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Abstract Since the beginning of cognitive science, re-

searchers have tried to understand human strategies in

order to develop efficient and adequate computational

methods. In the domain of problem solving, the Trav-

eling Salesperson Problem has been used for the inves-

tigation and modeling of human solutions. We propose

to extend this effort with an online game, in which in-

stances of the Traveling Salesperson Problem have to be

solved in the context of a game experience. We report

on our effort to design and run such a game, present the

data contained in the resulting openly available dataset,

and provide an outlook on the use of games in general

for cognitive science research. In addition, we present

three geometrical models mapping the starting point

preferences in the problems presented in the game as

the result of an evaluation of the dataset.

Keywords Traveling salesperson problem · Problem

solving · Casual Games

1 Introduction

One aspect of cognitive science research is the transfer

of intelligent strategies from natural cognitive systems

to computational systems. A fundamental challenge of

this is to find adequate problems that are solvable and

representable for both natural and computational sys-

tems, and to acquire enough data from natural systems

to allow for identification of strategies and a basis for

comparison.
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In the area of problem solving, the Traveling Sales-

person Problem (TSP) is a good candidate for such

research, having been examined in psychology [14], as

well as in computer science [5]. A TSP instance con-

sists of a set of points, where the task is to find the

shortest tour that visits each point once and returns to

the origin. Though being an NP-hard problem, humans

generally produce remarkably good solutions [14] [22],

which makes it an interesting object of study on prob-

lem solving. However, experimentation is time consum-

ing and cost intensive: participants have to be found

and supervised, materials printed and analyzed.

To avoid these steps as well as an artificial labora-

tory situation we developed an online game, mapping

planar Euclidean 2D instances of the TSP to a playful

task in an appealing surrounding. We chose to use an

online game because researchers have successfully used

games in the past to acquire data of human behavior

in different tasks [20,2,8] with compelling results.

The goal of this paper is to share our experience

with designing and running an online game to gather

data on human problem solving behavior1 and to use

that data to improve models simulating human solution

strategies in the domain of the TSP. There are different

approaches for such simulating models, covering basic

strategies (Cutini [3]), hierarchical approaches (Kong &

Schunn[9], Best[1], MacGregor[16], [18]) and combina-

tions of those (Kirsch [7]). In some models, the set of

possible starting points is implicitly defined by the defi-

nition of the represented strategy, while in other models

the set of possible starting points includes all points of

1 The game can be played at www.perlentaucher.

medieninformatik.uni-tuebingen.de and the resulting
dataset is available at http://www.wsi.uni-tuebingen.

de/lehrstuehle/human-computer-interaction/home/

code-datasets/tsp-dataset.html.
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the problem. However, none of the existing models use a

strategy based on test results to choose a specific point

as the starting point for the constructed tour, but a

random point in the set of possible starting points. For

some of the models this results in different tours when

applying the model multiple times to the same prob-

lem. MacGregor[12] observed, that points on the con-

vex hull and points near the geometrical center or the

center of mass of the problem are often chosen as start-

ing points by humans. Also, starting point preferences

varied across individuals, ranging from 7% to 100% for

the frequency of hull starts. Those results indicate, that

in general the convex hull might be a good selection as

the set of possible starts for a model simulating hu-

man behaviour in TSPs, but disregard the cases where

interiour points are preferred. Other models ([9] , [1])

choose a cluster based approach for the selection of the

tour start, which fails for small instances of the TSP, as

the presence of visible clusters is not ensured. Although

there is no study that clearifies the relevance of start-

ing points for the cognitive process of tour production,

previous unpublished data showed strong preferences

for specific points in TSPs. In the analysis in section 4

we use the large amount of data gathered in the game

to identify possible factors for those preferences and in-

troduce three geometrical models that could be used to

predict preferred starting points. For a literature review

on human performance in solving TSPs and suggested

models, we recommend the review by MacGegor and

Chu[14].

2 Game Design

Our main goals in developing this game were:

1. to address a large number of participants and create

an appealing game experience that does not feel like

a test,

2. to extend the available observations on TSP solving

with a wider range of options for the solution process

and different problem variants.

To achieve the first goal, we wanted to create a ca-

sual game. Basic principles of casual games are “easy to

learn, simple to play and offer[ing] quick rewards with

forgiving gameplay” [11], with popular examples like

Angry Birds c©, Cut the rope c© or Candy Crush Saga c©.

