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Abstract
Invented some 65 years ago in a seminal paper by Marguerite Straus-Frank and Philip
Wolfe, the Frank–Wolfe method recently enjoys a remarkable revival, fuelled by the
need of fast and reliable first-order optimization methods in Data Science and other
relevant application areas. This review tries to explain the success of this approach by
illustrating versatility and applicability in a wide range of contexts, combined with an
account on recent progress in variants, improving on both the speed and efficiency of
this surprisingly simple principle of first-order optimization.

Keywords First-order methods · Projection-free methods · Structured optimization ·
Conditional gradient · Sparse optimization

Mathematics Subject Classification 90C06 · 90C25 · 90C30

1 Introduction

In their seminal work (Frank and Wolfe 1956), Marguerite Straus-Frank and Philip
Wolfe introduced a first-order algorithm for the minimization of convex quadratic
objectives over polytopes, now known as Frank–Wolfe (FW) method. The main idea
of the method is simple: to generate a sequence of feasible iterates by moving at
every step towards a minimizer of a linearized objective, the so-called FW vertex.
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Subsequent works, partly motivated by applications in optimal control theory (see
Dunn (1979) for references), generalized the method to smooth (possibly non-convex)
optimization over closed subsets of Banach spaces admitting a linear minimization
oracle (see Demyanov and Rubinov 1970; Dunn and Harshbarger 1978).

Furthermore, while theO(1/k) rate in the original article was proved to be optimal
when the solution lies on the boundary of the feasible set (Canon and Cullum 1968),
improved rates were given in a variety of different settings. In Levitin and Polyak
(1966) and Demyanov and Rubinov (1970), a linear convergence rate was proved
over strongly convex domains assuming a lower bound on the gradient norm, a result
then extended in Dunn (1979) under more general gradient inequalities. In Guélat and
Marcotte (1986), linear convergence of the method was proved for strongly convex
objectives with the minimum obtained in the relative interior of the feasible set.

The slow convergence behaviour for objectives with solution on the boundarymoti-
vated the introduction of several variants, the most popular being Wolfe’s away step
(Wolfe 1970). Wolfe’s idea was to move away from bad vertices, in case a step of the
FW method moving towards good vertices did not lead to sufficient improvement on
the objective. This idea was successfully applied in several network equilibrium prob-
lems, where linear minimization can be achieved by solving a min-cost flow problem
(see Fukushima 1984 and references therein). In Guélat and Marcotte (1986), some
ideas already sketched by Wolfe were formalized to prove linear convergence of the
Wolfe’s away step method and identification of the face containing the solution in
finite time, under some suitable strict complementarity assumptions.

In recent years, the FWmethod has regained popularity thanks to its ability to handle
the structured constraints appearing in machine learning and data science applications
efficiently. Examples include LASSO, SVM training, matrix completion, minimum
enclosing ball, density mixture estimation, cluster detection, to name just a few (see
Sect. 3 for further details).

One of the main features of the FW algorithm is its ability to naturally identify
sparse and structured (approximate) solutions. For instance, if the optimization domain
is the simplex, then after k steps the cardinality of the support of the last iterate
generated by the method is at most k + 1. Most importantly, in this setting every
vertex added to the support at every iteration must be the best possible in some sense,
a property that connects themethodwithmany greedy optimization schemes (Clarkson
2010). This makes the FW method pretty efficient on the abovementioned problem
class. Indeed, the combination of structured solutions with often noisy data makes
the sparse approximations found by the method possibly more desirable than high
precision solutions generated by a faster converging approach. In some cases, like in
cluster detection (see, e.g., Bomze 1997), finding the support of the solution is actually
enough to solve the problem independently from the precision achieved.

Another important feature is that the linearminimization used in themethod is often
cheaper than the projections required by projected-gradient methods. It is important
to notice that, even when these two operations have the same complexity, constants
defining the related bounds can differ significantly (see Combettes and Pokutta 2021
for some examples and tests).When dealingwith large scale problems, the FWmethod
hence has a much smaller per-iteration cost with respect to projected-gradient meth-
ods. For this reason, FW methods fall into the category of projection-free methods
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(Lan 2020). Furthermore, the method can be used to approximately solve quadratic
subproblems in accelerated schemes, an approach usually referred to as conditional
gradient sliding (see, e.g., Carderera and Pokutta 2020; Lan and Zhou 2016).

1.1 Organisation of the paper

The present review is not intended to provide an exhaustive literature survey, but
rather as an advanced tutorial demonstrating versatility and power of this approach.
The article is structured as follows: in Sect. 2, we introduce the classic FW method,
together with a general scheme for all the methods we consider. In Sect. 3, we present
applications from classic optimization to more recent machine learning problems. In
Sect. 4, we review some important stepsizes for first order methods. In Sect. 5, we
discuss themain theoretical results about theFWmethod and themost popular variants,
including the O(1/k) convergence rate for convex objectives, affine invariance, the
sparse approximation property, and support identification. In Sect. 6 we illustrate
some recent improvements on the O(1/k) convergence rate. Finally, in Sect. 7 we
present recent FW variants fitting different optimization frameworks, in particular
block coordinate, distributed, accelerated, and trace norm optimization. We highlight
that all the proofs reported in the paper are either seminal, or simplified versions
of proofs reported in published papers, and we believe they might give some useful
technical insights to the interested reader.

1.2 Notation

For any integers a and b, denote by [a : b] = {x integer : a ≤ x ≤ b} the integer
range between them. For a set V , the power set 2V denotes the system all subsets of
V , whereas for any positive integer s ∈ N we set

(V
s

) := {S ∈ 2V : |S| = s}, with
|S| denoting the number of elements in S. Matrices are denoted by capital sans-serif
letters (e.g., the zero matrix O, or the n × n identity matrix In with columns ei the
length of which should be clear from the context). The all-ones vector is e := ∑

i ei ∈
R
n . Generally, vectors are always denoted by boldface sans-serif letters x, and their

transpose by xᵀ. The Euclidean norm of x is then ‖x‖ := √
xᵀx whereas the general

p-norm is denoted by ‖x‖p for any p ≥ 1 (so ‖x‖2 = ‖x‖). By contrast, the so-called
zero-norm simply counts the number of nonzero entries:

‖x‖0 := |{i ∈ [1 :n] : xi �= 0}| .

For a vector d we denote as d̂ := 1
‖d‖ d its normalization, with the convention d̂ = o

if d = o. Here o denotes the zero vector. In context of symmetric matrices, “psd”
abbreviates “positive-semidefinite”.
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2 Problem and general scheme

We consider the following problem:

min
x∈C f (x) (1)

where, unless specified otherwise,C is a convex and compact (i.e. bounded and closed)
subset of Rn and f is a differentiable function having Lipschitz continuous gradient
with constant L > 0:

‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖ for all {x, y} ⊂ C .

This is a central property required in the analysis of first-ordermethods. Such aproperty
indeed implies (and for a convex function is equivalent to) the so-called Descent
Lemma (see, e.g., Bertsekas 2015, Proposition 6.1.2), which provides a quadratic
upper approximation to the function f . Throughout the article, we denote by x∗ a
(global) solution to (1) and use the symbol f ∗ := f (x∗) as a shorthand for the
corresponding optimal value.

The general scheme of the first-ordermethodswe consider for problem (1), reported
in Algorithm 1, is based upon a set F(x,g) of directions feasible at x using first-order
local information on f around x, in the smooth case g = ∇ f (x). From this set, a
particular d ∈ F(x,g) is selected, with the maximal stepsize αmax possibly dependent
from auxiliary information available to the method (at iteration k, we thus write αmax

k ),
and not always equal to the maximal feasible stepsize.

2.1 The classical Frank–Wolfe method

The classical FW method for minimization of a smooth objective f generates a
sequence of feasible points {xk} following the scheme of Algorithm 2. At the iter-
ation k it moves toward a vertex i.e., an extreme point, of the feasible set minimizing
the scalar product with the current gradient ∇ f (xk). It therefore makes use of a linear
minimization oracle (LMO) for the feasible set C

LMOC (g) ∈ argmin
z∈C

gᵀz , (2)
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defining the descent direction as

dk = dFW
k := sk − xk, sk ∈ LMOC (∇ f (xk)) . (3)

In particular, the update at step 6 in Algorithm 2 can be written as

xk+1 = xk + αk(sk − xk) = αksk + (1 − αk)xk (4)

Since αk ∈ [0, 1], by induction xk+1 can be written as a convex combination of
elements in the set Sk+1 := {x0} ∪ {si }0≤i≤k . When C = conv(A) for a set A of
points with some common property, usually called “elementary atoms”, if x0 ∈ A
then xk can be written as a convex combination of k + 1 elements in A. Note that
due to Caratheodory’s theorem, we can even limit the number of occurring atoms
to min{k, n} + 1. In the rest of the paper the primal gap at iteration k is defined as
hk = f (xk) − f ∗.

