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Abstract Laguerre minimal (L-minimal) surfaces are the minimizers of the
energy

∫
(H2
−K)/KdA. They are a Laguerre geometric counterpart of Will-

more surfaces, the minimizers of
∫

(H2
− K)dA, which are known to be an

entity of Möbius sphere geometry. The present paper provides a new and
simple approach to L-minimal surfaces by showing that they appear as
graphs of biharmonic functions in the isotropic model of Laguerre geome-
try. Therefore, L-minimal surfaces are equivalent to Airy stress surfaces of
linear elasticity. In particular, there is a close relation between L-minimal
surfaces of the spherical type, isotropic minimal surfaces (graphs of har-
monic functions), and Euclidean minimal surfaces. This relation exhibits
connections to geometrical optics. In this paper we also address and il-
lustrate the computation of L-minimal surfaces via thin plate splines and
numerical solutions of biharmonic equations. Finally, metric duality in
isotropic space is used to derive an isotropic counterpart to L-minimal sur-
faces and certain Lie transforms of L-minimal surfaces in Euclidean space.
The latter surfaces possess an optical interpretation as anticaustics of graph
surfaces of biharmonic functions.

2000 Mathematics Subject Classification: 68U05, 53A40, 52C99, 51B15.

Keywords differential geometry, Laguerre geometry, Laguerre minimal
surface, isotropic geometry, linear elasticity, Airy stress function,
biharmonic function, thin plate spline, geometrical optics.

Helmut Pottmann, Philipp Grohs and Niloy J. Mitra
Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien
Wiedner Hauptstr. 8–10/104, A 1040 Wien, Austria
E-mail: {pottmann,grohs,niloy}@geometrie.tuwien.ac.at



2

Fig. 1 Examples of Laguerre minimal surfaces created by solving the biharmonic bound-
ary value problem (left), and by thin plate spline interpolation (right).

1 Introduction

The motivation for the present study comes from research on discrete
freeform surfaces for architecture [G∗02, Sch03, BP06, CW06, LPW∗06,
PBCW07, PLW∗07]. The design and construction process favors certain dis-
crete surface representations such as special quadrilateral meshes with pla-
nar faces. The most important classes of such polyhedral surfaces, namely
conical meshes [LPW∗06, PW07] and meshes with edge offsets [PLW∗07]
are actually objects of Laguerre sphere geometry. Aesthetics plays a crucial
role in this application and therefore minimizers of geometric energies are
of great interest. In view of these facts it is most natural to ask for mini-
mizers of geometric energies which are invariant under Laguerre transfor-
mations. The simplest energy of this type has been introduced by Blaschke
[Bla24, Bla25, Bla29]. Using mean curvature H, Gaussian curvature K, and
the surface area element dA of a surface Φ in Euclidean 3-space E3, this
energy can be expressed as the surface integral:

Ω =

∫
Φ

(H2
− K)/KdA. (1)

Though the quantities H,K,A used for the definition are not objects of
Laguerre geometry, the functional Ω and its local minimizers, known
as Laguerre-minimal surfaces (L-minimal surfaces), are invariant under La-
guerre transformations.

Our research goal is to find computational approaches for discrete L-
minimal surfaces as a generalization of recent work on discrete Euclidean
minimal surfaces [BP96, BHS06, PLW∗07, WP07]. The present paper is to
be considered as a first step towards reaching this goal. It links smooth
L-minimal surfaces with well-known functions and surfaces of compu-
tational mathematics, namely graphs of biharmonic functions. These are
also known as Airy stress surfaces of planar elastic systems [Str62]. The
frequently used thin plate splines [Duc77] are biharmonic radial basis func-
tions and thus also provide methods for the computation of L-minimal
surfaces. The key for obtaining this new relation between L-minimal sur-
faces and biharmonic functions is provided by a special model of Laguerre
geometry, which is formulated with help of so-called isotropic geometry.
Before we briefly describe in Section 2 the classical geometric fundamentals
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such as the relation between Laguerre geometry and isotropic geometry,
we sketch the state-of-the-art.

1.1 Previous work

Differential sphere geometry. Differential geometry in the three classical sphere
geometries of Möbius, Laguerre and Lie, respectively, is the subject of
Blaschke’s third volume on differential geometry [Bla29]. For a more mod-
ern treatment we refer to Cecil [Cec92]. Here we focus on contributions
to Laguerre-minimal surfaces. Many of them are found in the work of
Blaschke [Bla24, Bla25, Bla29] and in papers by his student König [Kön26,
Kön28]. Recently, this topic found again the interest of differential geome-
ters. Musso and Nicolodi derived all L-minimal surfaces which are en-
velopes of a one-parameter family of spheres [MN95] and studied general
L-minimal surfaces by the method of moving frames [MN96]. The stability
of L-minimal surfaces has been analyzed by Palmer [Pal99]; he also showed
that these surfaces are indeed local minimizers of (1). Willmore surfaces,
the minimizers of E =

