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Abstract
Most state-of-the-art algorithms for theVehicle Routing Problem, such as Branch-and-
Price algorithms or meta heuristics, rely on a fast feasibility test for a given route. We
devise the first approach to approximately check feasibility in the Stochastic Vehicle
Routing Problem with time windows, where travel times are correlated and depend on
the time of the day.Assuming jointly normally distributed travel times, we use a chance
constraint approach to model feasibility, where two different application scenarios are
considered, depending on whether missing a customer makes the rest of the route
infeasible or not. The former case may arise, e.g., in drayage applications or in the
pickup-and-delivery VRP. In addition, we present an adaptive sampling algorithm that
is tailored for our setting and is much faster than standard sampling techniques. We
use a case study for both scenarios, based on instances with realistic travel times,
to illustrate that taking correlations and time dependencies into account significantly
improves the quality of the solutions, i.e., the precision of the feasibility decision.
In particular, the nonconsideration of correlations often leads to solutions containing
infeasible routes.

Keywords Stochastic VRP · Time windows · Correlated travel times · Dynamic
travel times · Chance constraints
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1 Introduction

Vehicle Routing Problems (VRP) were and still are subject of countless studies in the
literature of operational research. These problems consist in finding a set of vehicle
routes serving certain customer requests with the minimum total travel cost. The term
VRP in general refers to the deterministic problem, in which all the data are known and
not subject to uncertainty. However, in practice, due to a variety of influences such as
traffic jams,weather, customer availability etc., the real situation is often unpredictable,
so that a solution of the deterministic problem in most cases produces solutions that
are far from optimal in reality. To deal with this problem, specific approaches for
addressing these uncertainties are needed.

The aim of this paper is to devise a new approach to check the feasibility of routes
in the VRP with time windows (VRPTW) assuming stochastic travel times which
can be used in branch-and-price algorithms as well as in many heuristic frameworks.
Uncertainty is taken into account in several ways: firstly, the cost of a route depends
on its expected travel times and is hence a random variable itself. Secondly, if a driver
arrives too early at a customer’s location, the resulting waiting time has to be taken into
account. Our model allows to calculate different costs for waiting and driving. Thirdly,
and most importantly, a route may turn out to be infeasible under certain realizations
of the travel times, due to the risk of missing some time window.

Unlike many other approaches presented in the literature, we explicitly deal with
dependent travel times in our approach, assuming a joint normal distribution. In prac-
tice, neighboring streets often have highly correlated travel times, so that taking into
account the dependencyof travel times is important in order to obtain feasible solutions.
This is also confirmed by our computational study: considering such dependencies
improves the precision of the solutions significantly. The importance of correlations
between travel times has also been underlined in Park and Laurence (1999).

Our approach can be used in any context where single routes are considered sep-
arately. This is the case, e.g., in the well-known set partitioning model, where the
variables correspond to potential routes that are either enumerated in a first phase
or are generated on the fly in a column generation approach. Also many heuristic
approaches produce potential routes that have to be checked individually for feasibil-
ity and therefore our proposed feasibility check can be integrated easily.

The solution method proposed in this paper is based on the chance constraint
approach, where a route is accepted if the risk of a failure stays below a given thresh-
old. We distinguish between two application scenarios. In the first scenario, the route
is considered infeasible if for any of the customers on this route, the probability of
missing her time window is too high. This means that the infeasibility for every cus-
tomer is checked independently. Such a scenario occurs in applications that consist of
only deliveries, e.g., post delivery, or only pickups, e.g., garbage disposal. We present
a (single) chance constraint formulation for this scenario. In the second scenario, miss-
ing a customer’s time window may render the entire route infeasible. Therefore, we
aggregate the risk of failure for all customers and reject a route if the cumulated risk of
failure is too high. The latter approach applies to variants of the VRP where pickups
and deliveries are performed by the same vehicles, so that missing a customer might
imply that some following customers cannot be served any more, e.g., due to lack of
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space in the vehicle. Another example for this is drayage, in which missing a customer
can lead to a lack of empty containers at a later stop. In this situation, we are interested
in the (joint) probability that at least one of the time windows is missed. For this set-
ting, we present a joint chance constraint formulation. Moreover, for obtaining a more
accurate stochastic model, we propose to consider truncated probability distributions
in this case.

In both cases, we use and extend an idea of Ehmke et al. (2015). It addresses the fact
that, due to possible waiting times, the arrival times at subsequent customers are not
normally distributed any more. It is proposed in Ehmke et al. (2015) to approximate
these travel times, which can be defined as maxima between two normally distributed
variables, again bynormally distributed travel times,with the same expected values and
variances. In this context, we also refer the reader to Clark (1961), Nadarajah and Kotz
(2008) and Sinha et al. (2007). We extend this approximation to the correlated case
by also considering and updating the covariances between travel times. Additionally,
we consider a situation where travel times change over the day, meaning that the time
needed to travel an arc depends on when the arc is traversed.

It turns out that these extensions, though being computationally more expensive,
lead tomuchmore precise assessments of the feasibility of a route in realistic situations.
In fact, our experiments on a set of instances with realistic travel times show that
ignoring covariances leads to the creation of routes that are actually infeasible, when
validated by sampling. The number of infeasible routes is decreased significantlywhen
including covariance information in our algorithm. When travel times vary over the
day, the difference between our approach taking this into account and an approach
based on average travel times, is even larger, with many infeasible routes produced
in the latter approach and, at the same time, objective values being better for our new
algorithm.

The main purpose of our experiments is to show that considering covariances is
crucial for an accurate feasibility check when instances with realistic travel times are
solved. Additionally, we show that our proposed algorithms are a reliable feasibility
check. As long as we do not consider time-dependent travel times (as in Section 4.2),
the feasibility check could as well be performed by sampling, which would even be
faster than our approach. However, we ultimately aim at combining correlations and
time dependency, in which case sampling will not be a practicable approach any more;
see our discussion in Sect. 4.2.2.

1.1 Literature review

Other publications using the chance constraint approach for dealing with time win-
dows are Ehmke et al. (2015) with the assumption of independent travel times and Li
et al. (2010) with independent travel and service times, others set restrictions on the
probability that a vehicle’s capacity is exceeded Dinh et al. (2018) and on the length of
the travel time Nahum and Hadas (2009). In Li et al. (2010), travel and service times
are random variables following a normal distribution. In particular, together with the
chance constraint approach, they propose to formulate the stochastic VRP with time
windows (SVRPTW) as a two-stage stochastic programming model with recourse.
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This consists in determining the route scheduling in the first stage, i.e., before the
stochastic travel and service times are known, and in taking recourse actions to induce
a penalty on the objective function in the second stage, i.e., once the two variables
are realized. Unlike the chance constrained approach, stochastic programming models
with recourse take into account the possibility of route failure and the resulting costs.

