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Abstract

This paper investigates how the production policy, as well as other factors, affect the
facility location-allocation decisions. We focus on a p-median location problem in
which one single perishable product is to be produced and shipped to a set of users.
The time-correlated demands of the clients are generated by autoregressive processes,
and they are forecasted from historical data. Empirically, we show that: (i) embed-
ding the production policy in the location-allocation decision problem may lead to a
facilities-clients assignment which does not necessarily correspond to the minimum
cost allocation, but produces better profits, (ii) taking into account the autocorrelation
of the demand can significantly improve the performance of the supply chain, and (iii)
the variability of the demand strongly affects the performance of the supply chain, so
a careful choice of production strategy is especially recommended in this case.
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1 Introduction

Demand uncertainty affects decisions in supply chain management at two levels: strate-
gic (location decisions) and tactical (production and inventory management), see for
example Snyder (2006) and Melo et al. (2009). Although tactical decisions depend
on the choice of the production policy, the research devoted to analyzing the impact
of such a choice on strategic decisions is lacking. The work presented in this paper
aims to alleviate the scarcity on this research topic by empirically analyzing whether
or not production policies should affect the design of the supply chain. Although
similar studies such as Giillii (1997) and Chen et al. (2000) have been carried out pre-
viously, they analyze the benefits of considering demand autocorrelation in a supply
chain which is already set. Throughout our manuscript, we will compare the conclu-
sions attained in our empirical work not only against these inventory studies, but also
against the numerical results of various joint location-inventory works (Snyder et al.
2007; Shen and Qi 2007; Coullard et al. 2002; Miranda and Garrido 2004; Zhang and
Unnikrishnan 2016).

Traditionally, demand uncertainty has been addressed in the location and inventory
literature by considering a scenario analysis or by assuming that either the demands
distribution functions (cdf) or their population means and variances are given. This
literature is vast and a thorough review is not possible in this paper, but the interested
reader is referred to Snyder (2006) in the location field, Levi et al. (2008), Shang
and Song (2003), Wang et al. (2012) and Shu et al. (2005) in the inventory area.
A special mention is deserved by the joint location-inventory models proposed in
Snyder et al. (2007), Shen and Qi (2007), Coullard et al. (2002), Miranda and Garrido
(2004) and Zhang and Unnikrishnan (2016), which allow for non-perishable products
and thus inventory stocking. Despite dealing with settings that may account for risk
pooling or multisourcing, these studies assume normally distributed demands. This
assumption agrees with the main stream of work for inventory problems (Liao et al.
2011; Shen and Qi 2007; Shen et al. 2003), although sometimes the demand may also be
modelled through a Poisson process (Ozsen et al. 2009; Wang et al. 2007). However, all
these approaches are contrary to the recommendations given by Bandi and Bertsimas
(2012), who show that assuming a known cdf of the demand may be prohibitive and
inaccurate in practice. Dong and Lee (2003) also warn that assuming independent
identically distributed demands may cause an underestimation of the system cost and
inventory levels. As a consequence, alternative robust methods considering ambiguous
distributions for the demand have proliferated; see, for instance, Gulpinar et al. (2013).

Modelling the demand through a cdf allows one to consider correlations amongst
clients (Shahabi et al. 2014; Atamturk et al. 2012). However it also implies that the
demand values along time are assumed independent, which may be unrealistic in
practice (Graves 1999; Kahn 1986). Hence, inventory and location models with time-
dependent demand have often been studied in the literature; see, for instance, Dong
and Lee (2003), Lu et al. (2006), Wang et al. (2012), See and Sim (2010), Aviv (2003),
Dogan and Goetschalckx (1999) and Snyder et al. (2007). Giillii (1997) studied the
effect of demand forecasting on allocation using a Martingale Model of Forecast
Evolution, whereas Chen et al. (2000) analyzed the effect of demand forecasting
technique on the bullwhip effect. In order to perform our empirical study we generate
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time-autocorrelated demands following autoregressive processes, a common choice
in the inventory field (see Aviv 2002; Reyman 1989; Johnson and Thompson 1975).
More specifically, as in Ganesh et al. (2014), Raghunathan (2003) and So and Zheng
(2003), we will generate our demand from an A R(1) process, although as in Carrizosa
et al. (2016) we will allow for heavy tailed shocks to ensure more realistic instances.

Despite this choice for the demand model allowing us to account for temporal auto-
correlation and heavy tailed demands, it also constricts our study to a more simple
setting than that of the joint location-inventory models of Snyder et al. (2007), Shen
and Qi (2007), Coullard et al. (2002), Miranda and Garrido (2004) and Zhang and
Unnikrishnan (2016). Additionally, since we restrict our test environment to a basic
discrete p-facility location model in which the open facilities are to produce one single
perishable product, our approach lacks the ability to deal with inventory stocking. We
are also constrained to opening p facilities, where p is a parameter known before-
hand. In contrast to previous works, we make no distributional assumptions and future
demand is assumed unknown, but its historical data is available and used to determine
the production levels at each plant. The problem we are addressing accomplishes three
tasks: select the plants to be opened, allocate clients to such facilities, and decide the
quantity of perishable product each plant must produce to serve the clients at every
single period. The later task is performed by the chosen production policy, which usu-
ally does not take part in the former steps. Our aim is to embed the production strategy
in the location-allocation decision problem and compare how different policies affect
such decisions. In order to do so, we design a data-driven procedure which estimates
the coefficients of the p-median problem using various production policies. In our
numerical study we focus on the three newsvendor strategies compared in Carrizosa
et al. (2016); namely, the classic newsvendor approach, an autoregressive production
procedure assuming normally distributed errors, and the so called ARU S. The latter
is a robust autoregressive newsvendor approach proposed in Carrizosa et al. (2016),
which is distribution-free and has shown to behave well under heavy tailed demands.

