equipment by combining

known customer requests with demand forecasts, hereby introducing network level

information to improve the decisions at a local level to optimise the entire network.

However, no decision is made on the assignment of load units to specific wagons or

locations on the train. Only the types of wagons satisfying a certain demand and

loading pattern for the wagon are determined. The problem is divided into two

dynamic assignment models formulated as a logistics queueing network. The first

model assigns load units to customer requests, while the other assigns wagons to load

units.

Two papers optimise the fuel efficiency of load plans to reduce emissions, for which

the load plan serves as an input. It is first introduced by Lai et al. (2008a). The greater

the gaps between load units - where the weight associated with a gap between two

units decreases as it is farther from the head end -, the less fuel-efficient the train.

Hence, two trains with the same slot utilisation might have different aerodynamic

efficiency. The model is extended by Lai et al. (2008b) who consider multiple trains,

because the aerodynamic efficiency increases with a greater flexibility in placing loads

on different trains. However, the benefit of optimising more future trains can be offset

by the risk of making wrong decisions due to imperfect information on future trains

and incoming load units.
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4.3 Conclusions and research opportunities

Automation of the load planning process can support train planners by providing a

load plan, and by optimising the capacity utilisation of the train. Load planning mod-

els can be used in an environment in which load units are all available before loading,

as is for example often the case in seaport terminals. They can offer the decision maker

a support tool incorporating real-time, integrated information in such a way that he

can make fast decisions (Corry and Kozan, 2006a). The type of operator deciding on

the train load plan determines the way in which a train load plan is constructed and

revised. The intermodal operator focuses on optimising capacity utilisation of the

available trains and managing dynamics during the booking process. The first, main

objective of transport planners is maximising the throughput by optimally utilising

the given loading space. Improving the capacity utilisation on the level of a single

train provides a cheap way of increasing the throughput and reducing the cost per

load unit. Within the aim of stimulating intermodal transport, this is an important

aspect. Next, the terminal operator minimises handling costs with a given number

of load units and dynamically revises the load plan with this cost minimisation as a

driver. Cost minimisation of terminal operations is a secondary objective as this ob-

jective is usually optimised given a number of predetermined load units to be loaded.

Terminal operations also influence the efficiency as they are directly connected with

the transshipment cost between two transport modes.

Real-life loading constraints should be included. A simplification of the real situ-

ation by omitting loading constraints might possibly lead to an infeasible or undesir-

able composition of the load plan. Existing literature considers some but not all

real-life problem characteristics required in order to assist planners in their decision-

making process. For example, currently only wagon axle constraints for wagons with

two bogies are considered, while three-bogie wagons are used in practice as well.

Moreover, in a real-world planning environment, train planners look into the fu-

ture and account for a longer planning horizon. Based on their experience, they look

a number of days ahead to establish a first load plan. With information about ca-

pacity on future trains and expected or known transport requests, they make the

best decision accounting for the future. Detailed load plans are established one day

before train departure and the intermodal operator sends them to the terminal oper-

ator. Current literature focuses on load planning problems for a single train without

looking ahead when making assignment decisions. Only two papers (Anghinolfi and

Paolucci, 2014; Lai et al., 2008b) take into account multiple trains. However, when

load units are assigned to trains, a longer planning horizon must be incorporated in
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the pure train load planning problem. This can be executed by means of prioritising

more urgent load units or including a rolling horizon, in order to further assist plan-

ners while bookings arrive into the transport system. In this way, it is possible to

balance load units to be shipped based on the available capacity according to their

urgency. It may be interesting to study multi-period planning problems to provide

planners with a longer term view on current capacity plans and address possible issues

when they occur.

Although most scientific literature investigates static planning, decision support

for planners in a dynamic environment, which is known to be a recent and future

trend in line with synchromodal transport, should be available. Dynamic adapta-

tions are triggered by certain events, such as a truck arriving late or urgent orders

emerging, and should be communicated to the terminal operator as soon as possible.

Current formulations require approaches which are able to account for this dynamic

environment train planners daily operate in. More specifically, with the increasing

importance of uncertainty about future demand and the occurrence of disturbances

in the planning environment, planners must be supported in the decision making dur-

ing the booking process. Multiple objectives may need to be included to provide a

number of load plans.

Moreover, planners often receive a lot of information by means of communication

with other operators. Planners of trucking operations can provide information on

the locations of available trucks and as such, train plans may need to be revised.

Furthermore, at different points in time, a different objective may be more critical,

but this is not defined in advance. Therefore, planners could be offered a number of

options to plan their train loading which are a priori indifferent to provide appropriate

decision support.

To optimise both train load planning and crane and storage planning decisions,

information must be available to all parties involved. This is also relevant for the de-

velopment of dynamic models. Integrating data flows and using real-time information

can provide more accurate data to further optimise the train load planning problem.

It may support train planning decision-making whenever changes to the load plan-

ning occur. For example, when an urgent load unit emerges and needs to be planned

on a train, train planners require knowledge on which load unit is already loaded on

the train to prevent unloading a loaded load unit. Furthermore, information on the

position of load units in stacks may be shared between parties in order to establish

well-founded decisions.

A number of studies indicate that the problem is becoming highly complex when

all relevant constraints and dynamic influences should be reflected in the train load
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planning problem. Heuristics may provide a good solution to the problem after a short

amount of computation time, or when small changes occur and an initial plan must

be updated. In a dynamic planning environment, in which decisions are made in real-

time, this can be an relevant characteristic of train load planning solution methods.

Therefore, it may be interesting to further explore the possibility to develop heuristics

to solve the train load planning problem.

To conclude, the problem complexity for the train load planning depends on the

combination of loading constraints, constraints in the specific operational environ-

ment, influencing factors determined by the involved actors (e.g., a terminal operator

has other objectives than an intermodal operator) and dynamic influences on the

problem. The problem consists of two stages, which might imply that it could be

solved in two phases. The initial focus should be on maximising throughput, after

which efficient terminal operations can be designed. In a complex intermodal trans-

port system, automated train load planning with adequate decision support can aid

intermodal rail decision-makers in their decision-making process. It is a rather young

research area, which may be further developed to assist in the decision-making process

and optimise train planning.

In Chapters 5 and 6, the focus will be on solution methods with real-life loading

constraints. The problem is studied from the viewpoint of an intermodal operator

and aims to provide intermodal planning support during the booking process in a

multi-objective setting, with the aim of maximising the available capacity utilisation.

While a static problem setting is considered, information about the future is indirectly

included by considering the urgency with which load units should be transported.



Chapter 5
A multi-objective train load

planning problem with real-life

characteristics: formulation and

exact solution approach

5.1 Introduction

The literature review in Chapter 4 identifies the factors influencing the train load

planning problem and classifies current research accordingly. The overview indicates

that multi-objective approaches for train load planning are a recent area of study.

Planners may have multiple conflicting objectives, where no predefined fixed weights

exist for the objectives. Therefore, in this chapter, a multi-objective train load plan-

ning problem with real-life characteristics is presented, as well as an exact solution

approach to solve the problem (Figure 5.1).

The multi-objective approach provides planners with a decision support tool and

results in a number of train load plans. Planners can then decide which of the plans

suits the current operational environment the most. Ambrosino et al. (2016) focus in

a conference paper on multiple objectives regarding crane operations and reshuffles in

the storage area at seaports. They maximise the commercial value of loaded units and

This chapter is based on the following paper:

Heggen, H., Braekers, K., Caris, A., 2018. A multi-objective approach for intermodal train load

planning. OR Spectrum, 40(2), pp. 341-366.
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Figure 5.1: Thesis summary - Chapter 5.

minimise the number of reshuffles in the storage area and the number of pin changes.

As opposed to Ambrosino et al. (2016), we consider a multi-objective problem from

the perspective of an operator who receives transport orders and has to plan these

according to the customer requirements and operational circumstances within an in-

termodal rail-road context. More specifically, our problem is aimed at maximising

train length utilisation, scores for assigning load units to a more preferred, flexible

destination and the number of urgent load units assigned.

Compared to existing research, additional characteristics of a real-life train plan-

ning environment are introduced. The model is able to handle wagons with a third

bogie at its centre, while previous models only considered two bogies. Next, it is

expanded with practical constraints that train planners are confronted with. The

model deals with trains stopping at an intermediate terminal before arriving at the

final destination terminal, including a more restrictive path weight limit between the

intermediate and final destination terminal. Within this context, load units can have

flexible destinations. Therefore, preferences for being unloaded at the intermediate

or final terminal are determined by the distance between the unload terminal and the

load unit’s final destination in order to minimise the amount of kilometres travelled
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on the road. Another consideration is the fact that some load units are very urgent

and must be assigned to a location on the train to arrive at its destination in time.

The inclusion of a measure for urgency aims at accounting for future time periods,

hereby incorporating a longer-term planning horizon.

In this chapter, a new train load planning problem is proposed, inspired by a

real-life case study as described in Section 5.2. The objective function is based on

the viewpoint of a train planning department of a company which manages incoming

transport orders and has its own trains. Wagons with three bogies are accounted

for. A mathematical formulation of the problem is presented, and practical elements

considered important by train planners in a real-life case study are added to the

model. Section 5.3 presents an exact adaptive ε-constraint solution method to solve

the problem and Section 5.4 summarises the characteristics of the problem instances

used to analyse the exact method. Computational results for the ε-constraint method,

obtained using ILOG Cplex 12.6 in C++, are discussed in Section 5.5. The main

conclusions are summarised in Section 5.6.

5.2 Problem definition

The model in this chapter focuses on the composition of load plans during the planning

process, not on its execution by terminal equipment. Furthermore, it is assumed that

the demand for transport of load units is higher than the available space on the train.

This makes the problem twofold: a decision should be made on which load units will

be loaded, as well as their location on the train. Consequently, the objectives will be

based on optimising train utilisation with a given number of wagons. A static model

is presented.

5.2.1 Introduction to multi-objective concepts

Train planners have multiple objectives which may be conflicting, hence the import-

ance of having a number of load plans to choose from based on the current real-time

operational situation. For example, planners may have more information on the avail-

ability of future trains and alternative routes for some load units to be sent to their

unload location. The weighted-sum method provides a single solution and assumes

predefined weights for the objectives. It may be a difficult task to fix the weights of

each objective in advance. Therefore, a multi-objective approach will be proposed.

In a multi-objective maximisation problem, one would prefer to find an ideal

point where all objectives have their highest value. However, usually maximising one
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objective implies a reduction of the remaining objective values. Therefore, the solution

does not consist of a single optimal solution, but is depicted by a Pareto-front, which

contains a number of non-dominated solutions. A solution is Pareto-optimal if all

other solutions have a lower value for at least one of the objective functions, or have

the same value for all of the objective functions (Caramia and Dell’Olmo, 2008). All

obtained solutions on the Pareto-front are a priori of equal rank: a solution may be

better with respect to one objective, but worse for another. In advance, the solutions

are non-comparable. In multi-objective optimisation, the aim is to find the Pareto-

optimal solutions. These concepts are illustrated in Figure 5.2 for a bi-objective

maximisation problem. The dotted lines are solely for visual representation, and do

not represent the solution space.

Figure 5.2: Example of a bi-objective maximisation problem.

For the train load planning problem it implies that a number of load plans are

provided as output. In this way, train planners can decide a posteriori on the relative

weights of each objective implicitly based on information of the current operational

situation by choosing one of the load plan solutions.

For a more comprehensive overview of multi-objective optimisation, the reader is

referred to Ehrgott (2005).

5.2.2 Multi-objective model formulation

The mathematical formulation builds on the third IP model of Bruns and Knust

(2012), which is the only train load planning problem considering axle loads as con-

tinuous functions. This provides more flexibility as not all weight configurations must

explicitly be defined, and has proven to lead to smaller run times. Our formulation is
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based on load unit length-type categorisations instead of fixation types, because only

five main length types are available in the real-life case study. Load units of 20, 25,

30, 40 and 45 feet are considered, which are common length types used in practice. A

wagon configuration consists of a combination of load units, each with a length type.

For example, a 60-feet wagon can be filled with two 30-feet load units, but also with

a single 20-feet load unit.

The aim is to find an assignment of load units to slots on an intermodal train,

while accounting for a number of weight restrictions. The total train weight, which

consists of the weights of all wagons and load units assigned, is limited. Additionally,

the weight that each wagon can carry is limited, which is not the case in Bruns and

Knust (2012). Finally, the allowed payload on each bogie is restricted, and the bogie

payloads should be balanced compared to each other for stability reasons. In our

view, the limit on the slot weights as proposed by Bruns and Knust (2012) becomes

redundant due to the above restrictions, and thus slot weight limits are not explicitly

incorporated in this problem formulation.

Moreover, realistic elements are added to the model based on observations of a

real-life train planning department. The model is able to account for wagons with a

third bogie at the wagon centre. In that case, the tare wagon weight is distributed over

all three axles: 50% over the centre bogie, and 25% over each front and rear bogie.

This differs from existing models in which only wagons with two axles are considered.

On the one hand, using continuous weight restrictions provides more flexibility. More

solutions are feasible compared to a discrete set of feasible weight combinations in

a given configuration of load unit types, because more feasible weight combinations

are considered (Bruns and Knust, 2012). On the other hand, this requires a unique

formula for two- and three-bogie wagons due to different distribution of the weights

across the axles, whereas a discrete set of weight combinations can be determined once

in advance (based on formulas, which are no longer required once the set is given).

Furthermore, the objective is formulated as a multi-objective function, where on the

one hand the loading degree in terms of loaded length is maximised and on the other

hand the priority scores for urgent load units assigned are maximised to prevent load

units not reaching their destination in time. The following notation is used:

Sets, indices and parameters

I = {1, ..., n} = set of load units with index i

J = {1, ...,m} = set of wagons with index j

R = {1, ..., r} = set of wagon types with index r

κr = set of physical configurations for wagons of type r, with index k
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Sjk = set of all possible slots of configuration k for wagon j, with index s

li = length of load unit i

pi = urgency of load unit i

gi = weight of load unit i, tare load unit weight included

wj = tare wagon weight of wagon j

G = train weight limit, tare wagon weights wj included

Wj = wagon weight limit for wagon j

τj = wagon type of wagon j, where τj ∈ R

γτj = maximum feasible payload for the bogies of wagon type τj ,

which is the same for each bogie of a single wagon

dτj = distance between two adjacent bogies for wagon type τj

eksτj = distance between the centre of the load unit and the bogie in

front of slot s in configuration k for wagon type τj

zj =

1, if wagon j has two bogies

0, if wagon j has three bogies

Decision variables

aj = payload on bogie a for wagon j

bj = payload on bogie b for wagon j

cj = payload on bogie c for wagon j, only if it has three bogies

yjk =

1, if configuration k is chosen for wagon j

0, otherwise

xijks =


1, if load unit i is assigned to slot s in configuration k of wagon j,

defined only if load unit i fits onto slot s of wagon j in configuration k

0, otherwise

The problem is formulated as follows:

Problem P1:

max f = (f1, f2) (5.1)

f1 =
∑
i∈I

∑
j∈J

∑
k∈τj

∑
s∈Sjk

li · xijks (5.2)
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f2 =
∑
i∈I

∑
j∈J

∑
k∈τj

∑
s∈Sjk

pi · xijks (5.3)

subject to∑
j∈J

∑
k∈κτj

∑
s∈Sjk

xijks ≤ 1 ∀i ∈ I (5.4)