3 Examples

FW methods and variants are a natural choice for constrained optimization on con-
vex sets admitting a linear minimization oracle significantly faster than computing a
projection. We present here in particular the traffic assignment problem, submodu-
lar optimization, LASSO problem, matrix completion, adversarial attacks, minimum
enclosing ball, SVM training, maximal clique search in graphs, sparse optimization.

3.1 Traffic assignment

Finding a traffic pattern satisfying the equilibrium conditions in a transportation net-
work is a classic problem in optimization that dates back toWardrop’s paper (Wardrop
1952). Let G be a network with set of nodes [1 :n]. Let {D(i, j)}i �= j be demand coef-
ficients, modeling the amount of goods with destination j and origin i . For any i, j
with i �= j let furthermore fi j : R → R be the non-linear (convex) cost functions, and
xsi j be the flow on link (i, j) with destination s. The traffic assignment problem can be
modeled as the following non-linear multicommodity network problem (Fukushima
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1984):

min

⎧
⎨

⎩

∑

i, j

fi j

(
∑

s

xsi j

)

:
∑

i

xs�i −
∑

j

xsj� = D(�, s) , all � �= s, xsi j ≥ 0

⎫
⎬

⎭
. (5)

Then the linearized optimization subproblem necessary to compute the FW vertex
takes the form

min

⎧
⎨

⎩

∑

s

∑

i, j

ci j x
s
i j :

∑

i

xs�i −
∑

j

xsj� = D(�, s), � �= s, xsi j ≥ 0

⎫
⎬

⎭
(6)

and can be split in n shortest paths subproblems, each of the form

min

⎧
⎨

⎩

∑

i, j

ci j x
s
i j :

∑

i

xs�i −
∑

j

xsj� = D(�, s), � �= s, xsi j ≥ 0

⎫
⎬

⎭
(7)

for a fixed s ∈ [1 :n], with ci j the first-order derivative of fi j (see Fukushima 1984 for
further details). A number of FWvariants were proposed in the literature for efficiently
handling this kind of problems (see, e.g., Bertsekas 2015; Fukushima 1984; LeBlanc
et al. 1975; Mitradjieva and Lindberg 2013; Weintraub et al. 1985 and references
therein for further details). Some of those variants represent a good (if not the best)
choice when low or medium precision is required in the solution of the problem
(Perederieieva et al. 2015).

In the more recent work Joulin et al. (2014) a FW variant also solving a shortest
path subproblem at each iteration was applied to image and video co-localization.

3.2 Submodular optimization

Given a finite set V , a function r : 2V → R is said to be submodular if for every
A, B ⊂ V

r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B) . (8)

As is common practice in the optimization literature (see e.g. Bach 2013, Section 2.1),
here we always assume s(∅) = 0. A number of machine learning problems, including
image segmentation and sensor placement, canbe cast asminimizationof a submodular
function (see, e.g., Bach 2013; Chakrabarty et al. 2014 and references therein for
further details):

min
A⊆V

r(A) . (9)

Submodular optimization can also be seen as a more general way to relate combina-
torial problems to convexity, for example for structured sparsity (Bach 2013; Jaggi
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2013). By a theorem from Fujishige (1980), problem (9) can be in turn reduced to an
minimum norm point problem over the base polytope

B(r) =
{

s ∈ R
V :

∑

a∈A

sa ≤ r(A) for all A ⊆ V ,
∑

a∈V
sa = r(V )

}

. (10)

For this polytope, linear optimization can be achieved with a simple greedy algorithm.
More precisely, consider the LP

max
s∈B(r)

wᵀs .

Then if the objective vector w has a negative component, the problem is clearly
unbounded. Otherwise, a solution to the LP can be obtained by orderingw in decreas-
ing manner as w j1 ≥ w j2 ≥ ... ≥ w jn , and setting

s jk := r({ j1, ..., jk}) − r({ j1, ..., jk−1}) , (11)

for k ∈ [1 :n]. We thus have a LMOwith aO(n log n) cost. This is the reason why FW
variants are widely used in the context of submodular optimization; further details can
be found in, e.g., Bach (2013), Jaggi (2013).

3.3 LASSO problem

The LASSO, proposed by Tibshirani in 1996 (Tibshirani 1996), is a popular tool for
sparse linear regression. Given the training set

T = {(ri , bi ) ∈ R
n × R : i ∈ [1 :m]} ,

where rᵀi are the rows of an m × n matrix A, the goal is finding a sparse linear model
(i.e., a model with a small number of non-zero parameters) describing the data. This
problem is strictly connected with the Basis Pursuit Denoising (BPD) problem in
signal analysis (see, e.g., Chen et al. 2001). In this case, given a discrete-time input
signal b, and a dictionary

{a j ∈ R
m : j ∈ [1 :n]}

of elementary discrete-time signals, usually called atoms (here a j are the columns of a
matrixA), the goal is finding a sparse linear combination of the atoms that approximate
the real signal. From a purely formal point of view, LASSO and BPD problems are
equivalent, and both can be formulated as follows:

min
x∈Rn

f (x) := ‖Ax − b‖22
s.t . ‖x‖1 ≤ τ ,

(12)

123



320 I. M. Bomze et al.

where the parameter τ controls the amount of shrinkage that is applied to the model
(related to sparsity, i.e., the number of nonzero components in x). The feasible set is

C = {x ∈ R
n : ‖x‖1 ≤ τ } = conv{±τei : i ∈ [1 :n]} .

Thus we have the following LMO in this case:

LMOC (∇ f (xk)) = sign(−∇ik f (xk)) · τeik ,

with ik ∈ argmax
i

|∇i f (xk)|. It is easy to see that the FW per-iteration cost is then

O(n). The peculiar structure of the problem makes FW variants well-suited for its
solution. This is the reason why LASSO/BPD problems were considered in a number
of FW-related papers (see, e.g., Jaggi 2011, 2013; Lacoste-Julien and Jaggi 2015;
Locatello et al. 2017).

3.4 Matrix completion

Matrix completion is a widely studied problem that comes up in many areas of science
and engineering, including collaborative filtering, machine learning, control, remote
sensing, and computer vision (just to name a few; see also Candès and Recht (2009)
and references therein). The goal is to retrieve a low rank matrix X ∈ R

n1×n2 from a
sparse set of observed matrix entries {Ui j }(i, j)∈J with J ⊂ [1 :n1] × [1 :n2]. Thus the
problem can be formulated as follows (Freund et al. 2017):

min
X∈Rn1×n2

f (X) :=
∑

(i, j)∈J

(Xi j −Ui j )
2

s.t . rank(X) ≤ δ,

(13)

where the function f is given by the squared loss over the observed entries of the
matrix and δ > 0 is a parameter representing the assumed belief about the rank of the
reconstructed matrix we want to get in the end. In practice, the low rank constraint
is relaxed with a nuclear norm ball constraint, where we recall that the nuclear norm
‖X‖∗ of a matrix X is equal the sum of its singular values. Thus we get the following
convex optimization problem:

min
X∈Rn1×n2

∑

(i, j)∈J

(Xi j −Ui j )
2

s.t . ‖X‖∗ ≤ δ .

(14)

The feasible set is the convex hull of rank-one matrices:

C = {X ∈ R
n1×n2 : ‖X‖∗ ≤ δ}

= conv{δuvᵀ : u ∈ R
n1 , v ∈ R

n2 , ‖u‖ = ‖v‖ = 1} .

If we indicate with AJ the matrix that coincides with A on the indices J and is zero
otherwise, then we can write ∇ f (X) = 2 (X−U)J . Thus we have the following LMO
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in this case:

LMOC (∇ f (Xk)) ∈ argmin{tr(∇ f (Xk)ᵀX) : ‖X‖∗ ≤ δ} , (15)

which boils down to computing the gradient, and the rank-one matrix δu1v
ᵀ
1 , with

u1, v1 right and left singular vectors corresponding to the top singular value of
−∇ f (Xk). Consequently, the FW method at a given iteration approximately recon-
structs the target matrix as a sparse combination of rank-1 matrices. Furthermore, as
the gradient matrix is sparse (it only has |J | non-zero entries) storage and approximate
singular vector computations can be performed much more efficiently than for dense
matrices1. A number of FW variants has hence been proposed in the literature for
solving this problem (see, e.g., Freund et al. 2017; Jaggi 2011, 2013).