The paper is structured as follows. Next section develops a data-driven approach
for a location model, where the coefficients of the p-median problem are estimated
through the chosen production policy. This approach is used to analyze the effects
of such a choice on the location-allocation decisions. The design of the experiments
is addressed in Sect. 3. Specifically, the data sets used to illustrate the approach are
introduced in Sects. 3.1 and 3.2 describes the stochastic processes used to generate the
demand time series, and Sect. 3.3 reviews the production policies to be considered in
the numerical experiments. The remainder of the section specifies the choices on the
profitability of the products and the different allocation criteria. Section 4 presents the
numerical results under two perspectives. First, we analyze the effects of the different
production policies when considering the data-driven location-allocation solutions.
Second, we compare the performance of the data-driven allocation with the minimum
cost allocation. Finally, last section presents some final remarks and recommendations
for future work.
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2 A data-driven approach for embedding the production policy in the
location-allocation problem

In this section we describe a data-driven procedure that bonds the location-allocation
decisions with the chosen production policy. Due to the large number parameters
considered, a single-item perishable product is assumed in order to ease the conclu-
sions arisen on this paper. In effect, no warehouses or stock levels are considered.
Let I and J be the sets of potential locations for the facilities to be opened and the
clients, respectively. Let p denote the total number of facilities the company wishes
to open, where the problem to be solved encompasses locating p facilities amongst
the candidate locations to serve all customers, whose demand values {D; (t)}tT:l are
available up to time 7. For simplicity, such demand values are assumed to be inde-
pendent amongst clients. Along with decisions related to the location of facilities and
allocation of clients, the quantity of products Q;;(¢) to be produced at each location i
to supply client j at each time instant 7 is to be determined. As the considered product
is perishable, only one-period-ahead production levels need to be decided. The work-
ing mechanism of the considered supply chain is as follows. First, produce and ship
Q;;j(¢) from facility i to customer j at time instant 7. Then, let the customer j buy
only min{D; (t), Q;;(¢)}. For the sake of comprehension, we next present the notation
used throughout this paper.

p number of facilities to open

1 set of candidate locations for the facilities

Iy set of opened facilities

J set of clients

D; ={D; (t)}tT: 1 J€J time series of demands of clients up to time T

Qij(t)y iel, jeld, t>0 the quantity of product to produce at location i to
supply client j, at time ¢

CS(r) = (cisj)(t) shipping costs matrix: ciS. represents the cost of
sending one unit of product from facility i to client
J at time instant ¢

cP@) = (cip )(1) vector of production costs: cl.P represents the cost
of producing one unit of product at plant i at time
instant ¢

Ct) = (cij)@) total cost matrix: ¢;; () = cisj (1) + ciP(t) at time
instant ¢

v (1) sale unit price of the perishable product for client j
at time instant ¢

T+1,....,T+r planning horizon

If b;j(z, D(t)) denotes the benefit of serving client j from facility i at time 7, under
the assumption of a known demand D (¢), then the benefit of serving client j from
facility i at each period of the planning horizon T + 1, ..., T 4+ r, is given by

T+r
Bij(T+1,T+r,Dj) =~ 3 bij(t, D;(1) (M

t=T+1

@ Springer



Embedding the production policy in location-allocation... 361

If the demand is known, we set Q;;(t) = D;(t) and hence coefficients b;;(t, D;(t))
and the production levels Q;;(¢) are deterministic. If that were the case, the location-
allocation problem to be solved would be formulated as the p-facility problem of
maximizing total profit (1):

max ZZBij(T+ 1, T +r)x,-j

jeJ iel
1
in,:l VjielJ
i=1
Xij < Vi Viel,jel 2)

s.t !
Y vi=p
i—1

xi;€{0.1}) Viel jel
yiel(0,1) Viel

where the variables represent

- )1 iffacility i is opened
Y'= 10  otherwise

= 1 if client j is supplied by facility i
Y710 otherwise

However, since the values of {D;(t)};~7 are not available in practice, the benefit
coefficients b;; (¢, D;(t)) need to be estimated. To this aim, we propose a data-driven
distribution-free recursive approach, where no probabilistic model for the demand is
assumed. To this aim, we propose a novel method taking into account the production
policy to estimate the coefficients of the location-allocation problem. The procedure
starts by dividing each client’s historical demand, given by a time series, into two sets:
the training set (periods 1, ..., T1) and the testing set (periods 771 + 1, ..., T). After
choosing a specific production policy, the training set is used to estimate its parameters.
Then, the test set is employed to estimate the benefit coefficients b;; (t, D;(t)) (and
therefore, the total benefit as in Eq. 1). This procedure is explained in more detail in
Table 1.