Our game Perlentaucher2 (Pearl Diver) introduces

the TSP in a simple story: the pearl-diving panda Paul

wants to make the process of collecting pearls more ef-

ficient and therefore needs to find the shortest tour on

each of his diving spots. The story is presented in an

2 The game is in German as to give us better access to local
players. An english version is in development.

Fig. 1 A level with differently colored nodes

introductory level that also explains the game mechan-

ics, the user interface and the functions of purchasable

game advantages (see Sections 2.1 and 2.2).

The setup of a casual game is well suited to achieve

the second goal: as is usual in games, our players receive

feedback and can repeat levels. This provides data on

learning or optimization effects when solving a problem

instance several times. This aspect is very important

for computational models for human TSP strategies,

because all models we are aware of (e.g. The Sequen-

tial Convex-hull Model, Pyramid Models, Global-local

Models [14]) produce exactly one solution. Another di-

mension is to examine the influence of tools or hints to

solve TSP instances. Perlentaucher includes three pur-

chasable game advantages with possible aids, offering

not only the possibility to observe whether such aids

help to find the optimal solution, but also how useful

the players estimate the aids to be (as they have to be

purchased with points). A third dimension for variation
are the levels themselves. Of course, each TSP instance

is different, but we also vary the task slighly in different

blocks of levels (see Section 2.3).

2.1 Board

The levels are displayed on a blue background repre-

senting the ocean (Figure 1) with the nodes shown as

images of pearls, which the player has to collect on the

shortest path. The pearls are drawn onto a grid of 20

rows and 26 columns to allow for a better distinction

of the distances between the pearls. Already collected

pearls are connected by lines representing the chosen

tour with the last collected pearl marked by a dark cir-

cle. To avoid confusion and illegal tours, every pearl

except the starting point can be selected only once. In

addition, the tour can be closed only when all pearls

are included.
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Fig. 2 The level representation within the areas

The sidebar on the left shows the player’s best score

from previous runs, the level number and the available

game advantages.

When the player finishes a level, a pop up dialogue

shows the rating, which is caluclated as the ratio of

the shortest possible tour length and the found tour

length scaled by 100, resulting in 100 points when the

optimum was found and accordingly lower scores for

longer tours. Corresponding to the score, the player is

rewarded with a bronze (score ≥ 90), silver (score ≥ 95)

or gold coin (score = 100). Earned coins are shown in

the level selection screen to provide an overview of the

player’s progress (Figure 2). To be able to play a level,

the player has to finish all previous levels with a score

of at least 90 points.

2.2 Game Advantages

The player may use three items in the game that pos-

sibly help to find the optimal solution:

– Undo: reverts the last node selection

– Nearest neighbor: shows the nearest node to the cur-

rently selected node

– Show last tour: shows the last complete solution of

the user for the current level.

The functionalities of those items are the result of a

user test where participants were asked which functions

they considered helpful for finding the optimal tour.

The items have to be purchased in the game’s shop

area (Figure 3) with points the player has received by

solving levels. Some items are provided for free intially

to allow the players to use the items from the very start.

2.3 Level Construction

The game contains 24 levels which are devided into

three groups of 8 levels, each representing different vari-

ations of the TSP. The groups are represented by areas

Fig. 3 The game’s shop area

Fig. 4 The area-selection screen

which have to be unlocked by finishing the previous

area (Figure 4).

The first group contains plain Euclidean TSPs: Free

choice of a starting point with all nodes (pearls) having

the same color.
In the problems of the second group again all nodes

have the same color, but the starting point is prese-

lected and cannot be altered by the user. In some levels

the starting point is one that has been often chosen in

previous experiments, in others one that has only rarely

been chosen.

In the third area the nodes are marked with different

colors. The users are informed of the nodes being col-

ored, but recieve no further instruction. For each level,

three to five colors are used and distributed over the

nodes in three ways:

– colors emphasize visible clusters, each cluster being

marked with a specific color;

– same colors are used for neighbouring nodes, defin-

ing regions, but not following visible clusters;

– colors are randomly assigned to nodes.