3.5 Adversarial attacks in machine learning

Adversarial examples are maliciously perturbed inputs designed to mislead a properly
trained learning machine at test time. An adversarial attack hence consists in taking a
correctly classified data point x0 and slightlymodifying it to create a newdata point that
leads the considered model to misclassification (see, e.g., Carlini and Wagner 2017;
Chen et al. 2017; Goodfellow et al. 2014 for further details). A possible formulation
of the problem (see, e.g., Chen et al. 2020; Goodfellow et al. 2014) is given by the so
called maximum allowable �p-norm attack that is,

min
x∈Rn

f (x0 + x)

s.t . ‖x‖p ≤ ε ,
(16)

where f is a suitably chosen attack loss function, x0 is a correctly classified data point,
x represents the additive noise/perturbation, ε > 0 denotes themagnitude of the attack,
and p ≥ 1. It is easy to see that the LMO has a cost O(n). If x0 is a feature vector
of a dog image correctly classified by our learning machine, our adversarial attack
hence suitably perturbs the feature vector (using the noise vector x), thus getting a
new feature vector x0 + x classified, e.g., as a cat. In case a target adversarial class is
specified by the attacker, we have a targeted attack. In some scenarios, the goal may
not be to push x0 to a specific target class, but rather push it away from its original
class. In this case we have a so called untargeted attack. The attack loss function f
will hence be chosen depending on the kind of attack we aim to perform over the
considered model. Due to its specific structure, problem (16) can be nicely handled
by means of tailored FW variants. Some FW frameworks for adversarial attacks were
recently described in, e.g., Chen et al. (2020), Kazemi et al. (2021), Sahu and Kar
(2020).

1 Details related to the LMO cost can be found in, e.g., Jaggi (2013).
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3.6 Minimum enclosing ball

Given a set of points P = {p1, . . . ,pn} ⊂ R
d , the minimum enclosing ball problem

(MEB, see, e.g., Clarkson 2010; Yıldırım 2008) consists in finding the smallest ball
containing P . Such a problem models numerous important applications in clustering,
nearest neighbor search, data classification, machine learning, facility location, colli-
sion detection, and computer graphics, to name just a few.We refer the reader toKumar
et al. (2003) and the references therein for further details. Denoting by c ∈ R

d the
center and by

√
γ (with γ ≥ 0) the radius of the ball, a convex quadratic formulation

for this problem is

min
(c,γ )∈Rd×R

γ (17)

s.t . ‖pi − c‖2 ≤ γ , all i ∈ [1 :n] . (18)

This problem can be formulated via Lagrangian duality as a convex Standard
Quadratic Optimization Problem (StQP, see, e.g. Bomze and de Klerk 2002)

min
{
xᵀAᵀAx − bᵀx : x ∈ Δn−1

}
(19)

with A = [p1, ...,pn] and bᵀ = [pᵀ
1p1, . . . ,p

ᵀ
npn]. The feasible set is the standard

simplex

Δn−1 := {x ∈ R
n+ : eᵀx = 1} = conv{ei : i ∈ [1 :n]} ,

and the LMO is defined as follows:

LMOΔn−1(∇ f (xk)) = eik ,

with ik ∈ argmini∇i f (xk). It is easy to see that cost per iteration is O(n). When
applied to (19), the FW method can find an ε-cluster in O( 1

ε
), where an ε-cluster is

a subset P ′ of P such that the MEB of P ′ dilated by 1 + ε contains P (Clarkson
2010). The set P ′ is given by the atoms in P selected by the LMO in the first O( 1

ε
)

iterations. Further details related to the connections between FW methods and MEB
problems can be found in, e.g., Ahipaşaoğlu et al. (2008), Ahipaşaoğlu and Todd
(2013), Clarkson (2010) and references therein.

3.7 Training linear Support Vector Machines

Support Vector Machines (SVMs) represent a very important class of machine learning
tools (see, e.g., Vapnik 2013 for further details). Given a labeled set of data points,
usually called training set:

T S = {(pi , yi ), pi ∈ R
d , yi ∈ {−1, 1}, i = 1, . . . , n},
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the linear SVM training problem consists in finding a linear classifier w ∈ R
d such

that the label yi can be deduced with the “highest possible confidence” from wᵀpi . A
convex quadratic formulation for this problem is the following Clarkson (2010):

min
w∈Rd ,ρ∈R

ρ + ‖w‖2
2

s.t . ρ + yi wᵀpi ≥ 0 , all i ∈ [1 :n] ,
(20)

where the slack variable ρ stands for the negative margin and we can have ρ < 0 if
and only if there exists an exact linear classifier, i.e. w such that wᵀpi = sign(yi ).
The dual of (20) is again an StQP:

min
{
xᵀAᵀAx : x ∈ Δn−1

}
(21)

with A = [y1p1, ..., ynpn]. Notice that problem (21) is equivalent to an MNP problem
on conv{yipi : i ∈ [1 : n]}, see Sect. 7.2 below. Some FW variants (like, e.g., the
Pairwise Frank–Wolfe) are closely related to classical working set algorithms, such
as the SMO algorithm used to train SVMs (Lacoste-Julien and Jaggi 2015). Further
details on FW methods for SVM training problems can be found in, e.g., Clarkson
(2010), Jaggi (2011).

3.8 Findingmaximal cliques in graphs

In the context of network analysis the clique model, dating back at least to the work
of Luce and Perry (1949) about social networks, refers to subsets with every two ele-
ments in a direct relationship. The problem of finding maximal cliques has numerous
applications in domains including telecommunication networks, biochemistry, finan-
cial networks, and scheduling (see, e.g., Bomze et al. 1999; Wu and Hao 2015). Let
G = (V , E) be a simple undirected graph with V and E set of vertices and edges,
respectively. A clique in G is a subset C ⊆ V such that (i, j) ∈ E for each (i, j) ∈ C ,
with i �= j . The goal in finding a clique C such that it is maximal (i.e., it is not
contained in any strictly larger clique). This corresponds to find a local solution to
the following equivalent (this time non-convex) StQP (see, e.g., Bomze 1997; Bomze
et al. 1999; Hungerford and Rinaldi 2019 for further details):

max

{
xᵀAGx + 1

2
‖x‖2 : x ∈ Δn−1

}
(22)

where AG is the adjacency matrix of G. Due to the peculiar structure of the problem,
FWmethods can be fruitfully used to find maximal cliques (see, e.g., Hungerford and
Rinaldi 2019).

3.9 Finding sparse points in a set

Given a non-empty polyhedron P ⊂ R
n , the goal is finding a sparse point x ∈ P

(i.e., a point with as many zero components as possible). This sparse optimization
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problem can be used to model a number of real-world applications in fields like, e.g.,
machine learning, pattern recognition and signal processing (see Rinaldi et al. 2010
and references therein). Ideally, what we would like to get is an optimal solution for
the following problem:

min {‖x‖0 : x ∈ P} . (23)

Since the zero norm is non-smooth, a standard procedure is to replace the original
formulation (23) with an equivalent concave optimization problem of the form:

min

{
n∑

i=1

φ(yi ) : x ∈ P, −y ≤ x ≤ y

}

, (24)

where φ : [0 ,+∞ [ → R is a suitably chosen smooth concave univariate function
bounded from below, like, e.g.,

φ(t) = (1 − e−αt ) ,

with α a large enough positive parameter (see, e.g., Mangasarian 1996; Rinaldi et al.
2010 for further details). The LMO in this case gives a vertex solution for the linear
programming problem:

min
{
cᵀ
k y : x ∈ P, −y ≤ x ≤ y

}
,

with (ck)i the first-order derivative ofφ calculated in (yk)i . Variants of the unit-stepsize
FWmethod have been proposed in the literature (see, e.g., Mangasarian 1996; Rinaldi
et al. 2010) to tackle the smooth equivalent formulation (24).

4 Stepsizes

Popular rules for determining the stepsize are:

– unit stepsize:

αk = 1,

mainly used when the problem has a concave objective function. Finite conver-
gence can be proved, under suitable assumptions, both for the unit-stepsize FW
and some of its variants described in the literature (see, e.g., Rinaldi et al. 2010
for further details).