InDinh et al. (2018), the goals are to compute lower bounds on theminimumnumber
of vehicles required to serve a subset of customers and to present a pricing for the
branch-and-cut-and-price (BCP) approach for the chance constrained VRP problem.
The authors devise an improved relaxed pricing for independent normal demands and
an extension to distributionally robust chance constraints. They show an interesting
comparison between the chance constraint VRP (CCVRP) and the recourse models
in the case of independent normal distribution. The recourse they assume is returning
to the depot whenever a vehicle’s capacity is exceeded. From the comparison, they
conclude that “the CCVRP model tends to yield solutions that are high quality for the
recourse model, whereas the reverse is not true. In addition, the CCVRP model is not
dependent on a particular assumption of the recourse taken, and can be solved also
when customer demands are not independent” Dinh et al. (2018).

Nahum and Hadas (2009) address the Stochastic Time-Dependent VRP (STD-
VRP). Their algorithm is based on the savings algorithm of Clarke andWright (1964),
designed for solving the deterministic CVRP. For transforming the stochastic and
time-dependent data to deterministic data, they use the average value (average time
for each time period and probability intervals), the best value (minimal time for all time
periods, regardless of the probability) and the worst value (maximal time for all time
periods, regardless of the probability) filters. In this way a candidate list of different
deterministic estimators can be built for calculating routes, that are then analyzed by
simulation. The authors of Nahum and Hadas (2009) state that “Based on our findings
for stochastic time-dependent vehicle-routing problems, the results of the STDVRP
are similar to the results of the saving algorithm for CVRP”.

Some reviews of SVRP literature can be found in Gendreau et al. (1996), in the
detailed Oyola et al. (2018) andOyola et al. (2017), and in Bastian and Rinnooy (1992)
for the case of uncertain, independent and identically distributed customer demands.
Articles dealing with uncertain travel times are Ehmke et al. (2015), Nahum andHadas
(2009), then Tas et al. (2013, 2014a, b) and VanWoensel et al. (2003). Among these, in
particular Nahum and Hadas (2009) and Tas et al. (2014a) study the time dependent
case, in which travel times are stochastic and vary during the day. Vareias et al. (2019)
deal with stochastic VRPs with uncertain travel times using chance constraints. As a
subproblem, they solve the assignment of the time windows to optimality. Uncertain
demands are considered in Dinh et al. (2018), Golden and Yee (1979), Guo and Mak
(2004), and Novoa et al. (2006). An SVRP with simultaneous pickup and delivery
under uncertain demands and travel times is dealt with by Hou and Zhou (2010).
For works based on stochastic travel and service times, the reader is referred to Li
et al. (2010), Miranda and Conceicao (2016), Zhang et al. (2013), and Gutierrez et al.
(2016), where the latter solves the problem via a multi population memetic algorithm.
For a VRP with stochastic service times only we refer to Errico et al. (2016).

Several papers assume soft time windows, namely Guo and Mak (2004), Tas et al.
(2013, 2014a, b), and Zhang et al. (2013). Concerning the assumption of independence
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and dependence of the uncertain variables, Ehmke et al. (2015) assume independent
travel times. Independent travel and service times are assumed in Li et al. (2010) and
Miranda and Conceicao (2016). Dinh et al. (2018) consider correlated demands, while
Golden and Yee (1979) assume that demands follow a Poisson distribution and show
extensionswith theBinomial,Negative-Binomial andGammadistributions for solving
the case of independent demand; in case of correlation they assume multivariate nor-
mally distributed demands. Rajabi-Bahaabadi et al. (2019) consider correlated travel
times. For early and late arrival times at the customers, penalties are incurred. They
solve the problem with a max-min ant colony system hybridized with a tabu search
algorithm. Their exploratory analysis on real travel time data shows that travel times
are significantly correlated and an appropriate candidate formodeling their uncertainty
is the shifted log-normal distribution. Bakach et al. (2018) model a vehicle routing
problemwith a makespan objective incorporating both stochastic and correlated travel
times.

With respect to solution methods, the majority of publications opt for heuristics
and metaheuristics. Guo and Mak (2004) use a genetic based algorithm, Van Woensel
et al. (2003) an Ant Colony Optimization heuristic, Dinh et al. (2018) adapt and extend
the Clarke andWright’s heuristic Clarke andWright (1964) to obtain primal solutions
to the chance-constrained VRP and investigate a Dantzig-Wolfe formulation, Golden
and Yee (1979) as well as Lambert et al. (1993) also use a heuristic procedure based
on Clarke andWright (1964). For the computational experiments, Ehmke et al. (2015)
embed the feasibility check and the estimation of arrival and start-service times into
a tabu search algorithm. Other papers which use the tabu search are Li et al. (2010),
Tas et al. (2013), and Zhang et al. (2013). Recourse methods are used in Errico et al.
(2016), Li et al. (2010), Novoa et al. (2006), and Zhang et al. (2013). Goel et al. (2019)
propose a modified ant colony system to solve a vehicle routing problem with time
windows having stochastic customer demands and stochastic service times.

Particular attention has been paid to the paper of Ehmke et al. (2015), whose study
can be considered at the basis of the presented paper. Summarizing, they deal with a
SVRPTW assuming that the time to travel from one customer to another is normally
distributed. Their approach is based on the (single) chance constraint method, which
consist in accepting a route if the probability of arriving at each customer on time
is greater or equal to a fixed threshold. Another assumption they make is that if a
vehicle arrives at a customer before the beginning of her time window, then it must
wait until the time window starts. One of the main assumptions of their study is
the independence of the travel cost variables. Their interpretation of the correlation
between arc travel times is that it generally decreases over time; “that is, although the
travel time of two arcs may be correlated at any given time, the correlation of the travel
time of one arc at the current time with the travel time of another arc at some future
time (i.e. after intervening travel and service time) will be less pronounced” Ehmke
et al. (2015). In their study, the time-dependency of travel times is not considered. For
their computational experiments, they embedded the feasibility check used in route
construction as well as the estimation of arrival and start-service times into a tabu
search algorithm.
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1.2 Our contribution

We present a new approach for checking the feasibility of routes of a wide class
of variants of the VRPTW subject to stochastic travel times. The most important
contributions of this paper are

– an investigation of the importance of considering correlations between travel times
by solving instances with realistic travel times;

– an improved sampling algorithm for situations in which we only require a decision
whether a given threshold is exceeded or not;

– an approach for checking the feasibility of routes for the single chance constrained
routing problem with correlations, not based on sampling;

– an investigation of the importance of considering travel times varying over the day
by solving instances created with data based on realistic travel times;

– an approach for checking the feasibility of routes for the single chance constrained
routing problem with time dependencies, not based on sampling;

– an approach for checking the feasibility of routes for the joint chance constrained
routing problem with and without correlations, not based on sampling;

– an estimation of the waiting times of the vehicles at the customer locations that
can be used in penalty based approaches.