∫
(H2
−K)dA are a Möbius-geometric counterpart to

L-minimal surfaces [Bla29]. These surfaces and gradient flows of E have
found various applications in geometric computing; we refer to the discrete
Willmore flow of Bobenko and Schröder [BS05] and the references therein.
In fact, the present paper shows that L-minimal surfaces are essentially the
isotropic analogues of Willmore surfaces (Sections 3.2 and 3.3).
Laguerre geometry is the geometry of oriented planes and spheres in Eu-
clidean 3-space [Bla29, Cec92]. Its recent application in the study of discrete
surfaces with applications to multi-layer freeform structures for architec-
ture [BS07, LPW∗06, PLW∗07, WP07] is one of the motivations for the present
work. Further applications of Laguerre geometry in geometric computing
concern rational offsets and developable surfaces [PP98a, PP98b, Pet04,
PL02].
Isotropic geometry has been systematically developed by Strubecker [Str41,
Str42a, Str42b] in the 1940s. It is based on a simple semi-Riemannian metric
and briefly surveyed in Section 2.1. There are numerous purely geometric
papers on isotropic geometry, most of which are covered in the monograph
by Sachs [Sac90]. Isotropic geometry naturally appears when properties of
functions shall be geometrically visualized and interpreted at hand of their
graph surfaces [PO94]. In particular, this holds for the visualization of stress
properties in planar elastic systems at hand of their Airy surfaces [Str62],
a topic addressed in Section 3.3. A remarkable application of isotropic
geometry in Image Processing has been presented by Koenderink and
van Doorn [KvD02]. Recently, Pottmann and Liu [PL07] studied discrete
surfaces of isotropic geometry with applications in architectural design.

1.2 Contributions and Overview

The contributions of the present paper are as follows:
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1. A brief overview of Laguerre geometry, isotropic geometry, and their
relation is provided in Section 2.

2. In Section 3, we prove our main result: L-minimal surfaces appear
as graphs of biharmonic functions in the isotropic model of Laguerre
geometry. We also discuss generations of L-minimal surfaces via Min-
kowski sums.

3. Section 3.3 describes the relation to linear elasticity: L-minimal surfaces
are equivalent to Airy stress surfaces, and isotropic Möbius transforma-
tions map Airy surfaces to Airy surfaces. Moreover, we interpret Airy
surfaces as isotropic Willmore surfaces.

4. The relation between L-minimal surfaces of the spherical type, isotropic
minimal surfaces (graphs of harmonic functions), and Euclidean mini-
mal surfaces is described and illustrated by examples in Section 3.4. We
also elaborate on the connections to geometrical optics.

5. The computation of L-minimal surfaces via thin plate splines and nu-
merical solutions of the biharmonic equation are addressed in Section 4.

6. Finally, Section 5 uses the metric duality in isotropic space to derive
an isotropic counterpart to Laguerre minimal surfaces and certain Lie
transforms of L-minimal surfaces in E3. Such surfaces are shown to
be Euclidean anticaustics of graph surfaces z = f (x, y) of biharmonic
functions f for z-parallel light rays.

2 Fundamentals

2.1 Isotropic Geometry

Motions and metric. Isotropic geometry is based on the following group G6

of affine transformations (x, y, z) 7→ (x′, y′, z′) in R3,

x′ = a + x cosφ − y sinφ,
y′ = b + x sinφ + y cosφ, (2)
z′ = c + c1x + c2y + z,

which are called isotropic congruence transformations (i-motions). We see that
motions in isotropic space I3 appear as Euclidean motions in the projection
onto the xy-plane; the result of this projection p = (x, y, z) 7→ p′ = (x, y, 0) is
henceforth called the top view. Many metric properties in isotropic 3-space
I3 (invariants under G6) are thus Euclidean invariants in the top view. For
example, the i-distance of two points x j = (x j, y j, z j), j = 1, 2, is defined as
the Euclidean distance of their top views x′j,

‖x1 − x2‖i :=
√

(x1 − x2)2 + (y1 − y2)2. (3)

Two points (x, y, z j) with the same top view are called parallel points; they
have i-distance zero, but they need not agree. Since the i-metric (3) degen-
erates along z-parallel lines, these are called isotropic lines. Isotropic angles
between straight lines are measured as Euclidean angles in the top view.
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Planes, circles and spheres. There are two types of planes in I3.
(i) Non-isotropic planes are planes non-parallel to the z-direction. In these

planes we basically have an Euclidean metric: This is not the one we are
used to, since we have to make the usual Euclidean measurements in the
top view. An i-circle (of elliptic type) in a non-isotropic plane P is an ellipse,
whose top view is an Euclidean circle. Such an i-circle with center m ∈ P
and radius r is the set of all points x ∈ P with x −mi = r (see Figure 2).

