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Abstract: Principal lattices are distributions of points in the plane obtained from a
triangle by drawing equidistant parallel lines to the sides and taking the intersection points
as nodes. Interpolation on principal lattices leads to particularly simple formulae. These
sets were generalized by Lee and Phillips considering three-pencil lattices, generated by
three linear pencils. Inspired by the addition of points on cubic curves and using duality,
we introduce an addition of lines as a way of constructing lattices generated by cubic
pencils. They include three-pencil lattices and then principal lattices. Interpolation on
lattices generated by cubic pencils has the same good properties and simple formulae as
on principal lattices.

1. Introduction
In bivariate polynomial interpolation it is well-known that the Lagrange problem for a set
X of

(
n+2

2

)
interpolation points (nodes) is unisolvent in Πn(R2) if and only if the points do

not lie on an algebraic curve of degree n. However a permanent and nontrivial question is
the explicit construction of sets X satisfying this condition. Closely related to this question
is the construction of the solution in a simple way. See [11], [12] for details.

Some sets giving rise to unisolvence in Πn(R2) are the ones formed by n + 1 points
lying on a straight line L0, n points on another line L1 but not on L0, n − 1 points on
another line L2 but not on L0 ∪ L1, and so on. For brevity, these sets will be referred
to as DLn sets (decreasing lines sets). In [10] it was proved that a Newton-type formula
solves the interpolation problem on DLn sets in a very simple way. A little earlier, Chung
and Yao [7] found a geometric characterization (GCn) of sets of

(
n+2

2

)
points with uni-

solvent interpolation problem in Πn(R2) whose Lagrange polynomials are products of n
polynomials of first degree. As it will be formally defined in Section 2, they are sets X
such that for each x ∈ X all the rest of the points of X lie on n lines which do not contain
x. Obviously, for these sets the Lagrange formula is a very simple way of solving the
corresponding interpolation problem.

In [10] it was conjectured that every set satisfying GCn has n + 1 collinear points.
This conjecture has been proved for n ≤ 4 in different forms [2], [4], but there is neither a
counterexample nor a proof for upper degrees. Its interest stems from the fact that once
excluded the n+1 collinear points one would get a GCn−1 set, with n collinear points and
so on. If the conjecture holds for all degrees less than or equal to n, all GCn sets would be
DLn sets. So, the interpolation problem on GCn sets would be easily solvable by Newton
and by Lagrange formulae.

It has been recently proved in [5] that, if the conjecture holds for all degrees less than
or equal to n, then for any GCn set there exist at least three different lines L0, L1, L2,
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each one containing n + 1 points of X. Moreover, the intersections Li ∩ Lj , i 6= j, belong
to X. All known examples of GCn sets have this property. Observe that Xi = X \Li, i =
0, 1, 2, are GCn−1 sets whose corresponding Lagrange interpolation problem is unisolvent
in Πn−1(R2) and so the problem for X can be solved by an Aitken-Neville formula for
bivariate interpolation using the solutions of the three simpler problems associated to the
sets Xi (see [9], [11], [12], [16], [18], [19]).

Perhaps the GCn sets most used in practice, for example in finite elements [17], are
the ones obtained from a triangle by drawing equidistant parallel lines to the sides and
taking the intersection points as nodes, as it will be precised in the next section. These
sets, which appear in classical texts of Numerical Analysis [13], [14], were called principal
lattices by Nicolaides in [17] and Chung and Yao in [7], and were generalized from a
projective point of view by Lee and Phillips [15] by using the intersections of three linear
pencils of lines. Interpolation problems whose nodes form three-pencil lattices can be easily
solved by Lagrange, Newton and Aitken-Neville formulae.

Our aim in this paper is to extend the idea of [15] by constructing sets of
(
n+2

2

)
points

which are intersection of three lines each, in such a form that the Lagrange interpolation
problem is unisolvent in Πn(R2) and can be easily solved by any of the three classical
formulae.

In Section 2 we recall the construction of three-pencil lattices, define generalized prin-
cipal lattices (GPL) and show the Lagrange formula for problems associated to them. It is
well-known [1], [20], that the nonsingular points of an algebraic cubic curve form an abelian
group under a binary operation called addition of points. Inspired by this idea and using
duality, we define in Section 3 an addition on some sets of lines as a way of constructing
GPL sets. In Section 4 we show how three-pencil lattices can be interpreted in terms of
addition of lines in the set formed by the union of three linear pencils. In Section 5, we see
that the addition of lines can be defined on any cubic pencil. Three-pencil lattices can be
considered as a particular case. We also provide a classification of all cubic pencils showing
how to obtain GPL sets. As a final example of the general theory, we study in Section 6
a particular class of cubic pencils: the set of lines tangent to a deltoid.

More examples of generalized principal lattices, namely those generated by reducible
cubic pencils of lines are shown in [6]

2. A generalization of principal lattices

Along this paper we shall use capital letters L to refer to lines in a geometric sense, while
the corresponding lower case letter l will denote any polynomial of first degree such that
l = 0 is the equation of L. Obviously l is determined by L only up to a constant factor.