For the first two coloring schemes there are two

kinds of levels to see whether the coloring influences

the human solution strategy:
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Fig. 5 Overview of used TSP instances and the comparison
of results

– following, i.e. visiting all nodes of the same color

before moving on to another color, helps the user to

find the optimal solution;

– following regions misleads from the optimal solu-

tion.

Some TSP instances are used in two different levels,

allowing some direct comparison of conditions.

2.4 Data

The following data are recorded when a player solves a

level:

– timestamp of when the solution was saved to the

database

– tour as a list of node numbers

– tour length

– time in seconds from starting to completing the tour

– level number

– user-ID

– used game advantages

To limit concerns about privacy and the necessity

of additional security techniques, we do not record any

information about the user’s input- or display devices

as well as the user’s age or gender. This may result in

some variation of the data, especially for the duration

to complete a tour. It should be noted that the results

for the solution times should be treated with caution, as

this component is highly dependent on the used input

device. Given that, the tracked times represent more

the time needed to submit the solution than the time

needed to actually solve the problem. Nevertheless we

included the time in the available data sets, as they

might be useful for some evaluations.

3 Observations

With the online game we sacrifice the controllability

of a lab experiment. This is why we wanted to test the

reliability of this form of data acquisition by comparing

it to previous results from laboratory experiments.

The game was developed in a user-centered design

process. The last prototype contained — among oth-

ers — TSP instances from experiments by MacGregor

and Ormerod [15] and Tak et al. [19]. The prototype

game was played online by 27 participants (mostly stu-

dents of computer science) over 10 days. Most of the

levels used in this user test are no longer present in

the currently used level set as they did not follow our

construction directives. This is why we compared the

results obtained from the last prototype with those re-

ported in the literature and in a second step looked at

the problems from this prototype that are still used in

the final version (see Figure 5).

A standard measure for comparing TSP solutions is

the percentage above the optimal tour length (PAO).

The comparison of the 18 problems by MacGregor and

Ormerod [15] and Tak et al. [19] is shown in the Ap-

pendix B, Figure 13. Because the participants in those

studies could solve each TSP instance once, we only use

the first trial of the players for each level from our game

data. The PAO values of our data differ at most by 2.78

from the reference data of MacGregor [15] and at most

by 2.4 from the reference data of Tak [19]. On average

the differences are 1.34 (MacGregor) and 1.08 (Tak).

Figure 6 shows the comparison of the PAO values

of the first solution attempts in the last prototype ver-

sion and in the current dataset for the seven problems

shared by both versions. The problems are specified in

appendix, Table 3.

In both steps, the results are comparable, which

shows that the noise in our online game is at an ac-

ceptable level. Although the maximum PAO values in

the current data are much higher than in the prototype,

the results are similar, as the large size of the data set

compensates for those outliers.

In addition, we wanted to know if we achieved the

original goals of our project.

Goal 1: to address a large number of participants, cre-

ating an appealing game experience that does not feel

like a test. During the development phase, we got pos-

itive feedback from our participants on the game de-

sign and its entertainment value. We have gathered new

data from 38, 400 games, played by over 1, 200 different

players. The participants were recruited by email ad-

vertising to students and employees at the University

of Tübingen and to personal acquaintances, which lead

to approximately 30, 000 solutions in a few days. The

game is still played regularly, but not as often as when

we started to make the game known. With a real ad-
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Fig. 6 Comparison of PAO values of 7 problems used in
the prototype and in the final version. The whiskers show
the minimum and maximum values, the box contains values
between the upper and the lower quartile, the bar indicates
the median value. The game data contains outliers with PAO
values beyond the scale of this figure, indicated with a star
and the maximum value.

vertising campaign, the range of players could probably

be enlarged.

Players can also give feedback in the online game.

Most comments are positive with respect to the enter-

tainment aspect. Suggestions for improvement include

a mobile version for smartphones, additional game ad-

vantages and more challenging levels.

There seem to be different groups of players: some
are just curious and explore the levels once or twice

without trying to find the optimal tour, while other

players are really ambitious to solve the whole game

(from personal feedback we know that some players

even play against time when they have already found

the optimal solution). From their perseverance and pos-

itive feedback we conclude that at least the second

group really enjoys the game. 33 players found the op-

timal solutions for all 24 levels.