(ii) Isotropic planes are planes parallel to the z-axis. There, I3 induces
an isotropic metric. An isotropic circle (of parabolic type) is a parabola with
z-parallel axis and thus it lies in an isotropic plane (see Figure 2).

An i-circle of parabolic type is not the iso-distance set of a fixed point,
but it may be seen as a curve with constant isotropic curvature: A curve c
in an isotropic plane P (w.l.o.g. we set P : y = 0) which does not possess
isotropic tangents can be written as graph z = f (x). Then, the isotropic
curvature of c at x = x0 is given by the second derivative κi(x0) = f (x0).
For an i-circle of parabolic type f is quadratic and thus κi is constant.

There are also two types of isotropic spheres. An i-sphere of the cylindrical
type is the set of all points x ∈ I3 with x−mi = r. Speaking in an Euclidean
way, such a sphere is a right circular cylinder with z-parallel rulings; its
top view is the Euclidean circle with center m and radius r. The more
interesting and important type of spheres are the i-spheres of parabolic type,

z =
A
2

(x2 + y2) + Bx + Cy +D, A  0. (4)

P

P

S
P

S1 S2

Fig. 2 (Left) An i-circle of elliptic type is the intersection curve of an i-sphere S of
cylindrical type and a non-isotropic plane P. When viewed from the top, the i-circle is
an Euclidean circle. (Right) An i-circle of parabolic type is a parabola with z-parallel axis.
This curve appears as the intersection curve of two i-spheres, S1 and S2, of parabolic
type. This is equivalent to the intersection curve of an i-sphere of parabolic type and an
isotropic plane P. For more details, please refer to Section 2.
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¿From an Euclidean perspective, they are paraboloids of revolution with z-
parallel axis. The intersections of these i-spheres with planes P are i-circles.
If P is non-isotropic, then the intersection is an i-circle of elliptic type. If P
is isotropic, the intersection curve is an i-circle of parabolic type.
Curvature theory of surfaces. We confine our discussion to regular surfacesΦ
without isotropic tangent planes. Thus, we may write Φ in explicit form,

Φ : z = f (x, y). (5)

Normal sections of Φ at a point p may be defined as intersections with
isotropic planes through p = (x0, y0, f (x0, y0)). Their isotropic curvatures at
p are the second directional derivatives of f at (x0, y0). Hence, if r = (r1, r2)
is a unit vector, the isotropic normal curvature in direction r is

κn(r) = rT
· ∇

2 f · r, (6)

where ∇2 f denotes the Hessian of f ,

∇
2 f =

( fxx fxy
fxy fyy

)
.

The extremal values κ1, κ2 of κn(r) are given by the eigenvalues of ∇2 f and
called i- principal curvatures. The corresponding orthogonal directions r1, r2

are the eigenvectors of ∇2 f . They are the top views of conjugate surface
tangents ofΦ at p, which are called i-principal directions. The integral curves
of the field of principal directions are called isotropic principal curvature lines.
They constitute exactly that conjugate curve network on S which appears
as orthogonal network in the top view.

With the i-principal curvatures κ1, κ2 one defines isotropic curvature (or
relative curvature)

K = κ1κ2 = det(∇2 f ) = fxx fyy − f 2
xy, (7)

and isotropic mean curvature H,

2H = κ1 + κ2 = trace(∇2 f ) = fxx + fyy = ∆ f . (8)

Isotropic minimal surfaces are characterized by H = 0, and thus they are
graphs of harmonic functions f (∆ f = 0). They possess many properties
which are analogous to their Euclidean counterparts [Str76, Str77, Sac90].
Later in Section 3.4, we will relate i-minimal surfaces to Euclidean minimal
surfaces, and to special L-minimal surfaces.
Metric duality. Isotropic geometry enjoys a metric duality which may be
realized by the polarity with respect to the isotropic unit sphere,

Σ : z =
1
2

(x2 + y2). (9)

It maps a point p = (p1, p2, p3) to the plane P with equation z = p1x+p2y−p3.
Points p,q with i-distance d are mapped to planes P,Q with i-angle d and
vice versa. Parallel points correspond in the duality to parallel planes. A
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surface Φ : z = f (x, y), seen as set of contact elements (points plus tangent
planes) corresponds to a surface Φ∗, parameterized by

x∗ = fx(x, y), y∗ = fy(x, y), z∗ = x fx + y fy − f . (10)

Contact elements along i-principal curvature lines ofΦ andΦ∗ correspond
in the duality. Note that Φ∗ may have singularities which correspond to
parabolic surface points ofΦ (K = 0). This is reflected in the following rela-
tions between the isotropic curvature measures of dual surface pairs [Str78]:

H∗ = H/K K∗ = 1/K. (11)

Thus, the dual surface to an i-minimal surface is also i-minimal. For further
properties of the metric duality, see [Sac90].
Isotropic sphere transformations. In I3, there exists a counterpart to Möbius
geometry which is of great importance for the present paper. One puts i-
spheres of parabolic type and non-isotropic planes into the same class S of
isotropic Möbius spheres; they are given by (4), including A = 0. One adds a
single ideal point∞ toR3 to get the point set of Euclidean Möbius geometry.
In isotropic Möbius (i-M) geometry, we add toR3 infinitely many ideal points,
namely the set R. Each isotropic sphere with equation (4) is extended by
the ”point” A ∈ R (which equals the constant i-mean curvature H of that
sphere). We denote the extended point set I3

∪ R by P . An intersection
curve of two i-M-spheres is called an i-M-circle; it may be an i-circle of
elliptic or parabolic type, or a non-isotropic straight line. There exists a
group Mi

10 of isotropic Möbius (i-M) transformations which acts bijectively
in P , in the set S of i-M-spheres and in the set C of i-M-circles. The 10-
dimensional group Mi

10 is isomorphic to the group of Euclidean Laguerre
transformations (see subsection 2.2). The top view of an i-M-transform is a
planar Euclidean Möbius transformation. The basic i-M-transforms which
generate the whole group are inversions with respect to i-spheres. The
inversion (reflection) at an i-M-sphere S : z = A(x2 + y2)/2 + ... =: s(x, y)
is given by (x, y, z) 7→ (x, y, 2s(x, y) − z). The top view remains unchanged,
while in the z-direction we have a reflection at the corresponding point of
S. An inversion with respect to an i-sphere S of cylindrical type, for brevity
say S : x2 + y2 = 1, is defined as

(x, y, z) 7→ (x, y, z)/(x2 + y2). (12)

In the top view it appears as ordinary inversion with respect to a Euclidean
circle, but also in I3 corresponding points lie collinear with the inversion
center (here (0, 0, 0)).

2.2 Laguerre Geometry

Laguerre geometry is the geometry of oriented planes and oriented spheres
in Euclidean E3 [Bla29, Cec92]. We may write an oriented plane P in Hesse
normal form as nT

· x + h = 0, where the unit normal vector n defines the
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orientation; nT
· x+ h is the signed distance of the point x to P. An oriented

sphere S, with center m and signed radius R, is tangent to an oriented
plane P if the signed distance of m to P equals R, i.e. nT

·m + h = R. Points
are viewed as oriented spheres with radius zero. A Laguerre transformation
(L-transform ) is a mapping which is bijective on the sets of oriented planes
and oriented spheres, respectively, and preserves tangency between plane
and sphere.

L-transforms are more easily understood if we use the so-called cyclo-
graphic model of Laguerre geometry. There, an oriented sphere S is rep-
resented as point S := (m,R) ∈ R4. An oriented plane P in E3 may be
interpreted as the set of all oriented spheres which are tangent to P. Map-
ping P via this set of spheres into R4, one finds a hyperplane in R4 which
is parallel to a tangent hyperplane of the cone x2

1 + x2
2 + x2

3 − x2
4 = 0. In the

cyclographic model, an L-transform is seen as a special affine map (Lorentz
transformation),

S′ = a + L · S, (13)

where L denotes the matrix of a linear map R4
→ R4 which preserves the

inner product,
〈x,y〉 := x1y1 + x2y2 + x3y3 − x4y4. (14)

With the diagonal matrix D := diag(1, 1, 1,−1) we have 〈x,y〉 = xT
· D · y,

and the condition on L reads:

LT
·D · L = D. (15)

Let us return to the standard model in E3. A pencil of parallel oriented
planes has the same normal vector n (image point on the ”Gaussian”
sphere S2). An L-transform keeps the parallelity of oriented planes and
induces a Möbius transformation of the Gaussian sphere S2. Note that, in
general, a L-transform does not preserve points, since those are seen as
special spheres and may be mapped to other spheres. A simple example
of an L-transform is the offset operation (given by equation (13), with L as
identity matrix and a = (0, 0, 0, d)), which adds a constant d to the radius of
each sphere.
The isotropic model of Laguerre geometry. The following remarkable relation
between Laguerre geometry and isotropic Möbius geometry is central for
our study. We may use (n, h) as coordinates of an oriented plane P. However,
these four coordinates are not independent due to ‖n‖ = 1. Thus, one
replaces n = (n1,n2,n3) (point of S2) by its image point (n1/(n3+1),n2/(n3+
1), 0) under the stereographic projection of S2 from (0, 0,−1) onto z = 0. It
is then convenient (for a more geometric explanation please see [PP98b])
to view the point,

Pi :=
1

n3 + 1
(n1,n2, h) (16)

as image of the oriented plane P : n1x+n2y+n3z+h = 0. For a plane P with
normal vector (0, 0,−1), Pi in (16) is not defined; in this case we define the
real number h ∈ P (ideal point) as image. In this way, the set of oriented
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planes in E3 is mapped to the point set P of isotropic Möbius geometry.
One speaks of the isotropic model of Laguerre geometry.