The main contribution of the paper is the description of an algorithm for checking the
feasibility of routes considering correlations and time dependencies at the same time
for single chance constrained routing problems. We show that in this setting sampling
is not an option and therefore to the best of our knowledge our approach is the only
one that can be used.

1.3 Outline of the paper

Section 2 presents some notation for the problem we consider. In Sect. 3, we describe
our idea of adaptive sampling. Section 4 deals with the single chance constrained
version of the problem. In Sect. 5, an approximation of the joint chance constrained
problem is discussed. The paper terminates with a summary and a discussion of pos-
sible extensions in Sect. 6. In Appendix A, some stochastic formulas used in the
proposed algorithms are listed.

2 Preliminaries and notation

We aim at solving Vehicle Routing Problems with TimeWindows subject to uncertain
travel times. Extending the terminology of Toth and Vigo (2002) for the deterministic
version of the problem, we will refer to this class of stochastic problems as SVRPTW.
Every customer is visited exactly once by exactly one vehicle and all vehicle routes
start and end at a single depot.

More formally, we assume that a finite set C of nodes is given, where 0 ∈ C
corresponds to the depot and the remaining nodes in C \ {0} correspond to customers
to be served. Moreover, we assume that each pair of nodes i, j ∈ C is connected by a
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Table 1 Basic notation defining our instances

0 Depot node

C Set of customer nodes including depot

E Set of all arcs

Er Set of arcs contained in a route r

ae Earliest start time of service at end node of arc e

be Latest start time of service at end node of arc e

Xe Random variable describing the travel time of arc e

μe Expected travel time of arc e

σe, f Covariance between travel times of e and f

σe Standard deviation of travel time of arc e

ε Threshold for feasibility of a route

directed arc (i, j) ∈ E , we thus deal with a complete graph G = (C, E) throughout
the paper. A route r in G is given by an ordered list of distinct customers cr1 , . . . , crk ,
the set of its arcs is denoted by Er := {(0, cr1), (cr1 , cr2), . . . , (crk−1 , crk ), (crk , 0)}.
In our problem, each customer is assigned a deterministic time window. It will be
convenient to index the time windows by arcs, thus for an arc e = (i, j) we will
denote by ae (be) the earliest (latest) start time of service at customer j , so that the
time window is defined by [ae, be].

All travel times are uncertain and thusmodeled as randomvariables.More precisely,
we make the assumption that the vector X ∈ R

E , which defines the travel time Xe

for each arc e, is jointly normally distributed with means μ ∈ R
E+ and covariance

matrix � ∈ R
E×E , i.e., X ∼ N (μ,�); we will denote the entries of � by σe, f

for e, f ∈ E . For simplicity, we assume that � is positive definite.
In particular, the travel time of each single arc e is again normally distributed

with Xe ∼ N (μe, σ
2
e ), where we set σe = √

σe,e. This also implies that the travel
time of a route, given as the sum of travel times of the contained arcs, is normally
distributed – however, this is only true as long as no time windows are considered. In
Sect. 4.2 we additionally assume that travel times are day time dependent, e.g., at 8
a.m. we assume to have more traffic than at midnight. We model this by replacing the
expected value and the variance of an arc by functions that depend on the day time.
Finally, we will use ε ∈ (0, 1) throughout the paper to denote the threshold for the
risk of a failure, i.e., we will accept a route if the probability that it is infeasible, with
respect to the uncertain travel times, is at most ε. For the reader’s convenience, we
summarize this notation in Table 1.

In this paper, we restrict ourselves to discussing the following two questions with
respect to a fixed route r :

(a) is route r feasible with a high enough probability?
(b) if so, what is the expected cost of route r?

This ismotivated by the fact thatmany exact as well as heuristic approaches for solving
vehicle routing problems can be reduced to the above tasks, in particular when the
decision of (a) is a difficult problem in itself. An important example for this class of
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approaches is the set partitioning approach to the VRP, which is often combined with
column generation. Assuming that the full set of feasible routes R is known, together
with the corresponding cost cr for each r ∈ R, we can model the final optimization
problem as follows:

min
∑

r∈R
cr xr

s.t.
∑

r∈R
i∈r

xr = 1 ∀i ∈ C \ {0}

xr ∈ {0, 1} ∀r ∈ R .

Here we choose a cheapest subset of all routes such that each customer is visited
exactly once by these routes. Throughout the paper, we use this formulation in our
experiments. Since all constraints that donot dependon the travel time, such as capacity
constraints, can be checked easily in a deterministic preprocessing, we do not consider
these constraints in the following. In particular, vehicles with infinite capacity are
assumed.

In Sects. 4 and 5, we will concentrate on the above questions (a) and (b) in two
different application scenarios. In the first one, a route becomes infeasible if we miss
the time window of any of the customers with probability larger than 1 − ε; see
Sect. 4. In the second scenario, a route is infeasible if the probability of missing at
least one customer exceeds 1− ε; see Sect. 5. Even if the difference between the two
scenarios seems very subtle, the second approach is much more challenging from a
mathematical (and complexity-theoretic) point of view, as it requires to deal with joint
chance constraints. In fact, we can only deal with the latter case in an approximate
way. In both cases, the expected costs have to take possible waiting times into account.

3 Adaptive sampling

A standard approach for testing feasibility of a given route r would be to sample
the distribution of the involved arc lengths and to check whether the given chance
constraints hold with high enough probability. Clearly, the crucial question here is
how many samples to compute. If the number is chosen too high, it takes too much
time to compute them. If it is chosen too small, the result will be unreliable. However,
in our context, we are not interested in the exact probabilities that a route is feasible
or not. Instead, we only have to decide whether this probability is greater than the
threshold 1 − ε. This can be exploited in order to adaptively choose the number of
samples, using the following classical result due to Hoeffding (1963).

