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Abstract

Systems of implicit delay differential equations, including state-dependent problems, neutral
and differential-algebraic equations, singularly perturbed problems, and small or vanishing delays
are considered. The numerical integration of such problems is very sensitive to jump discontinu-
ities in the solution or in its derivatives (so-called breaking points).

In this article we discuss a new strategy - peculiar to implicit schemes - that allows codes to
detect automatically and then to compute very accurately those breaking points which have to
be inserted into the mesh to guarantee the required accuracy. In particular for state-dependent
delays, where breaking points are not known in advance, this treatment leads to a significant
improvement in accuracy. As a theoretical result we obtain a general convergence theorem which
was missing in the literature (see [BZ03]). Furthermore, as a useful by-product, we design
strategies that are able to detect points of non-uniqueness or non-existence of the solution so
that the code can terminate when such a situation occurs. A new version of the code RADARS

together with drivers for some real-life problems is available on the homepages of the authors.
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1 Introduction

The time evolution of physical systems, whose rate of change also depends on the configuration at
previous time instances, is often modelled in terms of delay differential equations. Their solution has
a much more complicated dynamics than that for ordinary differential equations (lack of smoothness
in the solution, possibility of non-uniqueness or non-existence), and it is rarely possible to find an
analytic expression for the solution (see for example [BC63]). This motivates the need for reliable and
efficient numerical integrators for such problems. For a comprehensive introduction to the numerical
literature on this subject we refer the reader to the recent books [BZ03], [Bru05] and to the review-
paper [BPWO5].

In this article we consider the application of stiffly accurate collocation methods based on Radau

nodes [HNW93] to systems of delay differential equations of the general (implicit) form

My'(t) = f(t,y(t),y(a(t,y(t))))

y(to)

(1.1)

Y0, y(t) = g(t) for t < to,

where, for ease of presentation, we consider only the case of a single deviating argument. The d x d
matrix M in (1.1) is assumed to be constant but possibly singular, and «(t,y(t)) < ¢ for all ¢t > .
This includes small and vanishing delays.

As discussed in [GHO1], the formulation (1.1) covers various classes of problems. Singularly per-
turbed problems are included by putting M = diag(I,eI) with a small parameter £ > 0. Introducing
z(t) = y/(t) as new variable (actually only for those components of the derivative that are present
in the right-hand side function) neutral delay differential equations can be written in the form (1.1)
(see Sections 5.3 and 5.4). It is worthwhile to remark that there are codes which solve neutral prob-
lems without formulating them as implicit systems (e.g. DDE-STRIDE by Baker, Butcher and Paul
[But92] and SNDDELM by Jackiewicz and Lo [JLI1]).

Since we allow M to be singular, (1.1) covers a variety of differential-algebraic delay equations.
It should be mentioned that our code can solve efficiently index 1 problems. We expect that it can
be adjusted to solve also index 2 and index 3 problems in Hessenberg form, as it is the case in the
absence of delay terms.

The discussion in this paper is organized as follows. We first emphasize differences in the solution
of delay equations compared to ordinary differential equations (Section 2). We explain how Runge—
Kutta methods can be extended to problems of the form (1.1), and we briefly discuss the appearance of
breaking points and situations where the solution can bifurcate or cease to exist. The new algorithms
for the detection and computation of breaking points are presented in Section 3. A few theoretical

results (Section 4) and numerical experiments (Section 5) with the new code conclude the discussion.



2 Differences to Ordinary Differential Equations

This section is devoted to discussing how implicit Runge-Kutta methods can be extended to treat
problems of the form (1.1). Furthermore, some typical features of delay differential equations (not

present in ordinary differential equations) are discussed.

2.1 Numerical Methods for Delay Equations

Consider an s-stage implicit Runge-Kutta method with abscisse {¢;}, weights {b;} and coefficients
{aij}. We assume that the method is stiffly accurate so that b; = as; for i = 1,...,s. Using the step
size hy,, = t,4+1 — t, and an approximation y, to the solution at time ¢,,, one step of the method is

given by

M (Yi(") —yn> = hn;aijf(tn+th,Y;-(n),Z](-n)), i=1,...,s (2.1)

where y,4+1 = YS(") approximates the solution at time ?,41. For ordinary differential equations,
where f only depends on ¢,y and not on z, this represents a nonlinear system for the internal stage

(n) (n)

values Y;". For delay equations, we still have to define Z ; which has to be an approximation to

y(a(t,y(t))) at t = t, + cjh. For this we let a§n) = oty + ¢ hn, Yj(n)) and define
g (oz;n)> if oz;") <t
Z\" = (2.2)

U (ag.'”)) if t <ol <t

for some 0 < m < n. Here, u,,(t) is the continuous output computed at the m-th step (which is
available for t,,, <t < tpy1),

s
U (b + D) = > L)Y 9 €0,1],
i=0

where Y[)(m) = Ym, hm is the step size used at the m-th step, £;(¢) is the Lagrange polynomial of
degree s satisfying L£;(c;) = d;; with §;; the Kronecker delta symbol (here we add ¢y = 0 to the
abscissas of the method).

