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1 Introduction

In this study, we consider the Maximum Happy Vertices (MHV) problem. The
MHV problem is a variant of the well-known graph vertex colouring problem
and is known to be NP-hard in general (Li and Zhang, 2015). In traditional
graph colouring, colours need to be assigned to all of the vertices such that
no two adjacent vertices are assigned to the same colour, while the number
of colours being used is minimised. Practical problems such as resource allo-
cation, frequency assignment, university timetabling, sports scheduling, etc.
can be modelled as graph colouring since conflicting constraints and resource
limits can easily be represented in this framework (Carter et al., 1996; Lewis,
2015; Lewis and Thompson, 2015; McCollum et al., 2010). Recently interest
in the MHV problem has been increasing in the literature (Agrawal, 2018a;
Li and Zhang, 2015; Lewis et al., 2019). In this problem we seek to maximise
the number of happy vertices in a graph, where a vertex is defined as happy if
and only if it is assigned to the same colour as all of its neighbouring vertices.
This representation has applications, for example, in detecting homophily in
social networks and for network clustering problems, particularly when cer-
tain vertices are already known to belong to certain groups or share certain
characteristics.

Currently there are relatively few studies investigating methods for the
MHV problem. In 2015, Li and Zhang (2015) proved this problem to be NP-
hard and provided two simple approximation algorithms. The later study by
Zhang et al. (2018) then proposed an improved approximation algorithm based
on solving a linear programming relaxation of the MHV problem and then
rounding non-integer decision variables to form a feasible solution. More re-
cently, Agrawal (2018a) has shown that the complexity of this problem is
W[1]-hard when parameterised by l, where l is a minimum bound on the num-
ber of happy vertices. The problem is now also known to be polynomially
solvable for trees, when the number of available colours is fewer than three,
and for graphs with bounded treewidths (Agrawal, 2018b; Aravind et al., 2016;
Li and Zhang, 2015). Lewis et al. (2019) have also presented methods for gen-
erating upper and lower bounds on the optimal number of happy vertices in
a graph. In addition they also demonstrate how problems can be subdivided
and compare different constructive algorithms to an integer programming (IP)
method and a metaheuristic based on the construct, merge, solve and adapt
(CMSA) methodology (Blum and Roli, 2003).

Practical applications of the MHV problem can be seen in a variety of ar-
eas. Li and Zhang (2015), for example, cite a study in which large network of
academic papers was taken (where edges indicate a citation of one paper in
another). In this network, titles and abstracts are listed for all papers, but key-
words (vertex colours) are only known in around 5% of cases. They then found
that allocating colours to the remaining papers while maximising the number
of happy vertices led to the correct prediction of papers’ subject areas in 69%
of cases. Lewis et al. (2019) have also noted various applications of the MHV
problem with social networks, where vertices are used to represent people, and
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edges denote friendships. For example, imagine we need to partition a group
of people into teams, but some of these people have already been allocated
to these teams. Solving the MHV problem leads to a solution in which the
number of people in teams containing all of their friends is maximised. Similar
tasks might also arise in the design of seating plans for large social events
such as a wedding or gala dinner (Lewis and Carroll, 2016). More generally,
the MHV problem has applications in clustering based problems; specifically,
where some objects have been assigned to clusters, and the aim is to assign
the remaining objects to these clusters such that related objects occur in the
same cluster (Everitt et al., 2011).

This study aims to find a method that performs well on difficult-to-solve
problem instances, is fast, and that also scales well compared to other ap-
proaches. For this purpose we propose a tabu search approach (Glover and
Laguna, 1997, 1999), which is a local search method that incorporates mech-
anisms to avoid cycling at local optima. Studies using tabu search with graph
colouring and related problems have previously shown much promise (Di Gaspero
and Schaerf, 2001; Mabrouk et al., 2009; Zufferey et al., 2008). Mabrouk et al.
(2009) have also demonstrated that a parallel hybrid of an evolutionary and
tabu search algorithm produces very good solutions to benchmark datasets.
In another study, Zufferey et al. (2008) considered a satellite range schedul-
ing problem, for which they applied efficient heuristic techniques for graph
coloring, including tabu search. In addition to proposing and testing this
tabu search method against other methods, we further analyse the problem,
allowing us to propose efficient methods for reducing the search space and
also to make some probabilistic arguments about what makes a problem in-
stance non-trivial. Specifically, there are four contributions in this study: (a)
a metaheuristic-based approach for the MHV problem, namely tabu search,
(b) algorithms for efficiently computing upper bounds to the MHV, (c) an
algorithm for precolouring additional vertices and (d) characterising hardness
of problem instances via probabilistic arguments.

Section 2 analyses the problem and defines methods for finding upper
bounds efficiently. Section 3 provides details of tabu search including an effi-
cient implementation of the approach for the MHV problem. Section 4 details
the experiments conducted and the results obtained from these experiments.
The paper concludes in Section 5.

2 The Maximum Happy Vertices Problem

Given a graph G = (V,E) with n vertices and m edges, let Γ (v) be the
neighbourhood of vertex v ∈ V and let c : V → {1, . . . , k} be a complete
colouring of the vertices in G. A vertex v is happy if c(v) = c(u) for all
u ∈ Γ (v), otherwise it is unhappy. That is, a vertex v is happy only if all its
neighbours are assigned the same colour c(v).

Given a partial colouring c′ : V ′ → {1, . . . , k} where V ′ ⊆ V , the objective
in the MHV problem is to extend c′ to a complete colouring c : V → {1, . . . , k}
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such that the number of happy vertices is maximised. Any vertex that is not
precoloured in the problem instance is referred to as a free vertex. The number
of happy vertices in a globally optimal solution is denoted by H(G)∗. A small
example of this problem is shown in Figure 1.
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Fig. 1 Left: An example MHV problem instance with n = 10 vertices, m = 8 edges, k = 2
colours, and |V ′| = 3 precoloured vertices (free vertices are shown in white). Right: A
candidate solution featuring five happy vertices, indicated by H’s.