Theorem 1 (Hoeffding (1963)) After sampling independent (not necessarily identi-
cally distributed) Bernoulli random variables at most 1

2γ 2 ln(
2
δ
) times, the deviation

of their mean from the expected value differs by at most γ with probability at least
1 − δ, for every γ > 0 and δ ∈ (0, 1).

Here, a Bernoulli distribution is a probability distribution of an experiment with binary
outcome. E.g., to be sure with probability 99% that the mean does not deviate more
than 1% from the real expected value, at most 26492 samples are needed. Algorithm 1
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exploits this result in order to reduce the number of samples, in situations where
infeasibility can be decided early with a given probability 1 − δ.

Algorithm 1 Adaptive sampling
Input: route r ; constant δ ∈ (0, 1); constant smax
Output: decision if r is feasible with confidence level at least 1 − δ; cost of r
1: stot = 0, sinf = 0 � total number of (infeasible) samples computed
2: repeat
3: sample the travel times of the arcs in r and set stot += 1
4: if route r is infeasible with the resulting travel times then
5: sinf += 1
6: end if
7: p = sinf

stot
� percentage of infeasible outcomes

8: γ = |p − ε|, ŝ = 1
2γ 2 ln( 2

δ
) � number of samples needed by Theorem 1

9: until ŝ ≤ stot or stot = smax � stop when enough samples
10: if p > ε then
11: return false
12: end if
13: Perform smax − stot additional samples to determine the cost cr of r
14: return true and the cost cr

Let smax be the number of samples that have to be performed. Building on The-
orem 1, Algorithm 1 stops earlier when the probability of infeasibility of the given
route can be proven to be higher than a given threshold 1 − δ. With this approach
Algorithm 1 avoids a huge number of unnecessary samples compared to the standard
sampling and is able to save a huge amount of running time. For routes that are feasible,
smax samples are used to guarantee that the computed cost of the route is as accurate
as in the case of standard sampling.

In the following sections, we will use this approach for comparison and validation.
Our main objective is to develop methods not based on sampling.

4 SVRPTW – single chance constraints

In this section, we assume that all demands are deliveries, deterministic and known
before the optimization process, and not split. A typical application for this scenario
are deliveries from a post office. An important characteristic of this kind of problem
is that if a customer in a route happens not to be served for some reason, the next
customer in this route can still be served by the same vehicle. This is because the
service failure at one customer does not undermine the service at the next customer.
Therefore, in the chance constraint approach to be developed, a risk level of service
failure is fixed for each customer independently. In other words, the feasibility of a
route is determined considering the union of the single chance constraints in the route.
In the following, we describe our approach in mathematical and algorithmic terms
and show experimental results concerning solution quality and running times. We first
address the issue of correlations in Sect. 4.1, then we consider time-dependent travel
times in Sect. 4.2.
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4.1 Including correlations

Our first aim is to extend the approach of Ehmke et al. (2015) in order to deal with
correlated travel times. As we will show in our experiments in Sect. 4.1.2, taking
correlations into account leads to a much more precise assessment of the feasibility
of a route.

4.1.1 Algorithm

Assume we are given a route r with arc set Er = {e1, . . . , ek, ek+1} (in this order).
As already mentioned, the chance constraint consists in placing a restriction on the
probability that a given customer time window is missed. For the first customer, the
constraint is easily modeled as P(Xe1 > be1) ≤ ε, which is equivalent to be1 ≥
μe1 + �−1(1 − ε)σe1 where � denotes the cumulative distribution function of the
standard normal distribution. However, when arriving before ae1 , the driver has towait.
This may lead to other costs than driving. More importantly, the potential waiting time
will influence the arrival times at the following customers in the route. In particular,
the distributions of the arrival times at the subsequent customers in the route have to
be re-modeled.

As already discussed by Ehmke et al. (2015), the adapted arrival times at a cus-
tomer ci do not follow a normal distribution any more. Anyway, they propose to
approximate the resulting distributions by normal distributions again, iteratively at
every customer, and show experimentally that the resulting error is negligible. More
precisely, the idea is to compute means and variances of the distributions of every
arrival time and to replace the random arrival times by the corresponding normal
distributions.

In this section, we follow the same idea, relaxing however the assumption of inde-
pendent travel times and instead taking into account the information of the correlations
between routes and arcs. This is more complicated to do because we now also have
to calculate the covariances between routes and arcs. Formally, we replace the vector
containing the arrival time at the current node and the travel times of the subsequent
arcs in the route by a jointly normally distributed vector having the same means and
covariances. Clearly, this generalization leads to a higher running time due to the
quadratic input in terms of the covariances, but we think it is worth to follow this
approach for having a more realistic formulation and better solutions, as we will show
in detail in the following Sect. 4.1.2.

Our approach is described in Algorithm 2. After initialization in Lines 1–6, it
loops through the customers of the given route r . It first updates the distribution
information of the arrival time at the next customer (expk and vark) as well as its
covariance with all arcs f coming later in the route (covk, f ); see Lines 8–14. Next,
the route is discarded in case the chance constraint is violated (Line 15–17). Finally,
the distribution information is updated once again due to a possible waiting at the
current customer (Lines 18–22). All formulas needed for updating the distributions
are derived in Appendix A.

Compared to themethod proposed in Ehmke et al. (2015), Lines 3–5, 10–13, 20–22,
and 23 are new. All but the latter concern the calculation of the correlations between
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Algorithm 2 Feasibility check with single chance constraint, taking correlations into
account
Input: route r = (0, r1, . . . , rt , 0)
Output: decision if r is feasible with high probability; expected driving time D; expected waiting timeW

1: k = 0
2: expk = 0, vark = 0
3: for e ∈ Er do
4: covk,e = 0
5: end for
6: W = 0

7: for e ∈ Er \ (rt , 0) do

8: expk += μe
9: vark += σ 2

e
10: vark += 2covk,e
11: for f ∈ Er after e do
12: covk, f += σe, f
13: end for
14: assume X̃k ∼ N (expk , vark )

15: if P(X̃k > be) > ε then
16: discard route r
17: end if

18: expk+1 = E[max{X̃k , ae}] � Formula (A.1)
19: vark+1 = Var [max{X̃k , ae}] � Formula (A.2)
20: for f ∈ Er after e do
21: covk+1, f = Cov[max{X̃k , ae}, X f ] � Formula (A.3)
22: end for

23: W += E[max{ae − X̃k , 0}] � Formula (A.1)
24: k += 1
25: end for

26: D = expk + μ(rt ,0)
27: accept route r and return D and W

arcs and routes that Ehmke et al. (2015) do not consider because of the assumption
of independent travel times. Line 23 calculates the expected waiting time W of the
vehicle at every customer. Together with the expected driving time D, it can be used to
calculate the expected cost of route r , using any function in the two values D and W .