∑
i∈I

xijks ≤ 1 ∀j ∈ J, k ∈ κτj , s ∈ Sjk (5.5)∑
k∈κτj

yjk = 1 ∀j ∈ J (5.6)

aj =
wj
2

+
∑
i∈I

∑
k∈κτj

∑
s∈Sjk

gi ·
dτj − eksτj
dτj

· xijks ∀j ∈ J, zj = 1 (5.7)

bj =
wj
2

+
∑
i∈I

∑
k∈κτj

∑
s∈Sjk

gi ·
eksτj
dτj
· xijks ∀j ∈ J, zj = 1 (5.8)

aj =
wj
4

+
∑
i∈I

∑
k∈κτj

2∑
s=1

gi ·
dτj − eksτj
dτj

· xijks ∀j ∈ J, zj = 0 (5.9)

bj =
wj
2

+
∑
i∈I

∑
k∈κτj

2∑
s=1

gi ·
eksτj
dτj
· xijks

+
∑
i∈I

∑
k∈κτj

4∑
s=3

gi ·
dτj − eksτj
dτj

· xijks ∀j ∈ J, zj = 0 (5.10)

cj =
wj
4

+
∑
i∈I

∑
k∈κτj

4∑
s=3

gi ·
eksτj
dτj
· xijks ∀j ∈ J, zj = 0 (5.11)

aj ≤ γτj ∀j ∈ J (5.12)

bj ≤ γτj ∀j ∈ J (5.13)

cj ≤ γτj ∀j ∈ J (5.14)

aj − 3 · bj ≤ 0 ∀j ∈ J (5.15)

bj − 3 · aj ≤ 0 ∀j ∈ J (5.16)

bj − 3 · cj ≤ 0 ∀j ∈ J (5.17)

cj − 3 · bj ≤ 0 ∀j ∈ J (5.18)∑
i∈I

∑
k∈τj

∑
s∈Sjk

gi · xijks ≤Wj ∀j ∈ J (5.19)
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∑
i∈I

∑
j∈J

∑
k∈κτj

∑
s∈Sjk

gi · xijks +
∑
j∈J

wj ≤ G (5.20)

xijks ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ κτj , s ∈ Sjk (5.21)

yjk ∈ {0, 1} ∀j ∈ J, k ∈ κτj (5.22)

The multi-objective function (5.1) maximises the utilisation of the given, available

loading length (5.2) as well as the priority scores for urgent load units assigned to

locations on the train (5.3). Each load unit can be assigned to at most one slot (5.4),

and a slot can only carry one load unit (5.5). Constraint (5.6) guarantees that a

single configuration per wagon is chosen. The payload of each bogie is determined by

(5.7) and (5.8) for wagons with two bogies, and by (5.9)-(5.11) for wagons with three

bogies, where it is assumed that centre of mass of the load unit is at its middle. It

is assumed that wagons with three bogies can carry at most four load units, two at

each side of the centre bogie. In case a configuration with only two slots is chosen,

one at each side of the centre, indices s = 1 and s = 3 are used for these slots. The

bogie payloads are limited in (5.12)-(5.14). Constraints (5.15)-(5.18) ensure that the

payloads on each bogie are balanced relative to the adjacent bogies. This balance

is set to maximum three times the weight of the adjacent bogie, as done by Bruns

and Knust (2012). The allowed wagon weight and train weight are limited by (5.19)

and (5.20) respectively. Finally, (5.21) and (5.22) define the domain of the decision

variables.

5.2.3 Adding practical considerations

In this section, practical constraints are added to the model, based on the prob-

lem context of Move Intermodal, an intermodal transport company with activities

throughout Europe. One of its main activities concerns the intermodal rail-road

connection between Belgium and the Netherlands on the one hand, and two unload

terminals in the north of Italy on the other hand.

Trains leaving Belgium or the Netherlands have two destinations, an intermediate

destination and a final destination. The first u wagons of the train are decoupled at

the intermediate terminal, while the remaining ones continue to the final terminal.

Because of a weight restriction on the railway path between both unload terminals,

the total train weight limit is lower for the path between the intermediate rail stop and

the final destination. In this case, Eq. (5.20) must be supplemented by an additional

restriction (5.23), where G′ constitutes the train weight limit for the wagons which

will be unloaded at the final destination terminal, after unloading the first u wagons
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at the intermediate terminal. Consequently, the following restriction is added to the

problem, where G′ < G.

∑
i∈I

∑
j∈J
j>u

∑
k∈τj

∑
s∈Sjk

gi · xijks +
∑
j∈J
j>u

wj ≤ G′ (5.23)

Due to the destination grouping of wagons, load units should be grouped per

destination. This can be accomplished by assigning a destination preference score λij

to each load unit, indicating the preference for assigning load unit i to a wagon j

with destination Dj . These preferences can be based on the proximity of the unload

terminal to the load unit’s final destination, where a larger value of λij means that

the destination of wagon j is more preferred for load unit i. To assign as much load

units as possible to their preferred destination, a maximisation of the destination

preference score is added to the objective function, as in (5.24) and (5.25).

max f = (f1, f2, f3) (5.24)

f3 =
∑
i∈I

∑
j∈J

∑
k∈τj

∑
s∈Sjk

λij · xijks (5.25)

Furthermore, to incorporate the urgency with which each load unit must arrive

at its destination, load units are divided into three categories based on the real-life

setting of the train planning environment. Therefore, priority parameters split load

units into three classes: critical load units (pi = 2), urgent load units (pi = 1), and

non-urgent load units (pi = 0). Critical load units must be assigned to a location on

the train to arrive at its destination in time. They receive the highest priority and

must always be assigned to a location on the train. Urgent load units have a margin of

one day on the ultimate arrival date, and all other load units are non-urgent. These

definitions are used throughout the remainder of this chapter. Assuming that all

critical load units can be loaded onto the train, a constraint is added to impose all

critical load units to be loaded (5.26). This leaves only one urgency objective, namely

assigning as much urgent load units (pi = 1) as possible.

∑
j∈J

∑
k∈κτj

∑
s∈Sjk

xijks = 1 ∀i ∈ Ipi=2 (5.26)

In the remainder of this chapter, these practical considerations are added to the

base model to constitute a single train load planning problem formulation.
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5.3 A multi-objective exact solution approach

An exact solution approach is presented for the multi-objective train load planning

problem with three objectives. From the perspective of the intermodal operator who

manages its own trains, three objectives are considered: maximising train length util-

isation, maximising scores for load units assigned to a more preferred destination

(which may be based on the proximity of the load unit’s final destination to the two

unload terminals), and maximising the number of urgent load units (pi = 1) assigned.

No fixed or predefined hierarchy between these three objectives exists. For example,

loading more metres on the train may be conflicting with the optimal number of ur-

gent load units assigned. Furthermore, it may be beneficial to assign fewer load units

to a more preferred destination if this leads to more load units assigned. However,

this trade-off is not always defined a priori and depends on the current operational en-

vironment. For example, expectations about future bookings and availability of slots

on trains departing from terminals in the close vicinity influence the final assignment

decision.

The exact ε-constraint method can be used to solve problems with multiple ob-

jectives. The method consists of maximising one objective (5.27), while iteratively

increasing (lower) bounds on the other objectives (5.28) until no feasible solution can

be obtained anymore. While ε1 and ε2 represent lower bounds, ε′1 and ε′2 are upper

bounds for f1 and f2 respectively. The solution space Z (5.29) consists of all feasible

solutions. For more information on this method, the reader is referred to Chankong

and Haimes (1983). The general three-objective maximisation problem can be for-

mulated as follows:

Problem P2:

max f3(z) (5.27)

subject to

εv ≤ fv(z) < ε′v ∀v ∈ {1, 2} (5.28)

z ∈ Z (5.29)

Recent research efforts focus on improving the efficiency of the classical ε-constraint

method, as it is not trivial to implement for more than two objectives. For example,

Mavrotas (2009) and Zhang and Reimann (2014) propose acceleration mechanisms

such as early exit at infeasible solutions, additions to guarantee strictly dominating
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solutions, methods to limit the range of objective function values and the addition

of bouncing steps in the loops. The two-dimensional adaptive ε-constraint method

of Kovacs et al. (2015) includes a memory (k) for tightening the bounds on one ob-

jective, and relies on the knowledge that the number of different values for one of

the objectives is usually relatively low. As this holds for the priority scores f2, the

procedure can be applied to the train load planning problem. For any value of this

objective, a bi-objective problem can be solved with modified ε-constraints.

In this chapter, an exact solution method based on the ε-constraint method is

used to solve the train load planning problem with three objectives. The idea is to

repeatedly solve a single-objective problem which maximises destination preferences,

with varying lower bounds on the other two objectives (length utilisation and priority

scores). The upper bounds stay constant and can be calculated easily in advance:

ε′1 corresponds to the available train length plus one, ε′2 corresponds to the sum of

all priority scores over all available load units plus one. A number of redundant

subproblems are avoided by using a hierarchical objective function (5.30) replacing

(5.27) in problem P2, hereby reducing the number of iterations as the highest possible

value for the secondary and tertiary objectives are selected for a given value of the

primary objective without missing any non-dominated solution - to become problem

P3.

max f3 +
f1

UB1
+

f2

UB2
(5.30)

The main objective is to maximise destination preferences f3 (5.25). Maximising

length utilisation f1 (5.2) and priority scores f2 (5.3) are the secondary and ter-

tiary objectives respectively. Note that all three objective values are integer when

assuming li, pi and λij to be integer parameters. In order to avoid iterations with

solutions which will be dominated by solutions of later iterations, a hierarchical ob-

jective function (5.30) is applied (instead of just maximising f3) with f2
UB2

< f1
UB1

< 1,

f1 < UB1 = ε′1, f2 < UB2, and UB2 set such that the above conditions hold, i.e.,

larger than f2 ∗ UB1

f1
(for any combination of possible values for f1 and f2) and

consequently larger than ε′2. Further, objectives f1 and f2 are bounded by (5.28).

This approach guarantees that no non-dominated points are missed in the three-

dimensional grid. Finally, the solution space Z (5.29) consists of all solutions which

satisfy constraints (5.4)–(5.23), and (5.26).

The two-dimensional adaptive ε-constraint algorithm of Kovacs et al. (2015) is

used to guide the iterative procedure of finding all solutions on the Pareto-front. In

this chapter, the number of urgent load units assigned to a location on the train
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(f2) can only take a limited amount of values, especially when all critical load units

are assigned. Consequently, a two-dimensional problem can be solved for each pos-

sible value of this objective. The implementation of the two-dimensional adaptive

ε-constraint approach for the train load planning problem is provided in pseudocode

(Algorithm 2) and works as follows. Each single-objective problem maximises the

objective function (5.30). In a first phase, the problem is iteratively solved with an

increasing lower bound ε1 on the loaded length f1 (lines 6–10). As the minimum length

difference between two load unit types amounts to five feet, the increase is set to five

feet per iteration (δ1 = 5). At this point, f2 is still unbounded. After each phase-one

iteration, the resulting f1-value increased with δ1 = 5 serves as lower bound for the

next iteration. In the second phase (lines 3–12), a memory (k) is used for tightening

the bounds on f2, similar as in Kovacs et al. (2015). The first-phase two-dimensional

procedure is repeated with the lower bound ε2 on the number of urgent load units set

as the minimum f2-value found in the previous first-phase iteration, increased with

one load unit (δ2 = 1). This procedure is repeated until no feasible solution can be

obtained anymore.

Algorithm 2 Three-objective ε-constraint method for train load planning.

1: ε1 = 0

2: ε2 = 0

3: while ε2 < ε′2 do

4: k =∞
5: ε1 = 0

6: while ε1 < ε′1 do

7: Solve problem P3

8: ε1 = f1 + δ1

9: k = min(k, f2)

10: end while

11: ε2 = k + δ2

12: end while

The output of this method will be a set of Pareto-optimal solutions, containing

at least one solution for each point on the Pareto-front (Kovacs et al., 2015). From

this pool of solutions, train planners select the one which is most appropriate for the

current operational circumstances.

One disadvantage of this method is that a large number of iterations might be

required. On the other hand, the method guarantees to find all non-dominated solu-
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tions, including non-supported ones. This is not the case if alternatively for example

a weighted objective, with varying weights, would be used to find non-dominated

solutions. Furthermore, setting these weights is also not a trivial task. The main

advantage of obtaining this complete set is that it provides insights on what the front

looks like, without having to set arbitrary weights.

5.4 Problem instances

In current literature, data is produced based on real-life characteristics of load units,

wagons and configurations in Italy (Ambrosino and Siri, 2014, 2015; Ambrosino et al.,

2011, 2013, 2016; Anghinolfi and Paolucci, 2014; Anghinolfi et al., 2014), Germany

(Bruns and Knust, 2012; Bruns et al., 2014), Australia (Corry and Kozan, 2004,

2006a,b, 2008) and the United States (Feo and González-Velarde, 1995; Upadhyay

et al., 2017; Mantovani et al., 2018). As no benchmark instances are publicly available,

input data is generated based on historical information about load units transported

from Belgium to two locations in Northern Italy by the considered company. As

such, the generated instances are representative for the real-life problem. The used

instances are available upon request.

To assess the performance of the solution methods in terms of computation times

and to examine the resulting generated load plans, a number of experiments are

conducted using CPLEX. By changing parameter values of a number of input factors,

the influence of these factors on the computation time and the trade-offs are analysed.

Three factors are considered: the number of available wagons, the number of critical

load units available and the weights of the available load units. All combinations are

considered, resulting in 18 (3x2x3) instance classes. An overview of the experimental

design is presented in Table 5.1.

Table 5.1: Input data: problem types for train load planning.

Factor Level

1 2 3

Number of wagons 5 10 20

Critical load units (% of available load units) 35% 20% /

Load unit weights TRIA(17,20,23) TRIA(23,26,29) UNIF(17,29)
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The three factors are considered on multiple levels. First, the number of available

wagons is assumed to be five, ten or twenty. The problem type with twenty wagons

can be considered a realistic wagon set. However, also smaller instances are considered

in order to allow the comparison of the multi-directional local search heuristic – which

will be presented in Chapter 6 – with the exact solutions, as additional experiments

on a preliminary single-objective version of the model indicated that large instances

might not always be solved to optimality in short computation times (Heggen et al.,

2016). The wagon set is fixed to a representative composition with respect to the

relative amount of wagons available for each terminal as well as the combination of

wagon types used. The number of load units available is determined in such a way

that it is directly related to the available wagons. New load units are randomly added

to the pool of available load units until they constitute 1.5 times the wagon space

available, while a fixed split of load unit types is maintained based on the analysis

of real data. Destination preferences of load units to be assigned to one out of two

destinations are determined based on the proximity of their final unload location to

each of the two intermodal terminals. A load unit has a strong destination preference

if it is very close to one terminal (λij = 100). If they are a little further from one

of the terminals, a weak preference for being assigned to a terminal (λij = 10) is

assigned. All other load units are assumed not to have a clear preference because

the difference in distance between each terminal and the load unit unload location is

not substantial. A second factor concerns the number of critical load units available,

presented as a percentage of all available load units. It is set to either 35% or 20%,

while the percentage of urgent load units is kept constant at 20% in order to clearly

show the impact of the number of critical load units. Consequently, differences occur

with respect to the amount of non-urgent load units. Finally, three levels of load unit

weights are considered in the experimental design: light load units, heavy load units

and units with equally distributed weights. Input for light and heavy load units is

generated using a triangular distribution with a minimum, a modus and a maximum

for the load unit weights (TRIA(min,modus,max)). These three parameters are

chosen based on realistic values for light and heavy load unit weights. The equally

distributed load unit weights are obtained by means of a uniform distribution of the

load unit weights (UNIF (min,max)) with a minimum weight equal to the minimum

weight of the instances with light load units and a maximum weight equal to the

maximum weight of the instances with heavy load units. For each combination of

factors, 10 instances are randomly sampled, resulting in a total of 180 instances.
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5.5 Computational experiments for the ε-constraint

method

A time limit of one hour per single-objective run is imposed to the exact ε-constraint

method (line 7 of Algorithm 2) to avoid excessive total run times for the calculation

of the pool of load plan solutions for a single instance. Results with respect to the

computation times are given in Table 5.2, information on the obtained solutions is

displayed in Table 5.3.

The left part of Table 5.2 presents computation times related to the entire ε-

constraint procedure, i.e., the total time for finding all solutions, either optimal or

at maximum run time. On the right-hand side, results are shown for all runs which

reached the time limit, i.e., which were not solved to optimality in time and thus result

in an optimality gap. The average gap represents the percentage difference between

the lower and upper bound obtained for solutions not solved to optimality within the

time limit. A full and detailed overview of the obtained results per instance can be

found in Appendix A.1.