Once the total benefit coefficients are estimated according to the procedure in
Table 1, the location-allocation problem to be solved is as given in (2), where the benefit
coefficients B;; (T +1, T +r) have been replaced by their estimates I§’,~ (T +1,T+r).
Note that (2) is a p-median problem in which the costs (or, equivalently, the benefits
B; ) do not only depend on the transportation and production costs (cfj and cf ), but
also depend on Q;;. Since the production levels are obtained through the production
policy, erroneous decisions made by this policy may strongly perturb the coefficients
B - In these cases, the location and allocation decisions obtained by (2) may signifi-
cantly differ from the solution of the standard p-median problem. This phenomenon
will be clearly illustrated in Sect. 4.

@ Springer



362 E. Carrizosa et al.

Table 1 Recursive approach for estimating the parameters of the p-median problem

1. Split the demand time series in training {D (t)}ITl

jelJ

 and test {D (t)}lT 7141 sets for all clients

2.Fortg =Ty +1,...,T andforall j € J repeat:
(a) Use the known values of the demand {D (1:)};0:711 to fit the parameters of the selected
production policy

(b) Use the production policy to calculate the quantity of product to send to each client at each
instant of time from every planti € 1, Q;; (fo)

(c) Using the real value for the demand, D (#y), calculate the benefit coefficients b;; (1) as the
obtained profit

bij(t9) = vj(t0) - min{D; (t0), Q;j(to)} — cij(to) - Qij(t0) (3)
3. Estimate the benefit coefficients per period in the planning horizon as
T
By(T+1L.T+r) =12 D" by )
t=T1+1

3 Description of the experiments

The aim of the empirical study we develop in this paper is two fold. First, we want to
test how the choice of production strategy affects the design and management of the
supply chain. The performance of the supply chain will not only depend on factors such
as the demand’s autocorrelation and variability, but also on the suitability of the chosen
production policy to deal with the behaviour of the demand. Second, we compare the
data-driven allocation against the classic minimum cost allocation because, as although
it has been reported to be very restrictive (Weaver and Church 1986), the latter still
constitutes the benchmark criterion. Despite the data-driven allocations providing
better in-sample profit, we aim to check whether higher out-of-sample profit could be
obtained if the clients were served by their closest open facility.

In order to accomplish our goals, we need to design an extensive empirical study. As
a consequence, a large number of parameters, features and choices will be involved.
We devote this section to describe in detail the design of the numerical experiments,
whose results are presented in Sect. 4. Specifically, the data sets, stochastic models for
the demand, production policies, product’s profitability and allocation criteria are dis-
cussed here. Table 5, placed in the appendices, summarizes the numerical settings. In
particular, the choices regarding the location problem (the number of facilities to open
and the datasets) have been roughly made following Daskin and Owen (1999). The
decisions more closely related to the production (generation of the demand, production
policies, product profitability) have been based on the work presented by Carrizosa
et al. (2016). We focus on time correlated demands because they are more realistic,
and as shown by Helper et al. (2010), Giillii (1997) and Chen et al. (2000), taking into
account the temporal autocorrelation can have a significant effect on the performance
of the supply chain. Since it is well known that the variability of the demand is one
of the key features that affect the performance of the supply chain (see, for instance,
Lambert and Cooper (2000), Cachon (1999) and Germain et al. (2008)), we generate
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these demands with different variabilities. In addition, as shown in Carrizosa et al.
(2016), the profitability of the products may significantly affect the behaviour of the
production policies, and thus the performance of the supply chain. Finally, we will
also consider two different allocations: the data-driven allocation attained to maximize
the in-sample profit (described in the previous section), and the classic minimum cost
allocation.

3.1 Data sets

The data sets used in the experiments developed here closely follow those in Daskin
and Owen (1999): the 55-node data set of Swain (1971) and the 88-node data set
of Daskin (1995). The 88-node data set contains the coordinates of the fifty largest
cities in the United States along with the state capitals, and its distance matrix was
calculated using great circle distances. The 55-node data set of Swain represents 55
communities in the Washington D.C. area. This dataset has been used in ambulance
problems (van den Berg 2016), and corresponds to a graph where the nodes are the
users and the distances are the the closest paths between nodes. Average demands
for the U.S. cities data set were given, and for the nodes of the Swain network were
randomly generated following a uniform distribution as in Blanquero et al. (2014).

For the two databases used in our numerical experiments, we assume that the sets
of clients and candidate locations are the same; that is to say, / = J. The number of
facilities to be opened was chosen according to Daskin and Owen (1999), where they
tested the two data sets for p = 3, ..., 15. For the sake of brevity, we only considered
the minimum, maximum and median of such set, therefore we tested the approach for
three different values of p, namely p = 3,9, 15.

3.2 Stochastic models for the demand

Since we aim to study how the autocorrelation and variability of the demand affects
the location-allocation decisions, in our numerical results we restrict ourselves to the
case where the demand follows an (uncertain) autoregressive process. Recall that the
demand has often been modeled as an autoregressive process (Aviv 2002; Reyman
1989; Johnson and Thompson 1975). However, any other stochastic process consid-
ering correlated demands may also be tested by the proposed data-driven approach.
The following constitutes a brief introduction to the autoregressive process, where a
more detailed description is given by Box et al. (2008).