We shall denote Nn = {0, 1, . . . , n} ⊂ Z and

Sn := {(i, j, k) | i, j, k ∈ Nn, i + j + k = n} ⊆ Z3. (2.1)

Principal lattices in the plane are the distributions of points of the form

i

n
a +

j

n
b +

k

n
c, (i, j, k) ∈ Sn,
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where a, b, c are noncollinear points, that is, the vertices of a triangle (see [12] for details
on the history of these sets). In the case of the standard triangle (i.e., with vertices
(1, 0), (0, 1), (0, 0)) this set of points is X = {(i/n, j/n) | i, j ∈ Nn, i + j ≤ n}. It can be
described as the set of points lying on exactly one line from each of the pencils consisting
of n + 1 parallel lines defined by

l1i (x, y) = x− i

n
, i ∈ Nn,

l2j (x, y) = y − j

n
, j ∈ Nn,

l3k(x, y) = x + y − n− k

n
, k ∈ Nn.

Lee and Phillips [15] generalized this idea introducing lattices generated by k + 1
pencils of hyperplanes in Rk. In the bivariate case, a three-pencil lattice is a set of

(
n+2

2

)
points determined by three pencils of lines (each pencil consisting of n+1 concurrent lines
or parallel lines) such that each point lies on exactly one line from each pencil. Figure 1
shows a three-pencil lattice for interpolation with quartic polynomials.

Figure 1. A three-pencil lattice

With a suitable choice of the projective coordinates, the three-pencil lattices with
noncollinear vertices considered in [15] are given by

l1i (x, y) = µix− 1, i ∈ Nn,

l2j (x, y) = µjy − x, j ∈ Nn,

l3k(x, y) = µn−ky − 1, k ∈ Nn,

where µ ∈ R \ {−1, 0, 1}. Three-pencil lattices with collinear vertices arise in the limit
case µ → 1. In fact, principal lattices are three-pencil lattices such that the vertices of the
pencils lie on the ideal line.

Let us observe that the set of points lying exactly on one line of each pencil is X =
{L1

i ∩ L2
j ∩ L3

k | (i, j, k) ∈ Sn}, where L1
i , L2

j and L3
k are the lines with equations l1i = 0,

l2j = 0 and l3k = 0, respectively. This motivates the following definition:
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Definition 2.1. Let

L1
i , i ∈ Nn, L2

j , j ∈ Nn, L3
k, k ∈ Nn,

be three families of lines containing 3n + 3 distinct lines such that

L1
i , L

2
j , L

3
k are concurrent ⇐⇒ (i, j, k) ∈ Sn. (2.2)

A generalized principal lattice GPLn is the set of points

X = {xijk | xijk := L1
i ∩ L2

j ∩ L3
k, (i, j, k) ∈ Sn}, (2.3)

lying on exactly one line of each family.

Let us see that a point lying on one line of each family cannot lie on any other line of
the three families. If xijk = L1

i ∩L2
j ∩L3

k, (i, j, k) ∈ Sn, lies on L1
i′ , i′ ∈ Nn, then L1

i′ , L
2
j , L

3
k

are concurrent. By (2.2), (i′, j, k) ∈ Sn. Then we have i′ + j + k = n = i + j + k and so,
i′ = i. Analogously, if xijk ∈ L2

j′ , then j = j′ and if xijk ∈ L3
k′ , then k = k′. From this

observation, it follows that points corresponding to different indices in Sn are distinct. In
fact, if xijk = xi′j′k′ with (i, j, k), (i′, j′, k′) ∈ Sn, we have i′ = i, j′ = j and k′ = k because
a point lying on one line of each family cannot lie on any other line. Therefore the cardinal
of the set of points X defined in (2.3) is |Sn| =

(
n+2

2

)
.

Let us observe that, in contrast to [15], we do not impose that any family of lines
is composed by lines of the same linear pencil (that is concurrent or parallel lines). For
instance, in section 6, we shall describe a construction of a GPLn set where each family is
not contained in a linear pencil.

Let us describe the three-pencil lattices in the terms of Definition 2.1. We take for
µ 6= 1

l1i = µip1 − p0, l2j = µjp2 − p1, l3k = µn−kp2 − p0, (2.4)

and for µ = 1

l1i = p1 − ip0, l2j = p2 − jp0, l3k = p1 + p2 − (n− k)p0, (2.5)

where p0, p1, p2 is a basis of the space of polynomials of degree not greater than one.
Principal lattices correspond to (2.5), taking p0 a constant polynomial.

