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Abstract: We study Pareto-scheduling on an unbounded parallel-batch machine that

can process any number of jobs simultaneously in a batch. The processing time of a

batch is equal to the maximum processing time of the jobs in the batch. We consider two

Pareto-scheduling problems. In one problem, the jobs are partitioned into families and the

jobs from different families cannot be processed together in the same batch. We assume

that the number of families is a constant. The objective is to minimize the makespan

and the maximum cost. In the other problem, we have two agents A and B, where each

agent E ∈ {A,B} has its job set JE, called the E-jobs. Assuming that the job sets JA

and JB are not necessarily disjoint, we call the agents ND agents. The objective is to

minimize the makespan of the A-jobs and the maximum cost of the B-jobs. We provide

polynomial-time algorithms to solve the two Pareto-scheduling problems.
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1 Introduction

As introduced in Lee et al. (1992), a parallel-batch machine is a production line that can

process up to b jobs simultaneously in a batch, where b is the batch capacity. Suppose

that there are n jobs J = {J1, J2, . . . , Jn} to be scheduled on an unbounded parallel-batch

machine without preemption. The n jobs and the machine are all available from time 0.

Each job Jj has a non-negative integer processing time pj, and a regular and integer-valued

objective function fj(·). Thus we only need to consider the feasible schedules in which the

batches are scheduled consecutively without idle time. The processing time of a batch B is

equal to the maximum processing time of jobs in batch B, i.e., p(B) = max{pj : Jj ∈ B},

and the completion times of the jobs in batch B are defined as the completion time of

batch B. This implies that a feasible schedule can be represented by a batch sequence

σ = (B1,B2, . . . ,Bk) in which the completion time of a job Jj ∈ Bi in σ is given by

Cj(σ) = p(B1) + p(B2) + · · · + p(Bi). Brucker et al. (1998) provided fruitful results on

parallel-batch scheduling.

The Pareto-scheduling problem for minimizing two objective functions γ′ and γ′′ is

formulated as follows: A feasible schedule σ of the n jobs is called a Pareto-optimal

schedule if there exists no other feasible schedule π such that

(γ′(π), γ′′(π)) ≤ (γ′(σ), γ′′(σ)) and (γ′(π), γ′′(π)) 6= (γ′(σ), γ′′(σ)).

In this case, (γ′(σ), γ′′(σ)) is called a Pareto-optimal point corresponding to σ. The

goal of the Pareto-scheduling problem is to find all the Pareto-optimal points and, for

each Pareto-optimal point, the corresponding Pareto-optimal schedule. Adopting the

three-field notation for scheduling problems introduced by Graham et al. (1979), we

denote the Pareto-scheduling problem for minimizing two objective functions γ′ and γ′′

as α|β|#(γ′, γ′′), where α represents the machine environment, and β represents the job

characteristics or the feasibility conditions.

Corresponding to the Pareto-scheduling problem α|β|#(γ′, γ′′), there are two con-

strained scheduling problems, namely α|β|γ′ : γ′′ ≤ Q′′ and α|β|γ′′ : γ′ ≤ Q′. In the

literature, for an algorithm A(Q′′) for problem α|β|γ′ : γ′′ ≤ Q′′, if the schedule σ gen-
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erated by A(Q′′) is optimal for problem α|β|γ′ : γ′′ ≤ Q′′ and also Pareto-optimal for

problem α|β|#(γ′, γ′′), then σ is called an optimal and Pareto-optimal schedule for prob-

lem α|β|γ′ : γ′′ ≤ Q′′ and A(Q′′) is called an optimal and Pareto-optimal algorithm for

problem α|β|γ′ : γ′′ ≤ Q′′.

Pareto-scheduling has been a popular topic in scheduling research. For detailed dis-

cussion of the methodologies and development of Pareto-scheduling research, the reader

may refer to Hoogeveen (2005), T’kindt and Billaut (2006), Perez-Gonzalez and Framinan

(2014), and Agnetis et al. (2014).

In the Pareto-scheduling problem with families jobs, the jobs are from R differ-

ent families J1,J2, . . . ,JR that form a partition of J = {J1, J2, . . . , Jn}. For each r

with 1 ≤ r ≤ R, we also write Jr = {Jr,1, Jr,2, . . . , Jr,nr
} and nr = |Jr|. Jobs from

different families cannot be processed together in the same batch. Geng and Yuan

(2015a) presented an O(n2R+1) time algorithm to solve the Pareto-scheduling problem

p-batch(+∞)|R-family|#(Cmax, Lmax).

Baker and Smith (2003), and Agnetis et al. (2004) introduced two-agent scheduling

in which the two agents have disjoint job sets. We call this two-agent scheduling model

as CO-agent scheduling. After their pioneering works, two-agent scheduling has been

extensively studied in the literature. Agnetis et al. (2014) provided a detailed review of

the research on two-agent scheduling. Some new complexity results can be found in Yuan

(2016, 2017, 2018).

Agnetis et al. (2014) introduced a new model of two-agent scheduling called ND-agent

scheduling. In this scheduling model, there are two agents A and B, where each agent

E ∈ {A,B} has its job set JE, called the E-jobs. The ND-agent assumption means that

the two job sets JA and JB are not necessarily disjoint. Then there are three related

disjoint job sets, namely JA′ = JA \ JB (called the pure A-jobs), JB′ = JB \ JA (called

the pure B-jobs), and JAB = JA∩JB (called the AB-jobs), which form a partition of J =

{J1, J2, . . . , Jn}. For each E ∈ {A,B,A′, B′, AB}, we write JE = {JE,1, JE,2, . . . , JE,nE
}

and nE = |JE|. In this paper we assume that the jobs from different sets of JA′, JB′ , and

JAB cannot be processed together in the same batch. We call this case as the incompatible

group (IG for short) assumption. Feng et al. (2013) presented an O(nA + n4
B) time algo-

rithm to solve the Pareto-scheduling problem p-batch(+∞)|CO-agent, IG|#(CA
max, L

B
max).