A first comparison between the method involving dependent travel times proposed
in this paper (Algorithm 2) and the method with the assumption of independent travel
times of Ehmke et al. (2015) can be already made. By the introduction of covariances
it is possible to estimate better the variance of the arrival time at every customer and,
consequently, of the travel time X̃k of the route at every step k. Without considering
the covariances between arcs and routes, the variance is underestimated by Ehmke
et al. (2015) in case of positive correlation (see Line 10). For ε < 0.5 (and particularly
for small ε), a smaller value of the variance leads to accepting as feasible a higher
number of routes. A deeper analysis on the comparison between the solution methods
is given in the following Sect. 4.1.2.
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4.1.2 Experimental results

In order to investigate the practical relevance of the approach devised above and to
illustrate the importance of taking correlations into account, we performed a case
study using a set of instances with realistic travel times. The instances used for our
experiments are based on real traffic data for the surroundings of the port of Duisburg.
The port itself is chosen as depot and 19 nearby locations are picked as customer
positions. The expected values and covariances of the travel times were calculated
by a sample of data taken on 25 consecutive days at 3 pm from (www.maps.google.
com). If necessary, we added a value of 10−4 to all diagonal entries of the resulting
covariance matrix in order to guarantee positive definiteness and to avoid numerical
problems. Note that, if any, this has the effect of making the covariances slightly less
relevant with respect to the variances.

Each arc of the graph corresponds to the shortest path between two customers or
the port and a customer at the time point the data is taken. Therefore, an arc does
not necessarily refer to the same path in all of the samples. This seems more realistic
because a driver would always choose the shortest path at a given time, since live
navigation systems can be used to avoid traffic jams. The considered network of
customers and arcs is directed with an asymmetric matrix of the costs that satisfies the
triangle inequality.

The arcs lengths observed in our samples ranged between 5 and 167 minutes, with
an average of 60 minutes. In the resulting instance, the average correlation coefficient
is 0.64 between two adjacent arcs and 0.60 between two non-adjacent arcs. The max-
imum correlation coefficient is 1.00 in both cases. The minimum correlation is –0.79
between two adjacent arcs and –0.81 between two non-adjacent arcs. This confirms
our assumption that it is important to take the covariances into account in real life
instances.

We created 10 different instances that only differ from each other in the time win-
dows. The time windows of each instance were computed randomly in the following
way: for each customer, the lower bound ae of the time window is chosen uniformly
at random as an integer between 0 and 7. The length of all time windows is 1 hour. If
the time windows do not allow a feasible solution for the whole VRP for any of the
algorithms considered, the time windows are recomputed randomly until they do.

In the following, we compare our new Algorithm 2 to the same algorithm using
zero covariances (Algorithm E), which essentially agrees with the algorithm of Ehmke
et al. (2015); to our adaptive sampling algorithm of Sect. 3 with smax = 10, 000 and
δ = 0.01; and to standard sampling with 10,000 samples, by solving the VRP problem
on all 10 instances with each ε ∈ {0.01, 0.05, 0.1}; see Table 2. We then evaluate the
solutions of the algorithms by sampling with 100,000 samples using the covariances,
which enables us to calculate the “real” objective value and count how many of the
chosen routes are actually infeasible. The objective function is D + 1

2W , i.e., waiting
is half as expensive as driving. For every sample with covariances, we calculated a
vector of standard Gaussians z with dimension |E |, multiplied it with a matrix L
calculated by Cholesky decomposition of �, and added the vector of expected values.
For solving the exact VRP we used the Set Partitioning formulation and solved it with
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Table 2 Comparison for Single Chance Constraint with correlations

Algorithm 2 Algorithm E Adaptive Sampling Standard Sampling
ε time # inf. obj. time # inf. obj. time # inf. obj. time # inf. obj.

0.01 61.8 1 1.00 49.2 4 1.00 28.5 0 1.00 234.2 0 1.00

0.05 74.8 0 1.00 58.4 0 1.00 34.6 0 1.00 283.7 0 1.00

0.1 81.0 0 1.00 63.0 1 1.00 39.9 1 1.00 325.0 1 1.00

CPLEX 12.9. All algorithms are implemented in Java version 1.8.0_212 on an Intel(R)
Xeon(R) CPU E5-2680 with 2.8 GHz.

Table 2 consists of fivemain columns. In the first column, the value of ε is specified.
The second column describes the results for the algorithm with covariances and the
third for the algorithm without covariances; the fourth and fifth column contain the
results for sampling. The second to fifth column are divided into three subcolumns
each: the first presents the average cpu time in seconds, the second the total number of
“optimal” solutions containing at least one infeasible route, and the third the objective
of the method divided by the objective of the algorithm with covariances in the cases
in which both methods have produced feasible solutions. In other cases a comparison
would be unfair because the algorithm with more infeasible routes clearly has an
advantage in terms of the objective value.

We can see that ourAlgorithm2 outperforms the algorithmof Ehmke et al. (2015) in
terms of feasibility in 4 out of 30 settings: in these four instances it had less infeasible
routes in the solution than the algorithm of Ehmke et al. (2015) and there was only
one instance in which both algorithms were infeasible. For all other instances, both
algorithms returned the same solution and therefore the objective is the same in all
feasible settings. The algorithm of Ehmke et al. (2015) needs slightly less running
time (between 77 and 79%), which is not surprising because it has to perform less
calculations for every route. On the other hand, it computes more feasible routes
and therefore the gap is not significant. We can conclude that the advantages of the
algorithm considering covariances in terms of feasibility clearly outweigh the slightly
higher running time.The adaptive sampling saves in average around90%of the running
time compared to the normal sampling while keeping the same accuracy. It has the
same amount of infeasible solutions as our Algorithm 2 but is 2 times faster.

4.2 Including time dependency

We next address time dependency, i.e., we now allow that the traveling time of every
arc e in the network varies depending on the time of the day. More precisely, we
assume that the expected value and the variance of the travel time needed for an arc
are functions of the point in timewhen the arc is entered. In practice, the traffic situation
and hence the travel times strongly depend on the time of the day.

The difficulty here is that the time in which an arc is entered is itself a random
variable, so that we have to deal with normally distributed random variables having
expectations and variances that are implicitly defined by random variables again. An
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important modeling issue is how to define the dependency, i.e., which type of functions
to allow. We decided to use a piecewise constant model, as it keeps the definition of
instances easy and at the same time allows to efficiently update expected values and
variances in our algorithm. Alternative approaches could use piecewise linear models
or polynomials, splines, or even trigonometric approximations.