In the first interval after points of discontinuity (which are either given in advance by the user
or which are dedected as breaking points during the computation) the dense output polynomial can
optionally be replaced by

S

Vi (tm + V) = > L)Y 9 € 0,1,

i=1
which interpolates the internal stage values but not v, (see Section 2 of [GHO1]). The use of this

option is important in the presence of a jump discontinuity in the solution. This permits to have also



a discontinuity in the dense output approximation of the solution. In general, one has vy, (ty,) # Ym =
Um—1(tym) whereas always upm, (tm) = Ym = Um—1(tm). The accuracy is thus significantly improved.
This is discussed and illustrated in [GHO1].

Note that in the case where a!™ € [tn, tnt1], i.e., where the delay is smaller than the current step

size, U, (a;-n)) and vy, (ag-n)) arejnot known explicitly but only implicitly (through the stage values
Yl(") .-+, Y™ which are being computed).

This integration scheme, with the 3-stage Radau ITA method as basic integrator, has been realized
in the code RADARS. Tt is described in detail in [GHO1]. The aim of the present article is to improve

this code by including a careful treatment of breaking points.

2.2 Breaking Points

A serious difficulty, when integrating delay differential equations, is the possible loss of regularity of
the solution even in the presence of smooth functions f(¢,y, z), g(t), and (¢, y) in the problem (1.1).

If yo # g(to), the solution is obviously discontinuous at tg. However, even when yo = ¢(to)
there is no reason why the (right-hand) derivative y’(tg) which is given by the delay differential
equation should be equal to the (left-hand) derivative ¢'(¢g). This irregularity at ¢g may propagate
along the integration interval by means of the deviating argument «(t,y(t)). Evidently, as soon as
a(&,y(€)) = to for some & > tg, due to the fact that some derivative of y(t) has a jump discontinuity
at tg, the function f(t, y(t), y(a(t, y(t)))) is not smooth at £. In general, this creates a further jump
discontinuity in some derivative of the solution y(t) at &, and so on. Such discontinuity points are
referred in the literature as breaking points (see for example [BZ03]).

In the case of a constant delay «(t,y) = t — 7, the breaking points are & = to + k7 for k =
1,2,.... If the matrix M in (1.1) is invertible, a jump discontinuity at ¢ leads in general to a jump
discontinuity at &; in the first derivative of y(¢); this then causes a jump discontinuity at £ in the
second derivative of y(t), and so on. Only a few of these breaking points are significant for a numerical
integration, because discontinuities in a sufficiently high derivative of the solution are not recognized
by the numerical method. If the matrix M is singular instead, e.g., neutral equations or simply
0 = y(t) — yy(t — 7), the jump discontinuities may appear in the same derivative of the solution at
all £,. Depending on the value of -, the size of the jump increases or decreases.

In the more general case, where o depends on ¢ (but still not on the solution y(t)), the breaking
points can be computed in advance by solving first the scalar equation a(§) = tq for £, then for every
solution & the scalar equation a(n) = &k, etc. This may be useful, if these scalar equations do not
have too many solutions. For an efficient computation, computed breaking points can be inserted in
advance into the mesh of integration. But in the general (so-called state-dependent) case such an a
priori computation is not possible.

If the breaking points are not included in the mesh and a variable step size integration is used,



the step sizes may be severely restricted near the low order jump discontinuities. It is the aim of this
paper to design an algorithm that allows one to compute automatically the breaking points and to
include them in the mesh of integration. In this way, not only step rejections will be avoided, but

also the accuracy of the approximation will be improved.

2.3 Non-Existence and Non-Uniqueness of Solutions

“A discontinuity in any of the elements ... may turn out to the cause of branching or termination

of the solution.” [ENT73]

If the deviating argument «(t,y) is state dependent, it is not always possible to extend the solution
beyond breaking points and it may happen that the solution bifurcates into two solutions. Let us
explain the ideas of these phenomena. For a series of interesting examples and for a rigorous discussion
of this topic we refer to [EN73].

Assume that the solution y(¢) of (1.1) has a jump discontinuity at ¢ (which typically is equal to to)
and that the solution is well-defined and unique up to a breaking point & > ¢ satistying «(&, y(€)) = .
Further assume the existence of two smooth functions n* (), ™ (t), defined on a neighbourhood of ¢,

such that
nt(t)=yt) for t>(

(2.3)
n~(t) = y(t) for t<(.
For these two functions we consider the ordinary differential-algebraic equations
MZ'(t) = f(t,z(t),nT (a(t, z(t
(t) = f(t,2(t), " (alt, 2(1))) (2.4)

MZ'(t) = f(t, z(t),n (al(t, z(t)))

with initial values z(§) = Py(€), where P is a suitable projector if y(£) is not yet consistent with the
differential-algebraic equation (for invertible M, no projection is needed). They have unique solutions
on a non-empty interval (£, £ + ¢), and we denote them by z*(¢) and 27 (¢), respectively. Neglecting
situations where a(t, 2 (t)) = ¢ we have that (for ¢ > ¢ sufficiently close to &)

2zt (t) is asolution of (1.1)  iff  «(t,z7(t)) > ¢ (2.5)

27 (t) 1is a solution of (1.1) iff aft,z=(t)) <. (2.6)
It can happen that both conditions, (2.5) and (2.6), are satisfied (bifurcation of the solution), that

none of the conditions is satisfied (the solution ceases to exist), or that exactly one of the conditions

is satisfied.