– diminishing stepsize:

αk = 2

k + 2
, (25)

mainly used for the classic FW (see, e.g., Freund and Grigas 2016; Jaggi 2013).
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– exact line search:

αk = min argmin
α∈[0,αmax

k ]
ϕ(α) with ϕ(α) := f (xk + α dk) , (26)

where we pick the smallest minimizer of the function ϕ for the sake of being well-
defined even in rare cases of ties (see, e.g., Bomze et al. 2020; Lacoste-Julien and
Jaggi 2015).

– Armijo line search: themethod iteratively shrinks the step size in order to guarantee
a sufficient reduction of the objective function. It represents a good way to replace
exact line search in cases when it gets too costly. In practice, we fix parameters
δ ∈ (0, 1) and γ ∈ (0, 1

2 ), then try steps α = δmαmax
k with m ∈ {0, 1, 2, . . . } until

the sufficient decrease inequality

f (xk + α dk) ≤ f (xk) + γα ∇ f (xk)ᵀdk (27)

holds, and set αk = α (see, e.g., Bomze et al. 2019 and references therein).
– Lipschitz constant dependent step size:

αk = αk(L) := min

{
− ∇ f (xk)ᵀdk

L‖dk‖2 , αmax
k

}
, (28)

with L the Lipschitz constant of ∇ f (see, e.g., Bomze et al. 2020; Pedregosa et al.
2020).

The Lipschitz constant dependent step size can be seen as the minimizer of the
quadratic model mk(·; L) overestimating f along the line xk + α dk :

mk(α; L) = f (xk) + α ∇ f (xk)ᵀdk + Lα2

2
‖dk‖2 ≥ f (xk + α dk) , (29)

where the inequality follows by the standard Descent Lemma.
In case L is unknown, it is even possible to approximate L using a backtracking

line search (see, e.g., Kerdreux et al. 2020; Pedregosa et al. 2020).
We now report a lower bound for the improvement on the objective obtained with

the stepsize (28), often used in the convergence analysis.

Lemma 1 If αk is given by (28) and αk < αmax
k then

f (xk+1) ≤ f (xk) − 1

2L
(∇ f (xk)

ᵀd̂k)2 . (30)

Proof We have

f (xk + αk dk) ≤ f (xk) + αk∇ f (xk)ᵀdk + Lα2
k

2 ‖dk‖2
= f (xk) − (∇ f (xk )ᵀdk )2

2L‖dk‖2 = f (xk) − 1
2L (∇ f (xk)ᵀd̂k)2 ,

(31)

where we used the standard Descent Lemma in the inequality. ��
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5 Properties of the FWmethod and its variants

5.1 The FW gap

A key parameter often used as a measure of convergence is the FW gap

G(x) = max
s∈C −∇ f (x)ᵀ(s − x) , (32)

which is always nonnegative and equal to 0 only in first order stationary points. This
gap is, by definition, readily available during the algorithm. If f is convex, using that
∇ f (x) is a subgradient we obtain

G(x) ≥ −∇ f (x)ᵀ(x∗ − x) ≥ f (x) − f ∗ , (33)

so that G(x) is an upper bound on the optimality gap at x. Furthermore, G(x) is a
special case of the Fenchel duality gap (Lacoste-Julien et al. 2013).

If C = Δn−1 is the simplex, then G is related to the Wolfe dual as defined in
Clarkson (2010). Indeed, this variant of Wolfe’s dual reads

max f (x) + λ(eᵀx − 1) − uᵀx
s.t. ∇i f (x) − ui + λ = 0 , i ∈ [1 :n] ,

(x, u, λ) ∈ R
n × R

n+ × R

(34)

and for a fixed x ∈ R
n , the optimal values of (u, λ) are

λx = −min
j

∇ j f (x) , ui (x) := ∇i f (x) − min
j

∇ j f (x) ≥ 0 .

Performing maximization in problem (34) iteratively, first for (u, λ) and then for x,
this implies that (34) is equivalent to

maxx∈Rn [ f (x) + λx(eᵀx − 1) − u(x)ᵀx]
= maxx∈Rn

[
f (x) − max j (e j − x)ᵀ∇ f (x)

] = maxx∈Rn [ f (x) − G(x)] .
(35)

Furthermore, since Slater’s condition is satisfied, strong duality holds by Slater’s the-
orem (Boyd et al. 2004), resulting in G(x∗) = 0 for every solution x∗ of the primal
problem.

The FW gap is related to several other measures of convergence (see e.g. Lan 2020,
Section 7.5.1). First, consider the projected gradient

g̃k := πC (xk − ∇ f (xk)) − xk . (36)
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with πB the projection on a convex and closed subset B ⊆ R
n . We have ‖̃gk‖ = 0 if

and only if xk is stationary, with

‖̃gk‖2 = g̃ᵀ
k g̃k ≤ g̃ᵀ

k [(xk − ∇ f (xk)) − πC (xk − ∇ f (xk))] + g̃ᵀ
k g̃k= −g̃ᵀ

k ∇ f (xk) = −(πC (xk − ∇ f (xk)) − xk)ᵀ∇ f (xk)
≤ max

y∈C −(y − xk)ᵀ∇ f (xk) = G(xk) ,
(37)

whereweused [y−πC (x)]ᵀ[x−πC (x)] ≤ 0 in thefirst inequality,withx = xk−∇ f (xk)
and y = xk .
Let now NC (x) denote the normal cone to C at a point x ∈ C :

NC (x) := {r ∈ R
n : rᵀ(y − x) ≤ 0 for all y ∈ C} . (38)

First-order stationarity conditions are equivalent to −∇ f (x) ∈ NC (x), or

dist(NC (x),−∇ f (x)) = ‖ − ∇ f (x) − πNC (x)(−∇ f (x))‖ = 0 .

The FW gap provides a lower bound on the distance from the normal cone
dist(NC (x),−∇ f (x)), inflated by the diameter D > 0 of C , as follows:

G(xk) = −(sk − xk)ᵀ∇ f (xk)
= (sk − xk)ᵀ[πNC (xk )(−∇ f (xk)) − (πNC (xk )(−∇ f (xk)) + ∇ f (xk))]
≤ ‖sk − xk‖ ‖πNC (xk )(−∇ f (xk)) + ∇ f (xk)‖
≤ D dist(NC (xk),−∇ f (xk)) ,

(39)

where in the first inequality we used (sk −xk)ᵀ[πNC (xk )(−∇ f (xk))] ≤ 0 together with
the Cauchy-Schwarz inequality, and ‖sk − xk‖ ≤ D in the second.

5.2 O(1/k) rate for convex objectives

If f is non-convex, it is possible to prove a O(1/
√
k) rate for mini∈[1:k] G(xi ) (see,

e.g., Lacoste-Julien 2016). On the other hand, if f is convex, we have anO(1/k) rate
on the optimality gap (see, e.g., Frank and Wolfe 1956; Levitin and Polyak 1966) for
all the stepsizes discussed in Sect 4. Here we include a proof for the Lipschitz constant
dependent stepsize αk given by (28).

Theorem 1 If f is convex and the stepsize is given by (28), then for every k ≥ 1

f (xk) − f ∗ ≤ 2LD2

k + 2
. (40)

Before proving the theoremwe prove a lemma concerning the decrease of the objective
in the case of a full FW step, that is a step with dk = dFW

k and with αk equal to 1, the
maximal feasible stepsize.
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Lemma 2 If αk = 1 and dk = dFWk then

f (xk+1) − f ∗ ≤ 1

2
min

{
L‖dk‖2, f (xk) − f ∗} . (41)

Proof If αk = 1 = αmax
k then by Definitions (3) and (32)

G(xk) = −∇ f (xk)ᵀdk ≥ L‖dk‖2 , (42)

the last inequality following by Definition (28) and the assumption that αk = 1. By
the standard Descent Lemma it also follows

f (xk+1) − f ∗ = f (xk + dk) − f ∗ ≤ f (xk) − f ∗ + ∇ f (xk)ᵀdk + L

2
‖dk‖2 .

(43)

Considering the definition of dk and convexity of f , we get

f (xk) − f ∗ + ∇ f (xk)ᵀdk ≤ f (xk) − f ∗ + ∇ f (xk)ᵀ(x∗ − xk) ≤ 0 ,

so that (43) entails f (xk+1) − f ∗ ≤ L
2 ‖dk‖2. To conclude, it suffices to apply to the

RHS of (43) the inequality

f (xk) − f ∗ + ∇ f (xk)ᵀdk + L
2 ‖dk‖2 ≤ f (xk) − f ∗ − 1

2 G(xk) ≤ f (xk )− f ∗
2

(44)

where we used (42) in the first inequality and G(xk) ≥ f (xk) − f ∗ in the second. ��
We can now proceed with the proof of the main result.