For research on Pareto-scheduling, we only review the closely related works. He et
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al. (2007) proved that problem p-batch(+∞)||#(Cmax, Lmax) can be solved in O(n3)

time. He et al. (2014) proved that problem p-batch(+∞)||#(Cmax, fmax) can be solved in

O(n3 log
∑

pj) time, which is polynomial but not strongly polynomial. Geng and Yuan

(2015b) proved that problem p-batch(+∞)||#(Cmax, fmax) can be solved in O(n4) time,

which is strongly polynomial. This also implies that problem p-batch(+∞)||fmax can be

solved in O(n4) time. Gao (2017) presented polynomial-time algorithms to solve problem

p-batch(+∞)|(rj, pj)-agreeable|
#(Cmax, fmax), where “(rj, pj)-agreeable” means that the

jobs have agreeable release dates and processing times, i.e., ri < rj implies pi ≤ pj.

In this paper we study two Pareto-scheduling problems on an unbounded parallel-

batch machine. The first problem is Pareto-scheduling with family jobs for minimizing

the makespan and the maximum cost, denoted by

p-batch(+∞)|R-family|#(Cmax, fmax). (1)

When R = 1, the problem in (1) reduces to problem p-batch(+∞)||#(Cmax, fmax). Fur-

thermore, it is evident that the problem in (1) is a generalization of problem p-batch(+∞)

|R-family|#(Cmax, Lmax). So we borrow some techniques presented in Geng and Yuan

(2015a) to deal with the problem in (1).

The second problem is ND-agent Pareto-scheduling with incompatible group for min-

imizing the makespan of the A-jobs and the maximum cost of the B-jobs, denoted by

p-batch(+∞)|ND-agent, IG|#(CA
max, f

B
max). (2)

The problem in (2) is a generalization of problem p-batch(+∞)|CO-agent, IG|#(CA
max, L

B
max).

So we borrow some techniques presented in Feng et al. (2013) to deal with the problem

in (2).

We organize the rest of the paper as follows: In Section 2 we present a polynomial-

time algorithm to solve the problem in (1) when the number of families R is a constant.

In Section 3 we present a polynomial-time algorithm to solve the problem in (2). We

conclude the paper and suggest future research topics in the last section.

2 Pareto-scheduling with family jobs

For the Pareto-scheduling problem p-batch(+∞)|R-family|#(Cmax, Lmax), Geng and Yuan

(2015a) presented an O(n2R+1) time solution algorithm. In the following we borrow their
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method to solve the Pareto-scheduling problem in (1), i.e., p-batch(+∞)|R-family|#(Cmax,

fmax).

For each family Jr = {Jr,1, Jr,2, . . . , Jr,nr
} with 1 ≤ r ≤ R, we re-index its jobs in

the shortest processing time (SPT) order so that pr,1 ≤ pr,2 ≤ · · · ≤ pr,nr
. A schedule

σ = (B1,B2, . . . ,Bm) is called an SPT-batch schedule, if for every two jobs Jr,i and Jr,j

in the same family Jr with 1 ≤ r ≤ R, i < j implies Cr,i(σ) ≤ Cr,j(σ). This means

that in an SPT-batch schedule, the jobs of each family are batched and scheduled in the

SPT order. Applying a similar analysis to that in the proof of Lemma 1 in Brucker et al.

(1998), we derive the following result.

Lemma 2.1. For each Pareto-optimal point of the problem in (1), there exists a corre-

sponding Pareto-optimal schedule that is also an SPT-batch schedule.

Lemma 2.1 shows that it suffices to consider SPT-batch schedules in our discussion.

For each family Jr with 1 ≤ r ≤ R, we further suppose that the nr jobs in Jr have n′
r

distinct processing times p(r,1) < p(r,2) < · · · < p(r,n′

r). For each i with 1 ≤ i ≤ n′
r, we

define J(r,i) = {Jj ∈ Jr : pj = p(r,i)}, n(r,i) = |J(r,i)|, and f(r,i)(t) = max{fj(t) : Jj ∈ J(r,i)}

for t ≥ 0. By Lemma 2.1, we can regard the jobs of J(r,i) as a composite job J(r,i) with

the processing time p(r,i) and the cost function f(r,i)(t). We see that
∑

1≤i≤n′

r
n(r,i) = nr

and f(r,i)(t) can be calculated in O(n(r,i)) time for fixed t. In fact, we do not need to

calculate f(r,i)(t) for all t ≥ 0 in our algorithm. Then we use J(r) to denote the job set

{J(r,1), . . . , J(r,n′

r)} in the sequel.

For ease of exposition, for each family J(r) with 1 ≤ r ≤ R, we add a null job

J(r,0) with p(r,0) = 0 and f(r,0)(t) = −∞ for t ≥ 0. For each i with 0 ≤ i ≤ n′
r, let

J i
r = {J(r,0), J(r,1), . . . , J(r,i)}. If a batch B consists of the jobs in J(r), we call B an r-

batch. In every schedule, for each r with 1 ≤ r ≤ R, we assume that job J(r,0) forms a

single r-batch starting at time 0.

To solve the problem in (1), we first consider its associated constrained scheduling

problem

p-batch(+∞)|R-family|Cmax : fmax ≤ Q. (3)

Corresponding to this problem, we consider the following two auxiliary problems.

• Problem Aux(i1, . . . , iR): This is the problem in (3) for the job set J i1
1 ∪ · · · ∪ J iR

R
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with (i1, . . . , iR) ∈ X , where X = {(i1, . . . , iR) : 0 ≤ ir ≤ n′
r, 1 ≤ r ≤ R}.

• Problem Auxr(i1, . . . , iR): This is a restricted version of problem Aux(i1, . . . , iR) with

ir ≥ 1 in which the last batch in every feasible schedule is an r-batch.