4.2.1 Algorithm

We assume to have information on travel times for a fixed set t0, ..., t� of time points
during the day. We produce two piecewise constant functions describing the distri-
bution at time t for arc e by the expected value μe(t) and the variance σ 2

e (t), given
the values μe(ti ) and σ 2

e (ti ) for i = 0, . . . , �, as μe(t) := μe(ti ) if t ∈ [ti , ti+1] and
analogously for σe(t) (setting t�+1 = ∞).

In our algorithm, we do not know the exact time when arc e is entered, it is given
by a normal distribution. Hence, we have to consider t a random variable. Given its
distribution function Ft , we can obtain the expected parameters for the distribution of
travel time for e as

E[μe(t)] =
�∑

i=0

μe(ti )P (t ∈ (ti , ti+1]) =
�∑

i=0

μe(ti )
(
Ft (ti+1) − Ft (ti )

)

and analogously for σ 2
e (t). This formula is used in Algorithm 3, Lines 6–7. The

remainingparts ofAlgorithm3are analogous toAlgorithm2except that no correlations
are taken into account.

4.2.2 Experimental results

Because we do not have hourly data for more than one day, we artificially extended the
instances described above by using data of one day from the same streets hourly taken
from 8 am to 5 pm. For every edge and for the value of every hour we computed the
quotient to the value of 3 pm. These quotients were multiplied with the expected value
of the edge to generate the expected value for that edge in that time. The variances
remained unchanged, which is a disadvantage to our algorithmwith time dependencies
because in reality the variances also tend to be higher in times of the day with more
traffic, and our algorithm could exploit this information while the other algorithm
cannot.

Results are shown in Table 3. We compare our new Algorithm 3 with Algo-
rithm 2 described above, however without using correlation information, i.e., with
the approach proposed by Ehmke et al. (2015); with our adaptive sampling algorithm
with smax = 10, 000 and δ = 0.01; and with standard sampling with 10,000 samples.
The results show that in 6 out of 30 settings the algorithm without time dependencies
produced infeasible routes, whereas the algorithm taking them into account always
returned feasible solutions. The feasibility was again checked using sampling with
100,000 samples. Also in terms of solution value the algorithm without time depen-
dency is less efficient and returns solutions with a value between 1 and 3 percent

123



On the Stochastic VRP with time windows... 231

Algorithm 3 Feasibility Check with Single Chance Constraint, taking time depen-
dency into account (but no correlations)
Input: route r = (0, r1, . . . , rt , 0)
Output: decision if r is feasible with high probability; expected driving time D; expected waiting timeW

1: k = 0
2: expk = 0, vark = 0
3: W = 0

4: for e ∈ Er \ (rt , 0) do

5: assume S ∼ N (expk , vark )
6: expk += E[μe(S)]
7: vark += E[σ 2

e (S)]
8: assume X̃k ∼ N (expk , vark )

9: if P(X̃k > be) > ε then
10: discard route r
11: end if

12: expk+1 = E[max{X̃k , ae}] � Formula (A.1)
13: vark+1 = Var [max{X̃k , ae}] � Formula (A.2)

14: W += E[max{ae − X̃k , 0}] � Formula (A.1)
15: k += 1

16: end for

17: D = expk + μ(rt ,0)
18: accept route r and return D and W

Table 3 Comparison for Single Chance Constraint with time dependencies (without covariances)

Algorithm 3 Algorithm 2/E Adaptive Sampling Standard Sampling
ε time # inf. obj. time # inf. obj. time # inf. obj. time # inf. obj.

0.01 256.6 0 1.00 34.0 1 1.01 56.1 0 1.00 541.7 0 1.00

0.05 308.1 0 1.00 41.9 2 1.03 68.5 0 1.00 654.6 0 1.00

0.1 338.9 0 1.00 45.6 3 1.03 75.5 0 1.00 695.2 0 1.00

higher. On the other hand, it uses only 12 to 14 percent of the running time compared
to the new algorithm. The adaptive sampling algorithm outperforms the normal sam-
pling by far in running time and is nearly as fast as the algorithm that ignores the time
dependencies. Both sampling approaches did not produce infeasible solutions.

4.3 Combining correlations and time dependency

In the preceding sections, we have explained how to take correlations and time depen-
dency into account separately. It is also possible to combine both in one algorithm. For
this, every time we need to know a covariance σe, f (te, t f ) between two edges e and f ,
we need to compute an expected covariance of a two-dimensional piecewise constant
function over two jointly normally distributed random variables te and t f (the starting
times of the two edges). As before, the starting time of an edge is just the random
variable describing the length of the route up to that time. Therefore, we also need the
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covariances between subroutes. However, we only need to consider subroutes that start
from the depot, so that the number of covariances to be computed remains quadratic
in the route length. These covariances can be computed analogously to the covariance
between the entire route and a single edge. All necessary data can be computed in the
moment when it is required. When using piecewise constant distributions, as above,
we need the joint distribution function of two normally distributed random variables
to calculate the expected covariance. Computing this is numerically challenging but
possible. It is also possible to sample the expected covariance with the given expected
values and covariance matrix for the two starting points. This would lead to a hybrid
approach using a combination of sampling and a deterministic algorithm.

We would like to emphasize that any sampling approach is impracticable when
considering correlations and time dependencies. In both approaches discussed so far,
the same samples could be used for all routes, and the covariance matrix � was
fixed. In particular, the Cholesky decomposition, needed to sample travel times in the
dependent case, had to be computed only once. When considering the time-dependent
case, we need the knowledge about the order of customers in the route already during
the process of sampling. Therefore, we need to consider every route separately and
cannot create one sample used for all routes. Evenworse, since the expected covariance
σe, f (te, t f ) depends on the starting times te and t f now, the Cholesky decomposition
cannot be computed in the preprocessing phase any more, since the matrix � now
depends on te and t f . This computation is further complicated when taking waiting
into account.

As a consequence, sampling is not a practical approach here, so that we cannot
present a meaningful comparison with our approach. Moreover, without a sampling-
based method, we cannot evaluate feasibility and quality of the solutions computed by
our approach as in the last sections. For this reason, we do not present an experimental
evaluation for the case of time dependent and correlated travel times.