The demand time series of client j, {D;()};>0, follows an autoregressive process
of order n > 1 (noted AR(n)) if it can be written as

n
Di(t)=al +Y 0/Djt —k) +a;(), t=n+1 5)

k=1
where o/, 9{, e, 6,{ are coefficients and {a; (¢)};~0 is the sequence of i.i.d model’s
T+r

error terms. In the real data sets presented in Sect. 3.1, the nodes” demands {D; (¢)},
were unavailable (only the average demands were known) and therefore we needed to
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simulate them artificially. In our experiments they were generated from autoregressive
processes as in (5) with n = 1, in such a way that the expected value of the series
matches the average known values. For simplicity, we choose o/ = « and 9,5 = O
for all j € J. The choice n = 1 follows Carrizosa et al. (2016), from which we
borrow the newsvendor policies under comparison in our numerical study. Within that
paper, only results for n = 1 were included, due to the performance of the production
policies being virtually unaffected by changing the value of n. In our experimental
study, two different distributions for the error terms are tested: the normal and the
lognormal distributions. First we considered standard normally distributed errors, as
we aimed to test the performance under the commonly considered A R(n) model. In
addition, we found it of interest to check the effects of the production strategies under
a high variability in the demand time series, as done in Huh et al. (2011) and Carrizosa
et al. (2016). To such aim, the lognormal distribution LN (0, 3) was selected. Another
aspect to be considered when simulating the data was the strength of the temporal
dependence. In our experiments, two values of §; = 6 were set. Note that forn = 1
the coefficient 6 represents the lag-1 autocorrelation coefficient, thus in order to test
the methods on highly and moderately correlated time series, 6; = 0.9 and 6; = 0.5
were fixed. Figure 5, located in the Appendix, shows simulated demands time series
generated under the two choices of error distributions and autocorrelation strengths.

In our experiments 25 instances were simulated for each data set, where series of
length T + r = 288 following an AR(1) process with i.i.d errors were generated for
each node. The training set, which is used to fit the parameters of the production policy
(see Table 1), is defined for time instants r = 1, ..., 240. The test set, used to estimate
the benefit coefficients of the location-allocation problem, considers the demand from
t =T+ 1 =241tot = T = 264. The validation set, used for calculating the
out-of-sample profit, is composed of the rest of time series values {D; (t)}lT:; 41- SO
the training set has a length equal to 240 and both the test and validation sets are of
length 24. To manage the supply chain, each production policy is ran in the validation
set, and the location ({y;};es) and allocation ({x;;}ies, jes) solutions were obtained
from the training and test sets. The total profit (1) is computed similarly as in Table 1
by using the validation set of each instance.

3.3 Single-period production policies

Traditionally, the production policy takes part once the set Iy of open facilities and
the clients-facilities allocation have already been chosen. At each time period ¢ the
production level of each plant i € I is determined in order to cover the demand of
customer j € J, D;(t). In practice, the future demand D (¢), with > T is unknown
and only the historical data for + = 1, ..., T is available. Although the purpose of
the production strategy is usually restricted to determine such production levels, in
our numerical experiments these strategies will also influence the location-allocation
decisions, so a careful choice is needed. As we want to test both classic newsvendor
approaches and strategies coping with time correlated demands, we consider the three
production policies tested in Carrizosa et al. (2016). Also, we include here a benchmark
approach in which the future demand is known.
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3.3.1 Benchmark

In the benchmark approach we assume a perfect knowledge of the demand at each
period. Hence, clients are supplied with their exact demand; i.e.:

Qij(t) = Dj(1).

As mentioned in Sect. 2, in this case the benefit coefficients (1) taking part in the
p-median problem (2) are deterministic.

3.3.2 Static

In the classic version of the newsvendor problem, one makes a one-step decision
on the quantity Q to be bought of one single product under the assumption that the
demand is a random variable with known cdf F'. If the decision maker buys each unit
at cost ¢ and sells it at price v then the expected profit is maximized by buying exactly
Q0 =F'1- ¢/v) units (Khouja 1999). In our context, this implies that Q;;(z),
which is the quantity of product to produce at plant i to deliver to client j at time
instant ¢, is given by the expression:

e ot [ Cij ()
Qijt)=F (1 vj(t)> (6)

However, in practice the distribution of the demand is unknown and therefore in this
approach an estimation of the distribution function must be employed. Usually, the
empirical distribution function F, which converges to the true cdf F for a large enough
sample size, is considered. Note that under this approach the temporal dependence of
the demand is ignored, thus this method will be called static hereafter.

3.3.3 The classic AR(n) approach

If the parameters in (5) are given (either known or estimated from sample data), then
(5) can be used to forecast the demand. In particular, if the errors are assumed to follow
anormal distribution, then the (1 — 7)% confidence prediction interval for a forecasted
value at time T + 1 is given by

Di(T +1) % z1-1/204 (7
where bj(T + 1) is the estimated forecast, and z;_¢ is the (1 — r/2)”’ quantile of
the standard normal distribution. Equivalently, under (5) D; (T + 1) follows a normal
distribution with mean ﬁj (T 4 1) and variance o,. Since o, is unknown in practice,
it is replaced by its sample estimate 6,,. From a similar argument as in (6), in the case
of the classic A R(n) approach, the optimal solution to the newsvendor problem (if the
expected profit is maximized) is
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0,0 = o] (1 = ﬂ) ®)

(Dj(T+1).64) v (1)

where @ ~! denotes the inverse cdf of the normal distribution. Since Q; ; () may be

negative, the quantity Q;;(¢) = max {0, Q; : (t)} will be considered instead.
If errors are not normally distributed, (7) may lead to inaccurate results (Carrizosa
et al. 2016). This motivates the use of the robust inventory policy presented next.