Goal 2: to extend the available observations on TSP

solving with a wider range of options for the solution

process and different problem variants. By construc-

tion, the game offers many options for variation as de-

scribed in Section 2. We have just started to analyze

the data, but we already made some interesting obser-

vations:

– Predefined starting points seem not to impair the

solution quality, even when participants are forced

to start with a point that they would never choose

voluntarily.

– Getting feedback and having several attempts to

solve the problem leads to significantly better so-

lutions than the first one. In this light, humans are

even better in solving (small) TSPs than has al-

ready been known from the first attempts. But, in

the course of finding the optimum, participants can

also produce solutions that are worse than the first

attempts.

– The game advantages are used rarely, even though

they were suggested by our test users in a previous

user study. It remains to be analyzed how much such

hints help to find the optimal tour.

4 Analysis of Starting Point Selection

4.1 Participants and Stimuli

Participants were mainly students and employees at the

University of Tübingen that were recruited via email

(cf. Section 3). The participation was voluntary and

not rewarded. As the registration and participation was

freely accessible from the internet and we invited the

players to pass on the link to their acquaintances, it is

likely that participants of other groups than the men-

tioned have played the game.

The presented stimuli were 24 instances of the Eu-

clidean TSP varying in size from 5 to 20 points, each

belonging to one of the four categories described in sec-

tion 2.3. It was not required to solve all problems, which

resulted in varying numbers of participants among the

problems. The maximum number of participants was

1238 at the first problem and the minimum number

629 at problem 24.

4.2 Procedure

The game was playable from devices running a mod-

ern browser and required a mouse or touchpad as input

device, touchscreen devices were not supported. The

participation required the registration and the comple-

tion of a tutorial explaining the task. The presented

instances had to be solved in a fixed sequence that was

equal for each participant and allowed to solve a prob-

lem multiple times and to go back to previous problems.

Statistical method As the purpose of statistical eval-

uation was to identify selection frequencies that dif-

fered significantly from chance, the statistical method

of choice was the binomial distribution. The quality of
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starting points was determined by converting the start

counts of each point to standard scores for the nor-

mal distribution approximating the underlying bino-

mial distribution. A detailed explanation is given in the

’Calculating Standard Scores with the Binomial Distri-

bution’ sidebar.

4.3 Analysis Results

The experiment resulted in a total of 38465 tours, of

which 20770 were first attempts. For the comparability

with other studies where in general the problems are

solved only once by each participant, we only took the

first attempts (8936 tours) of the first 8 problems into

account for the evaluation of significant preferences.

The remaining 16 problems were not taken used for the

analysis of features, as they had preselected starting

points or differently colored points, which could affect

the choice of the starting point.

Presence of preferred points: At least one highly sig-

nificant point was found in each problem ranging from

12.4 σ to 56.1 σ. In total 20 of the 96 possible points

qualified as a possible starting point by being beyond

5σ. (We chose +5σ as the threshold for significant start-

ing points, as values above that threshold stand for the

upper 0.0001% of the distribution, which we considered

precise enough to rule out chance.) The results not only

support the reports of preferences for points located on

the convex hull and centeroid points, but also indicates,

that in those regions preferences for single points exist.

Reasons for preferences: MacGregor [13] proposes an

initial contour, effectiveness and visual salience as rea-

sons for humans preferring boundary points over inte-

rior as tourstarts. We adapted the thought and tested

wether the effectiveness or saliency explanation applied

for the points preffered by participants in each level.

The initial contour explanation was not tested as it gen-

eralizes the properties of preffered points too much.

If starting at a specific point were more effective,

the resulting tours should be shorter in length or the

time needed for the solution process than tours starting

at other points. To resolve that question, we calculated

the PAO for every tour and the σ of the corresponding

starting point. Figure 9 shows the mean PAO of tours

starting some point in correlation to the σ value of that

point. The calculated correlation coefficient ρ = −0.04

(Spearman’s correlation coefficient) between the rela-

tive deviation of a point and the corresponding PAO

Calculating Standard Scores with the Bino-

mial Distribution

The binomial distribution describes the probability Pr
of obtaining exactly k successes in a set of n indepen-
dent experiments where the result is either success (with
probability p) or failure (with probability 1− p).
An example is shown in Figure 7: It shows the results of
the evaluation of tour starts in a TSP instance containing
10 points. As the participants were free in the choice of a
starting point, each point has the probability p = 1

10
of

being selected as a start. 2768 tours were produced for
the problem, which leads to a probability distribution
with the parameters n = 2768 and p = 1

10
. The visual

representation of the resulting probabilities is displayed
in blue on the y-axis with the mean at n · p = 276.