Example 2.1 Following an example of [EN73] we consider the system

n(t) = w2(t) pt)=1-t  for t<0
0 y2(t) + y2 (y1(t) — 2) ya(t) = —1 for t<0.



It has the solution y,(t) = 14t, y2(t) =1 on the interval (0,1), and a breaking point at & = 1 which
is created by the discontinuity at ¢ = 0. In a neighbourhood of ( = 0 we consider the smooth functions
(cf. (2.3))

m(t)=1,  my(t)=-1

and the corresponding differential-algebraic equations which are obtained from (2.7) by replacing the
term yo (y1 (t)— 2) with 0y (y1 (t)— 2) and 1y (y1 (t)— 2) , respectively (cf. (2.4)). These problems have
the solution

) =3-t, =z (t)=-1, M) =1+t 2 @#)=1

close to & = 1. Denoting a(t,y) := y1 — 2 we have

at,zH(t)=1-t<0=¢ for t>1
alt,z—(t)=-14+4t>0=¢ for t>1,

so that neither condition (2.5) nor condition (2.6) is satisfied. This proves that the solution of (2.7)

terminates att = 1.

3 Discussion of the New Algorithms

The efficiency of a code for solving delay and neutral differential equations can be improved signifi-
cantly if breaking points are treated carefully. For constant delays and for delays «(t) not depending
on the solution, all breaking points can be computed in advance and inserted into the mesh of inte-
gration. The insertion of all breaking points may lead to undesirable step size restrictions.

Let us mention here the interesting work by Willé and Baker [WB92] on the propagation of
discontinuities in a system of delay differential equations. By means of an oriented graph, called
dependency network, it is possible to model how discontinuities propagate in the system components
in relation to the structure of the system. In this way it is possible to control the derivative order of
a jump discontinuity and to detect the involved components. Differently from [WB92], in the present
paper we do not compute and classify a priori breaking points, which would be further complicated by
the presence of the mass matrix M, but we try to detect automatically, by error control mechanisms,
those which are important in terms of the numerical integration.

The strategies of this section are mainly intended for state dependent delays, but they are also of
interest for simpler situations, because only those breaking points will be computed that are relevant
for obtaining a certain accuracy. Nevertheless, we remark that in the code RADARS it is also possible
to choose the option to check for the presence of a breaking point at every step (also at accepted

steps).



3.1 Detection of Breaking Points

To compute the set B of breaking points we start with B = {¢y} and include possible discontinuities
of the initial function ¢(¢) in (1.1) and of the right-hand side f(¢,...) (see the example of Section
5.2). The problem is to find the zeros of the function

de(t) = ot u(t)) — ¢, (3.1)

where ¢ € B is a previous breaking point and w(¢) is a suitable approximation to the solution.

A naive approach would be to check in every accepted step whether at least one of the functions
d¢(t) changes sign. The breaking point can then be localized and added to the set B. Such a strategy
is often expensive because step rejections, that usually occur when approaching a breaking point, are
not, avoided. Moreover, it does not tell us whether the localized breaking point is relevant for the

actual computation. We propose the following strategy.

Algorithm 3.1 Suppose that the problem is integrated successfully until t, and a step size h, is
proposed for the next step. We expect a breaking point in the interval [ty,, ty, + hy] if the following two

conditions occur:

1. the step is rejected, i.e., the iterative solver for the nonlinear system (2.1) fails to converge, or

the local error estimate is not small enough,

2. there exists a previous breaking point ( such that d¢(t) = a(t,un—1(t)) — ¢ changes sign on

[trs tn + hn], where u,—1(t) is the continuous output polynomial of the preceding step.

We emphasize that the search for breaking points is only activated in the case of a step rejection
(an idea also used by [EH97a] for explicit Runge-Kutta methods). Since we are concerned with
implicit Runge—Kutta methods this is a safe procedure (double check in convergence of the Newton
iterations and in the error estimation) which is confirmed on a series of test problems. Moreover, this
avoids the computation of those breaking points which do not affect the accuracy of the solution.

If one wants to be more cautious, one can check the condition (2) of Algorithm 3.1 also when the
convergence of the iterative solver is slow or when the error estimate suddenly increases. This can be
monitored by the user by setting a control parameter, and one can even force the code to check this

condition in every step.
Remark 3.2 In the general case of multiple (say k) delays,

My = f(ty®)ylart.y®),. .. anlty(®) )

the algorithm is applied to all deviating arguments, one after the other, until a breaking point is

possibly found. In such a case the code will attempt to compute it accurately, as explained in the



next section. If the deviating argument which changes sign is the é-th (with 1 < i < k), then «; will
substitute « in equation (3.3) with ¢ being the pertinent ancestor.

