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Abstract

An important problem in project management is determining ways to distribute

amongst activities the costs that are incurred when a project is delayed because

some activities end later than expected. In this study, we address this problem in

stochastic projects, where the durations of activities are unknown but their cor-

responding probability distributions are known. We propose and characterise an

allocation rule based on the Shapley value, illustrate its behaviour by using exam-

ples, and analyse features of its calculation for large problems.
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1 Introduction

Project management is a field within operations research that provides managers

with techniques to select, plan, execute, and monitor projects. An important issue

in project management is time management, which generally call for careful plan-

ning of project activities to meet various project delivery dates, especially the final

delivery date. Normally, a delay in the final delivery date incurs a cost that is often

specified by contract. Sometimes, projects are not developed by one agent but a

group of agents. When there is a delay in one of such joint projects, the manner of

allocating the delay cost amongst the several participating agents may not be clear.

This study deals with the problem of sharing delay costs in a joint project by using

cooperative game theory.

In the last few years, several papers have been written proposing and study-

ing allocation rules for delay costs. Bergantiños and Sánchez (2002) proposed a

1Corresponding author. E-mail: juan.carlos.goncalves@udc.es.
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rule based on the serial cost-sharing problem. Brânzei et al. (2002) provided two

rules using, respectively, a game theoretical and bankruptcy-based approach. In

Castro et al. (2007), the core of a class of transferable utility cooperative game (in

short, a TU-game) arising from a delay cost-sharing problem was studied. Estévez-

Fernández et al. (2007) and Estévez-Fernández (2012) dealt with some classes of

TU-games associated with projects whose activities might have been delayed or

advanced by generating delay costs or acceleration benefits of the corresponding

projects. In Bergantiños et al. (2018), a consistent rule based on the Shapley value

was introduced and analysed. All these papers tackle deterministic scheduling prob-
lems with delays. One such problem is that of a deterministic delayed project. By

deterministic project, we mean a set of activities to be performed with respect to

an order of precedence and a description of their estimated durations; by delayed
deterministic project, we mean a project that has been performed, description of the

observed durations of the activities according to which the project has lasted longer

than expected, and cost function that indicates the delay cost associated with the

durations of the activities.

A natural extension of deterministic problems with delays can be found in

stochastic scheduling problems with delays, which we introduce and analyse in this

study. To the best of our knowledge, these problems have not been treated in lit-

erature, although Castro et al. (2014) considered the problem of allocating slacks

in a stochastic PERT network,1 which is a related but different problem. Herroelen

and Leus (2005) surveyed literature on project management under uncertainty. In

a stochastic scheduling problem with delays, the manager has a description of the

probability distributions of the random variables modelling the durations of the ac-

tivities instead of simply their estimated durations. In most cases, managers have

information about random variables—for instance, their empirical distributions—

based on the durations of similar activities in past projects of the same type.

The remainder of this paper is organised as follows: In Section 2, we describe

the problem and indicate its characteristics in a deterministic setting. In Section 3,

we propose a rule based on the Shapley value in this context, study its properties,

and provide an axiomatic characterisation based on a balancedness property. We

also illustrate the performance of our rule by using two examples. Finally, Section

4 addresses some computational issues related to our rule.

1PERT is the acronym of Program Evaluation and Review Technique, a tool used in project manage-
ment, first developed by the United States Navy in the 1950s.
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2 The problem

In this section, we describe the problem with which we deal. We first formally

introduce a deterministic scheduling problem with delays following Bergantiños

et al. (2018):

Definition 2.1. A deterministic scheduling problem with delays P is a tuple (N,≺, x0, x, C)
where:

• N is the finite non-empty set of activities.

• ≺ is a binary relation over N satisfying asymmetry and transitivity. For every i, j ∈
N, we interpret i ≺ j as “activity j cannot start until activity i has finished".

• x0 ∈ RN is the vector of planned durations. For every i ∈ N, x0
i is a non-negative

real number indicating the planned duration of activity i.