A suitable change of coordinates allows us to view all projective transformations of a
principal lattice (2.5) as the limit case µ → 1 of (2.4). First we choose a basis p0, p1, p2 of the
space of polynomials of degree not greater than one. A change of basis (dependent on the
parameter µ) allows us to replace p0, p1, p2 by (1−µ)−1p0−p1, (1−µ)−1p0, (1−µ)−1p0+p2

and then the lines are given by the formulae

l1i =
µi

1− µ
p0 −

( 1
1− µ

p0 − p1

)
= p1 − 1− µi

1− µ
p0 → p1 − ip0,

l2j = µj
( 1

1− µ
p0 + p2

)
− 1

1− µ
p0 = µjp2 − 1− µj

1− µ
p0 → p2 − jp0,

l3k = µn−k
( 1

1− µ
p0 + p2

)
−

( 1
1− µ

p0 − p1

)
= p1 + µn−kp2 − 1− µn−k

1− µ
p0

→ p1 + p2 − (n− k)p0.
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Generalized principal lattices satisfy the geometric characterization of Chung and
Yao [7]. This property characterizes sets of (n + 2)(n + 1)/2 nodes in the plane which
are unisolvent for the Lagrange interpolation problem in Πn(R2) and whose Lagrange
polynomials are products of linear factors.

Definition 2.2. A set of
(
n+2

2

)
nodes X ⊆ R2 satisfies the geometric characterization

GCn if for each node x ∈ X, there exist n lines containing all nodes in X \ {x} but not x.

Proposition 2.3. Let X be a GPLn set. Then X satisfies GCn and is unisolvent for
the Lagrange interpolation problem in Πn(R2). A Lagrange formula for the interpolant is
given by

p =
∑

(i,j,k)∈Sn

f(xijk)
i−1∏

i′=0

l1i′

l1i′(xijk)

j−1∏

j′=0

l2j′

l2j′(xijk)

k−1∏

k′=0

l3k′

l3k′(xijk)
.

Proof: Given (i, j, k) ∈ Sn, the n lines with equations

l1i′ = 0, 0 ≤ i′ ≤ i− 1, l2j′ = 0, 0 ≤ j′ ≤ j − 1, l3k′ = 0, 0 ≤ k′ ≤ k − 1,

contain all nodes of X \ {xijk} but not xijk.

3. Addition of lines
In order to construct new GPLn configurations, we need to control the concurrence prop-
erties of the set of lines {L1

i | i ∈ Nn} ∪ {L2
j | j ∈ Nn} ∪ {L3

k | k ∈ Nn} in Definition
2.1. This corresponds, by duality, to control the collinearity of a given set of points. It
is a well-known fact [1], [20], that the collinearity properties of points lying on an irre-
ducible plane cubic curve is governed by a composition law called addition of points. The
underlying abelian group can be used to construct and describe complicated patterns of
points satisfying prescribed collinearity conditions. For this reason, we introduce a group
structure on certain families of lines (addition of lines) as a tool for obtaining sets of lines
with the concurrence properties of GPLn configurations. Let us remark that the existence
of an addition on a family of lines is a restrictive condition. In fact, all examples that we
provide are families satifying some algebraic relations.

Assume that we have a set Λ of lines of the plane and a binary operation ⊕ defined
on this set of lines, such that Λ is an abelian group. Let V ⊂ R2 be a set of points which
we call vertices. Let us assume that, if L1, L2 and L3 are distinct lines of Λ, then

L1 ⊕L2 ⊕L3 = 0, L1 ∩L2 ∩L3 ∩ V = ∅ ⇔ L1, L2, L3 are concurrent at a point of R2 \ V,
(3.1)

in other words, three distinct lines of Λ not containing the same vertex are concurrent if
and only if they add up to zero. In general, V will be the empty set. However, we shall
also use sets of vertices with 1 or 3 elements in order to deal with reducible cases. The
binary operation ⊕ satisfying (3.1) will be called an addition of lines. The zero line will
be denoted by 0 and the opposite of L ∈ Λ by ªL. For m a positive integer, the sum of
m repeated summands L ⊕ · · · ⊕ L will be denoted by mL. If m = 0, mL = 0. If m is a
negative number, mL denotes ª(−m)L. The sum of L1 and ªL2 will be written L1 ªL2.
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The addition of two lines on a set Λ is not completely determined by property (3.1).
In fact, the zero line can be arbitrarily chosen, and therefore the meaning of an opposite
line may change depending on the context. So, the addition of lines needs not to have a
clear geometric meaning. The reader interested in a better understanding of this operation
in this moment is invited to visit the examples in sections 4 and 6.

The following theorem shows how the addition of lines is useful to generate generalized
principal lattices.

Theorem 3.1. Let ⊕ be an addition of lines defined on Λ with a set of vertices V .
(i) Let H,K1,K2 be three lines of Λ. Then the 3n + 3 lines

L1
i = K1 ⊕ iH, i ∈ Nn,

L2
j = K2 ⊕ jH, j ∈ Nn,

L3
k = ªK1 ªK2 ⊕ (k − n)H, k ∈ Nn,

(3.2)

are distinct if and only if
mH 6= 0, 0 < m ≤ n,

and
K1 ªK2 ⊕ nH, ª2K1 ªK2, ªK1 ª 2K2 /∈ {mH | m ∈ N2n}. (3.3)

Moreover, if
mH 6= 0, 0 < m ≤ 2n, (3.4)

then L1
i ⊕ L2

j ⊕ L3
k = 0 if and only if (i, j, k) ∈ Sn.