It is possible - in the presence of two (or more) breaking points in the interval [t,,,t, + hy] - that
the code does not immediately find the first breaking point. This will, however, not affect the correct
behavior of the code because, in such a case, the new attempted step will be rejected and the first

breaking point will be found by the subsequent application of Algorithms 3.1 and 3.3.

3.2 Computation of Breaking Points

Once a breaking point is detected by the Algorithm 3.1, i.e., a previous breaking point ( is found
such that a zero of d¢(t) is expected in the interval [t,,t, + hy], we are interested in its accurate
computation. The idea is to consider the step size h,, as a variable in the Runge-Kutta system (2.1)

and to determine it in such a way that t,, + h,, exactly hits the breaking point. For this we consider

the system
M (Yi(") - yn) =hn Y aijf<tn + ¢ihn, Y, ZJ@n))j i=1,....s (3.2)
j=1
a(t'n + hp, un(tn + hn)) =( (33)
for the unknowns Yl("), e Y;("), and h,. Here, u,(t) is the dense output of the current step and

™) For given h,, the system (3.2) is usually solved by simplified Newton

depends on the stage values Y;
iterations that exploit the structure of the system (see [GHO1]). With the aim of not destroying this
structure, we solve the system (3.2)-(3.3) with a splitting idea. Starting with h,, = R = €0 ¢,
where £(©) is an approximation to the breaking point (obtained from Algorithm 3.1), and with some

approximation to the stage values, we apply the following algorithm.

Algorithm 3.3 Consider the nonlinear system (3.2)-(5.3). To find its solution we proceed for k =

0,1,... until convergence as follows:

1. apply a simplified Newton iteration with respect to the variables Y1,...,Ys and with fixed h,, =

Ak ; this yields a dense output approximation ull! (tn + ﬁhﬁ]) for ¥ €]0,1];

2. with u,(t) replaced by ull! (t) compute REF with a root finding algorithm applied to (3.3);

We terminate the iteration with a simplified Newton step.

The convergence of this algorithm can be very slow due to the following reason: since a breaking
point £ is expected in the current interval, some of the arguments in the computation of Z](-n) =
um(ag-n)) might be to the left of ( and some to the right. The discontinuity of the dense output
at ¢ may prevent fast convergence or even lead to divergence. Ounly in the limit, all arguments will

be at one side. To avoid this difficulty, we propose to use the extrapolated dense output also for



the arguments beyond (. With this modification (which is implemented in our code) the rate of

convergence is linear but very fast as the following lemma shows.

Lemma 3.4 Assume that, in addition to the smoothness of the functions in (1.1), also the mapping
(tn + cjhn,Yj(n)) — Z](-n) is smooth. Furthermore, let uy(hy,t) be the dense output solution with
local error O(hZ™1), obtained from the solution of (3.2), and denote by n = n(hy,) the solution of
a(tn + 0, un(hn,tn + 77)) = (, which we assume to be simple for all sufficiently small h,,. Then,

In(hn) — €| < Const - by - |hy — €],
where t, + £ is the searched numerical breaking point, i.e., n(§) = &.

Proof.
We let g(hnan) = a(tn +n, un(hnatn + 77)) — ¢, and we notice that g(hnvn(hn)) = 9(576) =

Taylor expansion shows that

= gn, (&, f)(hn — f) +9,(&,€) (n(hn) - f) + higher order terms. (3.4)

By the nondegeneracy assumption of the breaking point, g,(&,&) # 0 holds true. Hence, only the
dependence on h,, of g(h,,n) and thus of wu,,(hy,,t, + n) has to be studied for fixed 7. By definition
of the method, wup(hy,t) is a polynomial of degree s interpolating v, and Yl("),...,YS("), which
approximate the local solution wu,(t) at t, + c;h, with an error of size O(hZ*1). As in standard

convergence proofs for collocation methods (e.g., [HNW93, Sect. I1.7]) we have (for o < s)

(1) = un(0) + 157 R, ),

where R(h,7) is a smooth function of both variables. By the mean value theorem this implies
U (Mo, t) —n (&, 1) = O(hG (hn—&)) for t € [ty, by +hy). Consequently, we also have g(hy,n)—g(&,n) =
O(hg(hn — £)) which proves the statement by (3.4).

Remark 3.5 If Algorithm 3.1 wrongly predicts a breaking point in the current interval, then either
the iteration of Algorithm 3.3 diverges or it converges to a step size that is larger than the original
hy, (i.e., the breaking point lies outside the corresponding time-interval). In the first case, the step
will be rejected and repeated with a reduced step size (according to classical step size strategies). In

the second case, it depends on the local error estimate whether the step will be accepted or not.

The splitting technique of Algorithm 3.3 yields the breaking points with small overhead. Due
to the fast convergence, only a few iterations are needed, and the main amount of work (simplified
Newton iterations) is similar to that what has to be done anyway (that is the possible computation of
the entries of the Jacobian of f and the factorization of the matrix involved in the simplified Newton

iteration). The algorithm for computing the breaking point is thus the following;:



Algorithm 3.6 Suppose that a breaking point has been detected by Algorithm 3.1. We apply the
splitting technique of Algorithm 8.3 to iteratively solve the augmented system (3.2)-(3.8). Then we

proceed as follows:

e if the iterations converge and if the error control mechanism allows one to accept the step, we

insert t,+h, into the set of breaking points B, and we continue the integration att, 11 = t,+hy;

e otherwise, we reduce the step size according to classical criteria (e.g., [HNWY3, Section I1.3]),

and we repeat the integration at ty,.