3.3.4 The robust ARUS (n) approach

The ARU S(n) (Carrizosa et al. 2016) is a robust autoregressive newsvendor approach
formulated in terms of a convex optimization problem. Robustness is addressed by
ARU S(n)intwo ways. First, Q;; (¢) is the solution of a maximin optimization problem.
Second, the solution obtained by the ARU S(n) is distribution-free, unlike the classic
AR (n) approach. By the use of uncertainty sets (Bandi and Bertsimas 2012) the method
provides a solution for the newsvendor problem without making any distributional
assumption.

More specifically, the value Q;;(T + 1) will correspond to the worst case for the
demand of client j attime T + 1, D;(T + 1). Therefore, Q;; (T + 1) is the minimizer
of the so-called ARU S(n) problem, defined as

- min D;(T+1 ©)]
al 0] ,...0].a;(1),...a; (T+1)
s.t
(R ~
> 4| =1, (10)
t=n+1
1 T
2 J
—_— () <TI75, 11
T —n aj(t) = (1D
t=n+1

n
Dit)=al +) 0/D;jt —k) +a;(t) t=n+1,....T+1, (12

k=1
la;(T +1)| < A/ (13)
Di(T+1)>0 (14)

The rationale behind the constraints in the ARU S(n) problem is the following.
Constraints (10) and (11) force both the mean and variance of the observed errors to
be bounded, so as to bound the randomness of the variables. In (12) the consecutive
values of the process are expressed in terms of the previous n values, according to the
definition of the AR(n) process in (5). Finally, (13) implies that the absolute value
of the random variable a;(T + 1) (which represents the prediction error) is upper
bounded by some constant A/.

By solving problem (9)-(14) a non-overly conservative yet robust solution for the
production decision is chosen. However, there is a need for tuning the parameters
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of problem (9)—(13) before solving it. As in Carrizosa et al. (2016), the choice of
parameters is given by:

A NNCHON

P . AJ — YA ) 15
(aj(t) < AY) (Uj " (15)

i D"ed (L4 v/100yT —p 16
1 T—p

ry ~ 1+ /100)y{ (17)

where P is the empirical probability function of the errors, O’({ is estimated from

the minimum variance of the errors imposing that the series follows an autoregressive
process, and yzl is obtained similarly. The full motivation for the choice of the unknown
parameters can be found in Carrizosa et al. (2016).

3.4 Product’s profitability

Note that the quantity of product Q;;(¢) to produce at plant i to supply client j
estimated via the production policies may depend on the total cost ¢;;(¢) and on the
sale price v; (7). Hence it is expected that the supply chain performance is affected by
the profitability of the products, as are the production policies themselves. Therefore,
two types of profitability settings were considered for the perishable product: low-
and high-profitability. For the sake of brevity we fix v;(¢) = v for all clients and time
instants 7, and ¢;; () = ¢;;. For low-profit products, the sale price was established as

P
v=125 max {c/, ¢ ), (18)

N
ij

distance matrix, and cl. denotes the normalized production costs. Note that, in this
case, the sale price is 25% higher than the largest cost. The high-profit products are
defined as in (18) but with a higher value:

where c¢?; are the normalized transport costs, which are derived by normalizing the

v =175 max {c cky. (19)

1 9
i j

Hence, the sale price for high-profit products is 75% larger than the greatest cost.

3.5 Allocation criteria

In our numerical experiments, the different production policies outlined in Sect. 3.3
serve not only to determine the production levels of the plants, but they are also used
to estimate the coefficients of the p-median problem (2). However, as noted in Shen
et al. (2003) and Coullard et al. (2002), allocation of clients to their closest facility
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may yield suboptimal solutions. Hence, although throughout our numerical results we
always use the location provided by Problem (2), we decided to compare the profit
obtained by each policy under two different allocation strategies:

— The data-driven maximum-profit allocation, i.e., the one given by the optimal
values of variables x;; when (2) is solved. We denote by P the earnings obtained
by this data-driven maximum-profit allocation at time instant ¢.

— The minimum-cost allocation, i.e., the one that allocates the clients to their min-
imum cost open facility (x;; = 1 if and only if / = argmin; . c;;). The profit
harvested by the minimum-cost allocation at time instant ¢ is denoted by r,"°.

Although the data-driven maximum-profit allocation is designed to obtain the best
in-sample profit, it may result in seemingly counterintuitive allocations. Hence, it is
reasonable to wonder whether the traditional minimum cost allocation might provide
better out-of-sample profit, and this analysis is given in Sect. 4.2. It will be shown
that the allocation decisions under the proposed data-driven approach do not nec-
essarily coincide with those of the minimum cost strategy, but usually yield better
out-of-sample profit. Also, the number of clients optimally allocated with minimal
cost depends on the production policy used to design the supply chain.

4 Numerical results

In this section, we empirically test the impact of the production policy, as well as other
factors, over the location-allocation decisions. In Sect. 4.1 we analyze the influence
of the production strategy, variability and autocorrelation in the demand, type of prof-
itability and geographical position of the nodes under the data-driven maximum profit
criterion. Section 4.2 will examine in detail the effect of considering instead the mini-
mum cost allocation. All the optimization problems were solved using Xpress 7. 2.