Based on Lemma 2.1, we present a dynamic programming algorithm DP(Q) to solve

the problem in (3) in the following. Our algorithm will generate an optimal and Pareto-

optimal schedule σ(i1, . . . , iR) for problem Aux(i1, . . . , iR). The makespan and maximum

cost of σ(i1, . . . , iR) are denoted by C(i1, . . . , iR) and f(i1, . . . , iR), respectively. Our

algorithm will also generate an optimal and Pareto-optimal schedule σr(i1, . . . , iR) for

problem Auxr(i1, . . . , iR). The makespan and maximum cost of σr(i1, . . . , iR) are denoted

by Cr(i1, . . . , iR) and f
r(i1, . . . , iR), respectively.

Algorithm DP(Q): For the problem in (3), Aux(i1, . . . , iR), and Auxr(i1, . . . , iR).

Step 1: The initial condition is C(0, . . . , 0) = 0 and f(0, . . . , 0) = −∞.

Step 2: For each (i1, . . . , iR) ∈ X+, where X+ = {(i1, . . . , iR) ∈ X : i1 + · · ·+ iR ≥ 1},

the recursive functions are given by

C(i1, . . . , iR) = min{Cr(i1, . . . , iR) : 1 ≤ r ≤ R, ir ≥ 1}, (4)

and
f(i1, . . . , iR)

= min{f r(i1, . . . , iR) : 1 ≤ r ≤ R, Cr(i1, . . . , iR) = C(i1, . . . , iR)},
(5)

where for each r ∈ {1, 2, . . . , R} with ir ≥ 1, we have

Cr(i1, . . . , iR) = C(i1, . . . , k̄r, . . . , iR) + p(r,ir), (6)

and

f r(i1, . . . , iR) = max{f(i1, . . . , k̄r, . . . , iR), max
k̄r+1≤i≤ir

f(r,i)(C
r(i1, . . . , iR))}, (7)

where k̄r = k̄r(i1, . . . , iR) is the index kr defined by






0 ≤ kr < ir, maxkr+1≤i≤ir f(r,i)(C(i1, . . . , kr, . . . , iR) + p(r,ir)) ≤ Q

so that C(i1, . . . , kr, . . . , iR) + p(r,ir) is as small as possible.
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Step 3: Output C(n′
1, . . . , n

′
R) and f(n

′
1, . . . , n

′
R).

Note that if C(n′
1, . . . , n

′
R) = +∞, then the problem in (3) is infeasible. Alternatively,

if C(n′
1, . . . , n

′
R) < +∞, then the final objective vector (Cmax, fmax) of the problem in

(3) is given by (C(n′
1, . . . , n

′
R), f(n

′
1, . . . , n

′
R)) and the corresponding schedule is given

by σ(n′
1, . . . , n

′
R). Furthermore, Algorithm DP(Q) can also calculate all C(i1, . . . , iR)

and f(i1, . . . , iR) with (i1, . . . , iR) ∈ X , and all Cr(i1, . . . , iR) and f r(i1, . . . , iR) with

(i1, . . . , iR) ∈ X+ and ir ≥ 1. The corresponding schedules σ(i1, . . . , iR) and σ
r(i1, . . . , iR)

can be found by backtracking.

Theorem 2.1. The schedules σ(i1, . . . , iR) are optimal for problems Aux(i1, . . . , iR) with

(i1, . . . , iR) ∈ X, and the schedules σr(i1, . . . , iR) are optimal for problems Auxr(i1, . . . , iR)

with (i1, . . . , iR) ∈ X+ and ir ≥ 1.

Proof. It suffices to show that C(i1, . . . , iR) and Cr(i1, . . . , iR) are correctly calculated

by (4) and (6) in Algorithm DP(Q). The definition C(0, . . . , 0) = 0 is obviously true.

Hence, we may assume that (i1, . . . , iR) ∈ X+ and C(i1, . . . , iR) < +∞.

For an optimal schedule for problem Aux(i1, . . . , iR), assuming C(i1, . . . , iR), there

exists an r ∈ {1, 2, . . . , R} with ir ≥ 1 so that the last batch is an r-batch. It follows

that C(i1, . . . , ir, . . . , iR) = min{Cr(i1, . . . , iR) : 1 ≤ r ≤ R, ir ≥ 1}. Thus, (4) calculates

C(i1, . . . , iR) correctly.

For each r ∈ {1, 2, . . . , R} with ir ≥ 1 and Cr(i1, . . . , iR) < +∞, let σ = (B1, . . . ,Bk)

be an optimal schedule for problem Auxr(i1, . . . , iR), assuming Cr(i1, . . . , iR). Then the

last batch Bk of σ is an r-batch, so Bk = {J(r,kr+1), . . . , J(r,ir)} for some kr with 0 ≤ kr < ir.

Thus σ′ = (B1,B2, . . . ,Bk−1) is a feasible schedule for problem Aux(i1, . . . , kr, . . . , iR). It

follows that Cr(i1, . . . , iR) = Cmax(σ) = Cmax(σ
′)+p(r,ir) ≥ C(i1, . . . , kr, . . . , iR)+p(r,ir) ≥

Cr(i1, . . . , ir, . . . , iR). This implies that Cr(i1, . . . , iR) = C(i1, . . . , kr, . . . , iR) + p(r,ir) and

σ′ is an optimal schedule for problem Aux(i1, . . . , kr, . . . , iR), assuming C(i1, . . . , kr, . . . , iR).

Thus, (6) calculates Cr(i1, . . . , iR) correctly. The result follows. �

Lemma 2.2. For each (i1, . . . , iR) ∈ X+ with C(i1, . . . , iR) < +∞, we have C(i1, . . . , ir−

1, . . . , iR) < C(i1, . . . , ir, . . . , iR) for ir = 1, . . . , n′
r.