Let us shortly compare our algorithm to previous strategies reported in the literature. The
algorithm of [FN84] checks in every successful step if one of the functions d¢(t) = a(t,u,(t)) — ¢
changes sign. If this happens, the breaking point is computed as a zero of d¢(t). Notice that the use
of u,(t) is dangerous, because on the current integration interval the solution is not smooth so that
u,(t) can be a bad approximation. This algorithm is modified by [Hau97], where it is proposed to
use u,—1(t) of the preceding step instead of w,(t). An improvement is reported, but using u,_1(t)
outside the interval [t,_1,,] can also lead to large errors. The work of [EH97a] also uses this kind
of ‘extrapolation’ to cross breaking points.

In contrast to most of the previous strategies, our approach computes only those breaking points
that are relevant for the required accuracy (which saves unnecessary work and allows one to treat
efficiently the situation where breaking points accumulate, e.g., the example of Section 5.2), and
the breaking points are computed to high accuracy as will be explained in Theorem 4.1 below. For

constant delays or for deviating arguments of the form «(t), the exact breaking points are found.

3.3 Detection of Non-Existence and Non-Uniqueness of the Solution

When the analytic solution stops to exist (cf. Section 2.3), a code which is not able to detect this
occurrence typically terminates the integration after the step size has been reduced to some minimal
value (at the price of a large number of rejected steps). If the solution bifurcates into two branches,
the code typically follows one of them. Our algorithm for computing accurately breaking points
allows us to detect points of non-existence and non-uniqueness of the solution. This is based on the
discussion of Section 2.3.

Let & = t, and ¢ = ¢, be a numerical breaking point and its (generating) ancestor. Then, the
polynomial functions 1, (t) := v, (¢) and n; (t) := wm—1(t) are well-defined in a neighbourhood of
¢ =t and satisty the discrete analogue of (2.3). With a small (with respect to h,,_1) step size £ > 0
we then compute one step of some numerical method applied to the differential-algebraic systems
(2.4), where ' (s) and 1~ (s) are replaced by 1, (s) and 1, (s), respectively. The numerical results
y and y,, are then used to check the conditions in (2.5)-(2.6). Consequently, if both conditions

alty +e,y5) >t and alty +e,9, ) <tm (3.5)

10



are satisfied, the solution bifurcates into two solutions at t,,; if none of them is satisfied, the solution
stops at ¢,. For the special case of ordinary delay differential equations (M = I, identity matrix),

one can use the explicit Euler method to obtain

y;{ = Yn + €f(tm’ym’0m(tm)), Yn = Yn + 5f(tna Yns umfl(tm))-

An even more interesting situation are neutral delay equations (see the example of Section 5.4)

of the form
y'(t) = f(t,y(®),y(alt,y(t), v (alt,y(1))). (3.6)
In view of an application of our code, we write it in the from (1.1) by introducing a new variable
z(t) = y'(t) (it suffices to introduce such a variable only for those components which appear as

derivatives in the right-hand side of (3.6)),
y'(t) = f(ty@),y(alty®),z(alty@))
Fty@®),y(alt,y(®), 2 (alt,y(1)) — 2(t).

In this case we can check termination or bifurcation in a similar way using again (3.5). Denoting by

na (t), vl (t) and ulY! (t), ul? (t) the dense output approximations to y(t) and z(t) of Section 2.1,

m—1 m—1

(3.7)
0

we put this time
yi = Yn + Ef (tna Yns UT[%] (tm)a ’l)lz} (tm))a

Yo = yn+Ef(tnaynauiz]fl(tm)auirzz]fl(tm))'

If exactly one of the conditions (3.5) is satisfied, so that the solution continues to exist, we suggest to
go on with the integration with the right-hand limit of z(t) at t,: if a(t, +¢,y,) and a(t, +¢<,y,,)

are both larger then t,,, it is given by 2,7 = f(tn, yn, vy[%](tm), 2] (tm)). and if both expressions are

smaller than t,,, it is 2,7 = f (tn,yn,u%ﬁl(tm),uﬁfl(tm)). The use of these values improves the
convergence of the Newton iterations for the first step after the breaking point.
In these two important situations, the non-existence and non-uniqueness check are activated in

our code.

4 Theoretical Aspects
This section is devoted to highlighting the qualitative improvements implied by the algorithm for the

accurate computation of breaking points.

4.1 Accuracy of the Computed Breaking Points

All algorithms for the computation of breaking points are based on a root finding method for the

scalar function
de, (t) = a(t, un(t)) — Cu, (4.1)

11



where (}, is some previously computed numerical breaking point, and wp () is an approximation to
the exact solution of (1.1) on the interval [t,,, t,+1]. For most integration methods, and in particular
for collocation methods based on Radau nodes, it is observed that the error in the mesh points is
usually much smaller than the error in the interior of the integration interval. It is therefore desirable
that the zero of (4.1) coincides with the end of the integration interval. Algorithm 3.6 is designed to

achieve this goal. We formalize this result in the following theorem.