(ii) Let H, K1,K2 be three lines of Λ satisfying (3.3) and (3.4). Let X be the set of points
lying on one line of each family of (3.2). If (i, j, k) ∈ Sn, then L1

i , L2
j and L3

k are

concurrent at a point xijk := L1
i ∩ L2

j ∩ L3
k ∈ X and

X \ V ⊆ {xijk | (i, j, k) ∈ Sn} ⊆ X. (3.5)

If, in addition, X ∩ V = ∅, then

X = {xijk | (i, j, k) ∈ Sn} (3.6)

is a GPLn set.
(iii) Let X be a GPLn set contained in R2\V , defined by lines in Λ, according to Definition

2.1. Then there exist H,K1,K2 ∈ Λ satisfying (3.3) and (3.4) such that X is the set
of points lying exactly on one line of each family of (3.2).

Proof: (i) If L1
i = L1

i′ , then (i− i′)H = 0. So, the lines of the first family L1
i , i = 0, . . . , n,

are all distinct if and only if mH 6= 0, 0 < m ≤ n. Analogously for the other families.
If L1

i = L2
j (resp., L1

i = L3
k, L2

j = L3
k), then K1 ª K2 ⊕ nH = (j + n − i)H (resp.,

ª2K1ªK2 = (i+n− k)H, ªK1ª 2K2 = (j +n− k)H). So, the lines of different families
are all distinct if and only if mH 6= 0, 0 < m ≤ n, and (3.3) holds.

If (i, j, k) ∈ Sn then L1
i ⊕L2

j ⊕L3
k = (i + j + k− n)H = 0. Conversely, let i, j, k ∈ Nn

such that L1
i ⊕ L2

j ⊕ L3
k = 0. Then 0 = (i + j + k − n)H and, by (3.4), i + j + k = n, that

is, (i, j, k) ∈ Sn.
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(ii) If (i, j, k) ∈ Sn, then L1
i ⊕ L2

j ⊕ L3
k = (i + j + k − n)H = 0, which means that L1

i ,
L2

j and L3
k are concurrent at a point xijk ∈ X. Therefore {xijk | (i, j, k) ∈ Sn} ⊆ X.

If x ∈ X \ V , then x = L1
i ∩ L2

j ∩ L3
k /∈ V for some indices i, j, k ∈ Nn. By (3.1) and

(3.2), we have L1
i ⊕ L2

j ⊕ L3
k = 0 and, by (3.4), (i, j, k) ∈ Sn. So we have seen that (3.5)

holds.
Let us assume that X ∩ V = ∅. From (3.5), formula (3.6) follows and, by (i), all lines

(3.2) are distinct. So, X is a GPLn set.
(iii) Let X ⊂ R2 \ V be a GPLn set. According to Definition 2.1, there exist lines

L1
i ∈ Λ, i ∈ Nn, L2

j ∈ Λ, j ∈ Nn, L3
k ∈ Λ, k ∈ Nn, such that xijk is the common

intersection of L1
i , L2

j and L3
k for (i, j, k) ∈ Sn and X is the set (2.3). By (3.1), we must

have
L1

i ⊕ L2
j ⊕ L3

k = 0 ⇔ i + j + k = n. (3.7)

Let K1 := L1
0, K2 := L2

0. Since L1
0 ⊕ L2

1 ⊕ L3
n−1 = L1

1 ⊕ L2
0 ⊕ L3

n−1 = 0 we deduce that
L1

1 ª L1
0 = L2

1 ª L2
0. Let H := L1

1 ª L1
0 = L2

1 ª L2
0. From

L1
1 ⊕ L2

j ⊕ L3
n−j−1 = L1

0 ⊕ L2
j+1 ⊕ L3

n−j−1 = 0,

for all j = 0, . . . , n − 1, we deduce that L2
j+1 = L2

j ⊕ H. So we have L2
j = K2 ⊕ jH,

j = 0, . . . , n. Analogously, we have L1
i ⊕L2

1 = L1
i+1⊕L2

0, for all i = 0, . . . , n−1 and obtain
L1

i = K1 ⊕ iH, i ∈ Nn. Finally, from

0 = L1
n−k ⊕ L2

0 ⊕ L3
k = K1 ⊕K2 ⊕ (n− k)H ⊕ L3

k

we obtain L3
k = ªK1 ªK2 ⊕ (k − n)H. Therefore, we have shown that (3.2) holds. Since

X is a GPLn all lines (3.2) must be distinct and from (i), condition (3.3) follows. Finally
(3.7) implies that (i + j + k − n)H = 0 only if i + j + k = n and so (3.4) holds.

4. Addition on three pencils

In this section, we are going to introduce an addition of lines on the set formed by three
pencils and show that the construction of three-pencil lattices can be seen as a particular
case of Theorem 3.1. For the description of the groups associated to three-pencil lattices,
let us denote, as usual, the additive group of integers modulo p by Zp = {0, 1, . . . , p− 1}.

Let V = {v0, v1, v2} be the set of vertices corresponding to the three pencils. If we want
to deal with pencils of parallel lines, we have just to consider ideal vertices representing
directions and the ideal line containing all ideal points.