2.1 Upper Bounds

Lewis et al. (2019) propose a method for computing an upper bound H̄(G)
on the optimal number of happy vertices H(G)∗. This operates by identifying
unhappy paths in a graph and removing them one by one. An unhappy path
is defined as a simple path whose terminal vertices are precoloured differently
and whose internal vertices (if any) are free. For example, in Figure 1 (left)
unhappy paths include (v1, v5, v3, v4) and (v4, v10, v6, v8). It is clear that at
least one vertex on any unhappy path must be unhappy in any candidate
solution.

Lewis et al.’s method for computing an upper bound is described in the
steps below. The basic idea is to identify and delete unhappy paths while,
at the same time, maintaining a count of the maximum possible number of
unhappy vertices x in the graph. At the start of the process x is set to zero.

1. Identify an unhappy path of length one (edge) P = (u, v). If such a path
does not exist, go to Step 3.

2. If both u and v have not yet been counted, set x = x+2; otherwise if only
one of u or v has been counted, set x = x+1. Now mark u and v as having
been counted and remove the edge {u, v} from G. Return to Step 1.

3. Identify an unhappy path P of length two (edges) or more. If such a path
does not exist, return H̄(G) = n− x. This is the upper bound.

4. Let u and v be the terminal vertices of P . If both u and v have not yet been
counted, set x = x + 2; otherwise if only one of u or v has been counted,
set x = x + 1. Now mark u and v as having been counted and remove all
of P ’s internal vertices from G. Return to Step 3.

The first two steps of this procedure focus on unhappy paths of length one,
which are removed from G with x being updated accordingly. A similar process



Tackling the Maximum Happy Vertices Problem in Large Networks 5

is then used in Steps 3 and 4 by eliminating all free vertices in paths of length
two or more. Note that vertices are never counted more than once in x due to
the conditions included in Steps 2 and 4.

For the upper bounds reported in this current paper, breadth first search
(BFS) is used to select the shortest unhappy path in the current graph. This
results in the smallest possible number of vertices being removed from G at
each step, which leads to potentially a larger number of iterations and therefore
more increments to x. While the method used here is effective (see Section 4),
Lewis et al. note that other strategies might also be applied in practice.

2.2 Constructive Heuristics

As noted earlier, in their 2015 paper Li and Zhang (2015) proposed two simple
constructive heuristics for the MHV problem. As we will see, these methods can
be used to produce initial solutions and lower bounds on H(G)∗. In addition,
the notation used to describe these heuristics is also helpful for the analyses
given in this paper. We therefore review both heuristics here.

The first constructive heuristic proposed by Li and Zhang (2015) is the so-
calledGreedy-MHV method. This operates by simply taking all free vertices,
assigning them to the same single colour and then calculating the resultant
number of happy vertices. These steps are repeated using all of the k colours,
with the best of these solutions then being used.

The second heuristic, Growth-MHV, involves placing labels on vertices
and then using these to determine the ordering in which free vertices are
coloured. Let v be a vertex assigned to colour i. The three possible labels for
coloured vertices are defined as follows:

– v is a U-vertex if it is destined to be unhappy (i.e., at least one of its
neighbours has been assigned to a colour j 6= i);

– v is a P-vertex if it has the potential to be happy (i.e., some neighbours of
v are currently uncoloured, and any coloured neighbours have colour i);

– otherwise v is an H-vertex (i.e., it is happy because all neighbours of v are
also assigned to colour i).

On the other hand, if v is not yet assigned to a colour, it can have one of four
possible labels:

– v is an LP-vertex if it is adjacent to a P-vertex;
– v is an LH-vertex if it is not adjacent to a P-vertex, but has the potential

to be happy (i.e., it is adjacent to U-vertices of only one colour);
– v is an LU-vertex if it is not adjacent to a P-vertex and is destined to

be unhappy (i.e., at least two of its neighbours are assigned to different
colours);

– otherwise v is an LF-vertex (and not adjacent to any coloured vertex).

Given these labels, the Growth-MHV heuristic operates by colouring one or
more free vertices at each iteration, prioritising vertices with certain labels.
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This process continues until all free vertices have been coloured. The rules are
as follows:

1. If G contains a P-vertex v assigned to colour i, assign all neighbours of v
to colour i;

2. Else if G contains an LH-vertex v, let i be the colour of an adjacent U-
vertex, and assign v and all of its uncoloured neighbours to colour i;

3. Else if G contains an LU-vertex v, let i be the colour of any U-vertex
adjacent to v, and assign v to colour i;

4. Else if G contains an LF-vertex v, assign v to an arbitrary colour;
5. Else all of G’s vertices have been coloured, so end.

Note that when a vertex or set of vertices is coloured using these rules,
labels of other vertices in the graph also need to be recalculated for subsequent
iterations.

The approximation ratios of theGreedy-MHV andGrowth-MHV heuris-
tics are known to be 1/k and Ω(1/∆3) respectively, where ∆ is the maximum
degree of any vertex in the graph (Li and Zhang, 2015).

2.3 Conditions Needed for all Vertices to be Unhappy

In this subsection we examine the conditions that are necessary for a problem
instance’s optimal solution to contain no happy vertices, giving H(G)∗ = 0.
First note the following simple thereom.

Theorem 1 H(G)∗ = 0 if and only if all precoloured vertices in G are U-

vertices and all free vertices in G are LU-vertices.