• x ∈ RN is the vector of actual durations. For every i ∈ N, xi ≥ x0
i indicates the

duration of activity i.

• C : RN → R is the delay cost function. We assume that C is non-decreasing (i.e.,
yi ≤ zi ∀i ∈ N ⇒ C(y) ≤ C(z)), and that C(x0) = 0.

We denote by PN the set of deterministic scheduling problems with delays with player set
N, and by P , the set of deterministic scheduling problems with delays.

Note that the first three items of a deterministic scheduling problem with delays

characterise a project. Operational researchers have developed several methodolo-

gies for project management. In particular, the minimum duration of a project

(N,≺, x0), provided that all restrictions imposed by ≺ are satisfied, can be ob-

tained as the solution of a linear programming problem, and thus, can be easily

computed. We denote the minimum duration of (N,≺, x0) by d(N,≺, x0). Alter-

natively, d(N,≺, x0) can be calculated using a project planning methodology like

PERT (see, for instance, Hillier and Lieberman (2001) for details on project plan-

ning). The delay cost function C in Definition 2.1 is rendered in a general way but

typically depends on the minimum duration of the project, i.e., C(y) = c(d(N,≺
, y)) for a non-decreasing function c : R → R with c(d(N,≺, x0)) = 0.

In a deterministic scheduling problem with delays P, the main question to be

answered is how to allocate C(x) amongst the activities in a fair way. This issue has

been taken up, for instance, in Bergantiños et al. (2018); they introduce the Shapley

rule in this context.

Definition 2.2. A rule for deterministic scheduling problems with delays is a map φ on P
that assigns to each P = (N,≺, x0, x, C) ∈ PN a vector φ(P) ∈ RN satisfying:

1. Efficiency (EFF). ∑i∈N φi(P) = C(x).
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2. Null Delay (ND). φi(P) = 0 when xi = x0
i .

Definition 2.3. The Shapley rule for deterministic scheduling problems with delays Sh is
defined by Sh(P) = Φ(vP) where for all P ∈ PN

• vP is the TU-game with set of players N given by vP(S) = C(xS, x0
N\S) for all

S ⊆ N (where xS, x0
N\S denotes the vector in RN whose i-th component is xi if i ∈ S

or x0
i if i ∈ N \ S), and

• Φ(vP) denotes the proposal of the Shapley value for vP.

For those unfamiliar with cooperative game theory, a TU-game is a pair (N, v)
where N is a non-empty finite set, and v is a map from 2N to R with v(∅) = 0. We

say that N is the player set of the game and v is the characteristic function of the

game, and we usually identify (N, v) with its characteristic function v. We denote

by GN the set of all TU-games with player set N, and by G the set of all TU-games.

The Shapley value is a map Φ that associates with every TU-game (N, v) a vector

Φ(v) ∈ RN satisfying ∑i∈N Φi(v) = v(N) and providing a fair allocation of v(N)

to the players in N. The explicit formula of the Shapley value for every TU-game

(N, v) and every i ∈ N is given by:

Φi(v) = ∑
S⊆N\{i}

(|N| − |S| − 1)! |S|!
|N|! (v(S ∪ {i})− v(S)).

Since its introduction by Shapley (1953), the Shapley value has proved to be one of

the most important rules in cooperative game theory and has applications in many

practical problems (see, for instance, Flores et al. (2007)).

Bergantiños et al. (2018) showed that the Shapley value has good properties

in this context and provided an axiomatic characterisation of their Shapley rule by

using a consistency property. In this paper, we introduce a generalization of the

model and the Shapley rule described above by assuming that the durations of the

activities are stochastic. Let us first introduce and motivate interest in our model.

Definition 2.4. A stochastic scheduling problem with delays SP is a tuple (N,≺, X0, x, C)
where:

• N is the finite non-empty set of activities.

• ≺ is a binary relation over N satisfying asymmetry and transitivity.

• X0 ∈ RN is a vector of independent random variables. For every i ∈ N, X0
i is a

non-negative random variable describing the duration of activity i.