Fig. 7 Numbers of tourstarts at different points and the
corresponding binomial distribution

If n is large enough, which in this case is given, the bi-
nomial distribution approximates a normal distribution.
That allows the conversion of the number of starts at
each point to the number of standard deviations above
the mean (standard score).
The corresponding standard scores for the given exam-
ple are displayed in Figure 8.

Fig. 8 Standard scores for each point in the given ex-
ample. The blue line marks the 5σ threshold.
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values of the tours starting at that point did not indi-

cate any monotonic correlation between the two dimen-

sions. The evaluation of solution times in correlation to

the σ values of points also did not show any correlation

(ρ = −0.01) - As mentioned before, the result for the

solution time should be treated with caution, as some

uncontrollable factors influence the captured solution

time, e.g the used input device.

The low correlation values contradict the theory of

specific points leading to better tours.

The second possible reason for preferences is, that

specific points are visually more salient than others.

Visually salient items grab the attention by differing in

one or more attributes from their neighbors. In [23] 5

attributes are named that guide visual attention: color,

motion, orientation and size. As the points were all pre-

sented as static circles in the same color and size, none

of those attributes could be used to extract visually

salient points.

For the further evaluation we used other attributes that

we think may be sources of attraction of attention:

1. The position of the point in the problem: Of the

20 significant points, 17 were located on the convex

hull. The other 3 points were all closest to the geo-

metrical center of the problem and 2 also closest to

the center of mass. In total 74% of the tours pro-

duced in the initial attempt and 72% of all tours

were started on a boundary point, while the rate

expected by chance was 61%.

Only 4 problems contained a point in close proxim-

ity to the geometrical center, of which 3 were signifi-

cant. The instances that did not contain a centeroid

point showed a visible, though not significant, pref-

erence for points in the centeroid region.

2. Salient structures: Points that form prominent struc-

tures such as lines, triangles, circles, squares etc. in

a problem, could be candidates for starting points

as the structure itself may draw visual attention.

See Figure 10 for an example: The problem contains

a straight line formed by 7 points; As the structure

sticks out, the points in it could have a higher chance

to be picked as a starting point than the points not

included in the line.

3. Spatially isolated points: Points with few neighbors

in close proximity appear to be isolated and there-

fore could be visually salient.

Fig. 9 Correlation between the σ-value of a point and the
mean PAO of all first-attempt tours starting at that point
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Fig. 10 A line forming a prominent structure

5 Models for start selection

Based on the observations described in section 4.3 we

derived three models that can be used to identify points

that may be favored over others as tour starts.

1) Smallest Angle (Algorithm 1) The smallest angle

model is based on the assumption, that points gain

salience by being part of a prominent structure. Since

the human visual perception follows a top down pro-

cess recognizing global features before fine-grained fea-

tures [17], the first recognized shape when looking at

a TSP is the polygon formed by the convex hull. As

mentioned earlier, not all points of the set defining the

convex hull were significantly often chosen as a starting

point, which is why we tried to identify salient points

within this set. For this model we chose the angle be-
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Fig. 11 Convex Hull Polygon

tween the lines connecting a point with its neighbors as

the saliency feature. We consider points where the in-

side angles of the polygon shape are relatively small as

more salient than points where the angle is rather wide.

Figure 11 shows an example: The angles at the topmost

and the bottommost point of the problem are much

smaller than the other angles in the polygon, which

makes those two points more salient than the others.

In the experiment the identified points were chosen

significantly more often than by chance: The topmost

point scored σ = 23.3 and the bottommost point σ =

32.4, while all other points scored below zero, i.e were

chosen less often than by chance.

Algorithm 1 Smallest Angle Model

1: procedure smallest angle(Points)
2: K := convexHull(Points)
3: for p ∈ K do
4: v1 = p− neighborright

5: v2 = p− neighborleft

6: θ := acos((v1 · v2)/(norm(v1) ∗ norm(v2)))
7: if θ < θmin then
8: θmin := θ
9: start := p

10: end if
11: end for
12: return start
13: end procedure

2) Maximum Distance (Algorithm 2) This very simple

model tries to identify the most isolated point in the

complete point set by accumulating the distances to

all other points. The point with the greatest accumu-

lated distance is considered the most isolated one and

therefore is identified as a possible starting point. It is

possible, that multiple points have the maximum accu-

mulated distance. In that case, both equally qualify as

a starting point.