Proof. We use σ = (B1,B2, . . . ,Bm) to denote the schedule generated by Algorithm

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



DP(Q) for problem Aux(i1, . . . , ir, . . . , iR). Then we have Cmax(σ) = C(i1, . . . , ir, . . . , iR)

and fmax(σ) ≤ Q. We may suppose that job J(r,ir) belongs to some batch Bq. Let σ′ =

(B1, . . . ,Bq \ {J(r,ir)}, . . . ,Bm) be a new schedule obtained from σ by removing job J(r,ir).

We can easily observe that σ′ is a feasible schedule for problem Aux(i1, . . . , ir−1, . . . , iR).

From the fact that p(r,1) < p(r,2) < · · · < p(r,ir), J(r,ir) is the unique longest job in batch

Bq. It follows that C(i1, . . . , ir − 1, . . . , iR) ≤ Cmax(σ
′) < Cmax(σ) = C(i1, . . . , ir, . . . , iR).

The result follows. �

Lemma 2.3. For (i1, . . . , iR), (i
′
1, . . . , i

′
R) ∈ X with (i1, . . . , iR) ≥ (i′1, . . . , i

′
R), we have

k̄r(i1, . . . , iR) ≥ k̄r(i
′
1, . . . , i

′
R) for r = 1, 2, . . . , R.

Proof. If k̄r(i1, . . . , iR) = n′
r or k̄r(i

′
1, . . . , i

′
R) = −∞, the result holds trivially. Hence,

we may assume that k̄r(i1, . . . , iR) < n′
r and k̄r(i

′
1, . . . , i

′
R) ≥ 0. Then we have i′r ≥ 1 and

Cr(i′1, . . . , i
′
R) ≤ Cr(i1, . . . , iR) < +∞. In the following it suffices to consider only the

case that (i′1, . . . , i
′
R) = (i1, . . . , ir′ − 1, . . . , iR) for some r′ ∈ {1, 2, . . . , R} with ir′ ≥ 1.

For our purpose, we first present a claim as follows:

Claim. Suppose that ir ≥ 1. Then, for every optimal SPT-batch schedule σ for problem

Auxr(i1, . . . , iR), assuming Cr(i1, . . . , iR), k̄r(i1, . . . , iR) is the index of the longest job in

the last second r-batch of σ. Furthermore, k̄r(i1, . . . , iR) is the minimum of the index kr

so that 0 ≤ kr < ir and maxkr+1≤i≤ir f(r,i)(C(i1, . . . , kr, . . . , iR) + p(r,ir)) ≤ Q.

In order to prove the above claim, we use σ to denote an optimal SPT-batch schedule

for problem Auxr(i1, . . . , iR), assuming Cr(i1, . . . , iR). Let k
′
r be the index of the longest

job in the last second r-batch of σ. Then we have 0 ≤ k′r < ir and maxk′r+1≤i≤ir f(r,i)(C(i1,

. . . , k′r, . . . , iR) + p(r,ir)) ≤ Q. Let k′′r be the minimum of the index kr so that 0 ≤ kr < ir

and maxkr+1≤i≤ir f(r,i)(C(i1, . . . , kr, . . . , iR) + p(r,ir)) ≤ Q. This implies that k′r ≥ k′′r .

If k′r ≥ k′′r + 1, from Lemma 2.2, we have C(i1, . . . , k
′
r, . . . , iR) > C(i1, . . . , k

′′
r , . . . , iR).

Then Cr(i1, . . . , iR) = C(i1, . . . , k
′
r, . . . , iR) + p(r,ir) > C(i1, . . . , k

′′
r , . . . , iR) + p(r,ir) =

Cr(i1, . . . , iR), a contradiction. It follows that k′r = k′′r . From the fact that σr(i1, . . . , iR)

is an optimal SPT-batch schedule for problem Auxr(i1, . . . , iR), assuming Cr(i1, . . . , iR),

we have k̄r(i1, . . . , iR) = k′r = k′′r . The claim follows.

The above claim shows that the value k̄r in Algorithm DP(Q) is unique. Set k′r =

k̄r(i1, . . . , ir, . . . , iR). Then 0 ≤ k′r < ir. We distinguish two cases as follows:
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Case 1. r = r′. Since ir − 1 = i′r ≥ 1, we have ir ≥ 2. If k′r = ir − 1, then k̄r(i1, . . . , ir −

1, . . . , iR) < ir−1 = k′r. If k
′
r < ir−1, then the two jobs J(r,ir−1) and J(r,ir) belong to the last

batch of σr(i1, . . . , iR). This implies that maxk′r+1≤i≤ir f(r,i)(C(i1, . . . , k
′
r, . . . , iR)+p(r,ir)) ≤

Q. From the fact that p(r,ir−1) < p(r,ir), we have maxk′r+1≤i≤ir−1 f(r,i)(C(i1, . . . , k
′
r, . . . , iR)+

p(r,ir−1)) ≤ Q. From the above claim, we have k̄r(i1, . . . , ir−1, . . . , iR) ≤ k̄r(i1, . . . , ir, . . . , iR).

Case 2. r 6= r′. We may suppose that r′ < r. From Lemma 2.2, we have C(i1, . . . , ir′ −

1, . . . , k′r, . . . , iR) < C(i1, . . . , ir′, . . . , k
′
r, . . . , iR). By the implementation of Algorithm

DP(Q), we have maxk′r+1≤i≤ir f(r,i)(C(i1, . . . , ir′, . . . , k
′
r, . . . , iR) + p(r,ir)) ≤ Q. It follows

that maxk′r+1≤i≤ir f(r,i)(C(i1, . . . , ir′ − 1, . . ., k′r, . . . , iR) + p(r,ir)) ≤ Q. From the above

claim, we have k̄r(i1, . . . , ir′ − 1, . . . , iR) ≤ k̄r(i1, . . . , ir′, . . . , iR). The lemma follows. �

From Lemma 2.3, we only need to check at most k̄r(i1, . . . , iR)−k̄r(i1, . . . , ir−1, . . . , iR)+

1 indices kr to find our required index k̄r(i1, . . . , iR) in each iteration of Algorithm DP(Q).