Let us first analyze the case where v0, v1, v2 are noncollinear. Then we can choose
a basis of the space of polynomials of degree not greater than one {p0, p1, p2}, such that
λp1−µp2 = 0, λp2−µp0 = 0, λp0−µp1 = 0, (λ, µ) 6= (0, 0), are the equations of the three
pencils, that is, p0 = 0, p1 = 0, p2 = 0, are the equations of the lines lying on exactly two
pencils.

Let Λr be the set of lines of the pencil with vertex vr, excluding the lines containing
two vertices. Let Λ = Λ0 ∪Λ1 ∪Λ2 be the set of lines containing exactly one vertex. Then
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each line of Λ0, Λ1, Λ2 can be respectively defined by

l0(t, s) = p1 − (−1)s exp(t)p2, t ∈ R, s ∈ Z2,

l1(t, s) = p2 − (−1)s exp(t)p0, t ∈ R, s ∈ Z2,

l2(t, s) = p0 − (−1)s exp(t)p1, t ∈ R, s ∈ Z2.

We can write the above formulae indexing each of the families by an integer modulo 3

lr(t, s) = pr+1 − (−1)s exp(t)pr+2, t ∈ R, s ∈ Z2, r ∈ Z3. (4.1)

Let us denote by Lr(t, s) the line with equation lr(t, s) = 0. Then the lines L0(t0, s0),
L1(t1, s1), L2(t2, s2) are concurrent if and only if

∣∣∣∣∣∣

0 1 −(−1)s0 exp(t0)
−(−1)s1 exp(t1) 0 1

1 −(−1)s2 exp(t2) 0

∣∣∣∣∣∣
= 0,

that is,

L0(t0, s0), L1(t1, s1), L2(t2, s2) are concurrent ⇔ t0 + t1 + t2 = 0, s0 + s1 + s2 = 0. (4.2)

This condition can be interpreted in terms of Ceva’s Theorem (see section 13.7 of [8]).
Condition (4.2) suggests the following addition of lines

Lr1(t1, s1)⊕ Lr2(t2, s2) := Lr1+r2(t1 + t2, s1 + s2), t1, t2 ∈ R, s1, s2 ∈ Z2, r1, r2 ∈ Z3.
(4.3)

So, Λ is a group isomorphic to R×Z2×Z3. The 0 element of this group is L0(0, 0), a line
of the first pencil.

Before proving that (4.3) is an addition of lines, let us describe some consequences of
the definition. The sum of a line of Λ0 and a line of Λ1 (resp., Λ2) is a line of Λ1 (resp.,
Λ2). The sum of a line of Λ1 and Λ2 is a line of Λ0. The sum of two lines of Λ0 (resp., Λ1,
Λ2) is a line of Λ0 (resp., Λ2, Λ1). The opposite of a line of Λ0 (resp., Λ1, Λ2) is a line of
Λ0 (resp., Λ2, Λ1).

Observe that if we take lines L,M ∈ Λ belonging to different pencils then ªLªM is
the line of the remaining pencil passing through their intersection. However the addition
of lines of the same pencil has not a clear interpretation in terms of concurrences. If L,M
belong to the same pencil Λr, then ªLªM is again a line of the same pencil Λr and the
three lines L,M,ªLªM meet at the vertex vr.

Proposition 4.1. Let V := {v0, v1, v2} be a set of noncollinear vertices and let Λ be the
set of lines containing exactly one vertex

Λ := {Lr(t, s) | t ∈ R, s ∈ Z2, r ∈ Z3},
where Lr(t, s) is the line with equation lr(t, s) = 0 defined in (4.1). Then ⊕ defined in
(4.3) is an addition of lines on Λ with set of vertices V .

Proof: We have to verify (3.1) for the set Λ = Λ0∪Λ1∪Λ2 and the vertices V = {v0, v1, v2}.
If two lines of Λ belong to the same pencil Λr, they meet at the vertex vr ∈ V . If three
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lines Lr0(t0, s0), Lr1(t1, s1), Lr2(t2, s2) in Λ are concurrent at a point which is not in V ,
then each line belongs to a different pencil, that is, r0, r1, r2 are distinct. By (4.2), the
concurrence condition is equivalent to t0 + t1 + t2 = 0 and s0 + s1 + s2 = 0 and from the
definition (4.3) this is equivalent to the fact that the three lines add up to 0.

Conversely, assume that three lines add up to 0, Lr0(t0, s0)⊕Lr1(t1, s1)⊕Lr2(t2, s2) =
0. Then from the definition of addition we have that t0 + t1 + t2 = 0, r0 + r1 + r2 = 0
and s0 + s1 + s2 = 0. From r0 + r1 + r2 = 0, we deduce that either r0 = r1 = r2 or
r0, r1, r2 are distinct. If r0 = r1 = r2, then the three lines belong to the same pencil. So,
they are concurrent at a vertex. Otherwise, the indices r0, r1 and r2 are distinct and (4.2)
implies that the lines are concurrent. Since the sides of the triangle with vertices V are
excluded, the lines of different pencils cannot meet at a vertex. So, if r0, r1, r2 are distinct
the three lines adding up to 0 must be concurrent at a point of R2 \V . Therefore we have
an addition of lines with set of vertices V .