These results indicate that the train load planning problem cannot always be

solved in a short computation time, as shown by the total computation times for the

entire procedure in each problem category. Some single-objective runs consume a large

amount of computation time, severely influencing average total computation times.

Preliminary experiments already showed that axle weight limits and the balancing

of payloads make the train load planning problem complex to solve. The size of the

problem has an influence on the solution time. Problem instances with five available

wagons are all solved in very short computation times, with a maximum total run

time of 73.50 seconds to find all solutions on the Pareto-front. Most problems with

ten available wagons produce higher average and maximum computation times, which

partly may be due to the fact that more single-objective iterations are required. For

realistic instances of 20 wagons, the exact Pareto-front consists of an even larger

number of non-dominated solutions, and consequently more iterations exist within

the procedure, further increasing run times.

The load unit weights also influence computation times for instances with ten

available wagons. With heavy load units as input, total computation times increase

drastically and not all single-objective iterations are solved to optimality within the

given time limit of one hour per iteration. Instances with light load units show

the smallest computation times, and instances with load unit weights drawn from a

uniform distribution lie in between. An identical pattern can be observed for realistic
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Table 5.2: Computational results for the ε-constraint method.

Computation times (s) Solutions with max runtime

Problem instance Instances Avg Min Max StDev Instances Iterations
Avg

gap (%)

(5, 35%, light) 1-10 1.22 0.39 5.62 1.57

(5, 35%, heavy) 11-20 1.25 0.25 6.97 2.06

(5, 35%, unif) 21-30 11.31 0.31 73.50 22.92

(5, 20%, light) 31-40 1.56 0.09 3.95 1.23

(5, 20%, heavy) 41-50 1.15 0.20 3.41 1.01

(5, 20%, unif) 51-60 2.86 0.27 10.31 3.53

(10, 35%, light) 61-70 10.98 2.43 32.51 9.95

(10, 35%, heavy) 71-80 699.93 2.93 3614.83 1458.54 2 2 0.62

(10, 35%, unif) 81-90 8.18 1.33 20.20 5.28

(10, 20%, light) 91-100 11.69 1.38 57.78 16.93

(10, 20%, heavy) 101-110 1677.01 4.64 8112.28 3346.11 2 4 1.67

(10, 20%, unif) 111-120 12.29 1.59 57.68 16.53

(20, 35%, light) 121-130 855.77 7.06 4374.27 1676.84 2 2 0.28

(20, 35%, heavy) 131-140 39917.96 90.50 154278.99 55164.00 7 104 1.01

(20, 35%, unif) 141-150 8614.75 37.33 32524.43 11783.22 5 19 0.73

(20, 20%, light) 151-160 536.24 17.42 4777.64 1491.24 1 1 0.22

(20, 20%, heavy) 161-170 5283.01 118.36 33793.43 10641.46 3 12 0.47

(20, 20%, unif) 171-180 1680.34 28.37 14764.40 4598.26 1 4 0.18
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instances with 20 wagons. However, for all problem categories the average optimality

gap for solutions which are not solved to optimality does not exceed 2%.

Table 5.3 shows the average number of unique, non-dominated solutions obtained

by the multi-objective approach for each problem instance, including both optimal

solutions and solutions obtained at maximum run time. It further displays the dif-

ference between the minimum and maximum objective value for each objective for

one instance, averaged over all instances with identical problem characteristics. The

final column contains additional information with respect to the average number of

available load units as a basis for comparison for the number of urgent load units

assigned.

Table 5.3: Analysis of extreme points for the ε-constraint method.

Avg # solutions Avg difference between extremes Avg # urgent

Problem instance Instances per instance DP length (ft) # urgent LU LU available

(5, 35%, light) 1-10 5.3 187.0 23.0 2.2 4.0

(5, 35%, heavy) 11-20 4.4 154.0 15.5 2.1 4.1

(5, 35%, unif) 21-30 4.9 197.0 21.5 1.6 3.3

(5, 20%, light) 31-40 5.8 211.0 26.0 1.6 3.7

(5, 20%, heavy) 41-50 3.7 159.0 9.5 1.6 4.0

(5, 20%, unif) 51-60 6.5 223.0 26.5 1.6 3.3

(10, 35%, light) 61-70 11.8 320.0 24.0 3.0 6.5

(10, 35%, heavy) 71-80 8.5 258.0 21.0 3.1 7.0

(10, 35%, unif) 81-90 9.8 320.0 22.0 3.1 5.8

(10, 20%, light) 91-100 7.7 225.0 29.0 1.9 6.2

(10, 20%, heavy) 101-110 10.3 240.0 27.0 2.2 6.0

(10, 20%, unif) 111-120 11.0 223.0 19.5 2.5 6.1

(20, 35%, light) 121-130 18.0 470.0 24.5 5.4 13.3

(20, 35%, heavy) 131-140 29.3 631.0 46.0 6.9 13.2

(20, 35%, unif) 141-150 29.7 664.0 34.0 5.9 12.6

(20, 20%, light) 151-160 12.6 274.0 27.0 3.2 12.0

(20, 20%, heavy) 161-170 16.7 300.0 39.0 4.0 12.9

(20, 20%, unif) 171-180 17.7 325.0 25.5 3.9 11.8

DP = Destination preferences

LU = Load unit

Generally, the multi-objective approach provides a solution pool of four to seven

load plans, and eight to twelve load plans for instances with five and ten wagons
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respectively. The pool of non-dominated solutions is larger for realistic instances and

consists on average of 12 to 30 load pans. The extreme points for each instance are

relatively close to each other with respect to the average difference in assigned load

unit length, compared to a maximum loading length of 360, 720 and 1440 feet for five,

ten and twenty wagons respectively. However, larger differences exist with respect to

the number of urgent load units assigned, taking into account that on average 11,

22 and 44 load units are assigned to a wagon set of five, ten and twenty available

wagons respectively. Variations reflect around 50% of the average number of urgent

load units available, but are smaller for instances which contain only 20% critical load

units. Moreover, differences in the objective value for assigning more load units to a

more preferred destination are relatively large.

In conclusion, results for the smaller instances show that, although the majority of

the problems can be solved in short computation times, a number of single-objective

problems require a large amount of computation time, resulting in a high total com-

putation time for the procedure. Therefore, the solution method does not provide

the user with a solution (i.e., the Pareto-front) in a reasonable amount of time. For

instances of realistic problem size, this effect increases due to the fact that the num-

ber of Pareto-optimal solutions is larger for these instances and the single-objective

problems become more complex to solve (because more variables and constraints are

involved). This results in large total computation times for realistic instances, and is

not desirable in practice.

5.6 Conclusions

In this chapter, a new train load planning problem is proposed which reflects realistic

characteristics of the train load planning task, such as the urgency with which load

units must be sent to their destination and the flexible routing of load units to one out

of two terminals. The model further deals with wagons with three bogies. The model

further deals with wagons with three bogies. Furthermore, a multi-objective solution

approach to the train load planning problem is presented for the first time within

the context of intermodal rail-road transport. A large amount of bookings enters the

system and must be planned based on the customer requirements. The final train load

plan strongly depends on information train planners have on the current operational

circumstances, such as expected bookings and the availability of slots for possible

alternatives. Therefore, planners have to account for multiple objectives at the same

time, while a priori no fixed weights can be attached to each of the objectives.
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The proposed model includes destination grouping due to unloading at a single

intermediate terminal, and an additional objective to ensure that load units are dir-

ected to their preferred destination. Furthermore, load units are classified into three

classes based on the priority with which they should be transported. Although these

additions are mentioned as context-specific practical considerations, these are often

valid in practice. For example, variations in the railway path limits increase for longer

railway paths or when connections with different corridors have to be made. If the

problem would be expanded with such railway paths or more intermediate stops, even

more constraints similar to practical constraints (5.23) have to be added, while the

objective of maximising destination preference scores can remain unchanged.

The exact ε-constraint method cannot always find the exact Pareto-front in short

run times, even for relatively small problems compared to real-life trains. For real-

istic problems, computation times increase drastically, whereas in a real-life setting,

planners expect a load plan in a few minutes. This indicates the need for heuristic

methods to solve the problem, in order to guarantee train planners good solutions in

a short amount of time, especially in order to deal with instances of realistic size. A

heuristic for multi-objective train load planning is the subject of Chapter 6.
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Chapter 6
A heuristic solution approach for

multi-objective train load planning

6.1 Introduction

A multi-objective train load planning problem formulation with realistic loading

constraints has been presented in Chapter 5. Experimental results of the proposed

exact adaptive ε-constraint method show that not all non-dominated solutions can be

found within a reasonable amount of time, while planners expect fast decision support.

In this chapter, a multi-objective heuristic for train load planning is proposed to solve

the problem in a short amount of time (Figure 6.1).

Current literature often presents linear programming problems and solves in-

stances of realistic size using commercial software (Bruns and Knust, 2012; Bruns

et al., 2014; Corry and Kozan, 2006a,b, 2008; Feo and González-Velarde, 1995). The

solutions are often used as a benchmark. Heuristic solution methods are usually

based on a local search, sometimes combined with simulated annealing to overcome

the problem of converging to local optima. The neighbourhood commonly consists of

switching the location of two load units on a train (Corry and Kozan, 2004, 2006a,b;

This chapter is based on the following papers:

Heggen, H., Braekers, K., Caris, A., 2018. A multi-objective approach for intermodal train load

planning. OR Spectrum, 40(2), pp. 341-366. (Sections 6.2, 6.5, 6.6);

Heggen, H., Braekers, K., Caris, A., 2017. An efficient heuristic for multi-objective train load

planning: a parameter sensitivity analysis. In: Bruzzone, A.G., Piera, M.A., Merkuryev, Y., Longo,

F. (Eds.), Proceedings of HMS: The International Conference on Harbor, Maritime and Multimodal

Logistics Modelling and Simulation. Barcelona, Spain, September 18-20. (Sections 6.3, 6.4)

123
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Figure 6.1: Thesis summary - Chapter 6.

Feo and González-Velarde, 1995). Corry and Kozan (2006b, 2008) combine this load

unit swap neighbourhood together with a loading pattern neighbourhood, in which

loading patterns of two wagons are exchanged while the number of slots is preserved.

These heuristic methods are mainly applied to problems in which the load units to

be loaded are fixed and known, and only the final assignment to specific locations

on the train must be determined. The actual load unit‘s location on the train is

uncertain because not all information about handling operations at the terminal is

known in advance and a slot may still be occupied at the moment of arrival of a load

unit assigned to that slot. In such circumstances, it becomes a problem with a rolling

horizon in which the current load plan serves as initial solution and new events trigger

a local search (Corry and Kozan, 2006a, 2004, 2008).

Recently, Ambrosino et al. (2011) integrated the optimisation of train load plan-

ning with optimisation of other operational decisions in an intermodal seaport ter-

minal, in particular with the optimisation of crane and storage planning. Linear pro-

grams have been solved for this type of problem. Moreover, Anghinolfi and Paolucci

(2014) propose a Lagrangian heuristic, which consists of a combination of a Lag-

rangian relaxation to obtain a first feasible solution with a randomised neighbourhood
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search (RANS) matheuristic to improve it, whereas Anghinolfi et al. (2014) propose

a GRASP.

In this chapter, a multi-directional local search heuristic is presented, focusing

on a number of capacity-related objectives which train planners take into account

during their planning process. The algorithm is presented in Section 6.2. Heuristic

parameters are tuned in Section 6.3 and a sensitivity analysis is performed in Section

6.4 in order to analyse the impact of variations in values of the heuristic parameters

on solution quality and computation time. In Section 6.5, the heuristic performance is

assessed by comparing its results with the exact solutions with respect to the solution

quality and computation times for small and realistic instances. All algorithms are

implemented in C++. Insights in the trade-offs between the three objectives are

provided in Section 6.6. Finally, Section 6.7 presents the main conclusions.

6.2 Multi-directional local search heuristic

During the planning process many events can occur which influence the assignment

decision, such as the emergence of more urgent load units or planned load units

which may not arrive at the terminal in time. Consequently, train planners should

continuously monitor the feasibility of the train load plan, while accounting for the

characteristics of the available load units. Furthermore, train load planning currently

is often performed manually and thus may consume a relatively large amount of

time. Because flexible planning is key to a dynamic, synchromodal environment,

heuristics can be used if no commercial software is available or if the specific problem

characteristics make the real-life problem too complex to solve exactly in a short

amount of computation time.

Several types of heuristic algorithms have been proposed to solve multi-objective

optimisation problems. Most of these algorithms extend concepts of stochastic local

search to a multi-objective setting. The reader is referred to Paquete and Stützle

(2018) for a general discussion and review. Especially evolutionary algorithms are

popular (e.g. non-dominated sorting genetic algorithm, multi-objective genetic al-

gorithm). New solutions are obtained by combining characteristics of good solutions.

Such algorithms assume that combinations of good solutions will also perform well,

and that diversity is required in the population. A key issue in these methods is

the translation of the general fitness-concept to a multi-objective context (Tricoire,

2012). For a comprehensive overview on multi-objective evolutionary heuristic al-

gorithms, the reader is referred to Coello et al. (2007) and Deb (2014). Alternatively,
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local search-based heuristics, such as Pareto local search (Paquete et al., 2004) and

multi-directional local search (Tricoire, 2012) have been proposed.

In this chapter, a heuristic based on the multi-directional local search (MDLS)

framework of Tricoire (2012) is used to solve the train load planning problem with

three objectives, presented in Chapter 5. A main advantage of this method is that a

single-objective fitness function can be used to evaluate the fitness of a solution. Fur-

thermore, Tricoire (2012) emphasises that MDLS only keeps track of non-dominated

solutions, which differs from most well-known multi-objective heuristics. The method

relies on the knowledge that it is sufficient to search in the direction of each of the

objectives individually to find new, non-dominated solutions (Braekers et al., 2016a).

Consequently, single-objective operators can be implemented in the framework. Other

advantages include the flexibility and simplicity of the method. Furthermore, it has

proven to lead to good computational results for various problems (e.g., Braekers

et al. (2016a), Molenbruch et al. (2017)).

In this section, the proposed multi-objective heuristic to solve the problem (Section

6.2.1) and its components (Section 6.2.2 and 6.2.3) are described, as well as indicators

for the heuristic quality assessment (Section 6.2.4).

6.2.1 General structure of the MDLS

The applied multi-directional local search (MDLS) heuristic framework is shown in

Algorithm 3. A global pool of non-dominated solutions E is maintained and updated

during the search. In an MDLS-iteration, a solution s is selected randomly from the

solution pool E. Then, starting from this solution, a distinct local search LSk for

each objective k is performed, and the solution pool is updated.

For the train load planning problem, an initial solution is generated in a first

constructive phase. Next, in the MDLS-framework, the local search operators are

defined by altering the configuration of two wagons. Preliminary tests with one and

three wagons respectively indicated no added value. For one-wagon operators, the

applied change proved too small, whereas operators considering three wagons did not

result in substantial performance differences. For each objective specifically, wagons

are selected in a different way, and a distinct acceptance criterion is used. Each local

search ends when a maximum number of consecutive iterations without improvement

nit(LSk) is reached.
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Algorithm 3 MDLS-heuristic for the train load planning problem.

1: Constructive phase

2: Generate the initial solution;

3: Initialise the set of non-dominated solutions E with the initial solution;

4:

5: Multi-directional local search

6: for i = 1→ nit(MDLS) do

7: Select a random solution s from E

8: for k = 1→ 3 do

9: LSk on s, generating temporary solution set T

10: Update E with solutions in T

11: end for

12: end for

13: Return E

6.2.2 Constructive phase

An initial solution is constructed by assigning load units to slots on each wagon, one

by one, going from the front to the back of the train, using an intelligent candidate list

to select load units first based on the highest priority, then highest weight. First, only

critical load units are considered. Only after these are feasibly assigned, the remaining

load units are considered. For the wagon under consideration, configurations which

are more preferred with respect to the available length used are selected first. The

available slots of the selected configuration are filled with load units matching the

slot dimensions as long as the bogie, wagon and train weight limits are respected.