Proof By definition, U- and LU-vertices cannot be happy, so if all vertices of
a graph are of this type, H(G)∗ = 0.

Now consider the case where v is precoloured with colour i but is not a
U-vertex. This means that it is either an H-vertex (implying that it is happy),
or a P-vertex (meaning that it can be made happy by assigning all of its
uncoloured neighbours to colour i). In either case this leads to H(G)∗ ≥ 1

Similarly, suppose that v is a free vertex but not an LU vertex. Therefore
it must be either an LP-, an LH-, or an LF-vertex. In any of these three cases
this implies the existence of at least one vertex in the set (Γ (v) ∪ {v}) that
can be happy, leading to H(G)∗ ≥ 1.

When H(G)∗ = 0 there is clearly nothing to optimise and the correspond-
ing MHV problem is trivial to solve. When generating problem instances we
can also estimate the probability that H(G)∗ = 0 (under certain assumptions)
as we now explain.

First, when generating a problem instance assume that the |V ′| precoloured
vertices are chosen at random and then assigned to any random colour 1, . . . , k.
This gives approximately µ = |V ′|/k precoloured vertices per colour class.
Now, in order for a precoloured vertex v to be a U-vertex (and therefore
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destined to be unhappy in all solutions), it is necessary that at least one of its
neighbours is precoloured differently. The complement of this event is that all
neighbours of v are either free or coloured the same as v. Hence,

P (v is a U-vertex) = 1− P (Each neighbour of v is free or has v’s colour)

= 1−

(

|V−V ′|+µ−1
deg(v)

)

(

n−1
deg(v)

) . (1)

Similarly, for a free vertex v to be an LU-vertex (and thus also destined to
be unhappy in all solutions) it must have at least one pair of neighbouring
precoloured vertices u1, u2 ∈ Γ (v) with different colours to one another. The
complement of this event is that the number of distinct colours among neigh-
bours of v is zero or one. Hence,

P (v is an LU-vertex) =1− P (Num. colours adjacent to v is zero or one)

=1−

(

|V−V ′|+µ

deg(v)

)

(

n−1
deg(v)

) . (2)

If we now assume that the degrees of all vertices in G are equal at d̄ =
1
n

∑

v∈V deg(v), this gives:

P (H(G)∗ = 0) =

(

1−

(|V−V ′|+µ−1

d̄

)

(

n−1
d̄

)

)|V ′|

·

(

1−

(|V−V ′|+µ

d̄

)

(

n−1
d̄

)

)|V−V ′|

. (3)

Figure 2 illustrates the effects of this probability function for differing val-
ues of n and k. Areas to the right of the lines indicate combinations of param-
eters (average degree d̄ and the proportion of precoloured vertices (|V ′|/n))
that, with ≥ 95% probability, give problem instances for which H(G)∗ = 0.
We see that these areas occupy most of the figures, with only very low values
of one or both of the parameters leading to non-trivial problem instances for
which H(G)∗ > 0. We must bear in mind though that this model is based on
the assumptions outlined above and has the potential to become less accurate
when the selection of precoloured vertices is non-random or the variance across
the vertex degrees is higher.

2.4 Precolouring Additional Vertices

For some MHV problem instances it is also possible to fix the colours of some
free vertices from the outset, in effect adding additional precoloured vertices
to the graph. For instance, if all neighbours of a free vertex v are precoloured
with the same colour i, then it is obvious that v should also assume colour i
(and therefore be happy) in any optimal solution.

The following method generalizes this property. Starting from a free vertex
v, let S be the set of vertices that are reachable from v in the subgraph induced
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Fig. 2 Areas to the right of the curves indicate parameter combinations that, with ≥ 95%
confidence, lead to problem instances for which H(G)∗ = 0.

by the free vertices of G. Now, using G consider the set of precoloured vertices
that neighbour the vertices of S ∪{v}. If all of these precoloured vertices have
the same colour i, then all vertices in S ∪ {v} should also be coloured with
i, making them H-vertices (and therefore happy). Similarly, if none of the
vertices in S ∪ {v} have a precoloured neighbour, then these vertices make up
a single component in G that comprises free vertices only. In this case they
can all be made into H-vertices by assigning them all to the same arbitrary
colour i ∈ {1, . . . , k}.

Further precoloured vertices can also be added by noting that if v is an
LU-vertex and all of its neighbours are U-vertices, then v can be assigned to
any arbitrary colour, also making it a U-vertex. This is because, whatever
colour we choose for v, all vertices in Γ (v) ∪ {v} are still guaranteed to be
unhappy.

Fig. 3 Example of how additional precoloured vertices can be added to a problem instance.
The graph on the left has three places where this can occur, shown by the dashed loops.
The left and right loops indicate where further H-vertices can be added; the central loop
shows where a U-vertex can be added. The resultant graph is shown on the right.

In the experiments reported in this paper the above conditions are checked
for using a procedure calledAdd-Precol, which operates until all free vertices
of G have been considered. In essence Add-Precol is a restricted version of
BFS and therefore operates in O(m) time. We use Add-Precol as a prepro-
cessing step with all algorithms tested in this paper because fixing the colours
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of free vertices in this way will reduce the size of the solution space while not
changing the value of H(G)∗. An example of the process is shown in Figure 3.
Its effects of this procedure are investigated further in Section 4.1.

3 Tabu Search

In this section we describe our tabu search method for the MHV problem.
While many aspects of this algorithm are similar to other applications of tabu
search with graph partitioning problems (Blöchliger and Zufferey, 2008; Lewis,
2015), the main novelty comes from our high-speed method of calculating the
costs of neighbouring solutions, as described in Section 3.1 below. The source
code for this algorithm can be found at (Lewis, 2020).