Let us observe that the examples of formula (2.4) given in [15] correspond to the choice

L1
i = L2(i log |µ|, iσ(µ)), i ∈ Nn,

L2
j = L0(j log |µ|, jσ(µ)), j ∈ Nn,

L3
k = L1((k − n) log |µ|, (k − n)σ(µ)), k ∈ Nn,

where σ : R → Z2 is the characteristic function of the interval (−∞, 0),

σ(µ) :=
{

1, if µ < 0,
0, if µ ≥ 0.

The lines (2.4) define a GPLn and we have an addition of lines on Λ with set of vertices
V . According to Theorem 3.1, formula (3.2) holds. Let us observe that K1 is the line
L1

0 = L2(0, 0) with equation p0 − p1 = 0 and K2 is the line L2
0 = L0(0, 0) with equation

p1 − p2 = 0. Finally H is the line L0(log |µ|, σ(µ)) with equation p1 − µp2 = 0.

Let us now analyze the case where the vertices v0, v1, v2 are collinear. Then we can
choose a basis of the space of polynomials of degree not greater than one {p0, p1, p2} such
that p0 = 0 is the equation of the line containing all the vertices, p1 = 0 is a line containing
v1, p2 = 0 is a line containing v2 and p1 + p2 = 0 is a line containing v0. For the case
where we deal with pencils of parallel lines, we consider ideal vertices and ideal lines.
In the general case, {p0, p1, p2} is a basis of the space of linear polynomials, such that
λ(p1 + p2) + µp0 = 0, λp1 − µp0 = 0, λp2 − µp0 = 0, (λ, µ) 6= (0, 0) are the equations of
the three pencils.

Let Λr be the set of lines of the pencil with vertex vr, excluding the line p0 = 0
containing the three vertices. Let Λ = Λ0 ∪ Λ1 ∪ Λ2 be the set of lines containing exactly
one vertex. Then each line of Λr is of the form Lr(t), with corresponding equation lr(t) = 0
given by

l0(t) = (p1 + p2) + tp0, t ∈ R,

l1(t) = p1 − tp0, t ∈ R,

l2(t) = p2 − tp0, t ∈ R.

(4.4)
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The lines L0(t0), L1(t1), L2(t2) are concurrent if and only if

∣∣∣∣∣∣

t0 1 1
−t1 1 0
−t2 0 1

∣∣∣∣∣∣
= 0,

that is,
L0(t0), L1(t1), L2(t2) are concurrent ⇔ t0 + t1 + t2 = 0. (4.5)

Then we have the following proposition. Its proof is completely analogous to that of
Proposition 4.1.

Proposition 4.2. Let V := {v0, v1, v2} be a set of collinear vertices and let Λ be the set
of lines containing exactly one vertex

Λ := {Lr(t) | t ∈ R, r ∈ Z3},

where Lr(t) is the line with equation lr(t) = 0 defined in (4.4). Then

Lr1(t1)⊕ Lr2(t2) := Lr1+r2(t1 + t2), t1, t2 ∈ R, r1, r2 ∈ Z3, (4.6)

defines an addition of lines on Λ with set of vertices V .

In this case Λ is a group isomorphic to R × Z3. Let us remark the curious fact that
the addition of a line of Λ1 and a line of Λ2 corresponds to adding its equations, that is,
the sum of the lines with equations p1−t1p0 = 0 and p2−t2p0 = 0 is the line with equation
(p1 + p2)− (t1 + t2)p0 = 0.

We observe that the examples of formula (2.5) correspond to the choice

L1
i = L1(i), i ∈ Nn, L2

j = L2(j), j ∈ Nn, L3
k = L0(k − n), k ∈ Nn.

The lines (2.5) define a GPLn set and we have an addition of lines on Λ with set of vertices
V . According to Theorem 3.1, formula (3.2) holds. In this case, K1 is the line with
equation p1 = 0, K2 the line with equation p2 = 0 and H is the line L0(1) with equation
p0 + p1 + p2 = 0.
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5. Addition on cubic pencils
Now, we consider algebraic pencils of lines, that is, sets of lines ax + by + c = 0 whose
coefficients satisfy a homogeneous polynomial equation. Algebraic pencils are natural
extensions of the usual linear pencils because the coefficients of all lines belonging to the
same linear pencil satisfy a linear equation.

Definition 5.1. A cubic pencil is a set of lines ax + by + c = 0 such that a, b, c satisfy

F (a, b, c) = 0,

where F is a homogeneous cubic polynomial.

Associated to any cubic pencil F (a, b, c) = 0, we have the cubic curve Γ,

F (x, y, 1) = 0.

Each line ax + by + c = 0 of the pencil F (a, b, c) = 0 corresponds to the point (a/c, b/c) of
Γ. If c = 0, then we associate to (a, b, c) an ideal point of the projective cubic Γ.

Clearly, three lines of a cubic pencil F (a, b, c) are concurrent if and only if the corre-
sponding points of the curve Γ are collinear.