• x ∈ RN is the vector of actual non-negative durations.

• C : RN → R is the delay cost function. We assume that C is non-negative and
non-decreasing.
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We denote by SPN the set of stochastic scheduling problems with delays with player set
N, and by SP the set of all stochastic scheduling problems with delays.

Note that in a stochastic scheduling problem with delays, the durations are

non-negative random variables instead of non-negative numbers. In general, the

duration of an activity can now take any non-negative real value, and conditions

generalising xi ≥ x0
i or C(x0) = 0 as in Definition 2.1 cannot be stated. In the

stochastic setting, a delay in an activity is unclear. However, if the actual duration

of an activity is longer than the upper bound of its distribution support, it has thus

been delayed. Moreover, if its duration is in the 99th percentile of the distribution

of its duration, one may think that it has been delayed somewhat. However, what

should we think when its actual duration is in the 56th percentile? In the determin-

istic setting, we can clearly observe when an activity has been delayed. Another

novelty in the stochastic setting is that an activity may somehow be delayed, but

it may also somehow be ahead of schedule (for instance, when its duration is in

the first percentile). In the deterministic setting, by contrast, the case xi < x0
i is

generally discarded. In any case, although we propose our model in general, our

objective is to distribute delay costs when they occur (because P(xi ≥ X0
i ) is large,

at least for some i ∈ N), and in situations in which there should not be delays a

priori, in the sense that P(C(X0) = 0) is large.

We give next the definition of a rule in this setting. As the meaning of a delay

is not clear, this definition does not contain a kind of null delay property, as in

Definition 2.2.

Definition 2.5. A rule for stochastic scheduling problems with delays is a map ψ on SP
that assigns to each SP = (N,≺, X0, x, C) ∈ SPN a vector ψ(SP) ∈ RN satisfying

∑i∈N ψi(SP) = C(x).

A first approach to deal with a stochastic scheduling problem with delays is

to build from it an associated deterministic problem. More precisely, for a given

SP = (N,≺, X0, x, C) ∈ SPN , it is natural to associate with it the problem SP =

(N,≺, E(X0), x, C), where E(X0) = (E(X0
i ))i∈N , E(X0

i ) denotes the mathematical

expectation of random variable X0
i . This approach encounters a technical obstacle:

SP is not always a deterministic scheduling problem with delays in the sense of

Definition 2.1 because E(X0
i ) can be greater than xi for some i, and C(E(X0)) may

be different from zero. This obstacle can be overcome with small adjustments in

the definition of an associated deterministic problem. Besides, in many particular

examples, we do not encounter this obstacle. In any case, this approach is not the

most appropriate because it does not use all the relevant information given in the

original problem. Let us illustrate this shortcoming in the following example:

5



Example 2.1. Consider the stochastic scheduling problem with delays SP = (N,≺, X0, x, C)
given by:

N 1 2

≺ - -

X0 U(0, 10) U(2, 8)

x 7 7

and, for every y ∈ RN ,

C(y) =

{
0 if d(N,≺, y) ≤ 6,
d(N,≺, y)− 6 otherwise.

Note that for all i ∈ N the i-th column displays:

• Activities that precede activity i. In this example, ≺= ∅, i.e., the two activities can
be carried out simultaneously. In general, the row corresponding to ≺ only shows
the immediate precedences, i.e., some elements of ≺, but the entire ≺ can be easily
obtained as the smallest transitive binary relation over N that contains the given
elements of ≺. An illustration of this can be found in Example 3.1.

• The distribution of X0
i . In this case, X0

1 and X0
2 are random variables with a uniform

distribution of U(0, 10) and U(2, 8), respectively.

• xi, the duration of i; in this case, x = (7, 7).