5 SVRPTWwith backhauls and linehauls – joint chance constraints

So far, we have assumed that feasibility of a route is determined by a high enough
probability to reach each customer within its time window. An implicit assumption in
our model was that the failure of serving a customer does not influence the feasibility
of the rest of the route directly. We now consider the case where failing to serve a
customer may directly imply the failure of serving one of the remaining customers on
the route, motivated by problems where customer demands can be either deliveries
or a pickups. We will refer to this problem as a Stochastic VRPTW with Backhauls
(pickup) and Linehauls (deliveries), SVRPTW-BL. Note however that our problem
differs from the classical VRP with Backhauls Toth and Vigo (2002), because no
precedence constraints on the deliveries are assumed, and it differs from the VRP with
Pickup and Delivery Toth and Vigo (2002), in that the latter assumes a delivery and a
pickup for each customer.

Our investigation of this VRP variant ismotivated by problems in intermodal freight
transport, for example freight transportation in intermodal containers using trucks,
which involves the distribution of loaded and empty containers between an intermodal
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facility or depot and fixed export and import customers. In these applications, a large
number of different customer request types and container constraintsmayariseBomboi
and Pruente (2018). In particular, if a customer in a route is not served for some reason,
the feasibility of the rest of the route is not guaranteed anymore, e.g., a failed pickup
of an empty container leads to the failure in loading the freight at the next customer
or a failed delivery leads to a lack of space in the truck for a subsequent pickup.

We thus have to guarantee a service level for the whole route and not for each single
customer, that is, we need to consider joint chance constraints in the place of single
chance constraints. In other words, we have to deal with the risk of infeasibility of the
whole route rather that considering the risk of failing to serve any of the customers in
the route independently. For simplicity, we assume here that failing to serve any cus-
tomer within its timewindowmakes the entire route infeasible. In the remainder of this
section, an algorithm for this case, using joint chance constraints in an approximate
way, is provided and computational results are presented. In principle, by a combi-
nation of our proposed algorithms for the single and the joint chance constraint case,
our approach could be extended to the case where not all failures render the rest of
the route infeasible. Besides having to deal with joint chance constraints now, another
complication is that, after passing a customer, distributions have to be truncated, as
we are only interested in travel times under the assumption that the customers visited
so far have been served in time.

5.1 Algorithm

We now present an algorithm to address the SVRPTW-BL problem described above;
see Algorithm 4. It takes correlations into account, but does not deal with time depen-
dency. With respect to Algorithm 2 , two major changes arise. Firstly, instead of
checking a chance constraint for every customer, we have to check one chance con-
straint for the whole route. Unfortunately, dealingwith joint chance constraints is hard,
and there is no compact formula modeling the joint risk, therefore it is often approx-
imated in the literature by calculating the risk of every single event (here a failure of
one customer), summing it up (using εtotal in Algorithm 4), and comparing it to the
maximum allowed risk for the joint chance constraint ε. We follow this approach; the
corresponding changes in Algorithm 4 concern Lines 19-22.

When Algorithm 4 ends with a feasible route, i.e. when εtotal ≤ ε, the value εtotal
represents the probability of the route failure. This information could also be used
in a bicriteria-style approach: instead of discarding all routes with εtotal > ε, one
could sort the routes by their risk and solve the optimization problem for different risk
levels ε without having to recompute the feasible routes. E.g., in a column generation
approach, increasing ε would then just lead to the addition of more columns.

The second change concerns the truncation discussed above: for calculating the
expected value and variance for later arrival times in the route, only the scenarios
being feasible so far should be considered. E.g., if a driver misses the time window of
the first customer and thus cannot serve it, he cannot continue to the second customer,
and therefore the arrival time in this scenario does not influence the arrival time at
the second customer, and so on. To model this, we use a one sided truncated normal
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distribution of the upper tail (using μ̂ and σ̂ to denote expectations and covariances
after truncation). After checking the chance constraint, the truncation for the expected
value and for the variance is performed in Line 23 and 24. As we consider joint normal
distributions, the truncation of one variable also affects the covariances between two
other variables, so the whole submatrix of � corresponding to the current route has to
be updated; see Lines 25–28. Note that the truncated distributions are again replaced
by normal distributions. The formulas used for computing the truncated distributions
can be found in Appendix A.

Algorithm 4 Feasibility Check for Joint Chance Constraint for a Route r
Input: route r = (0, r1, . . . , rt , 0)
Output: decision if r is feasible with high probability; expected driving time D; expected waiting time W
1: k = 0
2: expk = 0, vark = 0
3: for e ∈ Er \ (rt , 0) do
4: covk,e = 0
5: end for
6: for e, f ∈ Er with e 
= f do
7: μ̂e = μe
8: σ̂e, f = σe, f
9: end for
10: W = 0, εtotal = 0
11: for e ∈ Er do
12: expk += μ̂e
13: vark += σ̂ 2

e
14: vark += 2covk,e
15: for f ∈ Er after e do
16: covk, f += σ̂e, f
17: end for
18: assume X̃k ∼ N (expk , vark )
19: εtotal += P(X̃k > be)
20: if εtotal > ε then
21: discard route r
22: end if
23: expk = E[X̃k | X̃k < be] � Formula (A.5)
24: vark = Var [X̃k | X̃k < be] � Formula (A.7)
25: for f , g ∈ Er after e with f 
= g do
26: μ̂ f = E[X f | X̃k < be] using covk, f � Formula (A.5)

27: σ̂ f ,g = Cov[X f , Xg | X̃k < be] using covk, f and covk,g � Formula (A.6)
28: end for
29: assume X̃k ∼ N (expk , vark )
30: expk+1 = E[max{X̃k , ae}] � Formula (A.1)
31: vark+1 = Var [max{X̃k , ae}] � Formula (A.2)
32: for f ∈ Er after e do
33: covk+1, f = Cov[max{X̃k , ae}, X̂ f ] � Formula (A.3)
34: end for
35: W += E[max{ae − X̃k , 0}] � Formula (A.1)
36: k += 1
37: end for
38: D = expk + μ(rt ,0)
39: accept route r and return D and W
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Table 4 Comparison for Joint Chance Constraint with correlations

Algorithm 4 Algorithm 5 Algorithm 6 Adaptive Sampling Standard Sampling

ε time # inf. obj. time # inf. obj. time # inf. obj. time # inf. obj. time # inf. obj.