It is well-known that the set of nonsingular points Γ∗ of an irreducible cubic Γ can be
equipped with a binary operation ⊕ called addition of points. Then (Γ∗,⊕) is an abelian
group and three points in Γ∗ are collinear if and only if they add up to zero.

Let S1 be the multiplicative group of complex numbers of modulus 1,

S1 = {z ∈ C | |z| = 1}.

The group of a complex irreducible and nonsingular cubic is the toroidal group S1×S1. The
real points form a subgroup such that the connected component containing 0 is isomorphic
to S1 (see Proposition 4.2 of [3]). Then the group Γ∗ of the cubic is S1 or S1 × Z2,
depending on the fact that the cubic has 1 or 2 connected components.

If Γ is irreducible but singular, then Γ∗ is isomorphic to one of the groups R, R×Z2

or S1, depending on the fact that Γ is a cuspidal cubic, a nodal cubic or a cubic with an
isolated point (see page 191 of [1] and Proposition 4.2 of [3]).

In the case of a reducible cubic, an addition ⊕ can be defined on the set Γ∗ of nonsin-
gular points of Γ such that (Γ∗,⊕) is an abelian group and three points in Γ∗ not in a line
contained in Γ are collinear if and only if they add up to zero. According to Proposition
4.1 of [3] we have the following groups. If Γ is composed of an irreducible conic C and a
line L, then the group is R×Z2×Z2, R×Z2, S1×Z2, depending on the fact that C ∩L
consists of 2, 1 or 0 points. If the cubic is composed of three lines, the group is R×Z2×Z3

or R× Z3 depending on the fact that the lines are in general position or concurrent.
Let us observe that the addition on three pencils of Section 4, corresponds to the

addition of points defined in Proposition 4.1 of [3] for cubics composed of 3 lines. The
set of vertices V corresponds to the lines which are components of the cubic. The three
pencils are indeed cubic pencils with equation

(ax0 + by0 + c)(ax1 + by1 + c)(ax2 + by2 + c) = 0,

11



where (x0, y0), (x1, y1), (x2, y2) are the vertices of the three pencils. The set Λ is the set
of nonsingular lines of the cubic pencil, that is excluding the lines belonging to two linear
pencils. The description of the group has been detailed in the precedent section (see also
Proposition 4.1 of [3])

We can also think of cubic pencils composed by a linear pencil and a quadratic pencil
(that is, the set of tangents to a conic). In this case, the pencil has equation

(ax0 + by0 + c)G(a, b, c) = 0,

where (x0, y0) is the vertex and G is a homogeneous quadratic polynomial. The description
of the group can be seen in Proposition 4.1 of [3] for the canonical curves

(y − x2)x = 0, (y − x2)y = 0, (y − x2 − 1)y = 0.

Again, Λ is the set of nonsigular lines of the pencil, that is, excluding the lines satisfying
ax0 + by0 + c = 0 and G(a, b, c) = 0. In other words, the tangents to the conic from the
vertex are excluded. Three different cases arise depending on the relative situation of the
vertex and the conic. These cases are studied in more detail in [4].

In the case of irreducible cubic pencils, the set of vertices is empty. In the singular
case, the pencils have simple parameterizations. In the next section, we shall analyze one of
these pencils. The nonsingular case is more complicated and the addition can be described
in terms of a parameterization involving elliptic functions.

Table 1 shows the group of the nonsingular points of each cubic curve up to projective
transformations. For each type of cubic, we have chosen a canonical equation and depicted
the graphic. In the case of irreducible nonsingular curves the equations have a free pa-
rameter w ∈ (1,∞) and k ∈ (−2, 2) for cubic curves with 2 or 1 connected components,
respectively. In the table, NCC denotes the number of connected components which must
agree with the number of connected components of the group.

In all cases, we can parameterize the set Λ of nonsingular lines of a cubic pencil by a
bijection with its associated group G, L : G → Λ such that L(g1 + g2) = L(g1) ⊕ L(g2).
Now we can apply Theorem 3.1 to obtain GPLn sets. First we choose g1, g2, h ∈ G. Not
every choice of g1, g2 and h will lead to a GPLn set. We have to take into account that all
the lines

L(g1 + ih), i ∈ Nn, L(g2 + jh), j ∈ Nn, L(−g1 − g2 + (k − n)h), k ∈ Nn

must be different. For this purpose, we need mh 6= 0, 0 < m ≤ n. Furthermore, according
to (3.4), we need that

mh 6= 0, 0 < m ≤ 2n.