Note that in this example, E(X0
1) = E(X0

2) = 5, and activities 1 and 2 are indistin-
guishable in SP. Hence, the anonymity property satisfied by the Shapley rule for de-
terministic scheduling problems with delays (see Bergantiños et al. (2018)) implies that
Sh(SP) = ( 1

2 , 1
2 ). However, activities 1 and 2 are distinguishable in SP because the ex-

pected duration of the project conditioned to x1 = 7 is smaller than the expected duration
of the project conditioned to x2 = 7. It seems that a fair rule should take this into account
and allocate to activity 2 a larger part of the delay cost.

In the next section, we provide a rule for stochastic scheduling problems with

delays that overcomes the technical obstacle described above and, more impor-

tantly, the drawback described in Example 2.1.

3 Shapley rule for stochastic scheduling prob-

lems with delays

In this section, we define and study the Shapley rule for stochastic scheduling prob-

lems with delays.
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Definition 3.1. The Shapley rule for stochastic scheduling problems with delays SSh is
defined by SSh(SP) = Φ(vSP) where for all SP ∈ SPN

• vSP is the TU-game with set of players N given by vSP(S) = E(C(xS, X0
N\S)) for

all non-empty S ⊆ N,2 and

• Φ(vSP) denotes the proposal of the Shapley value for vSP.

This rule inherits many properties of the Shapley value. For instance, it is easy

to check that it satisfies the correspondingly modified versions of the properties

proved in Bergantiños et al. (2018) for the Shapley rule for deterministic scheduling

problems with delays. In this study, we focus on a different property of the Shapley

value and how to adapt it to our context: the balancedness property.

A rule for stochastic scheduling problems with delays satisfies the balancedness

property if it treats all pairs of activities in a balanced way, which more precisely

means that for every pair of activities i and j, the effect of the elimination of i on the

allocation to j (according to the rule) is equal to the effect of the elimination of j on

the allocation to i. To write this property formally, consider a stochastic scheduling

problem with delays SP = (N,≺, X0, x, C) ∈ SPN , with |N| ≥ 2, and i ∈ N. Now,

we define the resulting problem if activity i is eliminated SP−i ∈ SPN\i by

SP−i = (N \ i,≺−i, X0
−i, x−i, C−i)

where:

• ≺−i is the restriction of ≺ to N \ i,

• X0
−i is the vector equal to X0 after deleting its i-th component,

• x−i is the vector equal to x after deleting its i-th component, and

• C−i : RN\i → R is given by C−i(y) = E(C(y, X0
i )), for all y ∈ RN\i.

We now formally write the balancedness property.

Balancedness. A rule for stochastic scheduling problems with delays ψ satisfies

the balancedness property when

ψi(SP)− ψi(SP−j) = ψj(SP)− ψj(SP−i)

for all SP ∈ SPN , all finite N, and all i, j ∈ N with i ̸= j.

The following theorem shows that the balancedness property characterises the

Shapley rule.

Theorem 3.1. The Shapley rule is the unique rule for stochastic scheduling problems with
delays that satisfies the balancedness property.

2As in all TU-games, we define vSP(∅) = 0.
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Proof. Let us first check that the Shapley rule satisfies the balancedness property.

Take SP = (N,≺, X0, x, C) ∈ SPN and i, j ∈ N with i ̸= j. Then,

SShi(SP)− SShi(SP−j) = Φi(vSP)− Φi(vSP−j), (1)

SShj(SP)− SShj(SP−i) = Φj(vSP)− Φj(vSP−i). (2)

Now, for every k ∈ N, vSP−k is a TU-game with set of players N \ k. For every

non-empty S ⊆ N \ k, 3

vSP−k(S) = EN\(S∪k)(C−k(xS, X0
N\(S∪k)))

= EN\(S∪k)(Ek(C(xS, X0
N\(S∪k), X0

k )))

Now, the independence of the components of X0 implies that

vSP−k(S) = EN\S(C(xS, X0
N\S)) = vSP(S).

Note that for every S ⊆ N \ k, vSP(S) = vSP
−k(S), where vSP

−k ∈ GN\{k} denotes the

restriction of the TU-game vSP ∈ GN to N \ {k}. Hence,

vSP−k = vSP
−k for all k ∈ N. (3)

Considering (3) and that Myerson (1980) proved that the Shapley value of a TU-

game satisfies a balancedness property, the equations in (1) and (2) are equal. This

implies that the Shapley rule satisfies the balancedness property.