Proof of Theorem 1 For k = 0 and α0 = 1 then by Lemma 2

f (x1) − f ∗ ≤ L‖d0‖2
2

≤ LD2

2
. (45)

If α0 < 1 then

f (x0) − f ∗ ≤ G(x0) < L‖d0‖2 ≤ LD2 . (46)

Therefore in both cases (30) holds for k = 0.
Reasoning by induction, if (40) holds for k with αk = 1, then the claim is clear by (41).
On the other hand, if αk < αmax

k = 1 then by Lemma 1, we have

f (xk+1) − f ∗ ≤ f (xk) − f ∗ − 1
2L (∇ f (xk)ᵀd̂k)2

≤ f (xk) − f ∗ − (∇ f (xk )ᵀdk )2
2LD2

≤ f (xk) − f ∗ − ( f (xk )− f ∗)2
2LD2

= ( f (xk) − f ∗)
(
1 − f (xk )− f ∗

2LD2

)
≤ 2LD2

k+3 ,

(47)
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wherewe used ‖dk‖ ≤ D in the second inequality,∇ f (xk)ᵀdk = G(xk) ≥ f (xk)− f ∗
in the third inequality; and the last inequality follows by induction hypothesis. ��
As can be easily seen from above argument, the convergence rate of O(1/k) is true
also in more abstract normed spaces than R

n , e.g. when C is a convex and weakly
compact subset of a Banach space (see, e.g., Demyanov and Rubinov 1970; Dunn and
Harshbarger 1978). A generalization for some unbounded sets is given in Ferreira and
Sosa (2021). The bound is tight due to a zigzagging behaviour of the method near
solutions on the boundary, leading to a rate of Ω(1/k1+δ) for every δ > 0 (see Canon
and Cullum 1968 for further details), when the objective is a strictly convex quadratic
function and the domain is a polytope.
Also the minimum FW gap mini∈[0:k] G(xi ) converges at a rate of O(1/k) (see Jaggi
2013; Freund and Grigas 2016). In Freund and Grigas (2016), a broad class of step-
sizes is examined, including αk = 1

k+1 and αk = ᾱ constant. For these stepsizes a

convergence rate of O
(
ln(k)
k

)
is proved.

5.3 Variants

Active set FW variants mostly aim to improve over the O(1/k) rate and also ensure
support identification in finite time. They generate a sequence of active sets {Ak}, such
that xk ∈ conv(Ak), and define alternative directions making use of these active sets.

For the pairwise FW (PFW) and the away step FW (AFW) (see Clarkson 2010;
Lacoste-Julien and Jaggi 2015) we have that Ak must always be a subset of Sk , with
xk a convex combination of the elements in Ak . The away vertex vk is then defined by

vk ∈ argmax
y∈Ak

∇ f (xk)ᵀy . (48)

The AFW direction, introduced in Wolfe (1970), is hence given by

dAS
k = xk − vk

dk ∈ argmax{−∇ f (xk)ᵀd : d ∈ {dAS
k ,dFW

k }} ,
(49)

while the PFW direction, as defined in Lacoste-Julien and Jaggi (2015) and inspired
by the early work (Mitchell et al. 1974), is

dPFW
k = dFW

k + dAS
k = sk − vk , (50)

with sk defined in (3).
The FW method with in-face directions (FDFW) (see Freund et al. 2017; Guélat

and Marcotte 1986), also known as Decomposition invariant Conditional Gradient
(DiCG) when applied to polytopes (Bashiri and Zhang 2017), is defined exactly as
the AFW, but with the minimal face F(xk) of C containing xk as the active set.
The extended FW (EFW) was introduced in Holloway (1974) and is also known as
simplicial decomposition (Von Hohenbalken 1977). At every iteration the method
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Table 1 FW method and variants covered in this review

Variant Direction Active set

FW dk = dFWk = sk − xk , sk ∈ argmax{∇ f (xk )ᵀx : x ∈ C} –

AFW dk ∈ argmax{−∇ f (xk )ᵀd : d ∈ {xk − vk ,d
FW
k }, vk ∈ Ak } Ak+1 ⊆ Ak ∪ {sk }

PFW dk = sk − vk , vk ∈ argmax{∇ f (xk )ᵀvk : vk ∈ Ak } Ak+1 ⊆ Ak ∪ {sk }
EFW dk = yk − xk , yk ∈ argmin{ f (y) : y ∈ conv(Ak )} Ak+1 ⊆ Ak ∪ {sk }
FDFW dk ∈ argmax{−∇ f (xk )ᵀd : d ∈ {xk − vk ,d

FW
k }, vk ∈ Ak } Ak = F(xk )

minimizes the objective in the current active set Ak+1

xk+1 ∈ argmin
y∈conv(Ak+1)

f (y) , (51)

where Ak+1 ⊆ Ak ∪ {sk} (see, e.g., Clarkson 2010, Algorithm 4.2). A more general
version of the EFW, only approximately minimizing on the current active set, was
introduced in Lacoste-Julien and Jaggi (2015) under the name of fully corrective FW.
In Table 1, we report the main features of the classic FW and of the variants under
analysis.

5.4 Sparse approximation properties

As discussed in the previous section, for the classic FW method and the AFW, PFW,
EFW variants xk can always be written as a convex combination of elements in Ak ⊂
Sk , with |Ak | ≤ k + 1. Even for the FDFW we still have the weaker property that xk
must be an affine combination of elements in Ak ⊂ A with |Ak | ≤ k + 1. It turns out
that the convergence rate of methods with this property is Ω( 1k ) in high dimension.
More precisely, if C = conv(A) with A compact, the O(1/k) rate of the classic FW
method is worst case optimal given the sparsity constraint

xk ∈ aff(Ak) with Ak ⊂ A, |Ak | ≤ k + 1 . (52)

An example where the O(1/k) rate is tight was presented in Jaggi (2013). Let C =
Δn−1 and f (x) = ‖x − 1

n e‖2. Clearly, f ∗ = 0 with x∗ = 1
n e. Then it is easy to see

that min{ f (x) − f ∗ : ‖x‖0 ≤ k + 1} ≥ 1
k+1 − 1

n for every k ∈ N, so that in particular

under (52) with Ak = {ei : i ∈ [1 :n]}, the rate of any FW variant must be Ω( 1k ).

5.5 Affine invariance

The FW method and the AFW, PFW, EFW are affine invariant (Jaggi 2013). More
precisely, let P be a linear transformation, f̂ be such that f̂ (Px) = f (x) and Ĉ = P(C).
Then for every sequence {xk} generated by themethods applied to ( f ,C), the sequence
{yk} := {Pxk} can be generated by the FW method with the same stepsizes applied to
( f̂ , Ĉ). As a corollary, considering the special case where P is the matrix collecting
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the elements of A as columns, one can prove results on C = Δ|A|−1 and generalize
them to Ĉ := conv(A) by affine invariance.

An affine invariant convergence rate bound for convex objectives can be given using
the curvature constant

κ f ,C := sup
{
2 f (αy+(1−α)x)− f (x)−α∇ f (x)ᵀ(y−x)

α2 : {x, y} ⊂ C, α ∈ (0, 1]
}

. (53)

It is easy to prove that κ f ,C ≤ LD2 if D is the diameter ofC . In the special case where
C = Δn−1 and f (x) = xᵀÃ

ᵀ
Ãx+bᵀx, then κ f ,C ≤ diam(AΔn−1)

2 forAᵀ = [Ãᵀ
,b];

see Clarkson (2010).
When themethod uses the stepsize sequence (25), it is possible to give the following

affine invariant convergence rate bounds (see Freund and Grigas 2016):

f (xk) − f ∗ ≤ 2κ f ,C

k + 4
,

min
i∈[1:k]G(xi ) ≤ 9κ f ,C

2k
,

(54)

thus in particular slightly improving the rate we gave in Theorem 1 since we have that
κ f ,C ≤ LD2.