If either not all slots in a configuration can be filled with the remaining available

load units or the bogie balance limits are not respected, a following configuration

is selected. Otherwise, all slots in the configuration are filled and the assignment

procedure continues with the next wagon. This constructive phase results in a single

initial solution, which is added to solution pool E.

6.2.3 Local search phase

Next, nit(MDLS) iterations of the MDLS heuristic are performed. One MDLS-iteration

consists of three local searches on a single randomly selected solution s ∈ E. Each

local search LSk (Algorithm 4) guides the search primarily towards improving one

objective.
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Algorithm 4 Local search heuristic (LSk) for each objective k.

1: T = {}
2: nit(noImprovement = 0

3: repeat

4: solnew = solcurrent

5: solnew ← Apply neighbourhood operator

6: LSLength: change configuration of 2 wagons:

7: 1 with available length, 1 randomly selected

8: LSUrgency: change configuration of 2 randomly selected wagons

9: LSDP : change configuration of 2 randomly selected wagons

10: if normalised, weighted-sum objective function satisfies acceptance criterion

then

11: solcurrent = solnew

12: end if

13: if If fk(new) > fk(best) then

14: solbest = solcurrent

15: nit(noImprovement) = 0

16: else

17: nit(noImprovement) + +

18: end if

19: Update T

20: until nit(noImprovement) = nit(LSk)

21: Return T



A heuristic for multi-objective train load planning 129

6.2.3.1 Local search operators

The neighbourhood is defined by simultaneously altering the configuration of two

wagons, i.e., assigning a new configuration to these wagons. The way in which wagons

are selected differs depending on the main objective focus of the local search, after

which all load units assigned to the two selected wagons are added to the pool of

available, currently unassigned load units. Next, configurations for both wagons are

selected randomly with a higher probability to be selected if a configuration uses

a larger proportion of the available wagon length. The probability of selecting a

configuration is determined by the contribution of the length used in that specific

configuration compared to the total length of all possible configurations for one wagon

type. In this way, the probability of rejecting a solution because it does not satisfy

the acceptance criterion, is reduced.

For two given wagons and configurations, unassigned load units are selected (with

critical load units first) to be assigned to a slot of these configurations with the same

length as the load unit if payload, wagon and train weight limits are respected. If

these constraints are not satisfied, new combinations are selected until all slots are

tested. If, after testing all combinations, still no feasible assignment is obtained or

if not enough unassigned load units are available to fill the remaining empty slots

based on their dimensions, two new configurations are selected. Next, if all slots are

filled with load units, it is checked whether all critical load units are assigned and the

bogie balancing is respected. If not, the entire procedure restarts by selecting new

wagons. Only if all critical load units can be assigned, dimensions of the selected load

units match the slot dimensions and all constraints related to train, wagon and bogie

weight limits as well as the bogie balancing are satisfied, the selected configurations

and load unit assignments are final for both wagons.

For the local search in the direction of improving the length utilisation, two wagons

are selected as follows: the first wagon is chosen randomly from all wagons for which

not all loading length is utilised; the second wagon is selected purely random from

all available wagons. Finally, the local search procedure is terminated if a maximum

number of sequential iterations without improvement nit(LSk), or a solution with

the maximum possible length utilisation is reached. The search in the direction of

improving destination preferences and priority scores is guided by a local search which

consists of a similar configuration change operator. However, both neighbourhoods

are defined by selecting a new configuration for two randomly selected wagons.
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6.2.3.2 Evaluation of the solutions

While other MDLS-approaches use pure single-objective local search procedures, the

proposed operators are guided by a normalised, weighted-sum objective function

which takes into account all three objectives and showed good performance after

preliminary results. This function assigns a weight wk to the primary objective k,

while the remaining objectives r1 and r2 each receive a weight of wr = 1−wk
2 (with

wr � wk) in order to avoid a large negative change in these remaining objectives.

The weight of the remaining objectives should be set small relative to wk such that

non-dominated solutions can be obtained. New solutions with normalised objective

function values nfnew (6.1) are compared with the current best solution with norm-

alised objective values nfbest (6.2).

nfnew = wk · nf ′k + wr · (nf ′r1 + nf ′r2) (6.1)

nfbest = wk · (nfk +ALSk) + wr · (nfr1 + nfr2) (6.2)

The possibility of accepting solutions with slightly worse, equal or better weighted

objective function values is defined by ALSk , indicating the acceptance threshold as

the absolute change allowed in each objective k for accepting new solutions. By

accepting worse solutions (i.e., a negative absolute change), a larger neighbourhood

may be explored in comparison with accepting only improving solutions in order to

obtain a more diverse solution pool. It could be required to aim at entirely new

configurations in order to find new solutions which satisfy axle weight constraints

and payload limits and, at the same time, result in better solutions. On the other

hand, for destination preference scores, it can be expected that small changes might

be satisfactory to obtain improvements. Concrete criteria for each local search LSk

with regard to the evaluation of the solutions (defined by ALSk) are examined in

the tuning phase (Section 6.3). The local search with a main focus on destination

preferences evaluates solutions with nfnew > nfbest, whereas solutions within local

searches for length utilisation and priority scores are evaluated using nfnew ≥ nfbest.
Further, a temporary set of non-dominated solutions T is updated with new solu-

tions within one local search. If a solution is non-dominated by the solutions in the

temporary set, it is added to this set, while dominated solutions are removed. Work-

ing with this temporary solution set avoids updating solution set E too often when

new solutions are found within one local search, especially because one local search

primarily focuses on one objective only. A single local search may generate multiple

non-dominated solutions, and solutions found at the start of a local search are often
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dominated by solutions found in further iterations. Finally, the local search ends with

updating the global archive of non-dominated solutions E with the temporary set of

solutions T obtained in LSk.

6.2.4 Quality indicators

In order to assess the performance of the MDLS, two complementary quality indic-

ators, the hypervolume indicator and the multiplicative epsilon indicator, are used to

quantify the quality of an approximation set A obtained by the heuristic relative to

a reference set R. The reference set can be either the exact Pareto-front or, in case

the entire exact Pareto-front is unknown, a set which consists of all non-dominated

solutions found by the heuristic algorithm and the exact method over all available

solutions for all runs (Knowles et al., 2006).

The hypervolume indicator IH measures the hypervolume covered by a set of solu-

tions relative to a reference point. The multiplicative epsilon indicator Iε determines

the factor by which each point in an approximation set should be multiplied such

that the reference set is weakly dominated by the approximation set (Knowles et al.,

2006). Zitzler et al. (2003) perform the calculation for a minimisation problem. It

can be adapted to a maximisation problem as follows for two solutions sets A and R,

with n objectives:

Iε(A,R) = min
z2∈R

max
z1∈A

min
1≤i≤n

z1
i

z2
i

After calculating the ratio of each objective for all solutions in A and R, the

minimum ratio obtained out of all objectives n is kept in order to compare each

solution in the approximation set with the reference set. When taking the maximum

value for all solutions in A for each solution in R, and next the minimum value out

of all solutions in R, the epsilon indicator is obtained.

Both indicators are visualised in Figure 6.2 for a bi-objective maximisation prob-

lem. The left-hand side shows the hypervolumes covered by a reference set and an

approximation set. On the right-hand side, the crosses indicate the weakly dominated

set obtained by the epsilon indicator.

The hypervolume indicator IH is defined as the hypervolume of the reference

set which is covered by the approximation set generated by the MDLS ( IHaIHr
). The

indicator value is obtained using the algorithm provided by Beume and Rudolph

(2006). Moreover, both indicators are calculated after normalisation of the objective

values to ensure that each objective contributes approximately equally. The minimum

reference point is determined based on the characteristics of the critical load units:
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Figure 6.2: Quality indicators (adapted from Parragh et al. (2009)).

the urgency score and length of the critical load units of an instance minus one and

a minimum destination preference score of zero.

The closer both indicators are to one, the better the quality of the approximation

set. In order to compare the approximation sets obtained by two variants of a heuristic

design, the two quality indicators can be used together, as each indicator measures

slightly different information. Furthermore, if the indicators show opposite preference,

the sets can be considered incomparable.

6.3 Parameter tuning

Irace (López-Ibáñez et al., 2016), a promising iterated racing procedure for tuning

algorithm parameters, is used in order to find a parameter setting which leads to

solutions of good quality, such that the heuristic can be used as a decision support

tool by practitioners. First, the characteristics of the tuning instances (Section 6.3.1)

and considered MDLS-parameters (Section 6.3.2) are presented. Next, the iterated

racing procedure for the multi-objective train load planning problem is described and

the parameters are tuned (Section 6.3.3).
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6.3.1 Instance classes

A heterogeneous set of instance classes is used as input, generated based on his-

torical data of an intermodal company, using the same classes as the problem in-

stances in Section 5.4. Sets of load units with weights (in tonnes) being either light

with TRIA(17, 20, 23), heavy with TRIA(23, 26, 29) or uniformly distributed with

UNIF (17, 29) are considered. Furthermore, the number of critical load units is varied

and can be 35% or 20% of the total amount of available load units. These character-

istics are representative for real-life problems. The six instance classes are applied to

a wagon set of 5, 10 and 20 wagons, resulting in 18 classes, where 20-wagon instances

are realistically sized. For the parameter tuning phase, two instances per class are

used.

6.3.2 Parameters of the MDLS

Two important parameters for the MDLS are the number of times a new solution is

selected from the pool of non-dominated solutions (nit(MDLS)), and the number of

consecutive iterations without improvement after which the local search phase in the

direction of each objective ends (nit(LSk)). Clearly, a trade-off between the values of

these parameters can be expected if a limited computation time is available. In this

section, no limit on the computation time is considered, but Section 6.4 examines the

relationship between solution quality and computation time for different amounts of

MDLS-iterations and LS-iterations.

Within the scope of a single local search LSk, the weight wk attached to the

main objective k of a local search should be tuned carefully. Moreover, within the

normalised, weighted objective function used for accepting new solutions, possible

values for ALSk are evaluated. Independent of this, only non-dominated, accepted

solutions are added to the solution pool. Finally, it is tested whether the local search

in the direction of improving destination preferences performs better when changing

the configuration of two wagons with different destinations (i.e., DPwgndestin = 1).

Table 6.1 presents an overview of the heuristic parameters under consideration, as

well as their considered range or set of values.

The acceptance criterion in the local search for the length utilisation (ALSLength)

considers only a set of specified ordinal values (o), while for the other parameters

values between the specified minimum and maximum bounds can be selected by the

racing procedure. The weight attached to the principal objective wk is a continuous

value with a precision of two decimals (r), all other parameter values are integers (i).

The ranges of all parameters are defined intuitively after preliminary testing.
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Table 6.1: MDLS algorithm parameters for tuning.

Parameter Description Range Type

nit(MDLS) Number of times a random solution is selected (10, 1000) i

nit(LSLength) Number of consecutive non-improving itera-

tions for LSLength

(100, 2000) i

nit(LSUrgency) Number of consecutive non-improving itera-

tions for LSUrgency

(100, 2000) i

nit(LSDP ) Number of consecutive non-improving itera-

tions for LSDP

(100, 2000) i

wk Weight attached to the main objective k in LSk (0.8, 1) r

ALSLength Accepted length difference (in feet) in LSLength {-45;-20;0;20} o

ALSUrgency Accepted difference in priority scores in

LSUrgency

(-2, 2) i

ALSDP Accepted difference in destination preference

scores in LSDP

(-2, 2) i

DPwgndestin Select two wagons with different destinations in

LSDP

(0, 1) i
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For the allowed absolute deviation from the current best solution in each local

search, ALSk , a negative value indicates the acceptance of worse solutions, whereas a

positive value relates to accepting improvements only. Depicted values of ALSLength
vary from a length difference (in feet) of 45 feet worse (with ALSLength = −45) – which

relates to a proportional difference of approximately 12.5%, 6.25% or 3.125% of the

available train length for instances with 5, 10 and 20 wagons respectively – until a

length increase of 20 feet (i.e., ALSLength = 20). One additional unit in the considered

value for ALSUrgency and ALSDP corresponds respectively to a single urgent load unit

or a load unit with a weak destination preference score additionally assigned to a

location on the train.

6.3.3 Iterated racing procedure (irace)

The iterated racing procedure (Algorithm 5) is able to automatically configure al-

gorithms, providing a set of parameter values which performs well for a particular

problem (López-Ibáñez et al., 2016).

Algorithm 5 Iterated Racing Procedure (López-Ibáñez et al. (2016)).

Require: I = {I1, I2, ...} ∼ I,

parameter space: X,

cost measure: C(θ, i) ∈ R,

tuning budget: B

1: Θ1 ∼ SampleUniform(X)

2: Θelite := Race(Θ1, B1)

3: j := 1

4: while Bused ≤ B do

5: j := j + 1

6: Θnew ∼ Sample(X,Θelite)

7: Θj := Θnew ∪Θelite

8: Θelite := Race(Θj , Bj)

9: end while

10: Output: Θelite

The racing procedure starts with Tfirst instances on which a number of uniformly

sampled candidate parameter configurations are tested. After these Tfirst tested in-

stances, the candidate configurations which perform worse than at least one other

configuration – calculated by a statistical Friedman test – are discarded (lines 1–2).

The best configurations (i.e., the configurations with the best objective values) are
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selected as an elite set, and new configurations are added for the following race based

on well-performing parent elite configurations found so far (lines 5–8). In the next

iterations or races, each time Teach instances are evaluated before discarding any con-

figuration. Furthermore, the standard deviation is reduced for each parameter as

the number of iterations increases in order to search closer around better perform-

ing values. The procedure is terminated if a predefined computational budget B is

reached. This budget corresponds to a maximum number of experiments, where one

experiment consists of one parameter configuration tested on a single instance.

As multiple objectives must be considered, the cost function is represented by

the quality indicator value, which should be maximised. López-Ibáñez et al. (2016)

tested irace for their problem with multiple objectives using the hypervolume and

the epsilon indicator and could not find significant differences. Therefore, only the

hypervolume indicator is used as measure of the solution quality at this stage. The

calculation of this quality indicator requires a reference set, which can be the exact

Pareto-front. If not all Pareto-optimal solutions are known, the reference set consists

of all non-dominated solutions found by a number of MDLS-runs, combined with the

non-dominated solutions found so far in the exact procedure. Therefore, all candid-

ate parameter configurations in a single iteration are tested on one instance before

evaluating the cost function, i.e., calculating the quality indicator. Normalisation

bounds and the reference point can be calculated in advance, independent of the

approximation sets found by the heuristic.

The total set of tuning instances consists of two blocks of 18 instances, with a

representative set of characteristics. The total amount of 36 instances, containing

two instances from each instance class, is first tested before discarding any candid-

ate configuration. In this way, two instances of every class are evaluated before a

first elimination occurs, to cope with a possible outlier instance. Next, after every

block of 18 instances (such that each instance class is represented), the configurations

under consideration are again evaluated. Sampling of instances does not occur ran-

domly, but in the order of the instance classes within one block in order to avoid elite

configurations being biased towards only a subset of the instance classes.

Table 6.2 provides the adapted irace parameters used. All other parameters are

at their default values.

The best configurations presented by irace are summarised in Table 6.3. These

configurations are ordered according to their mean performance, but do not show a

statistically significant difference with respect to the solution quality. The average

hypervolume indicator value of the best configuration across all considered instances

amounts to 0.9996.
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Table 6.2: Irace parameters.

Irace parameter Value

Tuning budget B 5000

Cost measure C Hypervolume

Tfirst 36

Teach Random samples

Random samples Off

Table 6.3: Best configurations obtained by irace.