Parallel oriented planes P and Q appear in the isotropic model as paral-
lel points Pi and Qi, respectively. The oriented tangent planes of an oriented
sphere S with center m = (m1,m2,m3) and radius R are seen in the isotropic
model as points of an isotropic Möbius sphere Si:

Si : z =
R +m3

2
(x2 + y2) −m1x −m2y +

R −m3

2
. (17)

The common tangent planes of two oriented spheres (tangent planes of an
oriented cone of revolution or a limit case of it) correspond to the common
points of two i-M-spheres (= i-M-circle). A non-developable surface Φ
viewed as set of oriented tangent planes is mapped to a surface Φi in the
isotropic model. Tangent planes along an Euclidean principal curvature
line of Φ are mapped to points of an isotropic principal curvature line
of Φi. Underlying all these facts is the central result that a L-transform
corresponds to an i-M-transform in the isotropic model. Hence, the groups
of L-transforms and i-M-transforms are isomorphic.
Bonnet coordinates. Blaschke [Bla24, Bla29] used coordinates of Bonnet in his
study of Laguerre minimal surfaces. These complex coordinates (u, v,w) of
an oriented plane P are closely related to the representation Pi = (x, y, z) of
P in the isotropic model, a fact which we did not find in the literature:

(x, y, z) =
1
2

(u + v, i(v − u),w) and (u, v,w) = (x + iy, x − iy, 2z). (18)

Real planes correspond to conjugate complex (u, v). The first two Bonnet
coordinates (u, v) define the unit normal vector n of the plane P via

(n1,n2,n3) =
1

1 + uv
(u + v, i(v − u), 1 − uv). (19)

Compared to Bonnet coordinates, the isotropic model has the advantage of
being defined overR, and still provides a very simple approach to Laguerre
minimal surfaces; this will be seen in the next section.

3 L-minimal surfaces in the isotropic model of Laguerre geometry

3.1 L-minimal surfaces

Laguerre transformations map oriented planes to oriented planes, but they
do not preserve points. Thus, in Laguerre geometry one views a surfaceΦ
as set of its oriented tangent planes. We will use oriented contact elements,
defined by the pairs (p,T) with p ∈ Φ and T as oriented tangent plane ofΦ
at p; but we view the surface element as the set of all oriented spheres which
touch T at p. Clearly these spheres are centered at the surface normal. An
L-transform maps such a parabolic pencil of spheres again to a parabolic
pencil of spheres. In this way L-transforms act on contact elements. A
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surface defined as set of contact elements is called a Legendre surface. In the
following, surfaces in E3 will be Legendre surfaces unless noted otherwise.

The parabolic pencil of spheres defined by a contact element (p,T)
contains the two principal spheres Π1 and Π2, whose signed radii are the
principal curvature radii Ri = 1/κi, and whose centers are the principal
curvature centers mi = p + Rin. These principal spheres are L-invariant,
while their radii are not. The middle sphere of Blaschke [Bla29] is also an
element of the pencil, and defined as the oriented sphere with center m =
(m1 + m2)/2 and radius R = (R1 + R2)/2 = H/K. The middle sphere is
L-invariant. This is most easily seen in the cyclographic model, where it
appears as midpoint M of the two points Mi = (mi,Ri) ∈ R4 representing
the principal spheres. An L-transform is a special affine map in R4, and
thus it preserves midpoints.

A surfaceΦ can be mapped to the surfaceΦM ⊂ R4 which is formed by
all points M corresponding to the middle spheres of Φ. The L-Gauss image
of Φ is ΦM. L-differential geometry of Φ is the differential geometry of the
L-Gauss image in 4-dimensional Minkowski space R4

1, which is based on
the inner product (14).