4.1 Results under the maximum profit criterion

Figures 1 and 2 show the box plots of the 25 total out-of-sample profits for all consid-
ered location-production approaches under the maximum profit criterion. The demand
in all cases is generated from an AR(1) process with normal N (0, 1) and lognormal
LN (0, 3) errors, respectively. Note that this implies that a low (respectively, high)
dispersion in the realizations of the demand is expected in Fig. 1 (respectively, Fig. 2).
Our findings showed few differences between the behavior of the location approach
under different number of plants to be opened. Therefore, for brevity, only the case
with p = 3 is illustrated. The location-production strategies are named according to
the associated production policy and the demand’s autocorrelation, i.e., for instance
STATIC 0.9 denotes the classic newsvendor policy (6) for demand with a 0.9 lag-1
autocorrelation.

The results for N (0, 1) shocks are presented in Fig. 1. In this case, the profit samples
concentrate in an interval of small length, especially for low autocorrelated demands.
For the Swain database (bottom part of the figure) total profits are rather insensitive to
the production policy for a given value of 6. Obviously, the largest profits are obtained
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Fig. 1 Out-of-sample profits for autoregressive demands with N (0, 1) shocks

under the benchmark approach as perfect knowledge of the demand is assumed. Con-
cerning the static approach, a better performance is achieved for 6 = 0.5. This is
unsurprising since this strategy disregards time autocorrelation. Slightly better values,
close to those of the benchmark approach, are obtained when the classic AR model
is considered. This is also a reasonable result since the AR process assumes normal
errors. The conclusions are similar for the 88-node data set (top part of Fig. 1), though
much worse results are obtained for ARU S. In conclusion, when the demand variabil-
ity is low the results are highly dependent on both the spatial distribution of the nodes
(since the obtained results are different for the two data sets) and the autocorrelation in
the demand. However, the effect of the production strategy and the type of profitability
seems to be weaker.

Now we analyze the boxplots for Lognormal shocks (Fig. 2). As expected, the
heavy-tailed behavior in the demand implies a higher variability in the profits. In
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Fig.2 Out-of-sample profits for autoregressive demands with LN (0, 3) shocks

particular, the results for the 88-node data set are more dispersed than those for the
Swain network, especially for high-profit products. This variability increases with
the autocorrelation parameter 6. Consider now the effect of the different production
policies on the profits. Once again, better profits are obtained under the benchmark
approach, this outperformance being more evident for low correlated demands. The
performance of the static strategy is similar in all cases. Although the robust approach
never obtains losses, the classic AR produces negative total profits when 6 = 0.5 for
high-profit products, and also for low-profit products on the 88-node database. The
effect of the profitability seems to be negligible for the 88-node data sets. However,
for the Swain data the type of profitability affects the results under the AR strategy.
Therefore, when extreme values for the demand are considered the performance of
the supply chain is not only affected by the spatial distribution of the nodes and the
autocorrelation of the demand, but also by the production policy.
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Table2 Average out-of-sample improvement by using the minimum cost allocation for the Swain database

Profitability Production 0 =09 0=0.5
p=3 p=9 p=15 p=3 p=9 p=15
High STATIC 2.62 1.91 1.24 6.18 8.06 8.94
AR —1853 —18.62 —17.61 —8002.84 —1059.04 —938.30
ARUS 0.98 1.30 1.27 2.15 2.30 2.51
Low STATIC 3.11 4.11 4.12 6.79 8.42 8.88
AR —-1155 —17.61 —17.15 —374.73 —406.14  —380.50
ARUS 1.62 0.94 0.75 2.84 2.83 3.11

These results are consistent not only with Carrizosa et al. (2016), who showed
that the classic newsvendor production policy is not appropriate under highly auto-
correlated demands, but also with Aviv (2003), who highlighted the benefits of
using previous demand signals to estimate inventory levels under time autocorrelated
demands. Unlike Raghunathan (2003), who concluded that increasing the autocorrela-
tion would diminish variance in the demand forecasts and production levels, it seems
that the variability of the data-driven profits increases with correlation. A different
conclusion was reported by Lu et al. (2006), who observed that lowering the corre-
lation enhanced the performance of the inventory strategy. We can agree with such
affirmation if the performance is measured in terms of variance, since the median profit
seems to be unchanged, but the higher the autocorrelation, the higher the dispersion
of the data-driven profits.

4.2 The effect of the allocation

As mentioned in Sect. 3.5, we are interested on comparing the effect of the produc-
tion strategy on the allocation between facilities and clients. The results shown in
the previous section were obtained under the data-driven allocation, that yields the
maximum in-sample profit according to the production policy. In this section, we also
assign clients to the minimum cost open facility. Note that the minimum cost allo-
cation may produce better out-of-sample profits than the so-called maximum profit
allocation, because the later is optimal in-sample. Hence, for comparison purposes we
now manage the supply chain under both allocations.

Tables 2 and 3 report the average percentage of improvement by using the minimum
cost allocation instead of the maximum profit allocation for the Swain and 88-node
datasets, respectively. Recall that, in Sect. 3.5 we explained the difference between
both criteria and denoted the minimun cost and the maximum profit allocations at time
instant ¢ by /"¢ and rP*, respectively. Hence, the average percentage of improvement
is given by

288 me ps ps

__ —r)/r

Ar = Z % 100 (20)
=265
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Table 3 Average out-of-sample improvement by using the minimum cost allocation for the 88-node
database

Profitability Production 6 =0.9 0 =05
p=3 p=9 p=15 p=3 p=9 p=15
High STATIC —1345 —17.81 —18.31 1.29 1.81 242
AR —10.40 —8.94 —8.17 —123.60 —133.66 —178.07
ARUS 0.10 0.08 0.12 0.08 0.07 0.08
Low STATIC —-10.66 —11.89 —13.93 1.31 1.55 1.95
AR —11.71  —11.14 —10.63 —201.53 —146.40 —131.90
ARUS 0.11 0.10 0.14 0.09 0.08 0.10

In order to test the effect of the number of plants to be opened, three values of p,
p = 3,9, 15, were considered in the experiment. Since the the results for normally
distributed errors were not strongly dependent on the production policy (see Sect. 4.1),
we only report here the results for lognormally distributed shocks.