Suppose now that there exists another rule R ̸= SSh for stochastic scheduling

problems with delays that satisfies the balancedness property. As R ̸= SSh, there

must exist SP = (N,≺, X0, x, C) ∈ SP with R(SP) ̸= SSh(SP). Assume that SP is

minimal, in the sense that: (a) |N| = 1, or (b) |N| ≥ 2 and R(SP−i) = SSh(SP−i)

for every i ∈ N.4 Note that |N| ̸= 1 because otherwise, R(SP) = C(x) = SSh(SP);
hence, |N| ≥ 2. Take i, j ∈ N with i ̸= j. As R and SSh satisfy the balancedness

property, then

Ri(SP)− Rj(SP) = Ri(SP−j)− Rj(SP−i),

SShi(SP)− SShj(SP) = SShi(SP−j)− SShj(SP−i).

Now, considering the minimality of SP,

Ri(SP)− Rj(SP) = SShi(SP)− SShj(SP)

3To facilitate the reading of this proof, when dealing with the mathematical expectation of a random
vector, we explicitly indicate the components of the vector to which the mathematical expectation refers.

4This assumption is without loss of generality because if SP ∈ SPN is not minimal, we can eliminate
one by one the elements of N until we have a minimal SP′ with R(SP′) ̸= SSh(SP′).
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or, equivalently, Ri(SP) − SShi(SP) = A ∈ R, i.e. it does not depend on i. But

then, A = 0 because ∑j∈N Rj(SP) = C(x) = ∑j∈N SSj(SP). This implies that

R(SP) = SSh(SP), and the proof is concluded.

In the remainder of this section, we illustrate the performance of the Shapley

rule in two examples.

Note first that the Shapley rule behaves in Example 2.1 as desired. For the

stochastic scheduling problem with delays SP, we can easily check that:

• vSP(1) = E(C(7, X0
2)) = 13/12,

• vSP(2) = E(C(X0
1 , 7)) = 29/20,

• vSP(N) = C(7, 7) = 1,

and then, SSh(SP) = (0.31666, 0.68333). Thus, activity 2 receives a larger part of

the delay cost, as it should. Note that in this example, SSh(SP) can be easily exactly

calculated. In general, SSh cannot be exactly calculated, but can be estimated using

simulation techniques. Consider now a new example that is slightly more complex.

Example 3.1. Consider the stochastic scheduling problem with delays SP = (N,≺, X0, x, C)
given by:

N 1 2 3 4 5

≺ - 1 - 1,3 2

X0 t(1,2,3) t(1/2,1,3/2) t(1/4,1/2,9/4) t(3,4,5) exp(1/2)

x 2.5 1.25 2 4.5 3

and, for every y ∈ RN ,

C(y) =

{
0 if d(N,≺, y) ≤ 6.5,
d(N,≺, y)− 6.5 otherwise,

where t(a, b, c) denotes the triangular distribution with parameters a, b, and c, and exp(α)
denotes the exponential distribution with parameter α. As we remarked in Example 2.1,
the table does not give the entire binary relation ≺ but only the immediate precedences.
For instance, because 1 precedes 2, 2 precedes 5 and ≺ is transitive, then 1 must precede 5;
however, the table only indicates that 2 precedes 5. The entire ≺ is easily obtained as the
smallest transitive binary relation over N that contains the given elements of ≺. In this
case, the table displays

(1, 2), (1, 4), (3, 4), (2, 5)

and then
≺= {(1, 2), (1, 4), (1, 5), (3, 4), (2, 5)}.
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Figure 1: PERT graph of the project in Example 3.1

In some cases, it is more instructive to give the PERT graph representing the precedences
instead of the precedences and ≺. The PERT graph in this example is given in Figure
1, where, for each arc, we indicate the activity that it represents and the duration of this
activity according to x. It is easy to check that d(N,≺, x) = 7 (remember that the duration
of a project is equal the duration of its longest path in the PERT graph), and then C(x) =
0.5. To allocate this cost amongst the activities in a fair way, note first that E(X0) =

(2, 1, 1, 4, 2), and thus, all activities have a delay with respect to their expected durations.
If we take the naive approach, we can allocate the delay cost by using the Shapley rule for
SP = (N,≺, E(X0), x, C). In this case,

Sh(SP) = (0.27083, 0.02083, 0, 0.18750, 0.02083).