Algorithm 2 Maximum Distance

1: procedure Maximum Distance(Points)
2: distances := [0, . . . , 0]
3: for i := 1 to |Points| do
4: for j := 1 to |Points| do
5: distance[i] += norm(Points[i]− Points[j])
6: end for
7: end for
8: returnPoints[distances.indexOf(max(distances))]
9: end procedure

3) Relative Maximum Distance (Algorithm 3) The third

model is similar to the previous one, but much more

complex: While the Maximum Distance model finds the

most isolated point for all n neighbors present in the

problem, this model finds the most isolated point for

each number of neighbors. To do so, for each point the

radii r1 . . . rn−1 are calculated for a circle with radius

ri around the point to include i neighbors. By count-

ing how often a point has the greatest distance to its

1 . . . n− 1 neighbors, the (in terms of this model) most

isolated point can be determined. The point that has

most often the smallest distance to its neighbors is the

point that lies nearest to the center of the problem,

which is also useful as those points were also chosen

as starting points. For the evaluation in Table 1 we

counted for each point how often it had the greatest

distance (GD score) as well as how often in had the

smallest distance (SD score) to its neighbors. The point

with the highest score, regardless of GD or SD , was

identified as the winning point. If two scores (GD and

SD) were equal, the GD-score was favored, if two GD

scores were equal, the winning point was chosen ran-

domly.

5.1 Model performances

The models assign scores to the points, with the point

having the highest score being regarded as the most

probable starting point. This method seems to allow

for a ranking of the points, i.e. the point having the

second highest score also being the second most prob-

able starting point. Unfortunately the data (excluding

the highest scoring point) does not confirm a linear cor-

relation between the ranking of a point and the actual

start frequency.



Modeling Human Problem Solving with Data from an Online Game 9

Algorithm 3 Relative Maximum Distance

1: procedure relative maximum distance(Points)
2: for i := 1 to |Points| do
3: radii(i) := calcRadii(Points[i], Points)
4: end for
5: counts := [0, . . . , 0]
6: for d := 1 to |Points| − 1 do
7: distances := []
8: for r := 1 to |radii| do
9: distances[r] := radii[r][d]

10: end for
11: Find the Points with the greatest/smallest distance to

their d next neighbors.
12: farthest := max(distances)
13: nearest := max(distances)
14: Increment the corresponding count values - If multiple

points apply for farthest or nearest, increment all of them.
15: counts[distances.indexOf(farthest)] += 1
16: counts[distances.indexOf(nearest)] += 1
17: end for
18: start := Points[counts.indexOf(max(counts))]
19: return start
20: end procedure
21:
22: procedure calcRadii(p, Points)
23: for i := 1 to |Points| − 1 do
24: radii(i) := distance to i-th nearest neighbor of p
25: end for
26: return radii
27: end procedure

Table 1 shows the prediction results of the models for

the evaluated eight instances: a ranking of 1 means that

the model predicted the point with the highest standard

score - the point that was selected most often as a start-

ing point. Accordingly stands a rank of 5 for the point

with the fifth highest standard score. Rankings marked

with the ∼ stand for points where the rate of starting

selections did not significantly differ from chance.

The smallest angle model relies completely on the dif-

ferences between the angles at the points on the convex

hull, which makes it rather useless for problems where

all angles are similar, e.g. problems where the hull forms

a circle, a rectangle or a triangle (Levels 5 and 7).

Another problem that is shared by the Maximum Dis-

tance model is that interior points, especially the point

nearest to the center, are not considered as possible

starts which results in accordingly bad predictions (Level

7). Too few points in a problem lead to the failure of

all models - the problem (level 2) is shown in Figure 12

In the model desciptions above, only one point - the

point that fits the models criteria best - is returned as

the result, which does not apply in reality: our data

contained problems with up to four points with a σ

value greater than 5. A solution for that can be to re-

turn a number of points with the highest scores within

the model.

Fig. 12 The second level in the game. The relevant geomet-
rical properties are almost equal for all points, which is why
none of the models could identify the point chosen most often
as a starting point by the participants (Point 1).