It is natural to define an L-minimal surface as a surfaceΦwhose L-Gauss
imageΦM is a local minimizer of the area functionalΩ inR4

1. According to
Blaschke [Bla29], the area functional is given by (1) in terms of Euclidean
invariants ofΦ. Using the principal radii Ri and the surface element dAs =
KdA of the Gaussian spherical image, it may also be written as:

Ω =
1
4

∫
(R1 − R2)2dAs. (20)

Thus, Ω measures the deviation from a sphere. If Φ’s tangent planes are
parameterized by their Bonnet coordinates (u, v,w) via a function w(u, v),
Ω takes the following simple form [Bla29]:

Ω =
i
2

∫ ∫
wuuwvvdudv. (21)

Expressing vanishing first variation leads to the following Euler-Lagrange
equation which characterizes L-minimal surfaces,

wuuvv =
∂4w
∂2u∂2v

= 0. (22)

An Euclidean minimal surfaceΦ is also L-minimal, which is easily seen as
follows: Because of R1+R2 = 0, the middle spheres are the surface points p
and thusΦM agrees withΦ ∈ E3. In E3,R4

1 induces the canonical Euclidean
metric. Hence, the surface area Ω is the Euclidean one, which proves the
L-minimality of Φ. By the L-invariance, any L-transform and in particular
any offset of an Euclidean minimal surface is also an L-minimal surface.
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3.2 L-minimal surfaces in the isotropic model

After all these preparations it is very easy to derive those surfaces Φi

which represent L-minimal surfaces Φ in the isotropic model of Laguerre
geometry. We have to use relations (18) between Bonnet coordinates (u, v,w)
of a plane and its image point Pi = (x, y, z) in the isotropic model. We set

2z = w(u, v) = w(x + iy, x − iy) = 2 f (x, y).

With ∂x/∂u = ∂x/∂v = 1/2 and ∂y/∂u = −∂y/∂v = −i/2, we obtain wu =
fx − i fy, wv = fx + i fy and

wuu =
1
2

( fxx − fyy − 2i fxy), wvv =
1
2

( fxx − fyy + 2i fxy).

Hence the integrand in (21) equals

wuuwvv =
1
4

[( fxx − fyy)2 + 4 f 2
xy] = H2

i − Ki. (23)

Here Hi = ∆ f/2 and Ki = fxx fyy − f 2
xy denote the isotropic curvatures of the

surface Φi : z = f (x, y) which represents Φ in the isotropic model.
Noting dudv = −2idxdy = −2idAi with dAi as isotropic area element, we

finally obtain the functionalΩ expressed in terms of the isotropic geometry
of Φi,

Ω =

∫
(H2

i − Ki)dAi =
1
4

∫ ∫
[( fxx − fyy)2 + 4 f 2

xy]dxdy. (24)

This is the isotropic counterpart of the Willmore energy E =
∫

(H2
− K)dA

of (Euclidean) Möbius geometry. Just as E is invariant under Möbius trans-
forms,Ω is invariant under isotropic Möbius transforms, since these repre-
sent L-transforms in the isotropic model. In the isotropic model, the Euler-
Lagrange equation (22) of L-minimal surfaces is the biharmonic equation,

∆2 f = ∆(∆( f )) = 0. (25)

Therefore, the surfaceΦi : z = f (x, y) is the graph of a biharmonic function
f . Let us summarize our results:

Theorem 1 A Laguerre minimal surface Φ, defined as minimizer of the energy
(1), appears in the isotropic model of Laguerre geometry as minimizer Φi of the
isotropic Willmore energy (24). The surface Φi is the graph z = f (x, y) of a
biharmonic function f (∆2 f = 0). Isotropic Möbius transformations map graphs
of biharmonic functions onto graphs of biharmonic functions.

The latter invariance result about biharmonic functions can be proved
directly, but the computations are quite involved. It is the isotropic coun-
terpart to the Möbius invariance of Willmore surfaces.

An analytical expression for the transfer from the isotropic modelΦi to
the Laguerre model Φ ∈ E3 can be derived easily, and reads as follows:
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Corollary 2 Let Φi be the graph surface of the biharmonic function f . Then the
corresponding Laguerre minimal surface Φ is given by

1
x2 + y2 + 1

 (x2
− y2

− 1) fx + 2xy fy − 2x f
(y2
− x2

− 1) fy + 2xy fx − 2y f
2x fx + 2y fy − 2 f

 . (26)

Given two biharmonic functions f1 and f2, any linear combination f =
λ1 f1 + λ2 f2 is also biharmonic. Three parallel points Pi

j = (x, y, f j(x, y)),
j=1,2, and Pi = (x, y, f (x, y)) on their graph surfaces correspond to three
parallel oriented planes P1,P2,P in E3, whose signed distances h1, h2, h to
the origin (support functions) satisfy the same linear combination h =
λ1h1 + λ2h2; this follows from the relation z = h/(n3 + 1) in (16). The planes
P1,P2,P are tangent to three L-minimal surfacesΦ1, Φ2 andΦ, respectively.
If we have such a relation between parallel oriented tangent planes of
surfaces, we speak of a Minkowski linear combinationΦ = λ1Φ1⊕λ2Φ2. Since
multiplication of h with a constant describes a uniform scaling, the essential
operation here is the sum h = h1 + h2, which describes the Minkowski sum
or convolution surface Φ = Φ1 ⊕ Φ2 of the surfaces with support functions
h1 and h2. Convolution curves and surfaces have been studied recently
from various perspectives [FH07, SPJ06, PS07]. With h = (h1 + h2)/2, we
get a description of convolution which is independent of the choice of the
origin: For any two parallel oriented tangent planes T1 and T2 ofΦ1 andΦ2,
respectively, take the middle plane T; then all such middle planes envelope
the convolution surface Φ.