5.6 Support identification for the AFW

It is a classic result that the AFW under some strict complementarity conditions and
for strongly convex objectives identifies in finite time the face containing the solution
(Guélat and Marcotte 1986). Here we report some explicit bounds for this property
proved in Bomze et al. (2020). We first assume that C = Δn−1, and introduce the
multiplier functions

λi (x) = ∇ f (x)ᵀ(ei − x) (55)

for i ∈ [1 :n]. Let x∗ be a stationary point for f , with the objective f not necessarily
convex. It is easy to check that {λi (x∗)}i∈[1:n] coincidewith the Lagrangianmultipliers.
Furthermore, by complementarity conditions we have x∗

i λi (x∗) = 0 for every i ∈ [1 :
n]. It follows that the set

I (x∗) := {i ∈ [1 :n] : λi (x∗) = 0}

contains the support of x∗,

supp(x∗) := {i ∈ [1 :n] : x∗
i > 0} .

The next lemma uses λi , and the Lipschitz constant L of∇ f , to give a lower bound of
the so-called active set radius r∗, defining a neighborhood of x∗. Starting the algorithm
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in this neighbourhood, the active set (the minimal face ofC containing x∗) is identified
in a limited number of iterations.

Lemma 3 Let x∗ be a stationary point for f on the boundary of Δn−1, δmin =
mini :λi (x∗)>0 λi (x∗) and

r∗ = δmin

δmin + 2L
. (56)

Assume that for every k for which dk = dAk holds, the step size αk is not smaller than
the stepsize given by (28), αk(L) ≤ αk .
If ‖xk − x∗‖1 < r∗, then for some

j ≤ min{n − |I (x∗)|, | supp(xk)| − 1}

we have supp(xk+ j ) ⊆ I (x∗) and ‖xk+ j − x∗‖1 < r∗.

Proof Follows from (Bomze et al. 2020, Theorem 3.3), since under the assumptions
the AFW sets one variable in supp(xk) \ I (x∗) to zero at every step without increasing
the 1-norm distance from x∗. ��
The above lemma does not require convexity and was applied in Bomze et al. (2020)
to derive active set identification bounds in several convex and non-convex settings.
Here we focus on the case where the domain C = conv(A) with |A| < +∞ is a
generic polytope, and where f is μ-strongly convex for some μ > 0, i.e.

f (y) ≥ f (x) + ∇ f (x)ᵀ(y − x) + μ

2
‖x − y‖2 for all {x, y} ⊂ C . (57)

Let EC (x∗) be the face of C exposed by ∇ f (x∗):

EC (x∗) := argmin
x∈C

∇ f (x∗)ᵀx , (58)

Let then θA be the Hoffman constant (see Beck and Shtern 2017) related to
[Āᵀ

, In, e,−e]ᵀ, with Ā the matrix having as columns the elements in A. Finally,
consider the function f A(y) := f (Āy) onΔ|A|−1, and let L A be the Lipschitz constant
of ∇ f A as well as

δmin := min
a∈A\EC (x∗)

∇ f (x∗)ᵀ(a − x∗) and r∗(x∗) := δmin

δmin + 2L A
.

Using linearity of AFW convergence for strongly convex objectives (see Sect. 6.1),
we have the following result:

Theorem 2 The sequence {xk} generated by the AFW with x0 ∈ A enters EC (x∗) for

k ≥ max

{
2
ln(h0) − ln(μAr∗(x∗)2/2)

ln(1/q)
, 0

}
, (59)
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where μA = μ

nθ2A
and q ∈ (0, 1) is the constant related to the linear convergence rate

of the AFW, i.e. hk ≤ qkh0 for all k.

Proof of Theorem 2 (sketch) We present an argument in the case C = Δn−1, A =
{ei }i∈[1:n] which can be easily extended by affine invariance to the general case (see
Bomze et al. 2020 for details). In this case θA ≥ 1 and we can define μ̄ := μ/n ≥ μA.
To start with, the number of steps needed to reach the condition

hk ≤ μ

2n
r∗(x∗)2 = μ̄

2
r∗(x∗)2 (60)

is at most

k̄ = max

{⌈
ln(h0) − ln(μ̄r∗(x∗)2/2)

ln(1/q)

⌉
, 0

}
.

Now we combine n‖ · ‖ ≥ ‖ · ‖1 with strong convexity and relation (60) to obtain
‖xk − x∗‖1 ≤ r∗(x∗), hence in particular ‖xk − x∗‖1 ≤ r∗(x∗) for every k ≥ k̄. Since
x0 is a vertex of the simplex, and at every step at most one coordinate is added to
the support of the current iterate, | supp(xk̄)| ≤ k̄ + 1. The claim follows by applying
Lemma 3. ��
Additional bounds under a quadratic growth condition weaker than strong convexity
and strict complementarity are reported in Garber (2020).

Convergence and finite time identification for the PFW and the AFW are proved
in Bomze et al. (2019) for a specific class of non-convex minimization problems over
the standard simplex, under the additional assumption that the sequence generated has
a finite set of limit points. In another line of work, active set identification strategies
combined with FW variants have been proposed in Cristofari et al. (2020) and Sun
(2020).

5.7 Inexact linear oracle

Inmany real-world applications, linear subproblems can only be solved approximately.
This is the reason why the convergence of FW variants is often analyzed under some
error term for the linear minimization oracle (see, e.g., Braun et al. 2019, 2017; Freund
and Grigas 2016; Jaggi 2013; Konnov 2018). A common assumption, relaxing the FW
vertex exact minimization property, is to have access to a point (usually a vertex) s̃k
such that

∇ f (xk)ᵀ(s̃k − xk) ≤ min
s∈C ∇ f (xk)ᵀ(s − xk) + δk , (61)

for a sequence {δk} of non negative approximation errors.
If the sequence {δk} is constant and equal to some δ > 0, then trivially the lowest
possible approximation error achieved by the FW method is δ. At the same time,
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(Freund and Grigas 2016, Theorem 5.1) implies a rate of O( 1k + δ) if the stepsize
αk = 2

k+2 is used.
The O(1/k) rate can be instead retrieved by assuming that {δk} converges to 0

quickly enough, and in particular if

δk = δκ f ,C

k + 2
(62)

for a constant δ > 0. Under (62), in Jaggi (2013) a convergence rate of

f (xk) − f ∗ ≤ 2κ f ,C

k + 2
(1 + δ) (63)

was proved for the FW method with αk given by exact line search or equal to 2
k+2 , as

well as for the EFW.
A variant making use of an approximated linear oracle recycling previous solutions

to the linear minimization subproblem is studied in Braun et al. (2019). In Freund and
Grigas (2016), Hogan (1971), the analysis of the classic FW method is extended to
the case of inexact gradient information. In particular in Freund and Grigas (2016),
assuming the availability of the (δ, L) oracle introduced in Devolder et al. (2014), a
convergence rate of O(1/k + δk) is proved.

6 Improved rates for strongly convex objectives

6.1 Linear convergence under an angle condition

In the rest of this section we assume that f is μ-strongly convex (57). We also assume
that the stepsize is given by exact linesearch or by (28).

Under the strong convexity assumption, an asymptotic linear convergence rate for
the FDFW on polytopes was given in the early work (Guélat and Marcotte 1986).
Furthermore, in Garber and Hazan (2016) a linearly convergent variant was proposed,
making use however of an additional local linear minimization oracle. See also Table
2 for a list of improvements on the O(1/k) rate under strong convexity.

Table 2 Known convergence rates for the FW method and the variants covered in this review

Method Objective Domain Assumptions Rate

FW NC Generic – O(1/
√
k)

FW C Generic – O(1/k)

FW SC Generic x∗ ∈ ri(C) Linear

Variants SC Polytope – Linear

FW SC Strongly convex – O(1/k2)

FW SC Strongly convex min ‖∇ f (x)‖ > 0 Linear

NC, C and SC stand for non-convex, convex and strongly convex respectively
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Recent works obtain linear convergence rates by proving the angle condition

−∇ f (xk)ᵀd̂k ≥ τ

‖xk − x∗‖ ∇ f (xk)ᵀ(xk − x∗) (64)

for some τ > 0 and some x∗ ∈ argminx∈C f (x). As we shall see in the next lemma,
under (64) it is not difficult to prove linear convergence rates in the number of good
steps. These are FW steps with αk = 1 and steps in any descent direction with αk < 1.