The overall tabu process starts with an initial feasible solution and seeks
to make improvements through a series of modifications. To discourage the
algorithm from entering previously visited areas of the solution space, a tabu
list is also maintained during the run, helping to maintain a beneficial trade-off
between intensification and diversification.

In our application, additional precoloured vertices are first added to the
graph (if possible) using the Add-Precol procedure. An initial solution is
then formed by taking the best solution produced through applications of the
Greedy-MHV and Growth-MHV heuristics (Section 2.2). The tabu search
algorithm then takes this initial solution and iterates until either a time limit
is exceeded, or a solution is achieved whose number of happy vertices equals
the upper bound of H̄(G) (Section 2.1).

Candidate solutions in our approach are represented as a full partition
of the vertices into k colour classes, S = (S1, . . . , Sk), where Si contains all
vertices assigned to colour i (i.e. vertices v for which c(v) = i). In each iteration
of the algorithm a neighbouring solution is produced from the current solution
S by taking a free, unhappy vertex v for which deg(v) ≥ 1, removing it from
its current colour class Si and inserting it into a new colour class Sj . As is
typical for tabu search, this neighbouring solution is selected by scanning the
entire neighbourhood of S and choosing the non-tabu solution that features the
largest increase (or, failing that, the smallest decrease) in the number of happy
vertices. Any ties in this criterion are broken randomly. A tabu solution can
also be selected if its number of happy vertices is seen to exceed the number
in the best solution seen so far in the run (this is sometimes known as an
aspiration criterion). In addition, if all neighbouring solutions are seen to be
tabu, then one of these is selected at random.

Here, a matrix Tn×k is used to represent the tabu list. If a move at iter-
ation l of the algorithm is performed that transfers vertex v from Si to Sj ,
then element Tvi is set to l+ t. This is interpreted to mean that, for the next t
iterations, all solutions involving the assignment of v to colour i are considered
tabu and are not permitted unless the above aspiration criterion is met. To
determine the value of t, we use previous studies on graph partitioning prob-
lems as a guide (Blöchliger and Zufferey, 2008; Lewis and Carroll, 2016). These
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suggest that t should be a random variable whose value is determined based
on the current solution’s quality. In essence, t should be given a high value
when solution quality is low, which results in the algorithm being compelled to
move into new areas of the solution space. Conversely, when solution quality is
high t should be reduced, thereby allowing the algorithm to focus more on the
immediate vicinity. In our case, t is determined as r + τ(H̄(G)− f(S)). Here,
r is an integer randomly chosen from the set {1, . . . , 9} in each iteration of the
algorithm (adding an element of randomness to the function), and τ ∈ R

+ is
a user-defined parameter. As before, H̄(G) is the upper bound on the number
of happy vertices in G, whereas f(S) is the number of happy vertices in the
current solution S.

3.1 Speeding Up the Algorithm

As might be expected, the most time-consuming part of the tabu search process
is the evaluation of all neighbouring solutions at each iteration. However, in
our application considerable efficiencies can be achieved through the use of an
additional matrix Cn×k where, given the current solution S = {S1, . . . , Sk},
element Cvj denotes the change in the number of happy vertices that would
result if vertex v were to be moved to colour j. When an initial solution is
generated, values will need to be generated for all rows of C corresponding
to free vertices; however, in each subsequent iteration of the algorithm the
act of moving a vertex v to Sj will result in a new solution S ′ whose number
of happy vertices f(S ′) can be calculated as simply f(S) + Cvj . Since f(S)
will already be known, this means that the cost of all neighbouring solutions
can be determined by simply scanning each row of C corresponding to free
unhappy vertices.

Once a move been performed by moving v to colour j, relevant entries in C

will need to be updated to reflect these changes. However, this only needs to
be done for rows corresponding to free vertices within a distance of two from
v (that is, v, neighbours of v and neighbours of neighbours of v). All other
rows of the matrix will not be affected. Our method of calculating a new value
for an element Cvi in C is described in the Calculate-C-Entry procedure
shown in Figure 4. Lines 4 and 5 of this procedure deal with the case where v
is currently happy; hence, changing its colour will make it unhappy. Similarly,
Lines 6 and 7 consider the case where all of v’s neighbours have colour i,
meaning that changing v’s colour to i will result in it becoming happy. Lines
8 to 12 carry out similar operations for all vertices that are a distance of two
from v.

4 Experiments and Results

In this section we describe the experiments conducted for this research. Sec-
tion 4.1 illustrates the general behaviour of the Add-Precol procedure; Sec-
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Calculate-C-Entry (v, i)

(1) result ← 0
(2) if c(v) = i or deg(v) = 0 then

(3) return result
(4) if v is happy then

(5) result ← result−1
(6) else if c(u) = i, ∀u ∈ Γ (v) then
(7) result ← result+1
(8) forall u ∈ Γ (v) do
(9) if u is happy then

(10) result ← result−1
(11) else if c(u) = i and c(w) = i, ∀w ∈ (Γ (u)− {v}) then
(12) result ← result+1
(13) return result

Fig. 4 Procedure for calculating a new value for element Cvi in the matrix C. As usual,
Γ (v) denotes the set of all vertices adjacent to a vertex v and c(v) denotes the current colour
of v.

tions 4.2 and 4.3 then provide a performance analysis of our algorithm on two
contrasting graph topologies: random graphs and scale free graphs.

The problem instances used in our experiments were produced using the
generator of Lewis et al. (2019). Random graphs are generated in an unbiased
manner. Starting with two vertices, an edge is added between them with prob-
ability p. Further vertices are then added one by one and, in each case, edges
are added between this vertex and all existing vertices with probability p. The
resulting graph has a binomial-shaped degree distribution with mean (n− 1)p
and variance (n−1)p(1−p) and features an expected number of edges of

(

n
2

)

p.