Recall that, for each given time t, f(r,i)(t) can be calculated in O(n(r,i)) time. Then the

value maxkr+1≤i≤ir f(r,i)(C(i1, . . . , kr, . . . , iR) + p(r,ir)) ≤ Q can be checked in O(nr) time

for each given kr. Thus, given r and ir′ with 1 ≤ r′ ≤ R and r′ 6= r, the n′
r value

k̄r(i1, . . . , iR), 1 ≤ ir ≤ n′
r, can be calculated in O(n2

r) time.

The above discussion implies that Algorithm DP(Q) runs in O(R ·
∏

1≤r≤R n
2
r) time.

Since
∑R

r=1 nr = n, we have
∏

1≤r≤R n
2
r ≤ n2R ·R−2R. Consequently, we have the following

result.

Lemma 2.4. The time complexity of Algorithm DP(Q) is O(R ·
∏

1≤r≤R n
2
r) = O(n2R).

The following lemma is critical for our discussion.

Lemma 2.5. Algorithm DP(Q) is optimal and Pareto-optimal for the problem in (3).

Proof. We prove that, for each (i1, . . . , iR) ∈ X with C(i1, . . . , iR) < +∞, schedule

σ(i1, . . . , iR) is optimal and Pareto-optimal for problem Aux(i1, . . . , iR), and for each

(i1, . . . , iR) ∈ X+ with ir ≥ 1 and Cr(i1, . . . , iR) < +∞, schedule σr(i1, . . . , iR) is optimal

and Pareto optimal for problem Auxr(i1, . . . , iR). From Theorem 2.1, we only need to

show the Pareto-optimality in the following.

For each (i1, . . . , iR) ∈ X with C(i1, . . . , iR) < +∞, let π(i1, . . . , iR) be an optimal

and Pareto-optimal schedule for problem Aux(i1, . . . , iR), and for each (i1, . . . , iR) ∈ X+
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with ir ≥ 1 and Cr(i1, . . . , iR) < +∞, let πr(i1, . . . , iR) be an optimal and Pareto-optimal

schedule for problem Auxr(i1, . . . , iR). From Theorem 2.1, the makespans of π(i1, . . . , iR)

and πr(i1, . . . , iR) are C(i1, . . . , iR) and Cr(i1, . . . , iR), respectively. Thus, we only need

to show that the maximum cost of π(i1, . . . , iR) is f(i1, . . . , iR) and the maximum cost of

πr(i1, . . . , iR) is f
r(i1, . . . , iR) by induction.

Note that π(0, . . . , 0) = σ(0, . . . , 0). Then the maximum cost of π(0, . . . , 0) is f(0, . . .,

0) = −∞. Inductively, for (i1, . . . , iR) ∈ X+ with ir ≥ 1 and C(i1, . . . , iR) < +∞, we

assume that the maximum cost of π(i1, . . . , i
′
r, . . . , iR) is f(i1, . . . , i

′
r, . . . , iR) for every i

′
r

with 0 ≤ i′r ≤ ir−1. Note that πr(i1, . . . , iR) is an optimal SPT-batch schedule for problem

Auxr(i1, . . . , iR), assuming Cr(i1, . . . , iR). From Lemma 2.3, k′r = k̄r(i1, . . . , iR) is the

index of the longest job in the last second r-batch of πr. We use π′ to denote the schedule

obtained from πr by deleting the last batch B = {J(r,k′r+1), J(r,k′r+2), . . . , J(r,n′

r)}. From

Theorem 2.1, we observe that schedule π′ is optimal for problem Aux(i1, . . . , k
′
r, . . . , iR),

assuming C(i1, . . . , k
′
r, . . . , iR).

By the induction hypothesis, we see that schedule π(i1, . . . , k
′
r, . . . , iR) is optimal and

Pareto-optimal for problem Aux(i1, . . . , k
′
r, . . . , iR) with the maximum cost f(i1, . . . , k

′
r,

. . . , iR). Then we have fmax(π
′) ≥ f(i1, . . . , k

′
r, . . . , iR). Since π

r(i1, . . . , iR) and σ
r(i1, . . .,

iR) have the same last batch B, we have fmax(π
r(i1, . . . , iR)) ≥ f r(i1, . . . , iR). Note that

πr(i1, . . . , iR) is optimal and Pareto-optimal for problem Auxr(i1, . . . , iR) and σ
r(i1, . . . , iR)

is optimal for problem Auxr(i1, . . . , iR). Then we have fmax(π
r(i1, . . . , iR)) ≤ f r(i1, . . . , iR).

Thus, fmax(π
r(i1, . . . , iR)) = f r(i1, . . . , iR), i.e., the maximum cost of πr(i1, . . . , iR) is

f r(i1, . . . , iR).

Now we consider π = π(i1, . . . , iR). Since π is optimal for problem Aux(i1, . . . , iR),

there is an r ∈ {1, 2, . . . , R} with ir ≥ 1 so that π is also optimal for problem Auxr(i1, . . . , iR).