Lemma 4 If the step k is a good step and (64) holds, then

hk+1 ≤ max
{
1
2 , 1 − τ 2μ

L

}
hk . (65)

Proof If the step k is a full FW step then Lemma 2 entails hk+1 ≤ 1
2 hk . In the

remaining case, first observe that by strong convexity

f ∗ = f (x∗) ≥ f (xk) + ∇ f (xk)ᵀ(x∗ − xk) + μ
2 ‖xk − x∗‖2

≥ min
α∈R

[
f (xk) + α∇ f (xk)ᵀ(x∗ − xk) + α2μ

2 ‖xk − x∗‖2
]

= f (xk) − 1
2μ‖xk−x∗‖2

[∇ f (xk)ᵀ(xk − x∗)
]2

,

(66)

which means

hk ≤ 1

2μ‖xk − x∗‖2
[∇ f (xk)ᵀ(xk − x∗)

]2
. (67)

We can then proceed using the bound (30) from Lemma 1 in the following way:

hk+1 = f (xk+1) − f ∗ ≤ f (xk) − f ∗ − 1
2L

[
∇ f (xk)ᵀd̂k

]2

≤ hk − τ 2

2L‖xk−x∗‖2
[∇ f (xk)ᵀ(xk − x∗)

]2

≤ hk
(
1 − τ 2μ

L

)
,

(68)

where we used (64) in the second inequality and (67) in the third one. ��
As a corollary, under (64) we have the rate

f (xk) − f ∗= hk ≤ max
{
1
2 , 1 − τ 2μ

L

}γ (k)
h0 (69)

for anymethodwith non increasing { f (xk)} and followingAlgorithm 1, with γ (k) ≤ k
an integer denoting the number of good steps until step k. It turns out that for all the
variants we introduced in this review we have γ (k) ≥ T k for some constant T > 0.
When x∗ is in the relative interior of C , the FW method satisfies (64) and we have the
following result (see Guélat and Marcotte 1986; Lacoste-Julien and Jaggi 2015):
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Theorem 3 If x∗ ∈ ri(C), then

f (xk) − f ∗ ≤
[

1 − μ

L

(
dist(x∗, ∂C)

D

)2
]k

( f (x0) − f ∗) . (70)

Proof We can assume for simplicity int(C) �= ∅, since otherwise we can restrict
ourselves to the affine hull of C . Let δ = dist(x∗, ∂C) and g = −∇ f (xk). First, by
assumption we have x∗ + δĝ ∈ C . Therefore

gᵀdFW
k ≥ gᵀ((x∗ + δĝ) − x) = δgᵀĝ + gᵀ(x∗ − x) ≥ δ‖g‖ + f (x) − f ∗ ≥ δ‖g‖,

(71)

where we used x∗ + δĝ ∈ C in the first inequality and convexity in the second. We
can conclude

gᵀ dFW
k

‖dFW
k ‖ ≥ gᵀ d

FW
k

D
≥ δ

D
‖g‖ ≥ δ

D
gᵀ

(
xk − x∗

‖xk − x∗‖
)

. (72)

The thesis follows by Lemma 4, noticing that for τ = dist(x∗,∂C)
D ≤ 1

2 we have
1 − τ 2

μ
L > 1

2 . ��
In Lacoste-Julien and Jaggi (2015), the authors proved that directions generated by

the AFW and the PFW on polytopes satisfy condition (64), with τ = PWidth(A)/D
and PWidth(A), pyramidal width of A. While PWidth(A) was originally defined with
a rather complexminmax expression, in Peña andRodriguez (2018) it was then proved

PWidth(A) = min
F∈faces(C)

dist(F, conv(A \ F)) . (73)

This quantity can be explicitly computed in a few special cases. For A = {0, 1}n we
have PWidth(A) = 1/

√
n, while for A = {ei }i∈[1:n] (so thatC is the n−1 dimensional

simplex)

PWidth(A) =
{

2√
n

if n is even
2√

n−1/n
if n is odd.

(74)

Angle conditions like (64)with τ dependent on the number of vertices used to represent
xk as a convex combination were given in Bashiri and Zhang (2017) and Beck and
Shtern (2017) for the FDFW and the PFW respectively. In particular, in Beck and
Shtern (2017) a geometric constant ΩC called vertex-facet distance was defined as

ΩC = min{dist(v, H) : v ∈ V (C) , H ∈ H(C), v /∈ H} , (75)

with V (C) the set of vertices of C , and H(C) the set of supporting hyperplanes of C
(containing a facet of C). Then condition (64) is satisfied for τ = ΩC/s, with dk the
PFW direction and s the number of points used in the active set Ak .
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In Bashiri and Zhang (2017), a geometric constant Hs was defined depending on the
minimum number s of vertices needed to represent the current point xk , as well as on
the proper2 inequalities qᵀ

i x ≤ bi , i ∈ [1 : m], appearing in a description of C . For
each of these inequalities the second gap gi was defined as

gi = max
v∈V (C)

qᵀ
i v − secondmaxv∈V (C) q

ᵀ
i v , i ∈ [1 :m] , (76)

with the secondmax function giving the second largest value achieved by the argument.
Then Hs is defined as

Hs := max

{
n∑

j=1

(
∑

i∈S
ai j
gi

)2

: S ∈ ([1:m]
s

)
}

. (77)

The arguments used in the paper imply that (64) holds with τ = 1
2D

√
Hs

if dk is a
FDFW direction and xk the convex combination of at most s vertices. We refer the
reader to Peña and Rodriguez (2018) and Rademacher and Shu (2020) for additional
results on these and related constants.

The linear convergence results for strongly convex objectives are extended to com-
positions of strongly convex objectives with affine transformations in Beck and Shtern
(2017), Lacoste-Julien and Jaggi (2015), Peña and Rodriguez (2018). In Gutman and
Pena (2021), the linear convergence results for the AFW and the FW method with
minimum in the interior are extended with respect to a generalized condition number
L f ,C,D/μ f ,C,D , with D a distance function on C .

For the AFW, the PFW and the FDFW, linear rates with no bad steps (γ (k) =
k) are given in Rinaldi and Zeffiro (2020) for non-convex objectives satisfying a
Kurdyka-Łojasiewicz inequality. In Rinaldi and Zeffiro (2020), condition (64) was
proved for the FW direction and orthographic retractions on some convex sets with
smooth boundary. The work Combettes and Pokutta (2020) introduces a new FW
variant using a subroutine to align the descent direction with the projection on the
tangent cone of the negative gradient, thus implicitly maximizing τ in (64).

6.2 Strongly convex domains

When C is strongly convex we have a O(1/k2) rate (see, e.g., Garber and Hazan
2015; Kerdreux et al. 2021) for the classic FW method. Furthermore, when C is βC -
strongly convex and ‖∇ f (x)‖ ≥ c > 0, then we have the linear convergence rate (see
Demyanov and Rubinov 1970; Dunn 1979; Kerdreux et al. 2020; Levitin and Polyak
1966)

hk+1 ≤ max
{
1
2 , 1 − L

2cβC

}
hk . (78)

Finally, it is possible to interpolate between the O(1/k2) rate of the strongly convex
setting and theO(1/k) rate of the general convex one by relaxing strong convexity of

2 i.e., those inequalities strictly satisfied for some x ∈ C .
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the objective with Hölderian error bounds (Xu and Yang 2018) and also by relaxing
strong convexity of the domain with uniform convexity (Kerdreux et al. 2021).

7 Extensions

7.1 Block coordinate Frank–Wolfe method

The block coordinate FW (BCFW) was introduced in Lacoste-Julien et al. (2013) for
block product domains of the form C = C (1) × ... × C (m) ⊆ R

n1+...+nm , and applied
to structured SVM training. The algorithm operates by selecting a random block and
performing a FW step in that block. Formally, for s ∈ R

mi let s(i) ∈ R
n be the vector

with all blocks equal to o except for the i-th block equal to s.We canwrite the direction
of the BCFW as

dk = s(i)k − xk

sk ∈ argmin
s∈C(i)

∇ f (xk)ᵀs(i)
(79)

for a random index i ∈ [1 :n].
In Lacoste-Julien et al. (2013), a convergence rate of

E[ f (xk)] − f ∗ ≤ 2Km

k + 2m
(80)

is proved, for K = h0 + κ⊗
f , with κ⊗

f the product domain curvature constant, defined

as κ⊗
f = ∑

κ
⊗,i
f where κ

⊗,i
f are the curvature constants of the objective fixing the

blocks outside C (i):

κ
⊗,i
f := sup

{
2 f (x+αd(i))− f (x)−α∇ f (x)ᵀd(i)

α2 : d ∈ C − x, x ∈ C, α ∈ (0, 1]
}

. (81)

An asynchronous and parallel generalization for this method was given in Wang et al.
(2016). This version assumes that a cloud oracle is available, modeling a set of worker
nodes each sending information to a server at different times. This information consists
of an index i and the following LMO on C (i):

s(i) ∈ argmin
s∈C(i)

∇ f (xk̃)
ᵀs(i) . (82)

The algorithm is called asynchronous because k̃ can be smaller than k, modeling a
delay in the information sent by the node. Once the server has collected a minibatch
S of τ distinct indexes (overwriting repetitions), the descent direction is defined as

dk =
∑

i∈S
s(i)(i) , (83)
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If the indices sent by the nodes are i.i.d., then under suitable assumptions on the delay,
a convergence rate of

E[ f (xk)] − f ∗ ≤ 2mKτ

τ 2k + 2m
(84)

can be proved, where Kτ = mκ⊗
f ,τ (1 + δ) + h0 for δ depending on the delay error,

with κ⊗
f ,τ the average curvature constant in a minibatch keeping all the components

not in the minibatch fixed.
InOsokin et al. (2016), several improvements are proposed for theBCFW, including

an adaptive criterion to prioritize blocks based on their FW gap, and block coordinate
versions of the AFW and the PFW variants.