1

2

3

4 5

Table 1 Rankings of the models. Entries marked with ∼
stand for predictions with σ ≤ 5 → bad predictions

Level Smallest Angle Maximum
Distance

Relative
Maximum
Distance

1 2 2 2
2 5˜ 5˜ 3˜
3 1 1 1
4 1 1 1
5 2 1 1
6 1 1 1
7 4 6˜ 1
8 1 1 1

6 Other observations

Perceptional salience: The salience criteria used in the

analysis are not listed as ’undoubted attributes’[23] for

visual attention and therefore cannot be used as strong

arguments for the saliency explanation. In the set of

TSP instances one problem was used twice in different

versions: The first being a plain problem, the second

forming groups of nodes by applying a different color

to each group. A noticable difference in the start selec-

tion behavior was the shift of start selections to a point

having only differently colored points as neighbors. Al-

though the shift is only small, it might indicate that

starting point selections can be influenced by saliency

features such as coloring.

Relevance of starting points: In section 4 we mentioned

that the relevance of the starting point for tour pro-

duction is not clear. Ten TSP instances in our test set

had preselected starting points. Two of those instances

were also included as a version without a preselection.

Table 2 shows the comparison of PAO values for those

instances. The comparison of level 3 to level 12 shows

better results for the version with the fixed starting

point, which could mean that the preselection had a
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positive effect on the performance (regarding the minu-

mum and mean values) but it is more likely that some

participants recognized the level and the relatively easy

solution (comments in the feedback support this the-

ory). The comparison of the levels 7 and 14, which have

a rather difficult solution, shows almost no differences

except for the maximum value. Assuming, the PAO is

a good method for the comparison of tour qualities, the

results deny a relevant role of the starting point in the

construction process of tours.

7 Discussion

The Perlentaucher game is an attempt to facilitate the

acquisition of data about human problem solving. It is

not the first time a game is used to collect data, but

it is rather unique in its design as a casual game. In

a similar line, well-known games such as Tetris [6] or

Angry Birds [10] have been suggested to study human

cognitive abilities. The advantage of Perlentaucher is

that we can easily access the data, change the game

and do not have to deal with any copyright issues. But,

the game as such first has to be explained and may not

be as interesting as well-known popular games.

A potential drawback of data gathering with on-

line games (no matter if the game is well-established or

newly introduced) is the low level of controllability, re-

sulting in data outliers. As mentioned before, different

hardware can cause different performance in the game,

especially for solution times, but also the contrast or

brightness of a monitor may result in a different per-

ception of the task and lead to distorted results.

Besides the used hardware, the environment and

distraction level of the players are completely unknown

and can hardly be controlled. As we have seen in Per-

lentaucher , the motivation level of players can also vary

significantly. In a game that is not previously known to

players, one can also not completely ensure that the

task is well-understood. The feedback data did include

one comment (of over 600) where the user did not un-

derstand the task at first. We tried to compensate for

this with the obligatory instructional level but even in

laboratory tests one cannot guarantee that the instruc-

tions are fully understood, even though the participants

would have more options for clarification. In this case

the user did resolve the problem on his/her own by ab-

solving the instructional level a second time.

The variance induced in the data by all these fac-

tors can to some extent be compensated by the larger

amount of data that can be acquired with an online

game. Our tests in Perlentaucher showed comparable

results to previous studies from the literature, but we

cannot generalize this to other games.

Along this line, one has to be aware that designs

from laboratory studies cannot be taken over directly

to online games. We have a between-subjects design,

where all subjects solve the same problems, but we can-

not use counter balancing for the order in which the

tasks are presented. It is possible to randomize the or-

der of the levels, but it may feel odd to the players and

in the case of Perlentaucher destroy the grouping of

levels into diving areas. Also, the possibility of directly

testing the influence of a specific independent variable

is limited. We have used some TSP instances for two

levels to make some comparison possible, which was

noted by seven players in the open feedback section (it

may have been noted by other players as well). This

repetition was mentioned rather as confusing than an-

noying; in any case such repetitions should be used with

care. Too many and too obvious repetitions definitely

diminish the entertainment factor of any game. Another

option is to program the web server to provide slightly

different conditions to different players (for example,

in Perlentaucher different players could see the same

problem, but in different orientations). One would have

to ensure that the players always see the same version

of the level (which would be possible), but players may

still feel annoyed when they accidentally find out that

other players got the same level in a different version.