Thus, Cmax(π) = C(i1, . . . , iR) = Cr(i1, . . . , iR). Note that πr(i1, . . . , iR) is optimal and

Pareto-optimal for problem Auxr(i1, . . . , iR) with Cmax(π
r(i1, . . . , iR)) = Cr(i1, . . . , iR) =

Cmax(π) and fmax(π
r(i1, . . . , iR)) = f r(i1, . . . , iR). Then we have fmax(π) ≥ fmax(π

r(i1, . . .,

iR)) = f r(i1, . . . , iR). From (5), we have f(i1, . . . , iR) ≤ f r(i1, . . . , iR) ≤ fmax(π). From

the fact that π is optimal and Pareto-optimal for problem Aux(i1, . . . , iR) and σ(i1, . . . , iR)

is optimal for problem Aux(i1, . . . , iR), we have fmax(π) ≤ f(i1, . . . , iR). Thus, fmax(π) =

f(i1, . . . , iR), i.e., the maximum cost of π(i1, . . . , iR) is f(i1, . . . , iR). The result follows. �
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From Lemma 2.5, we present an solution algorithm for the problem in (1) as follows:

Pareto(DP(Q)): Initially setQ to be a sufficiently large number. Then we use Algorithm

DP(Q) to solve the problem in (3) to obtain the first Pareto-optimal schedule σ1 and the

first Pareto-optimal point (Cmax(σ1), fmax(σ1)). In general, if σi and (Cmax(σi), fmax(σi))

have been generated, we reset Q := fmax(σi) − 1 and run Algorithm DP(Q) for the cor-

responding problem in (3) to obtain the (i+ 1)-th Pareto-optimal schedule σi+1 and the

(i+1)-th Pareto-optimal point (Cmax(σi+1), fmax(σi+1)). This procedure is repeated until

we meet an index K so that σK and (Cmax(σK), fmax(σK)) have been generated and Al-

gorithm DP(Q) determines that the problem in (3) is infeasible for Q = fmax(σK)− 1.

Theorem 2.2. The problem in (1) can be solved by Pareto(DP(Q)) in O(n3R+1) time.

Proof. We mainly need to estimate the number of Pareto-optimal points of the problem

in (1). We may suppose that σ1, σ2, . . . , σK are the schedules generated by Pareto(DP(Q))

for a given instance. From the implementation of Pareto(DP(Q)), we have

Cmax(σ1) < Cmax(σ2) < · · · < Cmax(σK)

and

fmax(σ1) > fmax(σ2) > · · · > fmax(σK).

Let S = {σ1, σ2, . . . , σK}. For each σ = (B1,B2, . . . ,Bm) ∈ S, we set B≤l(σ) = B1 ∪

B2 ∪ · · · ∪ Bl for l = 1, 2, . . . , m. From Lemma 2.5, we observe that the subschedule

(B1,B2, . . . ,Bl) of σ is optimal and Pareto-optimal for the problem in (1) restricted to the

job instance B≤l(σ).

For each σ ∈ S, we call Jj a key job of σ if fj(σ) = fmax(σ). The batch containing

a key job is called a key batch. For each r with 1 ≤ r ≤ R, we use Sr to denote the set

of the schedules in S whose last key batch is an r-batch. Then Sr, r = 1, . . . , R, form a

partition of S. We first establish the following claim.

Claim. Let σ = (B1,B2, . . . ,Bm) and σ
′ = (A1,A2, . . . ,Am′) be two schedules in Sr for

some r. If Bl is a key batch of σ and Aj is a key batch of σ′ so that Bl = Aj, then

B≤l(σ) 6= A≤j(σ′).
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In order to prove the above claim, we suppose to the contrary that B≤l(σ) = A≤j(σ′).

From Lemma 2.5, for the same job instance B≤l(σ) = A≤j(σ′), (B1,B2, . . . ,Bl) is optimal

and Pareto-optimal for the problem in (3) with Q = fmax(σ) and (A1,A2, . . . ,Aj) is

optimal and Pareto-optimal for the problem in (3) with Q = fmax(σ
′). Without loss of

generality, we assume that Cmax(σ) < Cmax(σ
′) and fmax(σ) > fmax(σ

′).

From the Pareto-optimality of (B1,B2, . . . ,Bl) and (A1,A2, . . . ,Aj), we have CBl
(σ) <

CAj
(σ′). Note that Bl is a key batch of σ and Aj is a key batch of σ′ so that Bl = Aj.

By the regularity of function fj(·) for each j ∈ {1, 2, . . . , n}, we have fmax(σ) ≤ fmax(σ
′),

a contradiction. The claim follows.

Given a family index r with 1 ≤ r ≤ R and a pair (lr, l
′
r) with 1 ≤ lr ≤ l′r ≤ n′

r, we

use Sr(lr, l
′
r) to denote the set of the schedules σ in Sr whose last key batch, denoted by

Bm∗(σ), is of the form {J(r,lr), J(r,lr+1), . . . , J(r,l′r)}. Note that σ is an SPT-batch schedule.

Then we have B≤m∗(σ)(σ) = J i1
1 ∪ · · · ∪ J iR

R for some (i1, . . . , iR) ∈ X with ir = l′r ≥ 1. It

follows that

Sr(lr, l
′
r) ⊆ {σ ∈ Sr : B

≤m∗(σ)(σ) = J i1
1 ∪ · · · ∪ J iR

R , (i1, . . . , iR) ∈ X, ir = l′r}. (8)

From the above claim and (8), we have

|Sr(lr, l
′
r)| ≤ |{(i1, . . . , iR) ∈ X, ir = l′r}| =

∏

1≤s≤R,s 6=r(n
′
s + 1). (9)

From (9), we have |Sr| ≤
n′

r(n
′

r+1)
2

·
∏

1≤s≤R,s 6=r(n
′
s+1) ≤ nr

2
·
∏

1≤s≤R(ns+1). This implies

that |S| =
∑

1≤r≤R |Sr| ≤
∑

1≤r≤R
nr

2
·
∏

1≤s≤R(ns+1) = n
2
·
∏

1≤s≤R(ns+1) ≤ n
2
(1+ n

R
)R =

O(nR+1). From Lemma 2.4 and the implementation of Pareto(DP(Q)), the problem in

(1) can be solved in O(n3R+1) time. The result follows. �

From Theorem 2.2, we have the following result.

Corollary 2.1. The problem in (1) with R = 2 can be solved in O(n7) time and the

problem in (1) with R = 1 can be solved in O(n4) time.

3 Pareto-scheduling with ND-agent

For the Pareto-scheduling problem p-batch(+∞)|CO-agent, IG|#(CA
max, L

B
max), Feng et al.