From Tables 2 and 3 we observe that the worst results are obtained under the classic
autoregressive production policy. For the AR, the minimum cost criterion always
worsens the total profit of the supply chain, especially for the Swain database. Note
that in this case, when p = 3, & = 0.5 and for high profitability, the obtained loss
is greater than 8000%. This disagrees with Zhang and Unnikrishnan (2016) results,
which observed that a larger number of facilities would increase the system costs. Note
also that the average percentage of improvement gets worse as the autocorrelation of
the demand decreases. The ARU S is the least affected production strategy since its
average percentage of improvement varies between 0.07 and 3.11%. On the other
hand the results under the static newsvendor policy are more variable: for the Swain
network it is the policy that best responds to the change of allocation, but for the 88-
node database and a high autocorrelation this change results in a worsening between
10.66 and 18.31%. These results contradict Coullard et al. (2002), whose numerical
experiments showed that reallocating clients to their least cost facility would not much
impact the profits.

In conclusion, although a minimum cost allocation may be thought a sensible cri-
terion, the previous findings show that it can lead to worse out-of-sample profits than
those obtained under the maximum profit strategy. This conclusion agrees with Shen
et al. (2003) and Coullard et al. (2002), who claim suboptimality of closest alloca-
tion when inventory costs take part. Moreover, substantial changes in the results are
observed for the different data sets, production policies and autocorrelation values.
However, the behavior under different values of p does not seem to be affected. Once
again, this conclusion differs from the affirmation in Zhang and Unnikrishnan (2016),
who found out that the higher the number of the facilities, the larger the system costs.

In order to better understand the reason why the minimum cost allocation criterion
impacts differently the performance of supply chains designed by different production
policies, we report in Table 4 the average percentage of clients (for p = 3,9, 15) that
were assigned with minimum cost when the maximum profit criterion was assumed.
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Table 4 Average percentage of clients allocated to the minimum cost open facility

Profitability Production Swain 88-node
0 =09 6 =05 6 =09 0 =05
High STATIC 66.57 81.96 71.95 81.52
AR 64.80 26.74 89.59 67.80
ARUS 93.19 88.82 96.83 96.82
Low STATIC 68.78 84.51 71.32 83.12
AR 56.19 18.62 86.89 59.92
ARUS 92.02 87.10 96.74 96.50

It is expected that the higher this percentage is, the less impact the minimum cost
allocation criterion has.

Frequently, for the 88-node database more clients are allocated to the minimum
cost facility than for the Swain network. Also the robust approach ARU S is the one
which assigns more clients with minimum cost. It is interesting to note that, unlike the
autoregressive approaches AR and ARU S, the performance of the static forecasting
technique improves when the autocorrelation decreases. For the Swain network, AR
never assigns more than 65% of clients to their minimum cost facility. Moreover, for
low-correlated demand this percentage strongly decreases: for low-profit products only
18.62% of clients are assigned with minimal cost. This case corresponds to the worst
average percentage of improvement derived from applying minimum cost allocation
instead of the original assignment of clients in Table 2.

These results may be a consequence of the behavior observed in Carrizosa et al.
(2016): for demands with high variability, the AR approach performs better for
low-profit products than for high-profit products. Hence, the AR production strat-
egy diminishes the profitability by opening facilities with high production costs and
supplying clients with high serving costs. This will usually lead to a better joint per-
formance of the location-production solution.

As an illustration of this phenomenon, we depict in Figs. 3 and 4 the locations of
the opened plants for the case p = 3 and the assignment of clients in the 88-node data
set. Two instances have been randomly selected (top and bottom panels) and we depict
both allocation criteria (left and right panels). In all cases the demand is low-correlated
and heavy-tailed, and final total profit is displayed for each case. Figures 3 and 4 show
the results for high and low profit product, respectively.

The three open facilities are represented within the figures by either a large solid
green triangle, an empty red circle or a crossed blue square. Their assigned clients
have been represented by smaller but analogous symbols with the same color. It may
be the case that an open facility is not served by itself but by another open plant. In
such a case, only the color (not the symbol) changes to denote which plant will supply
1t.

Figures 3 and 4 show a number of interesting issues. In particular:

1. First, the minimum cost allocation is usually suboptimal (agreeing, for instance,
with Shen et al. (2003) and Coullard et al. (2002)). Second, in some cases the
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Fig.3 Location-allocation solutions in two instances of the 88-node dataset for AR production policy with
high-profit products and autocorrelation 6 = 0.5

clients are allocated to their furthest open facility, and geographically close clients
may be optimally allocated to facilities far from each other. Moreover, we have
observed that the facilities opened may have high production costs.

2. In some cases the plants are not served by themselves (see the plant denoted by a
circle in the left panel of both figures). This is due to extremely high production
costs: it is more profitable to be served by a plant with higher transportation costs
but lower overall expenses. This behaviour was already observed in Coullard et al.
(2002).