Corollary 3 Convolution surfaces of L-minimal surfaces are L-minimal.

This generalizes a theorem by Weierstrass which states that the convo-
lution surface of two minimal surfaces is a minimal surface. A sphere is
L-minimal and offsetting means convolution with a sphere. Hence Corol-
lary 3 also contains the known result that the offsets of minimal surfaces
are L-minimal (special case of the L-invariance of L-minimal surfaces).

A biharmonic function f can be represented by two harmonic functions
f1, f2 or g1, g2 as:

f (x, y) = x f1(x, y) + y f2(x, y),

or

f (x, y) = (x2 + y2
− c)g1(x, y) + g2(x, y).

Just as harmonic functions fi may have branching points, and thus z =
fi(x, y) can have several sheets (Riemann surface), the same holds for bi-
harmonic functions. We understand a ”graph of a function” in this general
sense. For the corresponding L-minimal surfaces in E3 this says that their
Gauss mapping needs not be injective.
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3.3 Airy surfaces

The solution of linear elastostatic boundary value problems in the (x, y)-
plane may be based on Airy stress functions f (x, y); these functions are
solutions of the biharmonic equation (25). Strubecker [Str62] has shown
that their graph surfaces Φi : z = f (x, y), also referred to as Airy surfaces,
are most naturally treated in I3 based on the motion group (2). First of all,
Airy stress functions are only determined up to a linear part, which by
(2) corresponds to the application of an i-motion to the Airy surface Φi.
Isotropic normal curvatures of Φi are identical with the normal stresses of
the underlying elastostatic state. Hence, the isotropic principal curvature
directions correspond to the orthogonal directions of principal stresses.
The top views of isotropic principal curvature lines onΦi are therefore the
principal stress lines of the planar elastostatic state. Further equivalences
concern isotropic geodesic torsion and shear stresses.

Theorem 1 provides a new link between Laguerre minimal surfaces and
Airy surfaces, which may be summarized as follows:
Corollary 4 An Airy surface of a planar elastostatic state may be interpreted as
isotropic Willmore surface and as representation of a Laguerre minimal surface in
the isotropic model of Laguerre geometry. Therefore, Airy surfaces are invariant
under isotropic Möbius transformations.

The simplification of problems in linear elasticity by conformal map-
pings, in particular 2D Möbius transformations, is well known. The authors
are not experts in elasticity, but they did not find the fact that Airy surfaces
just change via an isotropic Möbius transformation if an Euclidean Möbius
transformation is applied to a problem of planar linear elasticity.

In the following, we will use geometric interpretations only, but one
should keep in mind that any computational or geometric problem for
L-minimal surfaces has a meaning in terms of linear elasticity.

3.4 L-minimal surfaces of the spherical type and isotropic minimal
surfaces

We will now characterize those L-minimal surfaces Φ ⊂ E3 whose corre-
sponding surfaces Φi

∈ I3 are graphs of harmonic functions, i.e., isotropic
minimal surfaces.

As a preparation, we present some formulae for the middle spheres of a
surfaceΦ, which can be derived with (18) from results by Blaschke [Bla29].
If we know the image Φi : z = f (x, y) of Φ, then the set of middle spheres
M = (m1,m2,m3,R) of Φ can be parameterized as:

m1 =
x
2
∆ f − fx, m2 =

y
2
∆ f − fy,

m3 =
1 − x2

− y2

4
∆ f + x fx + y fy − f ,

R =
1 + x2 + y2

4
∆ f − x fx − y fy + f . (27)
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In the isotropic model I3, the middle sphere M to parameters (x0, y0) is the
i-M-sphere Mi,

z = f (x0, y0) + (x − x0) fx(x0, y0) + (y − y0) fy(x0, y0) +
1
4

[(x − x0)2 + (y − y0)2]∆ f (x0, y0). (28)

A surface Φ ⊂ E3 all whose middle spheres are tangent to a fixed oriented
plane, is called a Laguerre minimal surface of the spherical type. We can now
prove a new characterization of these surfaces with help of the isotropic
model:

Theorem 5 A surface Φ ⊂ E3 whose middle spheres are tangent to an oriented
plane Π (L-minimal surface of the spherical type) appears in the isotropic model
as isotropic minimal surface Φi (graph of a harmonic function), if one sets up
the transfer to I3 such that Π gets mapped to the ideal point 0. Conversely, any
isotropic minimal surface Φi

⊂ I3 determines an L-minimal surface Φ ⊂ E3.