Parameter C1 C2 C3 C4

nit(MDLS) 801 949 759 775

nit(LSLength) 987 377 434 271

nit(LSUrgency) 1826 1498 1745 1384

nit(LSDP ) 1716 1541 1388 1631

wk 0.91 0.92 0.90 0.90

ALSLength (nfnew ≥ nfbest) 0 0 0 0

ALSUrgency (nfnew ≥ nfbest) 0 0 0 0

ALSDP (nfnew > nfbest ) 0 0 0 0

DPwgndestin 0 0 0 0
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Relatively large differences exist with respect to the range of the number of it-

erations nit(MDLS) and nit(LSk). This can be explained by the fact that no limit

exists on the computation time, and thus, more iterations lead to a better heuristic

performance. However, the difference in solution quality is not necessarily substantial

for additional iterations.

The acceptance thresholds in the evaluation of the normalised, weighted objective

functions are identical for all best configurations C1 to C4. The parameter values for

ALSLength and ALSUrgency within their respective local searches indicate that solutions

are accepted if they are at least as good as the current best solution. The obtained

parameter value for ALSDP indicates that solutions are accepted only if they are better

than the current best solution within a single local search.

This difference can be explained by the fact that the neighbourhood for the length

utilisation and urgency scores should be larger in order to find solutions which differ

more from previous solutions. Entirely new configurations or new combinations of

load units may need to be established in order to find new, allowed combinations with

respect to the payload limits which increase the length utilisation or priority scores.

On the other hand, in order to improve destination preference scores it can be sufficient

to switch the load unit assignment between two wagons (instead of interchanging

assigned and non-assigned load units or recombining assigned load units), and keep

this solution as current best solution to evaluate new solutions against.

However, as also indicated by parameter DPwgndestin = 0, at some moments the

local search may benefit from a larger neighbourhood, selecting wagons purely random

in order to further improve the current best solution, as opposed to selecting wagons

of two different destinations.

One important limitation of irace is that the automatic algorithm configuration

does not take into account computation times when selecting parameter configura-

tions. Therefore, these results should be further tested and a sensitivity analysis is

performed next on the parameters to analyse differences in computation times and

solution quality for different parameter settings.

6.4 Parameter sensitivity analysis

As irace is used to find a suitable set of parameter values, no insights are obtained in

the behaviour of the heuristic performance under varying values of the parameters. Ir-

ace executes the tuning phase and presents the user with parameter values. However,

no insights are presented on which combinations of parameters work well. Therefore, a
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sensitivity analysis is performed. The best parameter configuration C1 resulting from

the irace tuning procedure is analysed to examine the influence of changes in these

parameter values on solution quality and computation times. For this purpose, two

new test instances per class are used, which are not considered in the tuning phase,

resulting in 36 instances. Varying parameter values are tested on these instances with

respect to differences in solution quality, expressed as a proportional deviation from

the hypervolume of the reference set (IHr), as well as differences in computation time.

The heuristic is implemented in C++. The experiments are conducted on an Intel

Xeon E5-2680v3 processor at 2.5 GHz of the Flemish Supercomputer Center (VSC).

First, interactions between the number of times a new random solution is selected

in the MDLS nit(MDLS) and the number of consecutive iterations without improve-

ment nit(LSk) after which each local search ends are considered (Section 6.4.1). Vari-

ations in parameter values wk, ALSk and the possibility of selecting two wagons with

different destinations (DPwgndestin) in LSDP are tested (Section 6.4.2). A discussion

to determine the final parameter configuration is summarised in Section 6.4.3.

6.4.1 Interaction between nit(MDLS) and nit(LSk)

It can be expected that a higher number of iterations, nit(MDLS) and nit(LSk), cor-

responds to a higher solution quality, but at the cost of larger computation times.

Therefore, a point should be determined as from which additional gains in solution

quality become small relative to the increase in computation time. The heuristic

performance is evaluated for different parameter values. Values up to 1000 MDLS-

iterations (nit(MDLS)) are considered with steps of 200 iterations. As the largest gains

may be obtained during the first MDLS-iterations, results for 10, 50 and 100 iterations

are also evaluated. To examine its interaction with the number of consecutive itera-

tions without improvement nit(LSk) after which each local search is ended, for each

local search LSk separately multiples of 250 consecutive non-improving iterations are

considered with a maximum of 2000 iterations.

Figure 6.3 shows the average proportional deviation from the hypervolume of the

reference set when either varying the number of LS-iterations for destination prefer-

ences (DP), length utilisation (Length) or urgency scores (Urgency). The remaining

parameters are set at the values of the best-performing configuration. Variations

in the number of non-improving LS-iterations after which the local search with re-

spect to the length utilisation ends do not significantly influence solution quality.

This corresponds to the relatively small parameter values for nit(LSLength) in the best

irace configurations. For the destination preference scores and urgency scores, lar-
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ger differences can be observed for low numbers of MDLS-iterations. Clearly, major

improvements with respect to the solution quality are reached during the first MDLS-

iterations. These results are consistent with the best configurations found by irace,

as nit(LSDP ) and nit(LSUrgency) are always larger than 1250.

Figure 6.3: Solution quality based on nit(MDLS) and nit(LSk).

Additionally, Figure 6.4 displays the average solution quality depending on the

number of MDLS-iterations over all experiments, grouped per instance size. These

results show that a clear difference exists with respect to the average solution quality:

the heuristic performance is highest for instances with 10 and 20 wagons, while the

mean performance is lower for 5 wagons. This may be due to the fact that one

instance could be an outlier. The cause can be further investigated when analysing

the impact of the remaining heuristic parameters on the solution quality in Section

6.4.2. Nevertheless, the mean deviation is still lower than 5%.

Generally, for low numbers of MDLS-iterations, differences in solution quality are
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Figure 6.4: Average solution quality per instance size.

larger between a high and low number of non-improving local search iterations. As

from 400 MDLS-iterations, the improvement in solution quality becomes relatively

small, independent of the number of non-improving local search iterations, although

performance improvements are still obtained after 400 iterations for the realistic in-

stances consisting of 20 wagons. Although the best configurations obtained in the

tuning phase indicate that at least 775 iterations should be performed, no limit on

the computation time or trade-off between the solution quality and computational

budget per instance is incorporated.

Figure 6.5 shows average computation times in seconds for all instances of each

possible combination of MDLS- and LS-iterations. The number of MDLS-iterations

mainly influences computation time, as it involves additional iterations for all three

local searches at the same time. The difference in the slope of the destination prefer-

ence graph compared to the length and urgency graphs indicates that each LSLength

and LSUrgency reached the number of consecutive iterations without improvement

earlier, ending the local search. For LSDP , this implies that more improvements are

found at a later stage of the respective local search (i.e., after a larger number of

consecutive iterations without improvement), obtaining a new best solution without

ending the local search.

Computation time primarily increases with the number of MDLS-iterations, as



142 Chapter 6

Figure 6.5: Average computation times based on nit(MDLS) and nit(LSk).

one iteration consists of three distinct local search improvement phases. At a small

number of MDLS-iterations, a higher number of LS-iterations is preferred, while the

solution quality remains relatively stable beyond 400 MDLS-iterations, regardless of

the number of LS-iterations. Beyond that point, either a small or a large number

of LS-iterations produces a steady heuristic performance. The smaller the number

of MDLS-iterations, the larger the impact of the number of consecutive iterations

without improvement after which each local search is ended becomes. If computa-

tion time is a decisive factor, a smaller number of MDLS-iterations combined with a

relatively high number of LS-iterations should be preferred.

For the best configurations C1 to C4 the number of iterations for LSLength varies

between 250 and 1000, and for LSUrgency and LSDP between 1250 and 2000. For

these intervals of LS-iterations per objective, the solution quality is high and stable

as from 200 MDLS-iterations (Figure 6.3) with a substantially shorter computation

time compared to 400 MDLS-iterations (Figure 6.5). Based on these observations,

for the remainder of this sensitivity analysis we use nit(MDLS) = 200, while nit(LSk)

remain at the best values found by irace. This configuration leads to high-quality

solutions in relatively short computation times.
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6.4.2 Sensitivity of wk, ALSk
and DPwgndestin

For all other parameters under consideration, Table B.1 (Appendix B) shows an

overview of the average solution quality obtained for each instance size as well as the

overall average solution quality for each parameter value. For most of the parameters,

the sensitivity analysis shows results identical to the irace parameter configurations.

However, for ALSLength the parameter value resulting in the overall average best result

(indicated with an asterisk) does not correspond to the parameter values selected by

irace (indicated in bold). This small deviation may be explained by the decision to

work with 200 MDLS-iterations instead of a parameter value out of one of the best

configurations as well as by the fact that different instances are used for the sensitivity

analysis. In the remainder of this section, individual results for each parameter are

discussed in detail.

With respect to the weight attached to the main objective of a single local search,

wk, values between 0.6 and 1 are tested with an interval of 0.05. The parameter value

of 0.91 obtained in the best configuration C1 is also added. The solution quality

for each parameter value and each instance size (5, 10 and 20 wagons) is displayed

in Figure 6.6. Resutls show that a weighted objective function can be beneficial in

comparison with a function which only attaches weight to the main objective of the

local search. Based on the results of the test instances used, for small instances with 5

wagons, the weight could be set to either 0.91 or 0.95, both leading to a high solution

quality. For other values of the parameter, one instance severely impacts the average

performance. For the larger and realistic instances with 10 and 20 wagons, differences

in solution quality are smaller. Generally, a weight of 0.91 provides the highest average

solution quality and the most favourable minimum guaranteed solution quality.

Similarly, the influence of the criterion for accepting solutions in each local

search LSk for each objective k is evaluated. Figure 6.7 shows that the best para-

meter values for ALSLength are consistent with the irace results for the considered

test instances of 10 and 20 wagons. However, a difference in solution quality exists

between a small instance size of 5 wagons and larger instance sizes. The performance

for instances with 10 and 20 wagons does not substantially differ for varying para-

meter values. Accepting worse solutions clearly results in an improved performance

for 5-wagon instances, as is obvious for these smaller instances. Therefore, the ac-

ceptance of worse solutions (with a length of 20 or 45 feet less than the current best

solution) could provide a higher overall solution quality for these test instances.

With respect to ALSUrgency , the overall average solution quality (Table B.1, Ap-

pendix B) is the highest at ALSUrgency = 0, which is compatible with the irace results.
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Figure 6.6: Sensitivity of wk on the solution quality.

Figure 6.7: Sensitivity of ALSLength on the solution quality.
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Figure 6.8 depicts a difference in solution quality for small instances in comparison

with the instances of 10 and 20 wagons. For the latter instance categories, the heuristic

performance is the highest at ALSUrgency = 0, and minimum and maximum solution

quality are extremely close, whereas small instances benefit from the acceptance of

worse solutions.

Figure 6.8: Sensitivity of ALSUrgency on the solution quality.

Figure 6.9 displays a pattern similar to ALSUrgency for possible values of ALSDP
with respect to the solution quality. Although instances with 5 wagons perform worse

if ALSUrgency = 0, the overall performance is highest.

Finally, a parameter DPwgndestin is added and evaluated in order to test whether

in the local search focusing on destination preference scores, selecting two wagons

with different destinations (DPwgndestin = 1) leads to a higher solution quality in

comparison with two random wagons (DPwgndestin = 0). As shown in Figure 6.10, no

substantial difference exists with respect to the solution quality. Therefore, selecting

two wagons with different destinations does not add value to the heuristic.
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Figure 6.9: Sensitivity of ALSDP on the solution quality.

Figure 6.10: Sensitivity of DPwgndestin on the solution quality.
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6.4.3 Practical implications

Table 6.4 summarises the results of irace and the sensitivity analysis. Generally, the

parameter configuration C1 found by irace using 36 tuning instances provides high-

quality results for the test instances as well, even for a smaller number of MDLS-

iterations. The 36 new test instances used in the sensitivity analysis show a heuristic

performance consistent with the results obtained by irace. However, one possible

outlier test instance in the instance category of 5 wagons might have influenced the

results of the sensitivity analysis. For that specific category a different configuration

may be more suitable. Changing ALSLength to accepting solutions with a length

utilisation of 20 feet worse (ALSLength = −20) than the current best solution so far

leads to the exploration of a larger search area, escaping from local optima, and

contributes to an enhanced performance for this specific instance size.

Table 6.4: Recommended parameter values based on irace and sensitivity analysis.

Parameter irace Sensitivity Analysis Recommendation

nit(MDLS) 801 200 ≤ 200

nit(LSLength) 987 987 250-1000

nit(LSUrgency) 1826 1826 1250-2000

nit(LSDP ) 1716 1716 1250-2000

wk 0.91 0.91 0.91

ALSLength 0 0 -20 or 0

ALSUrgency 0 0 0

ALSDP 0 0 0

DPwgndestin 0 0 0

For practical applications good solutions should be obtained in short computa-

tion times. Based on the discussed results, train load plans obtained by the MDLS

heuristic with a maximum of 200 MDLS-iterations will be valuable for practitioners,

as the solution quality is high and stable as from this point. For a higher num-

ber of MDLS-iterations, improvements in solution quality are extremely small, while

the computational burden increases. Therefore, we now investigate the relationship

between the solution quality and computation time for a smaller number of MDLS-
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iterations with a maximum of 200 iterations (i.e., 30, 100 and 200 iterations) and

include the influence of parameter values ALSLength = −20 and ALSLength = 0 on

the heuristic performance in order to obtain a parameter configuration to be used by

practitioners. The number of iterations after which each local search is finished, is

set at the minimum value for which the solution quality becomes stable, i.e., at 200

MDLS-iterations

Figures 6.11 and 6.12 respectively display the average deviation from the hyper-

volume of the reference set HVR and computation times (in seconds) for each category

of instances (5, 10 and 20 wagons; high, low or uniform weights of the load units; 35%

and 20% of the available load units which are critical). All instances used in irace as

well as in the sensitivity analysis are included, resulting in a total of four instances

per category.

Figure 6.11 confirms that for small instances, temporarily allowing worse solutions

(ALSLength = −20, indicated by the solid lines) clearly has a positive impact on the

solution quality. Obtained solutions are either optimal or really close to optimality.

By accepting worse solutions, we are able to escape from a local optimum, hereby

increasing the solution quality. However, for realistic instances, the opposite holds.

The solution quality is the highest if only solutions which are at least as good as the

current best solution (ALSLength = 0, indicated by the dotted lines) are accepted for

following iterations. Moreover, the number of MDLS-iterations does not influence the

solution quality for small instances with 5 wagons, and 10-wagon instances show only

minor differences with a maximum deviation of less than 2% from the optimal solution.

Differences in parameter values for nit(MDLS) become important for 20-wagon realistic

instances. The solution quality is definitely inferior for nit(MDLS)=30, while results

for 100 and 200 iterations are similar.

Figure 6.12 compares computation times for the exact solution method with dif-

ferent heuristic parameter values for the number of MDLS-iterations nit(MDLS) and

for the acceptance criterion within the local search focused on the length utilisation

ALSLength . No substantial difference in computation time is demonstrated by vary-

ing the acceptance criterion ALSLength . Each value of nit(MDLS) (indicated by the

line colours), displays a similar pattern, while a slightly larger computation time is

observed for instances with low load unit weights for most instance categories. The

added value of the heuristic is demonstrated for realistic instances with 20 wagons.

Heuristic computation times are below 100 seconds, while the exact solution method

requires much larger computation times.

Without loss of generality, when focusing on solving realistic instances, the best

results are obtained if ALSLength = 0 for all load unit weights and distributions of
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Figure 6.11: Average solution quality per category of instances for different combin-

ations of ALSLength and nit(MDLS).
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Figure 6.12: Average computation times per category of instances for different com-

binations of ALSLength and nit(MDLS).
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the urgency of available load units, accepting only solutions at least as good as the

current best solution. As the solution quality is slightly higher for a larger number

of times a new random solution is selected, nit(MDLS) is set to 200 iterations. This

parameter setting provides the best results for realistic instances, while the solution

quality is also high for all other instance sizes.

6.4.4 Conclusions

In this section, we obtained a configuration which generally performs efficiently for a

heterogeneous set of instance classes. With this parameter configuration, the multi-

directional local search heuristic is able to find solutions of high quality within a

reasonable amount of computation time. One limitation of this research is that only

the hypervolume is used as a performance indicator. The obtained results may be

validated with the results of the epsilon indicator, although it is expected that similar

results would be obtained. Further, the considered instances are heterogeneous with

respect to their characteristics and maybe different parameter configurations would be

selected if each category would be considered separately. More specifically, a distinct

parameter configuration could be obtained for each instance size. Further research

may focus on finding specific configurations for each category of instances, depending

on the intended use of the heuristic.