We compared the results obtained with Perlentaucher

to small-sized problems from the literature. In some

studies [4], TSP instances of more than 100 points were

used. Given the design of the game and available space

on the screen, we cannot test such large instances. How-

ever, the TSP instances humans solve in everyday life

(such as shopping tours or vacations) are rather in the

order of the problems included in Perlentaucher and

are thus interesting objects of study.

The large number of solutions allowed for a more

thorough analysis of chosen starting points and the

effect of starting points on the solution. We compare

several models to extract salient points from the prob-

lems and depending on the structure of the problem

(circular, point near the center, etc.). The comparison

of the models to chosen starting points confirms that

saliency plays an important role in the choice of the

starting point. However, the performance of each in-

dividual model depends on the specific TSP instance.

This issued might be solved with some classification of

problem structures (similar to [3]), but as the choice of

the starting point is subject to individual preferences,

a set of models may be a more realistic explanation.

Despite the simplicity of the used geometrical fea-

tures, the good predictions for the provided problems

could be the result of overfitting. We could not test

the models with other TSP instances, because the data
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Fig. 13 Comparison of PAO values for geometrically identical problems in two versions: Free choice of tour start (Free) and
with a preselected tour start (Fixed). Values are shown for participant groups Same: Participants who chose the same point
for their tour start in the free version as the one that was preselected in the fixed version of the problem; Other: Participants
that chose any other point as tour start in the free version; All: All participants of the two other groups combined.

we found either did not record the starting point of

the provided solutions or the size of the dataset was

too small to show significant selection rates. We plan

to add more levels to the Perlentaucher game and use

those as independent test instances.

Our data also suggests that the starting point is

more likely the result of saliency properties than the

result of playing an important role in the cognitive pro-

cess of tour production. Nevertheless, the data showed

significant preferences for specific points and therefore

a selection strategy for starting points in models simu-

lating human solution behaviour for the TSP is reason-

able.

8 Conclusion

From our experience with Perlentaucher , we can rec-

ommend online games as an experimental method. It

offers large flexibility in the design and variation of the

tasks and is an effective way to record large datasets

quickly and with low organizational overhead.

Using this large dataset we could analyze the choice

of the starting point in greater detail. But there are

many more open questions such as the extent to which

people learn from prior trials or interindividual differ-

ences when solving TSPs, which we an other researchers

can tackle with this data.

We hope that the data we have been gathering with

Perlentaucher will be useful to the community to fur-

ther explore human problem solving and we appreciate

feedback for improvement of the game and further TSP

variants to include as new levels.
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A Problem Specifications

The following tables provide a mapping between the problem
numbers used in Figures 6 and 13. The cooridnates of the
problem nodes are given in the respective literature and for
problems in our current game version can be downloaded at
http://www.perlentaucher.medieninformatik.uni-tuebingen.

de:8888/leveldata.zip.

Table 2 Specification of problems used in the prototype and
the final version, see also Figure 6

Number Problem name Level in current
Dataset

1 Random-3 Level 3
2 20-Nodes-12-IP[15] Level 7
3 Random-1 Level 10
4 Random-9 Level 15
5 20-Nodes-16-IP[15] Level 17
6 Random-0 Level 19
7 Nn-inadequate-10[21] Level 23

Table 3 Specification of problems compared in Figure 13

Number Problem name

MacGregor[15]

1 10-Nodes-1-IP
2 10-Nodes-2-IP
3 10-Nodes-3-IP
4 10-Nodes-4-IP
5 10-Nodes-5-IP
6 20-Nodes-10-IP
7 20-Nodes-12-IP
8 20-Nodes-14-IP
9 20-Nodes-16-IP
10 20-Nodes-4-IP
11 20-Nodes-6-IP
12 20-Nodes-8-IP
13 Dantzig

Tak et al. [19]

14 Circle
15 Dantzig
16 Plaisier-Tak
17 S-shaped
18 Square

B Comparison to Reference Data

Figure 13 compares the data from our last prototype with
the results from the literature. For mapping of numbers in
the figure and problem specifications, see Table 4.
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Fig. 14 The minimum, maximum and mean PAO values acquired in the prototype in comparison with the corresponding
reference data