This means that we have to take an element of the group of order greater than 2n. This
can be achieved in all the groups. In the case that the connected component containing
the 0 of group G is S1 we must take care not choosing h = exp(iθ), with θ = 2kπ/m,
m ≤ 2n. The other condition

g1 − g2 + nh,−2g1 − g2,−g1 − 2g2 /∈ {mh | m ∈ N2n}
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TYPE OF CUBIC NCC EQUATION GRAPHIC GROUP

irreducible 2 y2 = x(x− 1)(x− w) S1 × Z2

nonsingular w > 1

irreducible 1 y2 = x(x2 + kx + 1) S1

nonsingular −2 < k < 2

irreducible 1 y2 = x3 R
singular

irreducible 2 y2 = x2(x + 1) R× Z2

singular

irreducible 1 y2 = x2(x− 1) S1

singular

reducible: C ∪ L 4 (y − x2)x = 0 R× Z2 × Z2

|C ∩ L| = 2

reducible: C ∪ L 2 (y − x2)y = 0 R× Z2

|C ∩ L| = 1

reducible: C ∪ L 2 (y − x2 − 1)y = 0 S1 × Z2

C ∩ L = ∅
red.: L1 ∪ L2 ∪ L3 6 xy(x + y − 1) = 0 R× Z2 × Z3

L1 ∩ L2 ∩ L3 = ∅
red.: L1 ∪ L2 ∪ L3 3 y(y − 1)(y − 2) = 0 R× Z3

|L1 ∩ L2 ∩ L3| = 1

Table 1. The group structure of the set of nonsingular points of cubic curves

is also easy to ensure, taking into account the topological properties of these groups. If
a choice of g1, g2, h produces repeated elements of the group, a slight modification will
produce distinct elements. Finally, it is important to choose g1 and g2 in appropriate
connected components of the group in order to ensure that no point of X is a vertex .

6. An example

As an example, we shall consider a cubic pencil, whose equation corresponds to a cubic
with an isolated singularity. The associated group will be S1 and in this case it is known
that the cubic has a parameterization by means of trigonometric functions. With a suitable
projective transformation, the equation of the cubic can be written in the form

x2 + y2 + 2xy2 = 0,
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with the singular point at the origin (0, 0). The corresponding pencil is

(a2 + b2)c + 2ab2 = 0. (6.1)

Let us observe that the singular line is the ideal line a = b = 0. Excluding the ideal line,
the lines satisfying (6.1) are either x = 0 or lines with equation ax + y + c = 0 satisfying

c =
−2a

1 + a2
.

With the change of variables a = − tan(t/2), we have c = sin(t) and the set Λ of nonsingular
lines of the cubic pencil can be described by

l(t) = y − tan(t/2)x + sin(t), t ∈ R.

This cubic pencil of lines is depicted in Figure 2.

–2

–1

0

1

2

1 2

Figure 2. A cubic pencil of lines

Let us denote by L(t) the line with equation l(t) = 0. We take as L(π) the line with
equation x = 0. Since L(t + 2π) = L(t), we can parameterize all lines by the elements of
the group R/2πZ, which is isomorphic to the group S1 by the mapping t+2πZ 7→ exp(it).

The set of lines Λ can be described as the set of tangents of the parametric curve

x(t) = 2
1− tan(t/2)2

(1 + tan(t/2)2)2
, y(t) = 4

tan(t/2)3

(1 + tan(t/2)2)2
, (6.2)
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Figure 3. The deltoid envolvent of the cubic pencil

which is the translated deltoid (x(t), y(t)) = (1/2, 0) + ∆(t), where ∆(t) = (cos(t) +
cos(2t)/2, sin(t)− sin(2t)/2), shown in Figure 3. We can eliminate the parameter t in (6.2)
and deduce that the envolvent of Λ is an algebraic quartic curve with 3 cusps.

The lines L(t0), L(t1) and L(t2) are concurrent if and only if
∣∣∣∣∣∣

− tan(t0/2) 1 sin(t0)
− tan(t1/2) 1 sin(t1)
− tan(t2/2) 1 sin(t2)

∣∣∣∣∣∣
= 0,

that is,

sin((t1 − t0)/2) sin((t2 − t1)/2) sin((t0 − t2)/2) sin((t0 + t1 + t2)/2)
cos(t0/2) cos(t1/2) cos(t2/2)

= 0.

So, three distinct lines are concurrent if and only if t0 + t1 + t2 ∈ 2πZ.
Therefore, we have deduced that the addition of lines corresponds to the addition of

their parameters, that is,
L(t1)⊕ L(t2) = L(t1 + t2),

and we can establish an isomorphism between the group S1 and the group Λ by exp(it) 7→
L(t).

Let us apply Theorem 3.1 in order to construct GPLn sets. Let us take t1, t2 and
τ ∈ R and consider the 3n + 3 lines

L1
i = L(t1+iτ), i ∈ Nn, L2

j = L(t2+jτ), j ∈ Nn, L3
k = L(−t1−t2+(k−n)τ), k ∈ Nn.

We need that (3.3) and (3.4) hold. To this aim, we have to choose t1, t2 and τ satisfying

mτ /∈ 2πZ, 0 < m ≤ 2n,
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and
t1 − t2 + nτ, −2t1 − t2, −t1 − 2t2 /∈ mτ + 2πZ, 0 ≤ m ≤ 2n.

Obviously these conditions are easy to obtain by modifying slightly, if necessary, the values
of t1, t2 of τ .

Figure 4 represents the GPL4 set obtained taking t1 = 0.08, t2 = 2.00 and τ = 0.15.

–2

–1

0

1

2

1 2

Figure 4. A GPL4 set obtained with t1 = 0.08, t2 = 2.00 and τ = 0.15
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