In contrast, scale-free graphs are biased in the sense that when a new vertex
is added to a graph it is more likely to be joined to vertices of high degrees.
Consequently, their degree distributions follow a power law, and the ensuing
graphs typically comprise a small number of high-degree vertices and a large
number of very low-degree vertices. Compared to random graphs, scale-free
graphs therefore show features of “preferential attachment” that are often
encountered in real-world settings (Barabási and Põsfai, 2016). In our tests,
scale-free graphs were constructed using the Barabási-Albert model, which
operates as follows: To begin, a complete graph G with q ∈ {1, . . . , n} vertices
and

(

q
2

)

edges is constructed. In each iteration a new vertex v is then added
to G and is connected to q existing vertices in G, with an edge between v and
u ∈ G added according to the probability:

P (u, v) =
deg(u)

∑

w∈(V−Γ (v)) deg(w)

(4)
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where V − Γ (v) is the set of vertices that are not adjacent to v. The graph
construction continues until n vertices are present in the graph, giving a total
of
(

q
2

)

+ q(n− q) edges.
For both random and scale-free topologies, a subset of vertices is then

randomly chosen to be precoloured. Colour assignments for these vertices are
also made randomly, but is such a way so that each of the k colours is used
by at least one vertex in the graph.

To help assess the performance of our tabu search algorithm, results for
two additional methods are also included in our analysis. The first of these
uses the best-performing IP formulation as proposed by Lewis et al. (2019),
which is defined as follows.

Let xj ∈ {1, . . . , k} be integer variables and yj be binary variables for all
j ∈ {1, . . . , n}. The variable xj specifies the colour of vertex vj , and yj = 1 if
and only if vj is unhappy. The problem is to now:

maximise n−
n
∑

j=1

yj (5)

subject to: xj = c(vj) ∀vj ∈ V ′ (6)

yj ≥
|xj − xi|

n
∀vi ∈ Γ (vj), ∀vj ∈ V. (7)

In this formulation, precolourings are specified by Constraint (6). Constraint (7)
then sets yj = 1 if the colours of the vertices adjacent to the vertex vj are not
the same colour as vj (specified in xj). The objective maximises the number
of happy vertices.

The second method used in our analysis is based on an application of
the construct, merge, solve and adapt (CMSA) methodology for the MHV
problem, also proposed by Lewis et al. (2019). The basic idea of CMSA is to
maintain a set of problem components C′ that are currently permitted to be
used in the construction of a candidate solution. At each iteration, an exact
method is then applied that attempts to find the optimal solution for the
problem in which only components currently belonging to C′ are used. This
information is then used to help modify the contents of C′ before continuing
with the next iteration. For the MHV problem, C′ is defined as a subset of all
possible free-vertex/colour pairings C, where

C = {(u, i) : u is free and i ∈ {1, . . . , k}}. (8)

At each iteration, the above IP formulation is then used to solve a restricted
version of the problem in which only components in C′ can be used. The idea,
therefore, is that when C′ is much smaller than C, applications of the exact
solver will require less computational effort. In addition, if the correct contents
of C′ can be identified during a run, then high-quality solutions to the overall
problem will also be established.
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In all cases reported here, IP optimisation was carried out using Gurobi
8.0.0. Each run was permitted a single thread, allowing a fairer comparison
with our tabu search method. In addition, before each application of the IP
solver, the Add-Precols procedure was executed, and a seed solution equiva-
lent to the initial solution of the tabu search algorithm was provided to enhance
performance. These augmentations therefore extend the methods described by
Lewis et al. (2019).

4.1 Effects of Adding Precoloured Vertices.

In this section we consider the effects that the Add-Precol procedure has
on the resultant number of precoloured vertices in a graph. Figures 5 and
6 show results for both random and scale-free graphs, respectively, for two
different values of k and various different graph densities (expressed as the
average degree 2m

n
). The lines in the figures represent instances that were

initially generated with the proportion of precoloured vertices stated in the
legends. The heights of the lines then indicate the number of precoloured
vertices present in the graph after executing Add-Precol.1

We see from Figures 5 and 6 that Add-Precol has a considerable effect
with sparse graphs. This is because the lack of edges means that many of the
free vertices can be converted into precoloured H-vertices. (Of course, if the
graph has no edges, then all vertices can be precoloured in this way, leading to
H(G)∗ = n.) On the other hand, with dense graphs the Add-Precol is also
able to add many additional precoloured vertices. This is because the larger
number of edges will increase the number of U- and LU-vertices, meaning
that further precoloured U-vertices will often be added to the graph. For the
same reason, these patterns are also more pronounced when the proportion of
precoloured vertices in the initial problem instance is higher, as shown in the
figure.

Figures 5 and 6 also indicates that the Add-Precol procedure has the
smallest effect when a graph has an average degree of approximately four to
ten and/or when the proportion of precoloured vertices is low. Interestingly,
these instances correspond closely to those that were found to be the most
difficult to solve in the computational study of Lewis et al. (2019). Also note
that these patterns are consistent across the different k-values and topologies,
as shown.