Theorem 4.1 Let y(t) be the solution of (1.1), and let ¢ and t, + £ be exact breaking points of the
problem such that a(tn + &yt + 5)) = (. Further, let (, be an approximation to ( obtained with
sufficiently small step sizes, and let t,, + &, be the breaking point computed by the Algorithm 3.6, such
that t,, +&n = tpy1. If

£0, (4.2)
t=tn+&

d
= (alty®))
then we have

|§h - £| < C(”yn+1 - Z/(tn+1)|| + |<h - CD

Proof.

For given h,,, we denote the solution of the nonlinear system (3.2) by Yi(") (hy). Since we consider
only stiffly accurate Runge-Kutta methods, the numerical approximation at t,1 is ypi1(hn) =
Ys(n)(hn). The step size h,, = &, obtained from Algorithm 3.6 satisfies the equation (3.3) which can
be written as a(tn + &, ynﬂ(hn)) = (. With the function

F(&,e,() ::a(tn+§ay(tn+§) —1-6) -C

we have F'(&,, Yntr1—Y(tn+1),Cn) = 0 and F(€,0,¢) = 0 for the exact breaking points. An application

of the implicit function theorem thus proves the statement.
|

Often, the global error is expressed in terms of some power of the maximal step size h used during
the integration. For the case M = I (and for index 1 differential-algebraic problems) it is known that
the global error of s-stage collocation methods is of size O(h"), where r = min(p, s + 1) and p is the
classical order of the method, e.g., p = 2s — 1 for the Radau ITA methods (cf. [HW96] and [BZ03]).
The above theorem implies that the error in the computed breaking point is at most O(h").

Notice that for deviating arguments «(t) that do not depend on the solution, the accuracy of the
computed breaking points only depends on the root finding algorithm for the equation a(§) = ¢ and

not on the accuracy of the solution.
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4.2 Considerations on the Global Error

For problems (1.1) with state dependent delays it is not possible to obtain reasonable error bounds
for the global error y, — y(t,). It may happen that ¢, is a numerically computed breaking point,
and the corresponding exact breaking point is slightly different. If at this point the solution has a
jump discontinuity, the global error is there O(1). This is probably the reason why the convergence
proofs of [BZ03] (e.g., that of Theorems 6.1.2 and 6.5.3) require that all (exact) breaking points up
to a certain order are included in the mesh of integration.

It is possible to circumvent this difficulty by introducing a time transformation that is close to
the identity. In the following we denote by yp, () the numerical solution also if variable step sizes are

employed. The value h represents the maximal step size.

Theorem 4.2 Consider a smooth delay problem (1.1) which, on the considered interval, has only a
finite number of breaking points and all of them satisfy (4.2). Furthermore, assume that the global
error of the Runge—Kutta method is of size O(h"™) provided that all exact breaking points are included
in the mesh.

1If, instead of the exact breaking points, those obtained by Algorithm 3.6 are used, then we have on

bounded intervals
lyn(t) —y(T)I| = O(A"), (4.3)

where the function T = 7(t) satisfies T =t + O(h").

We do not give a formal proof of this statement, because it requires to distinguish between the
various problems that are covered in the formulation (1.1); namely, ordinary delay equations and
delay differential-algebraic equations of various indices. We just outline the ideas of the proof which
are common to all different types. As soon as one encounters the first breaking point larger than
to, it may happen that the computed value &, slightly differs from the exact breaking point £. By
Theorem 4.1 we have the estimate &, — & = O(h"). Introducing a time transformation ¢ «<» 7 which
is O(h") close to the identity and which maps [tg, {x] onto [to, ] (e.g., a linear transformation), we
obtain (4.3) for ¢ < &,. The interval from &, to the next computed breaking point has to be treated
in the same way, and so on (this happens a finite number of times). Finally the standard convergence
proof (propagation of local errors and accumulation of these errors) has to be applied; see for example
Theorem 4.3.5 of [BZ03].

5 Numerical Experiments

With the new version of our code we have successfully and efficiently solved all problems of the test

sets of [Pau94] and [EH97b], in particular those where breaking points arise. In this final section we
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illustrate the behaviour and performance of the algorithm developed in this work at some selected

typical examples.

5.1 Scalar State Dependent Delay Equation

We first consider Problem 1.3.10 of [Pau94]. Tt is a state dependent scalar problem with known

solution on the considered interval. The equation is

y' () =y(y®t) for  t>2 (5.1)

with initial condition y(t) = 0.5 for ¢t < 2, and y(2) = 1. The discontinuity of the solution at & = 2
creates breaking points at {1 = 4 and €& = 4+ 2In2 = 5.386. The exact solution is y(t) = t/2 for
So <t <&, y(t) =2exp(t/2—2) for & <t < &, and y(t) =4 —2In(1 + & — ) for & <t < 5.5.