(2013) presented an O(nA+n
4
B) time solution algorithm. In the following we borrow their
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method to solve the Pareto-scheduling problem in (2), i.e., p-batch(+∞)|ND-agent, IG|
#(CA

max, f
B
max), where the ND-agent assumption means that JA and JB are not necessarily

disjoint. Let JA′ = JA \ JB (called the pure A-jobs), JB′ = JB \ JA (called the pure

B-jobs), and JAB = JA ∩ JB (called the AB-jobs). For each E ∈ {A′, B′, AB}, if

a batch B consists of the jobs in JE, we call B an E-batch. Furthermore, for each

E ∈ {A′, B′, AB}, in O(nE log nE) time, we re-index the jobs in JE in the SPT order so

that pE,1 ≤ pE,2 ≤ · · · ≤ pE,nE
. Then we call σ = (B1,B2, . . . ,Bm) an SPT-batch schedule,

if for every two jobs JE,i and JE,j with E ∈ {A′, B′, AB}, i < j implies CE,i(σ) ≤ CE,j(σ).

Applying a similar analysis to that in the proof of Lemma 1 in Brucker et al. (1998), we

derive the following result.

Lemma 3.1. For each Pareto-optimal point of the problem in (2), there exists a corre-

sponding Pareto-optimal schedule that is also an SPT-batch schedule.

Lemma 3.1 shows that it suffices to consider the SPT-batch schedules of the problem in

(2) in the sequel. For ease of exposition, we add a null pure A-job JA′,0 with the processing

time pA′,0 = 0 . This implies that JA′ 6= ∅. We see that, for each Pareto-optimal point

of the problem in (2), there exists a corresponding Pareto-optimal SPT-batch schedule σ

so that the jobs in JA′ are processed as a single batch with the processing time pA′,nA′

(since the batch capacity is unbounded), and the jobs in JAB are processed before JA′.

We call such σ an effective schedule. The level of an effective schedule σ, denoted by l(σ),

is defined as the maximum index j ∈ {0, 1, . . . , nB′} such that the first j jobs in JB′ are

scheduled before JA′ in σ. We next introduce some useful notation for a given effective

schedule σ.

• σl is the partial schedule of σ restricted to the first l(σ) pure B-jobs and all the AB-jobs.

Equivalently, σl is the partial schedule of σ before the processing of JA′ in σ.

• Cmax(σ
l) is the makespan of σl.

• fB
max(σ

l) is the maximum cost of σl.

• f
B

max(σ
l) is the maximum cost of the last (nB′−l(σ)) pure B-jobs in σ. When l(σ) = nB′ ,

we define f
B

max(σ
l) = −∞.

Lemma 3.2. For each Pareto-optimal point of the problem in (2), there exists a corre-

sponding effective schedule σ so that the partial schedule σl is a Pareto-optimal schedule

for the problem in (1) in which the jobs to be scheduled are the jobs of σl.
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Proof. Let σ be an effective schedule corresponding to some given Pareto-optimal

point. Since σl is a schedule of the first l(σ) pure B-jobs and all the AB-jobs with

the makespan Cmax(σ
l) and the maximum cost fB

max(σ
l), there exists a Pareto-optimal

schedule πl for the problem in (1) for the first l(σ) pure B-jobs and all the AB-jobs

so that Cmax(π
l) ≤ Cmax(σ

l) and fmax(π
l) ≤ fB

max(σ
l). Let σ′ be the schedule ob-

tained from σ by replacing the partial schedule σl with πl. Then we have Cmax(σ
′l) =

Cmax(π
l) ≤ Cmax(σ

l) and fB
max(σ

′l) = fmax(π
l) ≤ fB

max(σ
l). By the regularity of the

cost functions of all the pure B-jobs, we conclude that f
B

max(σ
′l) ≤ f

B

max(σ
l). It fol-

lows that CA
max(σ

′) = Cmax(σ
′l) + pA′,nA′

≤ Cmax(σ
l) + pA′,nA′

= CA
max(σ) and fB

max(σ
′) =

max{fB
max(σ

′l), f
B

max(σ
′l)} ≤ max{fB

max(σ
l), f

B

max(σ)} = fB
max(σ). Consequently, σ′ is an

effective schedule corresponding to the given Pareto-optimal point so that σ′l = πl is a

Pareto-optimal schedule. The result follows. �

For each j with 0 ≤ j ≤ nB′ , we use PB
j (Cmax, fmax) to denote the problem in (1),

i.e., p-batch(+∞)|R-family|#(Cmax, fmax), in which the jobs to be scheduled are the first

j pure B-jobs and all the AB-jobs (being regarded as two families of jobs), where

R =







2, if nAB > 0 and j > 0,

1, otherwise.

Moreover, we use QB
j (t) to denote problem p-batch(+∞)||fB

max in which the jobs to be

scheduled are the last (nB′ − j) pure B-jobs, with the restriction that no jobs start earlier

than time t. Note that Geng and Yuan (2015b) presented an O(n4) time algorithm to

solve problem p-batch(+∞)||fmax. Thus, problem QB
j (t) can be solved by the algorithm

presented by Geng and Yuan (2015b) in O(n4
B) time. We call the algorithm the fB

max-batch

algorithm.

If (C, F ) is a Pareto-optimal point and σ is a Pareto-optimal schedule corresponding

to (C, F ), we call (σ; (C, F )) a Pareto-optimal pair. In our discussion, for each j with

0 ≤ j ≤ nB′ , we use
−→
Y j to denote a set of Pareto-optimal pairs of problem PB

j (Cmax, fmax)

that covers all the Pareto-optimal points. Set πj(t) as an optimal schedule for problem

QB
j (t). We set πnB′

(t) as a null schedule with fB
max(πnB′

(t)) = −∞. Furthermore, when

JAB = ∅, we set
−→
Y 0 = {(σ; (C, F ))} in which σ is a null schedule with C = 0 and

F = −∞.