4.2 Random Graphs

In this section we compare the performance of the tabu search, IP, and CMSA
methods on random graphs. Previous empirical research (Lewis et al., 2019)

1 Note that when the desired number of precoloured vertices |V ′| is less than the number of
available colours k, instances cannot be generated. As a result, such parameter combinations
are not present in our analyses.
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Fig. 5 Effects of the Add-Precol procedure with random graphs with k = 10 (top) and
k = 50 (bottom). In all cases n = 1000, and points are calculated as the mean across twenty
runs at each average degree value.

together with the findings of Sections 2.3 and 4.1 strongly suggest that non-
trivial problem instances only exist in small pockets of the instance space.
Here, we focus our attention on random graphs with average degrees of five,
numbers of vertices ranging from n = 250 to 10, 000 (giving densities of 5

n−1 )
and k-values of 10 and 50. Twenty graphs were generated in each case with
10% of vertices being precoloured. For all methods, a maximum run time of
ten minutes was imposed.2

Table 1 presents information on the lower and upper bounds that were ob-
tained with these random graphs. These figures are stated as the percentage of
vertices that are happy averaged across twenty problem instances of each size.
The Upper Bounds column compares H̄(G) with the upper bound obtained
by the IP solver (UB) at the time limit; the Lower Bounds column compares

2 Methods were implemented in C++ and compiled with GCC-5.4.0. Our code is available
at http://www.rhydlewis.eu/resources/happytabu.zip. The experiments were conducted
on Monash University’s Campus Cluster, where each machine in the cluster consists of 24
cores and 256 GB RAM. Each physical core has two hyper-threaded cores with Intel Xeon
E5-2680 v3 2.5GHz, 30M Cache, 9.60GT/s QPI, Turbo, HT, 12C/24T (120W). For tabu
search a setting of τ = 2 was used.
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Fig. 6 Effects of the Add-Precol procedure with scale-free graphs with k = 10 (top) and
k = 50 (bottom). In all cases n = 1000, and points are calculated as the mean across twenty
runs at each average degree value.

the quality of the best solutions returned by the IP, CMSA and tabu search
algorithms.

Comparing upper bounds, we see that the IP solver’s upper bounds are
superior for problem instances with up to 5, 000 vertices for both k = 10 and
k = 50. For larger instances, H̄(G) is superior. This is because, for very large
problems, substantial computation is required by the IP solver to improve
the bounds, which does not seem to be possible within the time limit. On
the other hand, computing H̄(G) is computationally inexpensive, though the
results show that they are still some way from the optimal values.

Regarding lower bounds, for the smallest instances (n = 250, k = 10), the
IP solver is the most effective—indeed, here all instances have been solved to
optimality within the time limit. It is also clear that for the largest of problem
instances (n ≥ 5, 000) that the tabu search is the most effective method.

Table 2 shows the time at which each of the methods achieved their best
observed solutions. We see that tabu search finds solutions much more quickly
than CMSA or the IP model. For tabu search, the time required to find the
best solution increases with increasing values of n, though this is usually well
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Table 1 Comparison of lower and upper bounds for random graphs of various sizes. Figures
are presented as the mean and standard deviation of the percentages of the number of happy
vertices across twenty problem instances for each problem size. Statistically significant results
are marked with an asterisk, obtained according to a Wilcoxon signed rank test at the 0.05%
level.

Upper Bounds (Mean ± SD) Lower Bounds (Mean ± SD)

n H̄(G) UB IP CMSA TS

k = 10 250 73.820 ± 2.158 60.760 ± 2.400 60.760 ± 2.400 60.740 ± 2.408 60.740 ± 2.408
500 74.690 ± 1.437 64.780 ± 2.105 60.890 ± 2.507 60.890 ± 2.507 60.890 ± 2.507
750 74.920 ± 0.894 65.973 ± 1.574 60.280 ± 1.293 60.287 ± 1.291 60.287 ± 1.291
1000 74.940 ± 1.061 66.060 ± 1.178 59.855 ± 1.263 59.860 ± 1.258 59.850 ± 1.259
2000 74.923 ± 0.912 67.160 ± 1.486 59.675 ± 1.145 59.720 ± 1.105 59.720 ± 1.105
3000 74.987 ± 0.703 70.820 ± 1.343 59.223 ± 0.835 59.552 ± 0.679 59.555 ± 0.682

4000 75.035 ± 0.593 70.749 ± 1.043 59.041 ± 0.809 59.295 ± 0.757* 59.294 ± 0.758
5000 74.877 ± 0.454 70.445 ± 0.977 58.698 ± 0.652 58.936 ± 0.606 58.968 ± 0.602*
7500 74.843 ± 0.442 79.846 ± 10.659 58.515 ± 0.595 58.853 ± 0.578 58.884 ± 0.568*
10000 74.075 ± 0.346 97.897 ± 4.945 57.444 ± 0.637 57.921 ± 0.537 57.943 ± 0.544*

k = 50 500 74.190 ± 1.403 64.660 ± 2.537 56.250 ± 2.311 56.250 ± 2.311 56.250 ± 2.311
750 74.440 ± 1.008 65.587 ± 1.749 56.813 ± 1.669 56.827 ± 1.653 56.827 ± 1.653
1000 74.540 ± 1.076 65.500 ± 1.389 56.560 ± 1.111 56.585 ± 1.127 56.585 ± 1.127
2000 74.433 ± 0.952 66.583 ± 1.577 56.298 ± 1.271 56.413 ± 1.163 56.413 ± 1.163
3000 74.500 ± 0.749 69.280 ± 1.191 56.182 ± 0.787 56.392 ± 0.768 56.393 ± 0.767

4000 74.566 ± 0.589 69.155 ± 0.969 55.926 ± 0.736 56.210 ± 0.702 56.253 ± 0.696*
5000 74.397 ± 0.425 68.997 ± 0.905 55.808 ± 0.739 55.881 ± 0.677 55.928 ± 0.669*
7500 74.336 ± 0.462 78.005 ± 8.140 55.548 ± 0.567 55.918 ± 0.608 55.959 ± 0.600*
10000 73.572 ± 0.314 92.461 ± 4.987 54.638 ± 0.476 54.913 ± 0.451 54.944 ± 0.460*