Moreover, while the interaction between the number of MDLS-iterations and the

number of LS-iterations is investigated, no interaction effects are studied with respect

to the parameters for wk, ALSk , DPwgndestin. Due to the relatively high number of

iterations, the effect of the acceptance criterion included in the weighted objective

function may be underestimated. Therefore, one opportunity lies in investigating the

interaction between the various acceptance thresholds ALSk and the number of LS-

and MDLS-iterations.

6.5 Performance of the multi-directional local

search heuristic

In order to analyse the performance of the proposed multi-directional search heur-

istic, its results are compared with results of the exact ε-constraint method. Both the

hypervolume and the epsilon indicator are used to evaluate the quality of the approx-

imation sets found by the proposed heuristic. The heuristic results in this section are

obtained using the heuristic parameter setting summarised in Table 6.5.
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Table 6.5: Best parameter setting for the multi-directional local search heuristic for

the train load planning problem.

Parameter Definition Value

nit(MDLS) Number of times a new random solution is selected 200

nit(LSLength) Number of non-improving local search iterations for f1 250

nit(LSUrgency) Number of non-improving local search iterations for f2 1250

nit(LSDP ) Number of non-improving local search iterations for f3 1250

wk Weight attached to the prevailing objective k in LSk 0.91

wr Weight attached to the remaining objectives in LSk 0.045

ALSLength Accepted length difference (in feet) in LSLength 0

ALSUrgency Accepted priority difference (in feet) in LSUrgency 0

ALSDP Accepted difference in destination preference score in LSDP 0

DPwgndestin Selection of two wagons with different destinations in LSDP No

In Figure 6.13 and Table 6.6, exact computational results are compared with the

average performance of the MDLS-heuristic for the instances used in Chapter 5, ten

instances per class, with ten runs per instance in order to analyse the solution quality

of the approximation sets obtained by the heuristic approach. In this table, the

hypervolume indicator IH is stated as the hypervolume of the reference set, i.e., the

exact Pareto-front, which is covered by the approximation set generated by the MDLS

(IH = IHa/IHr ). Each category consists of 10 instances with 10 runs of the heuristic

algorithm per instance, and 100 times is the maximum number of times the entire

Pareto-front can be found. The number of times this front is found, is indicated by

#PFfound.

Generally, the average epsilon and hypervolume indicator values are close to one

for all considered instances, which indicates that on average, solutions of good quality

are found by the MDLS. With respect to the small instances with five wagons, the

heuristic is even able to find the exact Pareto-front in a large number of runs in each

problem category. Moreover, both quality indicators show a similar pattern. However,

the solution quality slightly decreases if the problem size increases, as shown by both

quality indicators.
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Figure 6.13: Average solution quality and time per category of instances for the best

parameter setting.
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Table 6.6: Comparison of average results for the exact ε-constraint method and the

MDLS-heuristic.

Exact MDLS

Problem instance Instance Time Sol Time Sol Iε IH #PF

found

(5, 35%,light) 1-10 1.22 5.3 134.23 5.3 0.999432 0.999983 98

(5, 35%,heavy) 11-20 1.25 4.4 116.24 4.2 0.975000 0.956664 90

(5, 35%,uniform) 21-30 11.31 4.9 52.43 4.8 0.996319 0.999923 82

(5, 20%,light) 31-40 1.56 5.8 26.33 5.7 0.995575 0.999311 90

(5, 20%,heavy) 41-50 1.15 3.7 62.23 3.6 0.968579 0.975409 80

(5, 20%,uniform) 51-60 2.86 6.5 28.47 6.3 0.990463 0.994861 70

(10, 35%,light) 61-70 10.98 11.8 79.53 11.9 0.993013 0.999610 63

(10, 35%,heavy) 71-80 699.93 8.5 124.09 8.9 0.992400 0.997966 75

(10, 35%,uniform) 81-90 8.18 9.8 80.31 9.4 0.995184 0.999926 53

(10, 20%,light) 91-100 11.69 7.7 22.94 8.0 0.993118 0.997094 73

(10, 20%,heavy) 101-110 1677.01 10.3 29.91 9.8 0.994947 0.999856 57

(10, 20%,uniform) 111-120 12.29 11.0 32.71 10.5 0.995447 0.999816 62

(20, 35%,light) 121-130 855.77 18.0 138.86 15.4 0.978773 0.994388 18

(20, 35%,heavy) 131-140 39917.96 29.3 111.27 25.6 0.978619 0.994002 1

(20, 35%,uniform) 141-150 8614.75 29.7 78.66 25.7 0.976734 0.993225 0

(20, 20%,light) 151-160 536.24 12.6 31.04 11.7 0.986570 0.995180 8

(20, 20%,heavy) 161-170 5283.01 16.7 23.35 14.0 0.978968 0.995577 1

(10, 20%,uniform) 171-180 1680.34 17.7 31.77 14.9 0.985799 0.995610 7
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With respect to the computation times (in seconds), computation times of the

heuristic for instance categories with a small number of critical load units are clearly

shorter than for instances with a large number of critical load units. For small in-

stances, heuristic run times are large compared to the exact ε-constraint method.

However, for realistic instances, the advantages of the MDLS-heuristic are obvious.

Furthermore, categories of instances which show extreme computation times by the

exact ε-constraint method are solved in a much shorter computation time by the heur-

istic solution method, which shows the added value of a heuristic solution method for

the multi-objective train load planning problem.

High-quality approximation sets for realistic instances with 20 available wagons

can be found by the MDLS within less than three minutes on average, which is

consistently smaller than the run time for finding the exact Pareto-front. These

approximation sets cover on average at least 99% of the hypervolume of the reference

sets, as shown by IH . In conclusion, the results indicate that the MDLS-heuristic can

be used in a realistic environment. It guarantees solutions of good quality in short

times, which can be critical for train planners in a real-time operational environment.

6.6 Trade-off analysis

To show the added value of the multi-objective approach, results are visualised for

two realistic instances. Figure 6.14 and 6.15 respectively show objectives f1 and f3,

loaded length and scores for destination preferences, on the x- and y-axes. Objective

f2, the number of urgent load units assigned, is shown by adding sized and colour-

scaled dots. First, solutions are shown for an instance with 35% critical load units

and load unit weights drawn from a uniform distribution. The Pareto-front for this

instance consists of 33 different solutions, visualised in Figure 6.14.

Clearly, trade-offs can be observed for this instance. The higher the number of

urgent load units assigned, the lower the destination preference scores. Consequently,

the graph shows a clear decrease in destination preference scores from points with

small dots of a light colour to larger and darker dots. Further, when 11 or 12 urgent

load units are assigned, planners have a large flexibility, with a larger range of pos-

sible load plans, going from plans with a high length utilisation but low destination

preference scores to plans with higher destination preference scores but less of the

available length used. With either a high number of urgent load units assigned or

high destination preference scores, the possibilities to compose a load plan become

smaller. On the other hand, if length utilisation is important at a specific moment,
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Figure 6.14: Trade-offs for a realistic instance with 35% critical load units and a

uniformous weight distribution.

planners still have flexibility selecting a plan with either higher destination preference

scores or a high number of urgent load units.

The obtained solutions for a second instance are shown in Figure 6.15. It has the

same characteristics, except for the fact that only 20% of the available load units is

critical. This instance is further characterised by 20 different Pareto-optimal solutions,

and trade-offs are very clear.

For this instance, differences between the number of urgent load units assigned are

more explicit. The dotted markers for 5 and 6 urgent load units are relatively close

to each other, which indicates that in this case, up to 6 load units can be assigned

without compromising too much with respect to the other objectives, destination

preference scores and length utilisation. However, the more urgent load units are

assigned, the larger the decrease in the other objectives becomes. With a high number

of urgent load units, planners should decide whether, at a specific moment, either the

length utilisation or assigning load units to a more preferred unload terminal is more

important. With a small number of urgent load units, planners can at the same time

optimise destination preference scores and length utilisation.

One possibility for future research may be the selection of load plans from the pool
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Figure 6.15: Trade-offs for a realistic instance with 20% critical load units and a

uniformous weight distribution.

of available alternative solutions generated by the multi-objective problem, based on

knowledge of characteristics of load plans which are often chosen in certain operational

circumstances. For a literature overview on multi-criteria classification and sorting

methods to support decision makers in selecting the most suitable alternative, we

refer to Zopounidis and Doumpos (2002).

In conclusion, results show that the multi-objective approach provides train load

planners with a number of train load plans, such that they can decide a posteriori

on the importance of each objective by selecting the most suitable load plan at that

moment. Planners can narrow down the options based on information they receive

about the prevailing transport conditions. They can optimise the scores for destin-

ation preferences or the number of urgent load units assigned to a location on the

train without implying large changes with respect to the loaded length on the train.

However, in some circumstances, these small differences in length utilisation may be

essential.
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6.7 Conclusions and future research

This chapter shows the added value of a multi-directional local search heuristic, incor-

porating real-life characteristics of train load planning, as with the exact ε-constraint

method presented in Chapter 5, some single-objective problems involve long com-

putation times. Train planners can benefit from the advantages of the proposed

MDLS-heuristic, which provides them with a number of non-dominated solutions,

i.e., possible train load plans. The MDLS is able to solve real-world instances and

provides solutions of good quality in short computation times, which is valuable in

real-life. It is able to provide fast assistance to train planners during the assignment

process in a realistic, operational environment. The parameter tuning phase determ-

ined a parameter setting which performs well on average for all instance classes and

thus for multiple possible inputs. For practical use, the detailed sensitivity analysis

provides a good overview to select a good parameter setting for any specific problem

setting.

The proposed multi-directional local search heuristic does not include a measure

for the diversity of the solution pool. One such indicator concerns the crowding dis-

tance of a solution (Lian et al., 2016). It measures the density of solutions surrounding

one solution. Including measures of the distance between any solution and all other

obtained solutions allows to focus on less-crowded areas of the non-dominated solu-

tion set, which in turn may improve the diversity of the solution pool. It could be

interesting to analyse the inclusion of distance measures on the heuristic performance.

Future research could focus on methods to narrow down the selection of load plans

to provide decision support under the specific operational circumstances of a given

moment. Furthermore, it would be interesting to extend the proposed heuristic to a

dynamic setting, in which new information continuously becomes available, when the

load plan must be updated accordingly.

A final interesting opportunity lies within the use of column generation to solve the

train load planning problem. Both the axle weight limits and payload balancing are

restrictive to the problem. The problem can be reformulated into a set partitioning

problem, in which a list of feasible configurations of load units is created for each

wagon type. These configurations should satisfy all loading constraints. For each

wagon of a given type, exactly one configuration has to be selected and all load units

should be assigned.
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Chapter 7
Final conclusions and future outlook

This doctoral thesis aims at providing decision support for intermodal transport plan-

ners in order to optimally employ their service network and maximise transport

throughput with minimised total transport costs. Two intermodal planning prob-

lems are considered, intermodal container routing and train load planning, in order

to stimulate a modal shift from unimodal road transport to intermodal rail transport.

Chapters 2 and 3 (Part II) focus on integrating decisions in intermodal transport.

In Chapter 2, related literature on the separate planning problems is presented and a

new integrated intermodal routing problem is proposed, which combines drayage and

long-haul routing decisions. In Chapter 3, a heuristic algorithm is developed to solve

the integrated intermodal routing problem, quantify the advantages of the integrated

approach, and provide managerial insights on how tactical decisions could influence

the total cost of the transport system. Chapters 4 to 6 (Part III) investigate the train

load planning problem with real-life characteristics. The train load planning problem

is considered from a multi-objective perspective, enabling planners to maximise the

throughput of transport requests with a given capacity during the train planning

phase within the context of intermodal rail transport.

In this final chapter, the major conclusions of both main research areas studied

are presented (Figure 7.1). Final conclusions are summarised in Section 7.1. Future

research directions are presented in Section 7.2.

7.1 Final conclusions

With the rising focus towards sustainable transport, intermodal transport is a prom-

ising alternative for road transport and provides a lot of opportunities. However, it

161
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Figure 7.1: Thesis summary - Chapter 7.



Conclusions 163

also presents a number of challenges for intermodal operators and planners who are

in charge of executing transport planning in an increasingly dynamic environment.

As multiple transport modes and decision makers are involved, integrated decision-

making tools are a prerequisite for adequate decision support. Due to low financial

margins for transport companies, cost minimisation is a major objective. Although

road transport is only used for drayage and presents a small portion of the intermodal

trajectory, drayage costs constitute a substantial part of total transport costs. Fur-

thermore, network capacity is expensive and should be managed carefully to maximise

total transport throughput, which could further reduce total costs.

This dissertation proposes fast planning algorithms which include real-life char-

acteristics and allow for planning flexibility in the decision process. These concepts

are inherent to the vision of synchromodal transport in order to encourage a modal

shift away from unimodal road transport. Two decision support tools for intermodal

operators are proposed by means of heuristic algorithms for integrated intermodal

routing and train load planning in order to execute intermodal transport operations

both effectively and efficiently. They are applied to real-life cases in order to demon-

strate their advantages for practitioners. Both problems aim at maximising network

capacity utilisation and minimising total transport costs, only the time horizon dif-

fers. Support on intermodal routing decisions is provided for a weekly planning for

which computation times can be higher. Decision support for train load planning is

focused on daily operations and as such, requires a shorter computation time.

In the first part of this thesis, the focus is on providing integrated decision sup-

port for intermodal operators. Due to the complex planning environment in which

intermodal service providers operate, decision within and between decision levels are

interrelated and the need for an integrated approach rises. Although research on in-

tegrated decision support models in intermodal freight transport is limited, research

efforts are growing. Therefore, a literature review on service network design, inter-

modal routing and drayage problems indicating the tackled problem characteristics in

current research is presented. The review demonstrates that problem integration with

respect to transport modes, decision levels and problem characteristics is required,

but research efforts are still limited. The proposed, new integrated approach on in-

termodal routing includes more planning flexibility by allowing transport requests to

be routed through another service than the long-haul service with the closest pre-

and end-haul distance if this reduces total drayage costs. Moreover, the integrated

viewpoint allows to use more information when making intermodal routing decisions

compared to a sequential approach, resulting in better-informed decision processes.

Results show that, although no total cost reduction is obtained for demand character-
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ised by random customer locations, an increased capacity utilisation of the network

in the current planning week can be achieved. If customer demand locations are

clustered around intermodal terminals, both a reduction in drayage costs and an

increased network capacity utilisation are obtained. This integrated approach is em-

ployed to analyse the impact of tactical decisions on total transport costs and possibly

adapt a given service network in order to provide better service levels to customers.

It is the first time that the impact of vehicle routing costs at the operational level

are included when making decisions on the long-haul service network design at the

tactical level. Within this aim, a case study demonstrates the way in which compan-

ies can use this solution method in practice and adapt their tactical decisions to the

characteristics of their service network and demand data.

With the shift towards synchronised and real-time planning, the task of transport

planners becomes more challenging. Therefore, the second part of this thesis focuses

on the integration of real-life considerations into the train load planning process, i.e.,

at a detailed planning level. Due to the varying importance of multiple objectives,

each situation requires different weights of each objective. Therefore, no unique best

solution exists. This research is the first to present a multi-objective approach which

provides a set of solutions which are a priori of equal value. Computational results of

a multi-objective approach show that different load plans are obtained with respect

to the length utilisation of the train, the urgency of the load units assigned and des-

tination preferences related to drayage operations. The current state of the transport

network and incoming transport orders determines which of the plans is the most

suitable for a given train departure. With the proposed method, planners can select

the most appropriate load plan for each individual departing train.