At first sight, this is a reasonable allocation of the delay cost. Activities 1 and 4 belong to the
longest path in project (N,≺, x), and thus, receive most of the delay cost. The cost allocated
to activity 1 is greater than that allocated to activity 4 because activity 1 also belongs to
a path with a duration greater than 6.5 (the path 1-2-5 has duration 6.75). Activity 3
only belongs to one path with duration 6.5, and produces no delay cost. Therefore, it pays
0. However, note that this allocation does not consider the probability distributions of the
durations of the activities but only their averages. For instance, the duration of activity 5
follows an exponential distribution, the support for which is [0, ∞). This means that its
duration can be very long, and therefore, can produce a longer delay. However, its duration
is not very long; so, in a sense, activity 5 contributes to a lack of delay in the project.
This is captured by the Shapley rule for stochastic scheduling problems with delays. Using
elementary simulation techniques, SSh(SP) can be estimated and the result is

SSh(SP) = (0.28960, 0.09834, 0.07641, 0.20659,−0.17095).

It should be noted that this allocation differs from Sh(SP) primarily in that activity 5
receives a kind of reward for not being too late, where this reward is paid by activities 1, 2,
and 4, which last longer than expected and belong to paths whose durations entail a delay
cost.
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We now use a small simulation experiment indicating that, on the average, when x is
drawn from X0, the cost allocation provided by SSh causes activity 5 to pay the largest
part of the delay cost. We then realise that SSh tends to allocate the delay cost to activities
1, 4, and 5, but that it is very sensitive to the durations of the activities. We simulated
1,000 times the durations of the activities such that the 1,000 corresponding durations
of the projects were greater than 6.5, i.e. we simulated (xi)i∈{1,...,1,000}, each xi

j being an
observation of X0

j , all drawn independently and in such a way that C(xi) > 0. Thus, we
obtained 1,000 stochastic scheduling problems with delays SPi = (N,≺, X0, xi, C) as well
as their 1,000 associated proposals of the Shapley rule SSh(SPi). We then calculated

∑
i∈{1,...,1000}

SSh(SPi)

1000
= (0.12857, 0.06844, 0.06686, 0.10757, 0.93790), (4)

where the average observed cost was 1.30935. Note that (4) showed that, in effect, when
there are positive delay costs in an implementation of the stochastic project SP = (N,≺
, X0) the delay cost function being C, the cost allocation provided by SSh primarily burdens
activity 5. This suggests that the vector of actual durations x that we handle in this example
could be considered atypical because SSh5(SP) < 0. Figure 2 confirms it. It displays the
density estimations of the variables Z1

i (solid line) and Z2
i (dotted line), i ∈ {1, . . . 5}, such

that

• Z1
i is the i-th component of Sh((N,≺, E(X0), X, C)), where X denotes the random

variable corresponding to an observation of X0; and

• Z2
i is the i-th component of SSh((N,≺, X0, X, C)), where X denotes the random

variable corresponding to an observation of X0.

Note that the scales of the five graphics in Figure 2 are different, which is a relevant feature
to interpret them. It is not possible to adjust the scales while maintaining the informative
graphics. From the figure, we see that the probability that Sh5((N,≺, E(X0), X, C)) < 0

is not high. It is interesting to note that the variables Z1
i and Z2

i are significantly different
for each i, which strengthens the interest of the rule SSh.