In Shah et al. (2015), a multi plane BCFW approach is proposed in the specific
case of the structured SVM, based on caching supporting planes in the primal, corre-
sponding to block linear minimizers in the dual. In Berrada et al. (2018), the duality
for structured SVM between BCFW and stochastic subgradient descent is exploited
to define a learning rate schedule for neural networks based on only one hyper param-
eter. The block coordinate approach is extended to the generalized FW in Beck et al.
(2015), with coordinates however picked in a cyclic order.

7.2 Variants for themin-norm point problem

Consider the min-norm point (MNP) problem

min
x∈C ‖x‖∗ , (85)

with C a closed convex subset of Rn and ‖ · ‖∗ a norm on R
n . In Wolfe (1976), a

FW variant is introduced to solve the problem when C is a polytope and ‖ · ‖∗ is the
standard Euclidean norm ‖ · ‖. Similarly to the variants introduced in Sect. 5.3, it
generates a sequence of active sets {Ak} with sk ∈ Ak+1. At the step k the norm is
minimized on the affine hull aff(Ak) of the current active set Ak , that is

vk = argmin
y∈aff(Ak )

‖y‖ . (86)

The descent direction dk is then defined as

dk = vk − xk , (87)

and the stepsize is given by a tailored linesearch that allows to remove some of the
atoms in the set Ak (see, e.g. Lacoste-Julien and Jaggi 2015; Wolfe 1976). Whenever
xk+1 is in the relative interior of conv(Ak), the FW vertex is added to the active set
(that is, sk ∈ Ak+1). Otherwise, at least one of the vertices not appearing in a convex
representation of xk is removed. This scheme converges linearly when applied to
generic smooth strongly convex objectives (see, e.g., Lacoste-Julien and Jaggi 2015).
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In Harchaoui et al. (2015), a FW variant is proposed for minimum norm problems
of the form

min{‖x‖∗ : f (x) ≤ 0, x ∈ K } (88)

with K a convex cone, f convex with L-Lipschitz gradient. In particular, the opti-
mization domain is C = {x ∈ R

n : f (x) ≤ 0} ∩ K . The technique proposed in the
article applies the standard FW method to the problems

min{ f (x) : ‖x‖∗ ≤ δk, x ∈ K } ,

with {δk} an increasing sequence convergent to the optimal value δ̄ of the problem (88).
Let C(δ) = {x ∈ R

n : ‖x‖∗ ≤ δ} ∩ K for δ ≥ 0, and let

LM(r) ∈ argmin
x∈C(1)

rᵀx ,

so that by homogeneity for every k the linear minimization oracle on C(δk) is given
by

LMOC(δk )(r) = δkLM(r) . (89)

For every k, applying the FWmethodwith suitable stopping conditions an approximate
minimizer xk of f (x) over C(δk) is generated, with an associated lower bound on the
objective, an affine function in y:

fk(y) := f (xk) + ∇ f (xk)ᵀ(y − xk) . (90)

Then the function

�k(δ) := min
y∈C(δ)

fk(y) = fk(δLM(gk)) with gk = ∇ f (xk) (91)

is decreasing and affine in δ and satisfies

�k(δ) = min
y∈C(δ)

fk(y) ≤ F(δ) := min
y∈C(δ)

f (y) . (92)

Therefore, for

�̄k(δ) = max
i∈[1:k] �i (δ) ≤ F(δ)

the quantity δk+1 can be defined as min{δ ≥ 0 : �̄k(δ) ≤ 0}, hence F(δk+1) ≥ 0.
A complexity bound of O( 1

ε
ln( 1

ε
)) was given to achieve precision ε applying this

method, with O(1/ε) iterations per subproblem and length of the sequence {δk} at
most O(ln(1/ε)) (see (Harchaoui et al. 2015, Theorem 2) for details).
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7.3 Variants for optimization over the trace norm ball

The FW method has found many applications for optimization problems over the
trace norm ball. In this case, as explained in Example 3.4, linear optimization can be
obtained by computing the top left and right singular vectors of the matrix −∇ f (Xk),
an operation referred to as 1-SVD (see Allen-Zhu et al. 2017) .

In the work Freund et al. (2017), the FDFW is applied to the matrix completion
problem (13), thus generating a sequence of matrices {Xk} with ‖Xk‖∗ ≤ δ for every
k. The method can be implemented efficiently exploiting the fact that for X on the
boundary of the nuclear norm ball, there is a simple expression for the face F(X). For
X ∈ R

m×n with rank(X) = k let UDVᵀ be the thin SVD of X, so that D ∈ R
k×k is the

diagonal matrix of non zero singolar values for X, with corresponding left and right
singular vectors in the columns of U ∈ R

m×k and V ∈ R
n×k respectively. If ‖X‖∗ = δ

then the minimal face of the domain containing X is the set

F(X) = {X ∈ R
m×n : X = UMVᵀ for M = Mᵀ psd with ‖M‖∗ = δ} . (93)

It is not difficult to see that we have rank(Xk) ≤ k + 1 for every k ∈ N, as well.
Furthermore, the thin SVD of the current iterate Xk can be updated efficiently both
after FW steps and after in face steps. The convergence rate of the FDFW in this setting
is still O(1/k).
In the recent work Wang et al. (2020), an unbounded variant of the FW method is
applied to solve a generalized version of the trace norm ball optimization problem:

min
X∈Rm×n

{ f (X) : ‖PXQ‖∗ ≤ δ} (94)

with P,Q singular matrices. The main idea of the method is to decompose the domain
in the sum S + T between the kernel T of the linear function ϕP,Q(X) = PXQ and a
bounded set S ⊂ T⊥. Then gradient descent steps in the unbounded component T are
alternated to FW steps in the bounded component S. The authors apply this approach
to the generalized LASSO as well, using the AFW for the bounded component.

In Allen-Zhu et al. (2017), a variant of the classic FW using k-SVD (computing
the top k left and right singular vectors for the SVD) is introduced, and it is proved
that it converges linearly for strongly convex objectives when the solution has rank
at most k. In Mu et al. (2016), the FW step is combined with a proximal gradient
step for a quadratic problem on the product of the nuclear norm ball with the �1 ball.
Approaches using an equivalent formulation on the spectrahedron introduced in Jaggi
and Sulovský (2010) are analyzed in Ding et al. (2020), Garber (2019).

8 Conclusions

While the concept of the FW method is quite easy to understand, its advantages, wit-
nessed by a multitude of related work, may not be apparent to someone not closely
familiar with the subject. Thereforewe considered, in Sect. 3, several motivating appli-
cations, ranging from classic optimization to more recent machine learning problems.
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As in any line search-basedmethod, the proper choice of stepsize is an important ingre-
dient to achieve satisfactory performance. In Sect. 4, we review several options for
stepsizes in first order methods, which are closely related both to the theoretical anal-
ysis as well as to practical implementation issues, guaranteeing fast convergence. This
scope was investigated in more detail in Sect. 5 covering main results about the FW
method and its most popular variants, including theO(1/k) convergence rate for con-
vex objectives, affine invariance, the sparse approximation property, and support iden-
tification. The account is complemented by a report on recent progress in improving on
theO(1/k) convergence rate in Sect. 6. Versatility and efficiency of this approach was
also illustrated in the final Sect. 7 describing present recent FWvariants fitting different
optimization frameworks and computational environments, in particular block coor-
dinate, distributed, parametrized, and trace norm optimization. For sure many other
interesting and relevant aspects of FW and friends could not find their way into this
review because of space and time limitations, but the authors hope to have convinced
readers that FWmerits a consideration even by non-experts in first-order optimization.
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