To summarise, this dissertation provides decision support in an intermodal plan-

ning environment which deals with real-life characteristics and allows for flexibility,

either by taking an integrated perspective or by providing planning assistance in the

form of multiple plans to choose from. The proposed heuristic algorithms can be

incorporated in transport management systems. The real-life case studies presented

for both planning problems show the advantages and applicability in practice.

7.2 Future research opportunities

The integrated intermodal routing problem proposed in Part II lays the groundwork

for further studies on innovative concepts to stimulate a modal shift away from unim-

odal road transport. First, the real-life case studies provide interesting results using
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realistic data. In future research, forecasting techniques could be used to estimate fu-

ture demand. By using more accurate, forecasted input data, the obtained intermodal

routing decisions and service network insights could be further optimised. Second,

the heuristic algorithm for the integrated approach can be adapted to a dynamic ap-

proach for real-time decision support. Instead of considering a planning horizon of

an entire week, the planning horizon could be set to a single day, or even one hour

in order to utilise this approach to its full potential. When new load units enter the

system, the heuristic algorithm can assign them simultaneously to their most cost-

efficient long-haul service and determine their inclusion in truck routes. In this way,

the transport plan could deal with continuous updates and optimise the long-haul

capacity utilisation in a cost-efficient way. Besides providing decision support for

planners, it might also enhance the service levels offered. Finally, it would be inter-

esting to analyse and quantify the effect of such integrated decision-making on empty

container repositioning within each of the service areas.

The research on train load planning performed in Part III of this dissertation

allows planners to flexibly select a load plan which is most relevant for a specific

operational situation. Depending on external information, such as, for example, delays

in train departures, planners can decide themselves which objective receives the most

priority at a specific moment in time and select the most appropriate load plan due

to the proposed multi-objective solution approaches. Future research could focus on

reducing the number of load plans presented to planners to reduce the time required

for decision-making. Moreover, the proposed solution method indirectly accounts for

future orders by assigning a priority value based on the urgency with which load

units should be transported. In the future, this might be extended to a look-ahead

approach, in which information about future costs is included in present decisions.

Such approach uses a multi-period viewpoint, but only a decision is made for the load

plan in the current period, i.e., only the next train departure is considered. In this

way, new information can be included in each period. As already emphasised, most

decisions in intermodal transport are interrelated. In this thesis, train load planning

is considered from the viewpoint of a logistics service provider. In a subsequent phase,

operations executed by a terminal operator at the terminal are optimised, once the

load units to be assigned are known. Future research might incorporate the impact

of load planning on terminal operations by means of a second-phase optimisation

of handling operations at the terminal. Finally, column generation might especially

be an interesting solution method for train load planning in future research, as the

problem can be reformulated as a set partitioning problem in which a single feasible

configuration must be selected for each wagon.
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Appendix A
Detailed results for the exact

ε-constraint method

Table A.1 shows a detailed overview of the computational results of the exact adaptive

ε-constraint method discussed in Chapter 5. The left part of the table indicates the

total number of iterations for each instance, and how many of these iterations led to

infeasible and unique solutions with respect to the objective values respectively. It

further shows total computation times for the entire procedure and the minimum and

maximum computation times for a single iteration. Finally, the right-hand side of the

table shows the number of iterations not solved to optimality within the maximum

run time of one hour and the average optimality gap for these solutions.

Table A.1: Detailed results for the ε-constraint approach.

Procedure Non-optimal sol

Inst It. Infeas. Unique sol. Total time (s) Min Time (s) Max Time (s) It. Avg gap (%)

1 4 1 3 0.77 0.15 0.36

2 11 0 5 0.77 0.06 0.08

3 8 0 5 0.76 0.08 0.16

4 5 2 3 0.39 0.12 0.14

5 12 3 5 1.2 0.12 0.16

6 8 0 6 1.12 0.12 0.16

7 6 1 3 0.73 0.14 0.15

8 5 1 3 0.4 0.08 0.12

9 32 4 16 5.62 0.09 0.38

10 5 1 4 0.46 0.11 0.12
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Procedure Non-optimal sol

Inst It. Infeas. Unique sol. Total time (s) Min Time (s) Max Time (s) It. Avg gap (%)

11 15 5 9 6.97 0.14 2.55

12 9 3 5 0.54 0.08 0.11

13 7 1 4 0.56 0.07 0.11

14 8 4 3 0.34 0.08 0.09

15 2 0 2 0.25 0.12 0.12

16 5 1 4 0.37 0.09 0.1

17 8 3 4 0.49 0.09 0.11

18 6 1 4 0.63 0.09 0.19

19 10 3 5 1.92 0.18 0.31

20 7 3 4 0.44 0.09 0.13

21 13 0 6 73.5 0.11 59.21

22 5 0 4 0.6 0.1 0.14

23 7 0 5 20.6 0.11 15.87

24 8 3 4 0.64 0.09 0.22

25 4 0 3 0.51 0.09 0.19

26 8 1 5 1.4 0.13 0.25

27 6 3 2 0.31 0.1 0.11

28 5 0 4 0.62 0.11 0.14

29 8 0 7 13.17 0.12 10.44

30 12 0 9 1.72 0.08 0.26

31 1 0 1 0.09 0.09 0.09

32 14 0 8 2.43 0.11 0.28

33 9 2 6 1.66 0.12 0.59

34 16 5 8 1.79 0.1 0.26

35 2 0 2 0.39 0.16 0.23

36 11 0 8 1.96 0.09 0.38

37 22 0 12 3.95 0.09 0.29

38 3 0 2 0.28 0.08 0.11

39 13 0 7 2.48 0.16 0.25

40 6 1 4 0.61 0.09 0.15

41 6 1 4 0.58 0.08 0.22

42 4 0 3 0.48 0.07 0.2

43 9 3 6 0.84 0.13 0.18

44 7 0 6 1.98 0.11 0.46

45 3 0 2 0.34 0.11 0.12

46 8 3 5 3.41 0.11 1.91

47 2 0 2 0.2 0.08 0.12

48 3 1 2 1.95 0.57 1.38
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Procedure Non-optimal sol

Inst It. Infeas. Unique sol. Total time (s) Min Time (s) Max Time (s) It. Avg gap (%)

49 4 1 2 1.25 0.15 0.82

50 7 1 5 0.52 0.08 0.1

51 6 0 5 1.02 0.07 0.23

52 13 0 12 10.31 0.3 2.77

53 4 0 3 0.27 0.07 0.07

54 14 4 6 1.34 0.08 0.23

55 15 0 10 6.55 0.1 1.67

56 12 0 10 6.18 0.25 0.98

57 7 2 4 0.4 0.07 0.09

58 14 0 8 1.66 0.1 0.14

59 6 2 3 0.51 0.11 0.14

60 4 0 4 0.37 0.07 0.13

61 23 5 16 8.99 0.37 0.72

62 16 0 13 10.18 0.37 0.95

63 23 2 18 12.36 0.31 1.28

64 6 0 6 3.94 0.44 0.84

65 8 0 5 3.79 0.29 0.79

66 28 4 16 32.51 0.5 6.96

67 4 0 3 2.43 0.33 1.1

68 12 3 7 4.61 0.35 0.71

69 38 4 23 24.59 0.35 1.88

70 14 1 11 6.34 0.32 0.93

71 18 2 11 7.45 0.37 0.57

72 9 1 8 7.53 0.44 3.02

73 17 6 10 5.28 0.44 0.56

74 24 7 16 9.42 0.37 1.68

75 24 2 15 3313.14 0.65 2088.9 1 *

76 8 1 5 3.26 0.37 0.54

77 3 0 3 5.12 1.29 2.42

78 6 0 5 2.93 0.33 0.59

79 7 1 4 3614.83 0.97 3600.03 1 0.6152

80 13 3 7 30.32 0.98 6.57

81 4 0 4 1.33 0.23 0.43

82 18 0 15 10.49 0.36 0.9

83 18 0 14 8.28 0.28 0.58

84 12 2 10 10.87 0.71 1.46

85 17 2 13 20.2 0.44 5.74

86 10 0 9 5.17 0.31 1.04



170 Detailed results for the exact ε-constraint method

Procedure Non-optimal sol

Inst It. Infeas. Unique sol. Total time (s) Min Time (s) Max Time (s) It. Avg gap (%)

87 13 0 9 10.01 0.3 1.61

88 16 1 11 6.53 0.26 0.82

89 10 3 6 3.16 0.29 0.71

90 12 3 7 5.71 0.36 1.18

91 20 4 10 57.78 0.41 25.11

92 4 0 3 1.43 0.3 0.44

93 13 0 10 7.42 0.3 1.22

94 7 0 7 9.3 0.33 5.23

95 11 0 7 8 0.43 1.6

96 29 5 15 18.47 0.55 1.77

97 3 0 3 1.38 0.24 0.65

98 10 0 9 4.27 0.35 0.62

99 9 0 6 4.39 0.34 0.6

100 12 1 7 4.46 0.26 0.51

101 21 0 9 8112.28 0.64 3600.02 2 0.7312

102 7 1 5 4.64 0.48 1.16

103 41 1 28 7916.45 0.97 3600.02 2 2.6024

104 11 3 7 4.84 0.28 1.17

105 10 2 8 11.09 0.49 3.09

106 28 6 16 33.34 0.43 11.24

107 10 2 5 640.21 0.87 613.19

108 6 0 6 6.44 0.69 1.82

109 10 0 9 33.95 0.79 6.11

110 16 0 8 6.87 0.32 0.71

111 14 0 12 8.37 0.45 0.99

112 15 0 12 8.96 0.25 0.92

113 7 0 6 5.05 0.4 1.04

114 12 1 8 6.21 0.28 1.12

115 4 0 4 5.08 0.65 1.89

116 4 0 4 1.59 0.28 0.53

117 4 0 4 2.01 0.41 0.74

118 17 0 15 15.54 0.42 1.64

119 41 2 28 57.68 0.45 6.83

120 21 0 17 12.44 0.25 2.07

121 4 0 7.06 1.29 2.82

122 22 0 4 3667.16 1.72 3600.07 1 0.2066

123 30 0 18 77.5 1.68 4.46

124 22 0 26 4374.27 1.58 3600.18 1 0.3485
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Procedure Non-optimal sol

Inst It. Infeas. Unique sol. Total time (s) Min Time (s) Max Time (s) It. Avg gap (%)

125 24 2 16 96.23 2.93 8.83

126 16 1 18 33.94 1.39 4.56

127 15 0 14 33.17 1.39 3.67

128 25 0 15 67.17 1.41 11.05

129 14 1 21 51.37 2.06 9.22

130 55 2 10 149.83 1.53 3.93

131 35 1 36 3851.56 2.11 3600.1 1 0.0018

132 20 0 12 90.5 1.87 14.22

133 72 4 32 108832.8 3.11 3600.53 29 1.0951

134 10 0 6 3672.58 3.68 3600.11 1 0.1332

135 18 2 9 11051.72 3.54 3600.16 3 0.659

136 54 8 23 38610.62 2.3 3600.17 10 2.0811

137 58 4 23 77673.42 3.08 3600.14 20 0.628

138 18 0 15 1017.85 1.33 903.86

139 29 0 25 99.58 1.94 10.57

140 100 5 41 154279 5.24 3600.75 40 0.9539

141 11 0 10 37.33 1.64 5.56

142 24 0 20 2506.89 4.06 2176.04

143 26 1 14 26402.83 3.8 3600.17 7 1.4687

144 26 0 19 11940.58 9.54 3600.13 1 1.5724

145 45 1 36 8609.13 2.57 3600.14 2 0.6567

146 13 0 6 3707.09 2.87 3600.09 1 0.1788

147 57 3 43 211.14 2.02 27.37

148 39 2 33 117.26 1.91 10.12

149 131 3 87 32524.43 1.83 3600.15 8 0.0697

150 24 1 20 90.76 2.1 7.45

151 11 0 9 67.37 3.41 14.31

152 32 0 22 71.04 1.34 4.55

153 11 0 7 26.16 1.33 3.43

154 10 0 8 25.63 1.57 3.46

155 6 0 5 17.42 1.5 6.44

156 17 0 11 48.89 1.56 8.1

157 45 5 30 204.38 1.63 17.45

158 20 0 16 41.4 1.43 2.79

159 9 0 5 4777.64 2.68 3600.12 1 0.2162

160 21 0 12 82.49 1.4 12.09

161 34 0 15 205.3 2.15 46.78

162 15 0 12 149.99 4.86 34.26
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Procedure Non-optimal sol

Inst It. Infeas. Unique sol. Total time (s) Min Time (s) Max Time (s) It. Avg gap (%)

163 35 0 23 240.54 2.35 43.13

164 31 6 20 361.97 6.19 63.6

165 21 0 14 147.87 2.44 18.84

166 31 0 22 11482.88 3.6 3600.17 2 2.3488

167 59 8 17 33793.43 3.23 3600.23 9 0.0993

168 47 0 21 4595.46 5.22 3600.19 1 0.0002

169 11 0 6 118.36 4.16 26.21

170 10 0 9 1734.28 3.02 1698.95

171 42 0 36 202.29 2.11 24.68

172 11 0 7 234.23 3.4 67.65

173 21 0 19 358.68 2.21 191.08

174 39 0 29 254.52 1.91 70.03

175 54 0 36 218.31 1.96 7.82

176 17 0 8 14764.4 4.15 3600.13 4 0.1849

177 4 0 4 246.57 5.71 225.37

178 29 0 20 352.91 1.82 107.58

179 20 0 10 143.09 1.11 81.12

180 6 0 6 28.37 4.09 5.43

* Unknown solution status



Appendix B
Average proportional deviation

from IHr for solutions obtained

using the MDLS-heuristic

Table B.1 indicates the performance of newly generated instances using the parameter

configuration proposed by irace in Chapter 6, expressed as a percentage deviation

of the hypervolume of the reference set. Results with the parameter configuration

proposed by irace are indicated in bold. An asterisk indicates the parameter config-

uration resulting in the best overall solution quality based on the sensitivity analysis

on different instances.
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Table B.1: Average proportional deviation from IHr (in %).

Parameter Value Wagons Overall

5 10 20

wk 0.60 4.3306 0.6157 1.0049 1.9837

0.65 4.3306 0.2217 0.9655 1.8393

0.70 4.2386 0.2011 0.7245 1.7214

0.75 4.2476 0.2095 0.5645 1.6739

0.80 4.2386 0.2615 0.4667 1.6556

0.85 4.2386 0.3367 0.4415 1.6723

0.90 4.2386 0.1963 0.3564 1.5971

0.91 0.6272 0.2155 0.3957 *0.4128

0.95 0.6272 0.2771 2.0622 0.9888

1 4.2386 0.2001 0.3852 1.608

ALSLength -45 0.6272 0.2374 0.5776 *0.4807

-20 0.6272 0.2269 0.671 0.5084

0 4.2386 0.2073 0.4302 1.6254

20 4.3306 0.4452 0.8677 1.8812

ALSUrgency -2 0.7481 2.3843 2.725 1.9525

-1 0.7481 2.8099 2.8284 2.1288

0 4.2386 0.2215 0.3379 *1.5993

1 8.5737 6.5884 3.4988 6.2203

2 9.3047 8.3223 3.5622 7.0631

ALSDP -2 1.8935 2.2498 4.4634 2.8689

-1 1.8935 2.3854 3.7206 2.6665

0 4.2386 0.2105 0.3344 *1.5945

1 9.1638 3.9724 5.128 6.0881

2 11.4811 3.3848 5.6054 6.8238

DPwgndestin 0 4.2386 0.1991 0.4045 *1.6141

1 4.2386 0.31 0.6993 1.7493



Appendix C
Detailed tuning results for the large

neighbourhood search heuristic for

the integrated intermodal routing

problem

For the sequential and integrated approach respectively, Figures C.1 and C.2 show

detailed results for different parameter settings, visualised for each instance class in-

dividually. The solution quality is indicated on the primary axis on the left, visualised

using lines, and the computation time in seconds is displayed on the secondary axis

on the right, and shown by the bars in the graph.
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Figure C.1: LNS parameter tuning: experimental results for the sequential approach,

for each combination of parameters and all instance classes.
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Figure C.2: LNS parameter tuning: experimental results for the integrated approach,

for each combination of parameters and all instance classes.
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X., Sevaux, M., Sörensen, K., T’kindt, V. (Eds.), Metaheuristics for Multiobjective

Optimisation, Springer Berlin Heidelberg. pp. 177–199.
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Nederlandstalige samenvatting

Intermodaal transport betreft het gebruik van meerdere transportmodi, waarbij het

hoofdtransport per trein of schip uitgevoerd wordt. Het biedt een interessant alterna-

tief voor unimodaal wegvervoer, dat een grote, negatieve impact heeft op het milieu.