0.01 303.5 0 1.00 55.1 2 1.00 45.5 0 1.00 23.1 0 1.00 179.7 0 1.00

0.05 374.0 1 1.00 65.4 2 1.00 53.3 1 1.00 31.2 1 1.00 248.0 1 1.00

0.1 419.8 0 1.00 71.0 1 1.00 60.9 0 1.00 36.2 1 1.00 325.1 1 1.00

5.2 Experimental results

In our experimental evaluation, we create instances in exactly the same way as
described in Sect. 4.1.2, except that different sets of time windows may now be
discarded due to infeasibility. Table 4 shows the results of a comparison between
Algorithm 4 considering correlations and truncations; the variant of it not considering
correlations (Algorithm 5); another variant not performing truncations but consider-
ing correlations (Algorithm 6); our adaptive sampling algorithm with smax = 10, 000
and δ = 0.01; and normal sampling with 10,000 samples. The algorithm considering
correlations and truncations returned in only one of thirty settings an infeasible route.
Ignoring the truncations did not lead to more infeasible settings, but decreased the run-
ning times by around 85 percent. Ignoring the correlations, on the other hand, led to
five times more infeasible settings. In fact, 5 out of 30 settings resulted in an infeasible
route in this approach. At the same time, it did not even run faster than the algorithm
ignoring truncations because it allowsmore feasible routes, which outweighs the addi-
tional running time per route. Again adaptive sampling is much faster than the normal
sampling by keeping the same accuracy. Both sampling methods made two mistakes,
which is double asmuch as Algorithm 4. As a conclusion, the recommended algorithm
for solving instances of SVRPTW-BL considers correlations but ignores truncations.

6 Conclusion

We devised several algorithms for checking the feasibility of a given route in the
Stochastic Vehicle Routing Problem with time windows and with correlated and time-
dependent travel times. They are either based on closed formulas or sampling. We
consider either single or joint chance constraints depending on whether missing a
customer’s time window makes the entire route infeasible or not. These algorithms
can be embedded into most algorithms for solving the Vehicle Routing Problem with
hard time windows and waiting times as a feasibility check. Due to the fact that the
algorithms also compute expected waiting times, they can be easily adapted to variants
of the problemwith soft timewindows andpenalties. The experimental results obtained
in our case study show that the algorithms assess the feasibility of a given route with a
reasonable precision, in particular when correlations are taken into account. However,
for a large number of samples, the latter approach is time consuming.
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Considering the complementary strengths of the deterministic and the sampling
approach, one could also investigate combinations of both approaches. E.g., one could
check for a given route how likely it is to become infeasible, and if the result is very
close to the value of acceptance, do a second check performing sampling with a high
number of samples – possibly only for routes that were accepted, but very close to be
not accepted, because adding an infeasible route is in general more problematic than
missing a feasible one. Another hybrid approach would be to use sampling with a high
number of samples just as a callback inside the optimization process: first compute an
optimal solution using our approach, then check the feasibility of all routes used in
this solution by sampling, and if some route turns out to be infeasible, remove it and
re-optimize. The advantage of this approach is that the sampling has to be performed
for a very small set of routes and can thus be performedwith a large number of samples
in reasonable time.
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A Computation of updatedmoments

For the convenience of the reader, we explain in the following how to compute the
expected values, variances and covariances of the random variables appearing in Algo-
rithms 2 and 4. For this, we use the assumptions and notation of Sect. 2, in particular,
we assume X ∼ N (μ,�) and thus Xi ∼ N (μi , σ

2
i ). For indices i1, . . . , ik , we

consider the joint density function of Xi1 , . . . , Xik , given by

fXi1 ,...,Xik
(s1, . . . , sk) := 1√

(2π)k det (�̄)
e− 1

2 (s−μ̄)��̄−1(s−μ̄) ,

where μ̄ denotes the vector with entries μi1 , . . . , μik and �̄ the corresponding sub-
matrix of �. We again assume here that � and hence �̄ is positive definite.
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Rectified Gaussian distributions

We first consider the random variable max{c, Xi } for a constant c. For the expected
value, we obtain

E(max{c, Xi }) =
∫ ∞

−∞
max{c, s} fXi (s) ds

=
∫ c

−∞
c fXi (s) ds +

∫ ∞

c
s fXi (s) ds

= cP(Xi ≤ c) + μi P(Xi ≥ c) + σi i fXi (c)

(A.1)

To compute the variance

Var(max{c, Xi }) = E(max{c, Xi }2) − E(max{c, Xi })2 (A.2)

we can use (A.1) and

E(max{c, Xi }2) =
∫ ∞

−∞
max{c, s}2 fXi (s) ds

=
∫ c

−∞
c2 fXi (s) ds +

∫ ∞

c
s2 fXi (s) ds

= c2P(Xi ≤ c) + (μ2
i + σi i )P(Xi ≥ c) + σi i (c + μi ) fXi (c)

Finally, we have

E(X j · max{c, Xi }) =
∫ ∞

−∞

∫ ∞

−∞
t max{c, s} fXi ,X j (s, t) ds dt

=
∫ ∞

−∞

∫ c

−∞
tc fXi ,X j (s, t) ds dt +

∫ ∞

−∞

∫ ∞

c
ts fXi ,X j (s, t) ds dt

= cμ j P(Xi ≤ c) + (μiμ j + σi j )P(Xi ≥ c) + μ jσi i fXi (c)

and thus obtain

Cov(Xi ,max{c, X j }) = E(Xi · max{c, X j }) − E(Xi )E(max{c, X j })
= σi j P(X j ≥ c)

(A.3)

Truncated Gaussian distributions

We next develop formulas for the moments of the random vector X truncated by a
condition Xi < b, where b is again a constant. For the expected values, we have

E(X j | Xi ≤ b) = 1

P(Xi ≤ b)

∫ +∞

−∞

∫ b

−∞
t fXi ,X j (s, t) ds dt

= μ j − σi j
fXi (b)

P(Xi ≤ b)

(A.4)
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and, in particular,

E(Xi | Xi ≤ b) = μi − σi i
fXi (b)

P(Xi ≤ b)
(A.5)

For the covariances, we have

Cov(X j , Xk | Xi ≤ b) = E(X j Xk | Xi ≤ b) − E(X j | Xi ≤ b)E(Xk | Xi ≤ b)
(A.6)

which can be computed using (A.4) and

E(X j Xk | Xi ≤ b) = 1

P(Xi ≤ b)

∫ +∞

−∞

∫ +∞

−∞

∫ b

−∞
tu fXi ,X j ,Xk ,Xi (s, t, u) du ds dt

= μ jμk + σ jk −
(σi jσik

σi i
(b − μi ) + σikμ j + σi jμk

) fXi (b)

P(Xi ≤ b)

As a special case, we obtain a formula for

Var(X j | Xi ≤ b) = Cov(X j , X j | Xi ≤ b) (A.7)

which also applies to the case i = j .
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