Table 2 Comparison of run-times (seconds) required to find the best solution achieved by
each algorithm. All figures are means across twenty random problem instances.

n IP CMSA TS

k = 10 250 8.10 ± 8.14 1.74 ± 4.70 0.00 ± 0.00
500 12.90 ± 30.62 68.08 ± 87.01 0.00 ± 0.00
750 12.05 ± 22.27 84.02 ± 101.62 0.00 ± 0.00
1000 92.80 ± 162.85 135.22 ± 148.13 0.00 ± 0.00
2000 97.10 ± 199.72 193.11 ± 166.98 0.00 ± 0.00
3000 40.25 ± 34.96 234.38 ± 131.83 0.00 ± 0.01
4000 119.65 ± 107.69 272.77 ± 158.64 0.01 ± 0.01
5000 115.00 ± 127.01 238.92 ± 160.16 0.02 ± 0.01
7500 241.10 ± 185.52 259.21 ± 179.92 0.04 ± 0.03
10000 201.95 ± 82.71 255.37 ± 160.48 0.06 ± 0.06

k = 50 500 51.35 ± 134.51 12.08 ± 24.63 0.00 ± 0.00
750 160.45 ± 182.75 18.18 ± 34.28 0.00 ± 0.01
1000 38.00 ± 41.41 27.29 ± 56.69 0.01 ± 0.02
2000 115.25 ± 142.76 46.06 ± 86.65 0.03 ± 0.05
3000 82.45 ± 110.95 102.39 ± 116.07 0.07 ± 0.10
4000 107.25 ± 88.37 162.83 ± 159.90 3.16 ± 8.15
5000 158.00 ± 91.79 199.30 ± 181.34 0.90 ± 1.52
7500 146.05 ± 137.27 277.87 ± 211.92 4.15 ± 6.40
10000 233.25 ± 104.22 313.03 ± 183.67 6.71 ± 20.1

within 10 seconds. Additionally, the times needed for k = 10 are lower than
k = 50. We also see that CMSA usually requires more time than the IP model
to find its best solutions though, once found, these are usually superior.
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4.3 Scale-Free Graphs

We now consider a similar set of results for scale-free graphs. In these trials,
instances were generated using a setting of q = 3, leading to graphs with an
average vertex degree of six. All other settings were kept the same as the
previous subsection.

Table 3 shows our results in the same format as Table 1. Regarding upper
bounds, in contrast to random graphs we see that those of the IP solver are
always superior to H̄(G), even for the very largest graphs. As noted, scale-
free graphs of this nature feature much higher vertex degree variances than
random graphs, which means that its constraints tend to be more concentrated
in certain parts of the problem instance. This seems to allow the IP solver to
improve its upper bound more effectively within the 10 minute time limit.

Table 3 Comparison of lower and upper bounds for scale-free graphs of various sizes.
Figures are presented as the mean and standard deviation of the percentages of the number of
happy vertices across twenty problem instances for each problem size. Statistically significant
results are marked with an asterisk, obtained according to a Wilcoxon signed rank test at
the 0.05% level; IP = IP model, CMSA = construct, merge, solve and adapt; TS = tabu
search.

Upper Bounds (Mean ± SD) Lower Bounds (Mean ± SD)

n H̄(G) UB IP CMSA TS

k = 10 250 76.040 ± 3.774 63.840 ± 5.395 63.840 ± 5.395 63.840 ± 5.395 63.840 ± 5.395
500 74.430 ± 2.608 60.550 ± 3.417 59.610 ± 3.054 59.610 ± 3.054 59.610 ± 3.054
750 75.713 ± 2.756 63.460 ± 4.355 60.947 ± 4.121 60.967 ± 4.141 60.967 ± 4.141
1000 75.550 ± 2.618 63.305 ± 4.325 60.790 ± 4.026 60.790 ± 4.026 60.790 ± 4.026
2000 75.978 ± 2.093 63.785 ± 3.469 60.020 ± 2.794 60.095 ± 2.799 60.095 ± 2.799
3000 75.878 ± 0.960 64.787 ± 1.548 58.392 ± 1.353 58.853 ± 1.469 58.852 ± 1.469
4000 76.911 ± 1.305 69.056 ± 2.512 59.749 ± 1.395 59.946 ± 1.444 59.944 ± 1.446
5000 76.940 ± 1.711 68.665 ± 3.223 58.941 ± 2.357 59.397 ± 2.519 59.394 ± 2.518
7500 77.343 ± 0.960 73.619 ± 2.060 59.501 ± 1.577 60.041 ± 1.306 60.043 ± 1.306*
10000 79.067 ± 0.897 73.504 ± 3.033 60.096 ± 1.885 60.775 ± 1.606 60.776 ± 1.607*

k = 50 500 73.320 ± 3.007 59.030 ± 4.903 55.820 ± 4.246 55.830 ± 4.246 55.830 ± 4.246
750 74.953 ± 3.026 62.953 ± 4.936 57.587 ± 3.803 57.593 ± 3.795 57.593 ± 3.795
1000 74.750 ± 2.925 62.720 ± 5.042 57.245 ± 4.083 57.245 ± 4.083 57.245 ± 4.083
2000 75.245 ± 2.280 63.073 ± 3.808 56.933 ± 2.797 56.955 ± 2.741 56.955 ± 2.741
3000 75.238 ± 0.900 64.522 ± 1.934 55.862 ± 1.427 55.988 ± 1.391 55.988 ± 1.391
4000 76.320 ± 1.359 68.288 ± 2.639 56.868 ± 1.629 57.121 ± 1.591 57.121 ± 1.591
5000 76.270 ± 1.819 67.675 ± 3.680 56.209 ± 2.903 56.716 ± 2.503 56.719 ± 2.503*
7500 76.692 ± 1.019 71.613 ± 1.876 56.130 ± 1.686 57.195 ± 1.309 57.199 ± 1.309