Figure 1 illustrates the difference of a code that does not include breaking points in the mesh
(code A, left picture) and one where the algorithms of the previous sections are activated (code B,
right picture). To get the same accuracy of about five digits, we apply the code A with tolerance
Tol = 10~7, and the code B with Tol = 10~ 4. As initial step size we take h = 0.01. As can be
seen from the left picture of Fig.1, a large number of steps are needed with code A to overcome
breaking points, whereas with the code B the breaking points are hit exactly. For the integration
over the interval [2,5.5], the code A requires 30 accepted steps and has 20 step rejections (15 on the
left neighbourhood of the first breaking point); the code B gives the same accuracy with 7 accepted
and 3 rejected steps. Two of them are necessary to detect the breaking points, and the other is due
to error estimation. It is interesting to mention that for tolerances Tol < 4 - 10! all breaking points
are captured with high accuracy.

Table 1 presents a comparison between the previous and the new version of our code for various

4 7 without 4 7 with

- breaking point - breaking point
3F  detection 3F  detection

" y(t) y(®)
20 i ; 2 g i Y
1 1F
T I Lot Lo Lo S i, Lo Lo
1 2 3 4 5 1 2 3 4 5

Figure 1: Numerical solution of problem (5.1) obtained by the code RADAR5 with breaking point
computation (right) and without it (left).
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RADARS — old version RADARS5 — new version
Tol feval accept reject error feval accept reject error
1073 | 175 12 9 28-107* | 80 7 4 1.6-1075
1076 355 24 17 5.6-1076 120 13 4 7.5-107°
1079 691 55 29 2.2-1077 207 24 5 9.5-10710
10712 | 1390 152 33 3.4-10710 | 473 62 5 8.8-10714

Table 1: Comparison between old and new version of RADARS for problem (5.1).

tolerances. The abbreviation ‘feval’ stands for the number of function evaluations, ‘accept’ and ‘reject’
for the numbers of accepted and rejected steps, and ‘error’ for the relative error at the endpoint of
integration. In the comparison we choose Atol = Rtol = Tol and take h = 0.01 as initial step
size. The old version has many step rejections (increasing with the accuracy) and requires many
accepted steps for overcoming the breaking points. For the new version the number of rejected steps
is independent of the required accuracy, and a higher accuracy is obtained with much fewer function

evaluations.

5.2 Real-Life System With State Dependent Delays

An interesting system of delay differential equations with state dependent delays is that of [Wal7§],
which has been used as test equation in [GHO1]. We refer to the latter publication for the description
of the system, the parameters, and the initial conditions. The only exception is that we use the
function fa(y,w) = y+w instead of fo(y,w) = 10712 +y +w (according to Waltman the term 10712
is “an artifact” and was included only for numerical purposes). This is a demanding problem and
many codes have severe difficulties in solving it.

The right-hand side of the differential equation has jump discontinuities at tg = 35 and ¢; = 197,
but the solution is continuous and has jumps only in its derivatives. There are two state dependent
delays aq(t,y(t)) = ys(t) and az(t,y(t)) = ye(t). The first delay is constant on [0, %] and then it
monotonically approaches ¢ (nearly vanishing delay). The second one is constant on the interval
[0,t1], then it has an extremely steep slope and rapidly approaches ¢ (see Fig.3 of [GHO1]). Breaking
points for the solution are obviously tg and ¢; which are included in the mesh.

The new version of our code RADARDS successfully solves this problem on the interval [0, 300]
for all tolerances. A comparison between the old version (which does not compute automatically
breaking points) and the new one is given in Table 2. Note that for the highest tolerance the
algorithm implemented in the previous version has a premature termination due to an excessive

stepsize restriction.
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RADARS - old version RADARS — new version
Tol | feval error feval error
1073 | 2800 0.778 2227 0.218
1076 | 4244 1.05e-2 3409 6.85¢-4
1079 | 8537 2.48e-4 7939 3.32e-6
1072 | — 22694 3.66e-8

Table 2: Comparison between old and new version of RADARS5 for the Waltman problem.

The discontinuity at ¢ty = 35 generates breaking points
55.2132518, 69.2671816, 79.6396056, 87.5583983,

with increasing degree of differentiability. Depending on the tolerance, only a few of them are com-
puted by our code and inserted into the mesh.

Due to the nearly vanishing delays in the problem, there is a huge amount of breaking points
beyond t; = 197. Using the option which searches for breaking points in every accepted step and
applying the code with stringent tolerance 10~!4, it detects 45 breaking points in the tiny interval
(197,197 + 10-5). We do not recommend the use of this option for practical simulations. Any code
that tries to compute all breaking points will be inefficient for this problem, because it has to take

too many steps.

5.3 Neutral System With Constant Delay

We next consider a neutral problem taken from [Kua91], see also Problem 2.4.3 of [Pau94] or Problem
E2 of [EH97D], which here is written in the form (1.1) with singular M = diag(1,1,0) as

yit) = w1 -t —7)—pys(t — 7)) — y2() F(y1 (1))
yo(t) = ya(t)(F(y1(t) — ) (5.2)
0 = yi®)(1 -yt —7)— pys(t — 7)) — y2(O)F (51 () — ys(t).