For each j with 0 ≤ j ≤ nB′ and any (σ; (C, F )) ∈
−→
Y j, we define a schedule-point pair
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ψ(σ; (C, F )) = (σ∗; (C∗, F ∗)) by setting C∗ = C + pA′,nA′
, F ∗ = max{F, fB

max(πj(C
∗))},

and σ∗ = (σ,JA, πj(C
∗)). Then we define

−→
Y = {ψ(σ; (C, F )) : (σ; (C, F )) ∈

−→
Y j, 0 ≤ j ≤ nB′}. (10)

From Lemma 3.2, we have the following result.

Lemma 3.3. For each Pareto-optimal point (C∗, F ∗) of the problem in (2), there is a

corresponding effective schedule σ∗ so that (σ∗; (C∗, F ∗)) ∈
−→
Y .

From Lemma 3.3, we present the following algorithm to solve the problem in (2).

Pareto(ND-agent): For the problem in (2).

Step 1: For each j with 0 ≤ j ≤ nB′ , use Pareto(DP(Q)) to solve problem PB
j (Cmax, fmax)

and obtain
−→
Y j.

Step 2: For each j with 0 ≤ j ≤ nB′ and any (σ; (C, F )) ∈
−→
Y j , use the fB

max-batch

algorithm to solve problem QB
j (C+pA′,nA′

) and obtain an optimal schedule πj(C+pA′,nA′
).

Step 3: Compute the set
−→
Y by (10).

Step 4: Calculate the set
−→
Y ∗ of non-dominated pairs in

−→
Y and output

−→
Y ∗.

From Corollary 2.1, Step 1 runs in O(n8
B) time. From the fact that the fB

max-batching

algorithm runs in O(n4
B) time and the problem in (1) with R = 2 or R = 1 has at most

O(n3
B) Pareto-optimal points, we conclude that Step 2 runs in O(n8

B) time. The total

running time of Steps 3 and 4 is bounded by O(n4
B) time. Thus, the time complexity of

Pareto(ND-agent) is given by O(n8
B). Note that we only need to calculate pA′,nA′

since

the jobs in JA′ are processed as a single batch. Thus, the preprocessing stage only needs

O(nA + nB log nB) time. Then we have the following result.

Theorem 3.1. The problem in (2) is solvable in O(nA + n8
B) time.

Note that the Pareto-scheduling problem p-batch(+∞)|CO-agent, IG|#(CA
max, f

B
max) is

a special version of the problem in (2). Thus, when we use Pareto(ND-agent) to solve

problem p-batch(+∞)|CO-agent, IG|#(CA
max, f

B
max), the time complexity can be reduced.

From Corollary 2.1, the problem in (1) with R = 1 can be solved in O(n4
B) time. This
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implies that the running time of Step 1 reduces to O(n5
B). Furthermore, the problem in

(1) with R = 1 has at most O(n2
B) Pareto-optimal points. Thus, the running time of Step

2 reduces to O(n7
B). Then we have the following result.

Corollary 3.1. The Pareto-scheduling problem p-batch(+∞)|CO-agent, IG|#(CA
max, f

B
max)

is solvable in O(nA + n7
B) time.

When fmax = Lmax, the problem in (1) can be solved in O(n2R+1) time. This implies

that the above analysis can be simplified. We only highlight the major differences here.

For each j with 0 ≤ j ≤ nB′ and any (σ; (C, F )) ∈
−→
Y j, we define a schedule-point pair

ψ(σ; (C, F )) = (σ∗; (C∗, F ∗)) by setting C∗ = C+pA′,nA′
, F ∗ = max{F,C∗+LB

max(πj(0))},

and σ∗ = (σ,JA, πj(0)) obtained by gluing σ, JA, and πj(0) together in that order.

Furthermore, Step 2 of Pareto(ND-agent) can be re-written as “For each j with 0 ≤ j ≤

nB′ , use the LB
max-batch algorithm to solve problem QB

j (0) and obtain an optimal schedule

πj(0).”. By a similar analysis, we have the following result.

Corollary 3.2. When fmax = Lmax, the problem in (2) is solvable in O(nA + n6
B) time.

4 Conclusion

We study the two Pareto-scheduling problems p-batch(+∞)|R-family|#(Cmax, fmax) and

p-batch(+∞)|ND-agent, IG|#(CA
max, f

B
max). We summarize in Table 1 the known complex-

ity results related to our research, where α denotes the machine environment p-batch(+∞).

For further research, we suggest that close attention should be paid to the more com-

plicated problem p-batch(+∞)|ND-agent, IG|#(fA
max, f

B
max), which has not been addressed

as of now even for (fA
max, f

B
max) = (LA

max, L
B
max).
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Table 1: Summary of complexity results

Scheduling problem Time complexity Reference

α||#(Cmax, Lmax) O(n3) He et al. (2007)

α||#(Cmax, fmax) O(n3 log
∑

pj) He et al. (2014)

α||#(Cmax, fmax) O(n4) Geng and Yuan (2015b)

α|(rj, pj)-agreeable|
#(Cmax, Lmax) O(n

3) Gao (2017)

α|(rj, pj)-agreeable|
#(Cmax, fmax) O(min{n3 log(rn +

∑

pj), n
4}) Gao (2017)

α|R-family|#(Cmax, Lmax) O(n2R+1) Geng and Yuan (2015a)

α|R-family|#(Cmax, fmax) O(n3R+1) Theorem 2.2

α|CO-agent, IG|#(CA
max, L

B
max) O(nA + n4

B) Feng et al. (2013)

α|CO-agent, IG|#(CA
max, f

B
max) O(nA + n7

B) Corollary 3.1

α|ND-agent, IG|#(CA
max, f

B
max) O(nA + n8

B) Theorem 3.1

α|ND-agent, IG|#(CA
max, L

B
max) O(nA + n6

B) Corollary 3.2

α|ND-agent, IG|#(CA
max, C

B
max) O(n) An easy observation
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