3. Since the location of the plants is decided by optimizing the in-sample empirical
profit, some of the p open plants may be useless under the minimum cost allocation.
Therefore, some open plants may not serve any client (see the plant denoted by a
circle in the right panels of both figures).

Summarizing, we can conclude that embedding the production policy into the
location-allocation problem may significantly improve the out-of-sample profit, lead-
ing to different location-allocation decisions that may not follow a minimum cost
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Fig.4 Location-allocation solutions in two instances of the 88-node dataset for AR production policy with
low-profit products and autocorrelation 8 = 0.5

allocation strategy. In particular, the worse the production policy performs under
highly variable demand, the lower the percentage of clients assigned with minimal
cost. In this case, also plants with higher production and transportation costs might be
opened. As a consequence, although seemingly senseless, the data-driven allocations
may provide a better out-of-sample performance of the supply chain.

5 Conclusions, recommendations and extensions

In this paper we have empirically analyzed the impact of numerous factors over the
location-allocation decisions, with special emphasis on the effects of the produc-
tion policy. From the numerical study carried out on Sect. 4, we can conclude that
embedding the production policy into the location-allocation problem may signifi-
cantly improve the out-of-sample profit of the supply chain. These location-allocation
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decisions may not follow a minimum cost strategy, specially for those production
policies that are not able to cope with highly variable demand.

The dispersion of the demand strongly affects the performance of the joint location-
production model. As a consequence, a careful choice of the production policy is
specially needed in the presence of high variances. If the chosen strategy is not able
to deal with heavy-tailed demands, the supply chain may attain losses. The effect
caused by the production policy chosen is not as pronounced if the demand has lower
variance. In this case, the performance of the supply chain relies more on both the
spatial distribution of the nodes and the temporal autocorrelation of the demand. Hence,
also taking into account the autocorrelation of the demand when managing the supply
chain can significantly improve the final profit.

Gathering the conclusions from the empirical study carried out in this paper, we
venture to give some tips on how to improve the design and performance of a supply
chain:

1. We recommend to embed the production policy into the location-allocation prob-
lem. To do so, it is necessary to use the historical data to choose the production
policy before designing the supply chain. A careful choice must be made, taking
into account the characteristics of the demand.

2. The most relevant feature is the variability of the demand. If the demand doesn’t
show high variations, it might be advisable the use of the classic autoregressive
newsvendor procedure, which assumes normality. For heavy tailed demands, we
recommend a robust production policy that is able to deal with no distributional
assumptions and strong variability. In our numerical experiments, the ARU S
approach (Carrizosa et al. 2016) performs well.

3. If the demand shows negligible autocorrelation, the classic newsvendor policy
might be appropriate to design the supply chain. Nevertheless, the higher the
autocorrelation of the demand, the worse the supply chain will perform.

4. We do not advise the use of minimum cost allocation; even though the data-driven
clients-facilities allocations might seem unreasonable, they will probably lead to
a better out-of-sample performance of the supply chain.

These recommendations arise naturally from the conclusions of our empirical study,
where it is important to take into account that our numerical experiments are con-
strained to our test environment. First, we have considered only one single facility
model (p facilities, with p fixed) and second, we have made strong assumptions over
demand distribution (demands of different clients are considered as independent, and
thus the spatial correlation is ignored). Furthermore, the simplest production model has
been used in order to not add more degrees of freedom to the problem. Extensions to
more realistic models, including multi-item inventory or non-perishable storable prod-
ucts deserve further study. Also, dynamic allocation variables might be considered in
order to adjust clients-facilities assignments according to changes of the demand over
time.
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Table 5 Summary of the numerical setting

Name Description Section
Number of facilities to open
Following Daskin and Owen (1999)
p=3 Minimum numer of facilities tested 3.1
in Daskin and Owen (1999)
p=9 Median numer of facilities tested in 3.1
Daskin and Owen (1999)
p=15 Maximum numer of facilities tested 3.1
in Daskin and Owen (1999)
Data sets
Tested in Daskin and Owen (1999)
Swain 55-node data set of Swain (1971) 3.1
88-node 88-node data set of Daskin (1995) 3.1
Generation of the demand
Following Carrizosa et al. (2016)
Model AR(1) Autoregressive process or order one (Eq. 5) 32
Temporal autocorrelation Moderate Lag-1 autocorrelation of 0.5 32
High Lag-1 autocorrelation of 0.9 32
Variability Low Normal errors (N (0, 1)) 32
High Lognormal errors (LN (0, 3)) 3.2
Production policies 33
Tested in Carrizosa et al. (2016)
Benchmark Future demand is known (i.e., 3.3.1
Qij(t) =D;(@)
Static Classic newsvendor policy (Eq. (7)) 332
AR Classic newsvendor policy assuming 3.33
normally distributed errors (Eq. 8)
ARUS Robust newsvendor problem 334
assuming uncertain AR demand
(Pb. (9)-(14))
Products’ profitability
Similar to Carrizosa et al. (2016)
Low Sale price is 25% larger than the 34
greatest cost (Eq. 18)
High Sale price is 75% larger than the 3.4
greatest cost (Eq. 19)
Allocation criteria
Data-driven maximum profit Maximum in-sample profit with 3.5
chosen production policy (Pb. (2)
and Tablel)
Minimum cost Clients allocated to the minimum 35

cost open facility
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