We have F(y) = y?/(y*>+1), a = 0.1, p = 2.9, 7 = 0.42, and the initial functions are y; (t) = 0.33—¢/10
and ya(t) = 2.22+t/10 for ¢ < 0. To see that this is a neutral problem, notice that y}(t) = y3(t) and
eliminate the variable y3 from the system. Equation (5.2) has constant delay and the breaking points
are therefore known in advance as & = k7, k = 1,2,.... The size of the jumps in these breaking
points can be seen in Fig.2, where the derivative y3(t) = y}(¢) is plotted on the intervals [0, 6] and
[24,30]. It decreases slowly with time.

To test the code in the presence of jump discontinuities, we apply it without including the breaking

points into the mesh. Over the integration interval [0, 6] all breaking points are detected and correctly
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Figure 2: The component y3(t) of the solution of the differential-algebraic delay system (5.2). Vertical

lines indicate the positions of the breaking points.

computed by the code, even for very rough tolerances like Tol = 1. On the longer interval [0, 30], 35
out of 71 breaking points are found when the code is applied with Tol = 10!, 54 when it is applied
with Tol = 10~2, and all 71 breaking points are found for tolerances Tol < 10~ °.

It is important to mention that in the presence of jump discontinuities in the solution, care has
to be taken with the computation of the right-sided limit of the solution at the breaking point. This
can be done by a suitable projection of the left-sided limit onto the set of consistent initial values for
the differential-algebraic equation. For the case of problem (5.2), one simply has to replace the third

component by the value obtained from the algebraic relation in (5.2).

RADARS — old version RADARS5 — new version
Tol feval accept reject error feval accept reject error
1073 | 1049 98 30 4.0-1073 | 2644 186 138 4.4-1075

1076 7411 676 292 3.0-107° | 4592 369 130 1.2-1077
1072 | 16112 1505 513  1.6-10°7 | 10063 918 123 1.0-107°
10712 | 32023 2977 752 251077 | 27556 2665 121 24-1074

Table 3: Comparison between old and new version of RADARS for problem (5.2).

Similar to Table 1, we present in Table 3 a comparison between the old and new versions of
our code. The column ‘error’ gives the relative error of the Euclidean norm of the solution vector
(y1(t), y2(t)) at the end point of integration T' = 30. For both versions the accuracy of the derivative
y1(t) is typically less by two or three digits. With the exception of the “lucky run” of the old version
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with Tol = 10~7, we can draw the same conclusion as before. The number of step rejections and the

total number of function evaluations are reduced, and the accuracy is significantly improved.

5.4 Neutral System With State Dependent Delay and Terminating Solu-

tion
Our final example is a modification by [EH97a] of a problem originally considered by [CGT73],
(#) = cos () (14 p(t97(0) ) + vy (W) + 900 (5.3

with g(t) = (1 — ¢) sint cos (¢ sin®t) — sin (¢ + ¢ sin® ¢) and initial value y(0) = 0. With this initial
value, it has y(t) = sint as exact solution and there are no discontinuities and no breaking points.
We therefore modify it as follows: we put ¢g(¢t) = 0 and ¢ = 0.6 in the delay equation (5.3), and we

consider it for ¢ > 0.25. As initial functions we take
y(t) =—t/2, y'(t)=-1/2 for t<0.25. (5.4)

This is an explicit neutral problem with state dependent delay and very challenging for a numerical
integrator. Figure 3 shows its solution together with its derivative y'(¢) and the retarded argument
a(t,y(t)) = ty%(t). It has breaking points {£;} at (rounded to nine digits)

1.16655385, 2.63630258, 3.26643820, 3.49770380 3.70029694, 3.96003956

25~

20+ alt,y(t))
15-

10"

5 \/\' TS
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Figure 3: The solution y(t) as broken line, its derivative y’(¢), and the retarded argument «(t, y(t)) =
ty(t)? of the neutral problem (5.3). Vertical and horzontal lines indicate the positions of the breaking

points and the terminating point.
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Figure 4: Mean accuracy of computed breaking points: in horizontal axis we represent the input

tolerance and in the vertical axis we represent the quantity pu.

and the solution terminates at {7 ~ 4.09218182. The position of these points is indicated by vertical
lines in Fig. 3, and their ancestors can be found by following the horizontal lines passing through
(& (& y(9))-
The new version of our code successfully computes the solution. For tolerances smaller than 107
all breaking points are obtained with high accuracy and the termination point is detected correctly.
The diagram in Fig. 4 shows a measure (in logarithmic scale) of the accuracy of computed breaking

points in terms of the input tolerance. In particular we draw the following quantity:

1 & ¢l
”_6; &

where {¢;} indicate exact breaking points (here we use instead highly accurate approximations) and
{¢&;} denote the breaking points computed by the code with the chosen input tolerance.
The observed behavior shows a very good correspondence between the required and the obtained

accuracy.

5.5 Availability of the Software

A new release of the code is presently being distributed at the web-sites

http://univaq.it/~guglielm

http://www.unige.ch/~hairer /software.html
(where the first released version is actually available). It contains drivers for nine examples including
problems simulating enzyme kinetics, acute hepatitis B virus infection, and the problems of the

present paper.
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