Intermodaal transport kan de impact op het milieu reduceren doordat wegvervoer

enkel tijdens het voor- en natransport wordt gebruikt. Daarnaast worden schaal-

voordelen bereikt omdat grotere volumes gebundeld worden tijdens transport over

langere afstanden. Intermodaal transport draagt zo bij aan de ontwikkeling van een

duurzamer transportsysteem en wordt daarom sterk gestimuleerd door de Europese

Commissie.

Echter, meerdere transportmodi en operatoren zijn betrokken in dit proces, wat

diverse uitdagingen met zich meebrengt voor transportplanners in een complexe en

dynamische planningsomgeving. Hierbij is een naadloze integratie van intermodale

processen en beslissingen cruciaal. De mate waarin gëıntegreerde beslissingsonder-

steuning geboden kan worden alsook transportkosten bepalen samen de aantrekke-

lijkheid en perceptie van intermodaal transport. Daarom focust dit onderzoek op

de ontwikkeling van innovatieve transportsystemen die problemen met realistische

kenmerken en planningsbeperkingen kunnen oplossen, om zo intermodaal transport

verder te stimuleren.

In deze thesis worden twee planningsinstrumenten voorgesteld ter ondersteuning

van de beslissingen van intermodale transportplanners. Het betreft intermodale route-

ring enerzijds en de laadplanning van treinen anderzijds. Beide instrumenten bestaan

uit snelle planningsalgoritmes die kunnen omgaan met realistische probleemeigen-

schappen. De doelstelling is de minimalisatie van de totale transportkosten en een

maximale benutting van de beschikbare transportcapaciteit.

Een literatuurstudie over intermodale lange-afstandsroutering en rittenplannings-

problemen voor het voor- en natransport toont aan dat deze twee beslissingen tra-

ditioneel sequentieel genomen worden. In deze thesis worden beide beslissingen ge-

combineerd tot een gëıntegreerd optimalisatieprobleem voor intermodale routering.

De kosten en beperkingen van de rittenplanning van vrachtwagens worden betrokken

in de beslissing over de lange-afstandsroutering doorheen het intermodale netwerk.
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De gëıntegreerde benadering wordt vervolgens gebruikt om het intermodale netwerk

te analyseren. Op basis van dergelijke analyses kan het netwerk aangepast worden

dankzij inzichten in het intermodale netwerk op het tactische beslissingsniveau onder

bepaalde verwachtingen omtrent marktomstandigheden. Deze inzichten zijn bijvoor-

beeld nuttig bij onderhandelingen van nieuwe transportcontracten.

Na de toewijzing van laadeenheden aan intermodale treinroutes doorheen het in-

termodale transportnetwerk, dient voor elke vertrekkende trein een laadplan met

gedetailleerde ladingsbeperkingen opgesteld te worden waarin laadeenheden worden

toegewezen aan specifieke locaties op een trein. Door het operationele, dynamische

karakter van deze beslissingen kunnen op korte termijn nog kleine wijzigingen ver-

eist zijn. Zowel een exacte methode als een heuristisch algoritme worden voorgesteld

om dergelijk probleem met realistische ladingsbeperkingen en meerdere doelstellingen

op te lossen. Het resultaat is een voorstel van enkele plannen, waarbij het belang

van elke doelstelling verschilt per plan. Hierdoor kunnen planners voor een specifiek

treinvertrek het plan selecteren dat het meest aansluit bij de kenmerken van de plan-

ningsomgeving. Het levert aanzienlijke tijdswinst op en biedt zekerheid dat aan alle

ladingsbeperkingen is voldaan.



Valorisation

In this addendum, a discussion on the practical relevance of this academic thesis is

presented. As emphasised in the introduction, an important challenge to the transport

sector and, by extension, the supply chain is the sustainability of the entire system.

The environmental impact of our current transport system is high, with producers

and consumers often separated geographically by larger distances. In order to achieve

a more sustainable transport system, the full cost of transport should be accounted

for. Despite the fact that vehicles on the road are becoming greener due to reduced

emissions, external costs of congestion and, related to that, costs of pollution increase.

A modal shift of transport flows from unimodal road to intermodal transport may

relieve congested highways and reduce the environmental impact.

In an ideal transport network, multiple complimentary transport modes and con-

nections should be available. In that way, the most appropriate route can be selected

for each transport request at a specific moment in time. This requires flexible and

real-time planning, which poses a number of challenges for planners. In this context,

adequate decision support and fast planning algorithms with real-life characteristics

are needed to support a synchromodal vision. Innovative support systems should be

available to help planners decide in a more complex environment. The number of

research papers focusing on synchromodal transport and its prerequisites is rising.

However, a gap between academic research and practice can be observed, because

real-life characteristics of intermodal transport companies are ignored. Therefore,

the focus of this thesis is on decision support for human planners at the operational

decision level during the planning process of intermodal rail transport.

In order to stimulate intermodal transport, on the one hand, additional costs

should be reduced, while on the other hand fast planning algorithms with real-life

problem characteristics should be available to accommodate decisions in a complex

intermodal planning environment. This thesis offers two intermodal planning tools

which can be used by intermodal operators in order to minimise total transport costs

and maximise service capacity utilisation, which in turn results in decreasing costs of

the transport system.
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The first contribution of this thesis is the introduction of an integrated intermodal

routing problem. After a transport order is received, planners must assign each load

unit to an intermodal long-haul service to maximise the overall network capacity util-

isation, and local drayage routes must be established to transport load units between

load and unload locations and the transhipment terminals for long-haul transport.

Usually, these decisions are made in a sequential way. As the level of integration of

different transport modes and decision levels influences the attractiveness of inter-

modal transport, an integrated intermodal routing problem is proposed. By taking

local truck routing and long-haul transport planning decisions simultaneously, the

aim is to reduce total transport costs. In a second contribution, the intermodal rout-

ing model is applied to a real-life intermodal network to support the analysis of the

impact of tactical service network design decisions made by an intermodal operator.

Insights will be presented on how to best utilise a given service network, in order to

reduce total transport costs and synchronise available services to the expected de-

mand of orders. The approach aims at reducing the number of road kilometres and

increases bundling opportunities by maximising the long-haul capacity utilisation. In

this way, it contributes to the modal shift towards intermodal transport and a more

sustainable transport system.

At a more operational level, train load planning is concerned with the assignment

of load units to specific locations on intermodal trains, accounting for real-life loading

restrictions in order to maximise the on-train capacity utilisation. As including these

real-life aspects are key to deciding which load units will be assigned to which location,

the third contribution is the introduction of an exact and heuristic algorithm with real-

life train load problem characteristics. It can be used as a decision support tool to

provide human planners with a number of load plans from which they can choose

the best one for a specific moment in time. Early-stage planning assistance during

the booking process may improve the overall capacity utilisation of the available rail

services.

Decisions on these two planning problems, intermodal routing and train load plan-

ning, influence the throughput of the intermodal transport system and aim at min-

imising overall transport costs while accounting for customer service requirements.

Fast decision support by means of planning algorithms are provided for improved,

more efficient planning. Results contribute to a better understanding of the way in

which intermodal operators can maximise their service network's transport capacity

based on the expected demand of transport orders, and lead to an increased transport

capacity utilisation and a minimisation of total transport costs.
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1-2.

Heggen, H., Caris, A., Braekers, K., 2018. Integrating local drayage and network

flow planning in intermodal transport. In: 28th European Conference on Operational

Research. Valencia, Spain, July 8-11.

Braekers, K., Heggen, H., Crauwels, N., 2018. Intermodal terminal selection and its

effect on pre- and end-haulage costs. In: 28th European Conference on Operational

Research. Valencia, Spain, July 8-11.

Heggen, H., Caris, A., Braekers, K., 2018. On the advantages of including local dray-

age costs into intermodal routing decisions. In: The annual international conference

of the German Operations Research Society (GOR), OR2018. Brussels, Belgium,

September 12-14.

Heggen, H., Caris, A., Braekers, K., 2019. A large neighborhood search heuristic

for the integrated intermodal routing problem. In: 33rd Annual Conference of the

Belgian Operations Research Society. Hasselt, Belgium, February 7-8.








	List of Tables
	List of Figures
	I Introduction
	Introduction and problem statement
	Intermodal freight transport
	Decision support
	Research objectives
	Thesis outline


	II Intermodal container routing
	Integrating local drayage and intermodal long-haul routing: related literature and problem formulation
	Introduction
	Related literature
	Long-haul service network design and intermodal routing
	Pre- and end-haulage transport
	Research opportunities

	Problem description
	Problem formulation
	The sequential approach
	The integrated intermodal container routing problem

	Conclusions

	A large neighbourhood search heuristic for the integrated intermodal routing problem
	Introduction
	Large neighbourhood search heuristic
	General structure of the LNS
	Integrated operators
	Preliminary checks for inserting a node
	Feasibility of new routes

	Comparison of the sequential and integrated approach
	Generated instances
	Heuristic parameters
	Experimental results

	Case study: tactical service network design decisions
	The impact of changes in the service network: removing long-haul services with small capacity
	The impact of congestion around terminals
	Managerial insights

	Conclusions and future research


	III Train load planning
	Factors influencing the train load planning process: literature review and classification
	Introduction
	Classification of train load planning problems
	Objectives
	Constraints
	Planning environment
	Related problems

	Conclusions and research opportunities

	A multi-objective train load planning problem with real-life characteristics: formulation and exact solution approach
	Introduction
	Problem definition
	Introduction to multi-objective concepts
	Multi-objective model formulation
	Adding practical considerations

	A multi-objective exact solution approach
	Problem instances
	Computational experiments for the -constraint method
	Conclusions

	A heuristic solution approach for multi-objective train load planning
	Introduction
	Multi-directional local search heuristic
	General structure of the MDLS
	Constructive phase
	Local search phase
	Quality indicators

	Parameter tuning
	Instance classes
	Parameters of the MDLS
	Iterated racing procedure (irace)

	Parameter sensitivity analysis
	Interaction between  and 
	Sensitivity of  and 
	Practical implications
	Conclusions

	Performance of the multi-directional local search heuristic
	Trade-off analysis
	Conclusions and future research


	IV Conclusions
	Final conclusions and future outlook
	Final conclusions
	Future research opportunities

	Detailed results for the exact -constraint method
	Average proportional deviation from  for solutions obtained using the MDLS-heuristic
	Detailed tuning results for the large neighbourhood search heuristic for the integrated intermodal routing problem
	Bibliography
	Nederlandstalige samenvatting
	Valorisation
	Biography and publications



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.693 x 9.449 inches / 170.0 x 240.0 mm
     Shift: none
     Normalise (advanced option): 'original'
     Keep bleed margin: no
      

        
     D:20190514153057
      

        
     32
            
       D:20170802112428
       680.3150
       DOCTORAAT
       Blank
       481.8898
          

     Tall
     1
     0
     No
     704
     281
     None
     Up
     0.0000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0j
     Quite Imposing Plus 4
     1
      

        
     213
     212
     213
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: before first page
     Number of pages: 2
     Page size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
      

        
     D:20190514153101
      

        
     Blanks
     Always
     2
     1
            
       D:20170802155416
       841.8898
       a4
       Blank
       595.2756
          

     1
     Tall
     638
     170
     1
            
       PDDoc
          

     Custom
     AtStart
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0j
     Quite Imposing Plus 4
     1
      

        
     0
     2
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after page 3
     Number of pages: 1
     Page size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
      

        
     D:20190514153101
      

        
     Blanks
     Always
     1
     1
            
       D:20170802155416
       841.8898
       a4
       Blank
       595.2756
          

     3
     Tall
     638
     170
     1
            
       PDDoc
          

     Custom
     AfterNum
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0j
     Quite Imposing Plus 4
     1
      

        
     3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after last page
     Number of pages: 3
     Page size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
      

        
     D:20190514153101
      

        
     Blanks
     Always
     3
     1
            
       D:20170802155416
       841.8898
       a4
       Blank
       595.2756
          

     1
     Tall
     638
     170
     1
            
       PDDoc
          

     Custom
     AtEnd
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0j
     Quite Imposing Plus 4
     1
      

        
     216
     3
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 14.17 points
     Normalise (advanced option): 'original'
     Keep bleed margin: yes
      

        
     D:20190514153135
      

        
     32
            
       D:20190513090239
       1190.5512
       a3
       Blank
       841.8898
          

     Tall
     1
     1
     0
     No
     1185
     319
     Fixed
     Up
     14.1732
     0.0000
            
                
         Both
         5
         AllDoc
         218
              

       CurrentAVDoc
          

     None
     28.3465
     Bottom
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0j
     Quite Imposing Plus 4
     1
      

        
     5
     218
     217
     218
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 14.17 points
     Normalise (advanced option): 'original'
     Keep bleed margin: yes
      

        
     D:20190514153158
      

        
     32
            
       D:20190513090239
       1190.5512
       a3
       Blank
       841.8898
          

     Tall
     1
     1
     0
     No
     1185
     319
     Fixed
     Up
     14.1732
     0.0000
            
                
         Both
         5
         AllDoc
         218
              

       CurrentAVDoc
          

     None
     28.3465
     Bottom
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0j
     Quite Imposing Plus 4
     1
      

        
     19
     218
     217
     218
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 14.17 points
     Normalise (advanced option): 'original'
     Keep bleed margin: yes
      

        
     D:20190514153213
      

        
     32
            
       D:20190513090239
       1190.5512
       a3
       Blank
       841.8898
          

     Tall
     1
     1
     0
     No
     1185
     319
     Fixed
     Up
     14.1732
     0.0000
            
                
         Both
         5
         AllDoc
         218
              

       CurrentAVDoc
          

     None
     28.3465
     Bottom
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0j
     Quite Imposing Plus 4
     1
      

        
     5
     218
     217
     218
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 14.17 points
     Normalise (advanced option): 'original'
     Keep bleed margin: yes
      

        
     D:20190514153249
      

        
     32
            
       D:20190513090239
       1190.5512
       a3
       Blank
       841.8898
          

     Tall
     1
     1
     0
     No
     1185
     319
     Fixed
     Up
     14.1732
     0.0000
            
                
         Both
         5
         AllDoc
         218
              

       CurrentAVDoc
          

     None
     28.3465
     Bottom
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0j
     Quite Imposing Plus 4
     1
      

        
     31
     218
     217
     218
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move down by 5.67 points
     Normalise (advanced option): 'original'
     Keep bleed margin: yes
      

        
     D:20190514153423
      

        
     32
            
       D:20190513090239
       1190.5512
       a3
       Blank
       841.8898
          

     Tall
     1
     1
     0
     No
     1185
     319
     Fixed
     Down
     5.6693
     0.0000
            
                
         Both
         5
         AllDoc
         218
              

       CurrentAVDoc
          

     None
     28.3465
     Bottom
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0j
     Quite Imposing Plus 4
     1
      

        
     15
     218
     217
     218
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move down by 2.83 points
     Normalise (advanced option): 'original'
     Keep bleed margin: yes
      

        
     D:20190514153455
      

        
     32
            
       D:20190513090239
       1190.5512
       a3
       Blank
       841.8898
          

     Tall
     1
     1
     0
     No
     1185
     319
    
     Fixed
     Down
     2.8346
     0.0000
            
                
         Both
         5
         AllDoc
         218
              

       CurrentAVDoc
          

     None
     28.3465
     Bottom
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0j
     Quite Imposing Plus 4
     1
      

        
     23
     218
     217
     218
      

   1
  

 HistoryList_V1
 qi2base