Nota Tabla 1: En esta red PERT, hay 3 caminos. El camino dado por las actividades
1 − 2 − 5, 1 − 4 y 3 − 4. El camino 3 − 4 nunca genera retraso. El camino 1 − 4 es
aquel que más veces genera retraso, y el 1 − 2 − 5, dado que 5 es una exponencial, cuando
genera retraso es muy elevado. Lo que sucede en el caso determinista es que en el camino
1 − 2 − 5, si la actividad 5 no se retrasa este camino tampoco lo hace provocando que las
tres actividades reciban un pago de 0. En cambio si la actividad 5 toma un valor alto,
esta recibe un pago positivo y las actividades 1 y 2 pueden recibir tanto un pago positivo
o negativo dependiendo de sus realizaciones. Por tanto, en el caso determinista, 5 nunca
recibe un pago negativo. En el caso estocástico, se puede apreciar que el 48.3% de las veces
la actividad 5 toma un valor suficientemente alto para generar retraso y recibir un pago
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positivo, en cambio, el 51.7% no se retrasa, y siguiendo el contexto determinista recibiría
un pago de 0, pero al considerar la variabilidad se tiene en cuenta su distribución y en
como podría afectar negativamente al proyecto, generando un retraso elevado, y no lo hace
obteniendo un pago negativo.

Sh 1 2 3 4 5
≥ 0 70.5 74.9 100 91.1 100
< 0 29.5 25.1 0.0 8.9 0

SSh 1 2 3 4 5
≥ 0 75.0 85.5 100 95.5 48.3
< 0 25 14.5 0.0 4.5 51.7

Table 1: Positive and negative payments for the Sh rule (left) and SSh rule (right).

4 Computational Analysis

The calculation of the Shapley value has, in general, an exponential complexity.

Although equivalent expressions with polynomial complexity can be used in some

game classes, this is not the case for the class of games with which we are dealing.

Calculating the Shapley value in our context is impossible in practise, even for

a moderate number of activities. For example, if the number of activities is 100,

there are 2100 coalitions in which the characteristic function must be evaluated. As

an alternative to exact calculation, Castro et al. (2009) proposed an estimate of

the Shapley value in polynomial time using a sampling process. We also need to

calculate vSP(S) = E(C(xS, X0
N\S)), with S ⊆ N. In some simple cases, this value

can be calculated in a simple way using the properties of order statistics; but in

general, we use simulations to approximate vSP.

The aims of this section are twofold: First, to illustrate the implementation of

the computation of the Shapley rule through its pseudocode, from which it is easy

to check that the computational complexity of our rule is O(n4); and second, to

show by examples that it is possible to approximate the Shapley rule for stochastic

scheduling problems with delays in an acceptable time, even if there are hundreds

of activities, by using a desktop computer and free software. The error in the two

phases of estimation is tracked a posteriori through the estimation of variance and

central limit theorem.

The first task of code is to reorder the precedence matrix: That is to say, if the

value at (i, j) is equal to 1, it means that i precedes j, and we want i < j. Note that

this task can always be carried out and allows for faster calculation. We denote the

i-th row of matrix P by Pi,· and i-th column by P·,i.

Organise precedence matrix

• Begin
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Figure 2: Density estimations of the variables Z1
i (solid line) and Z2

i (dotted line)
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P = precedence, index = NULL

While number of P’s columns > 0

Take all i ∈ n such that ∑n
j=1 Pij = 0

index = (index, i)

P = P\Pi,· and P = P\P·,i

end

precedence = precedenceindex,index

• end

The code computes the early times for a deterministic scheduling problem when

the duration of the activities is given by x0. The early time of an activity is the ear-

liest that this activity can begin.

Early times

• Begin

early.timesi = 0 ∀i ∈ N

Organise precedence matrix

I = {i ∈ n, such that ∑n
j=1 precedenceji ̸= 0}

For i ∈ I

prec = {j ∈ n/precedenceji = 1}
early.timesi = max{x0

prec + early.timesprec}
end

• end

Let us consider a deterministic scheduling problem with delays with delay cost

function, for every y ∈ RN , given by:

C(y) =

{
0 if d(N,≺, y) ≤ δ,

d(N,≺, y)− δ otherwise.