10000 78.449 ± 0.924 72.267 ± 2.412 57.322 ± 1.754 58.341 ± 1.496 58.342 ± 1.496

Regarding lower bounds, similar patterns to the results for the random
graphs are revealed. For smaller instances (up to and including 1,000 vertices),
all three methods perform equally well. However, for 2,000 vertices and above,
the CMSA and tabu search methods clearly outperform the IP solver. Again,
this is because the run-time limit is simply too short for the IP solver to
make substantial improvements to the seed solutions. For k = 10, CMSA
seems to have a slight advantage over tabu search for instances with 4,000 and
5,000 vertices, but for larger instances the opposite is true with tabu search
producing significantly better results. For k = 50, CMSA never outperforms
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tabu search on any instance, whereas tabu search seems to have an advantage
on instances with 5,000 or more vertices, though this was only seen to be
significant for 5000 vertices in our trials). This effect is due to our imposed run-
time limits as CMSA seems to need more computational resources to improve
solutions, particularly for large instances.

Finally, also note the larger variances of the lower bounds in Table 3 com-
pared to those of random graphs. This is due to the distribution of vertex
degrees in scale-free graphs. In some instances, only low-degree vertices will
happen to be precoloured by the instance generator, resulting in problems in
which a higher proportion of vertices can be happy. On the other hand, in some
cases vertices of high degrees (hub nodes) will be precoloured instead, result-
ing in instances in which substantially fewer happy vertices can be achieved.
This contrasts with random graphs, where degrees amongst vertices tend to
vary less, giving more consistent results.

Table 4 Comparison of run-times (seconds) required to find the best solution achieved by
each algorithm. All figures are means across twenty scale-free problem instances.

n IP CMSA TS

k = 10 250 0.40 ± 1.57 1.09 ± 3.44 0.00 ± 0.00
500 9.45 ± 22.45 18.02 ± 38.18 0.00 ± 0.00
750 39.90 ± 95.30 85.59 ± 158.43 0.00 ± 0.00
1000 11.05 ± 22.63 127.12 ± 112.45 0.00 ± 0.00
2000 64.45 ± 116.55 208.47 ± 143.58 0.00 ± 0.01
3000 34.70 ± 70.67 221.62 ± 167.87 0.01 ± 0.02
4000 77.05 ± 76.21 328.00 ± 176.15 0.01 ± 0.05
5000 104.70 ± 121.97 246.43 ± 154.40 0.02 ± 0.06
7500 222.60 ± 131.66 356.08 ± 158.83 0.07 ± 0.13
10000 171.60 ± 178.11 332.65 ± 181.49 0.10 ± 0.27

k = 50 500 14.95 ± 23.95 15.52 ± 27.44 0.00 ± 0.00
750 42.70 ± 94.25 6.27 ± 18.75 0.00 ± 0.00
1000 36.65 ± 91.01 6.36 ± 18.53 0.34 ± 1.52
2000 98.60 ± 120.17 52.29 ± 85.57 0.04 ± 0.16
3000 73.05 ± 91.01 133.11 ± 149.63 5.61 ± 15.62
4000 83.45 ± 70.03 118.42 ± 96.65 11.73 ± 29.06
5000 135.85 ± 70.49 144.44 ± 160.20 13.46 ± 24.58
7500 218.20 ± 200.77 310.70 ± 147.65 30.54 ± 83.74
10000 216.85 ± 178.82 293.85 ± 175.81 29.21 ± 116.62

Table 4 shows when all three methods found their best solutions on scale-
free graphs. Similar to random graphs, we see that tabu search is substantially
faster than CMSA or the IP model. Furthermore, like random graphs, the time
required by tabu search gradually increases with increasing values of n and the
time requirements for k = 10 are lower than k = 50. Finally, CMSA usually
takes more time to find its best solution compared to the IP model, however,
the solutions it finds are almost always superior to that of the IP model.
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5 Conclusions

This paper has investigated the use of a tabu search algorithm for the max-
imum happy vertices problem. In comparison to an IP solver and a CMSA
method, we have found that it is very efficient at finding good quality so-
lutions (lower bounds), particularly with larger problem instances. Moreover,
these solutions are found significantly more quickly than previous known meth-
ods for this problem. We have also proposed a method for computing upper
bounds efficiently, which is more effective than our IP optimiser on very large
problem instances. Furthermore, we show that a method to impose additional
precoloured vertices can lead to a more efficient overall tabu search algorithm.
Additionally, we are able to determine the “hardness” of problem instances
via the use of probabilistic arguments.

While tabu search seems quite effective at finding good heuristic solutions
(especially for large instances), combining it with other approaches might fur-
ther improve the overall performance of the ensuing methods. One future pos-
sibility would be to develop a matheuristic approach that combines both the
tabu search and IP. Since tabu search is extremely quick, it can be used very
efficiently with IP methods such as Lagrangian relaxation or column genera-
tion to produce fast local improvements. Another option is to combine tabu
search with CMSA, where the populations of solutions for the CMSA com-
ponent can be found via tabu search strategies. These hybrids might provide
improvements over the individual methods by utilising their relative advan-
tages.

We have presented a first step to obtaining upper bounds. This approach
is quite effective for small problem instances (outperforming IP for scale-free
graphs) and we are currently exploring algorithms and strategies (including a
matheuristic) that can improve on these bounds.
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(eds) Combinatorial Algorithms: IWOCA 2016, Lecture Notes in Computer
Science, vol 9843, Springer Cham., pp 281–292
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