We obtain an estimation of the Shapley rule in polynomial time. The algorithm

consists of taking m ∈ N permutations of the set of players N with equal proba-

bility (Castro et al., 2009). We denote by ΠN the set of permutations of N. We then

calculate |N| real numbers as follows:

π j ∈ ΠN where π j = (π
j
1, ..., π

j
|N|) and j ∈ {1, ..., m}

x(π j)i = v(Prei(π j) ∪ {i})− v(Prei(π j))
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where Prei(π j) = {π
j
z ∈ π j; z < i}; x(π j) ∈ R|N| is the corresponding allocation

vector. Finally, the estimated value of the Shapley value is:

Ŝhi =
1
m

m

∑
j∈1

x(π j)i

for all i ∈ N.

When we address the stochastic version of the problem, we can use nearly the

identical procedure to that in the deterministic case; but in this new situation, we

need to estimate the TU-game. For this, we simulate the TU-game m1 ∈ N times

and take the average of these values.

Estimation of Shapley rule in the stochastic case

• Begin

Determine m and m1

Cont = 0, Ŝhi = 0, vi = 0 ∀i ∈ N and timej = 0 ∀j ∈ m1

For j ∈ m1

X̂0
j,· = sample(X0)

end

Organise precedence matrix

While cont < m

Take π ∈ ΠN with probability 1
n!

For i ∈ n

For j ∈ m1

Early times of (xPrei(π)∪{i}, X̂0
j,N\{Prei(π)∪{i}})

vj = max{max{early.times + (xPrei(π)∪{i}, X̂0
j,N\{Prei(π)∪{i}})} − δ, 0}

end

vi = mean(time)

end

Ŝhπ1 = Ŝhπ1 + v1

Ŝhπi = Ŝhπi + vi − vi−1 ∀i ∈ N\{1}
cont = cont + 1

end

Ŝh = Ŝh
m

• end
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To gain insight into the computation time needed to obtain a solution, we se-

lected five problems5 with a number of activities ranging from 10 to 1,000. We

ran the problems on a PC with a 3.70 GHz Core i7-8700K, and 64 GB of RAM on an

Ubuntu 64-bits. The programming language used was R x64 3.4.4. It is freely avail-

able under the GNU General Public License. To improve performance in terms of

time, we used the packages Rcpp and parallel. The package Rcpp was used to

write in C the function early times and parallel was used to parallelise the estima-

tion of the Shapley value by using six cores of our computer.

Table 2 shows the computation times, in seconds, of the five problems, with

10, 30, 100, 300, and 1,000 activities, respectively. The TU-game was approximated

using m1 = 1000 simulations, while m = 1000 and 10000 estimates were used for

the Shapley rule.

10 30 100 300 1000
1000 18 120 1033 7801 118770

10000 211 1329 11941 80521 1277377

Table 2: Computation times in seconds

10 30 100 300 1000
v(S) 2.18 2.96 4.64 2.28 0.83
1000 12.92 13.49 19.37 27.88 12.92

10000 4.17 4.27 6.13 8.82 4.09

Table 3: Errors for v(S) and the Shapley rule

Table 3 shows an estimation of errors, both in the approximation of the char-

acteristic function and Shapley rule by using m = 1000 and 10000. All errors are

relative and in percent.6 A significance level of α = 0.05 was used in these esti-

mates. The error in v(S) is different for every S ⊆ N, and therefore, we display

the average of 1,000 coalitions chosen in a random way. In the Shapley rule, each

activity has an error, and the table shows the average of all activities.

5These problems were too large to be included in this paper. They can be downloaded from
http://dm.udc.es/profesores/ignacio/stochasticprojects

6As is common in statistical methodology, the relative error in percent of the estimation of a param-
eter θ is given by zα/2

s√
n

100
θ , where s is the square root of the sample variance.
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