Proof We introduce a coordinate system, such that the oriented plane Π is
(n1,n2,n3, h) = (0, 0,−1, 0) (xy-plane with the orientation (0, 0,−1)). It gets
mapped into the ideal point 0 of the isotropic model. Spheres M which
touches Π satisfy m3 + R = 0. By equation (17), the corresponding i-M-
spheres Mi

⊂ I3 are planes. According to equation (28), this happens when
∆ f = 0, and thus Φi is an i-minimal surface. Conversely, an i-minimal
surface Φi (∆ f = 0) determines planes Mi (tangent planes of Φi) as the
images of middle spheres M. Hence, the spheres M are tangent toΠ andΦ
is L-minimal of the spherical type. �

A more geometric argument uses the fact that the principal spheres
of Φ ⊂ E3 correspond to the isotropic principal spheres of Φi

⊂ I3. If the
latter are z = f1(x, y) and z = f2(x, y), the i-image of the middle sphere M
must be z = ( f1 + f2)/2. The two isotropic principal spheres of an i-minimal
surface Φi : z = f (x, y) at a point p0 = (x0, y0, f (x0, y0)) are symmetric
with respect to the tangent plane at p0 (this is an isotropic counterpart of
an equivalent property of the principal spheres of an Euclidean minimal
surface). Therefore, the tangent plane of Φi corresponds to the middle
sphere M of Φ. This shows that all middle spheres M are tangent to Π.
Clearly, any image Φi of an L-minimal surface under an i-M-transform
also determines an L-minimal surface Φ of the spherical type.

Further there is a closely related connection between L-minimal surfaces
of the spherical type and i-minimal surfaces:

Theorem 6 The centers of the middle spheres M of an L-minimal surface Φ of
the spherical type form an isotropic minimal surface Φ∗; the isotropic lines of
the isotropic space are orthogonal to the plane Π which is tangent to all middle
spheres M. Therefore,Φ is an anticaustic ofΦ∗ for light rays orthogonal toΠ. Any
Euclidean anticaustic of an isotropic minimal surface for light rays in isotropic
direction is a L-minimal surface of the spherical type.
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Proof We use the same coordinate system as in the proof of Theorem 5
and therefore, the surface Φi is the graph of a harmonic function f . Using
∆ f = 0, equation (27) yields the following parametrization of the midpoint
set m(x, y) of Φ’s middle spheres,

m(x, y) = (− fx,− fy, x fx + y fy − f ). (29)

Equation (10) shows that this surfaceΦ∗ results from the dual surface of the
isotropic minimal surfaceΦi : z = f (x, y) by a reflection at the z-axis. Hence,
Φ∗ is also i-minimal (cf. equation (11)). Since Φ is the second envelope of
all spheres M which are centered at Φ∗ and tangent to Π, its normals are
obtained by reflecting the lines orthogonal toΠ (in our coordinate system, z-
parallel) at the surfaceΦ∗ and thereforeΦ has to be seen as an anticaustic of
Φ∗. The other anticaustics are the offsets ofΦ and therefore also L-minimal
surfaces of the spherical type. �

We will say more about geometrical optics and its relation to metric
duality in I3 in Section 5, where we will present a generalization of the
present result (Theorem 11).

The envelope ΦE of bisecting planes of the pairs of principal curvature
centers of a surfaceΦ is called the middle evolute. A theorem by Kommerell
[Kom11] states that Φ is L-minimal if and only if the middle evolute ΦE is an
Euclidean minimal surface. The bisecting plane of the two principal curva-
ture centers m1,m2 of p ∈ Φ passes through the center m of the middle
sphere and is orthogonal to p −m. For a surface Φ of Theorem 6, m lies
on an isotropic minimal surface and p − m lies on the ray obtain by re-
flecting the isotropic line at Φ∗. This yields the following construction of
Euclidean minimal surfaces from isotropic ones, which we did not find in
the literature:

Corollary 7 Let Φ∗ be an isotropic minimal surface, i.e., the graph z = f ∗(x, y)
of a harmonic function f ∗. For any point m ∈ Φ∗, reflect the xy-parallel plane
through m at the tangent plane ofΦ∗ at m. Then, the reflected planes envelope an
Euclidean minimal surface ΦE.

An explicit analytic expression for this construction is complicated, and
not very insightful. However, if the dual surface is parameterized as a
graph of a harmonic function f , the Euclidean minimal surface ΦE can be
computed as follows: For a given Laguerre minimal surface Φ ⊂ R3 the
middle evolute can be computed from its isotropic model Φi

⊂ I3 using
(27), and the fact that Φi is the graph of a harmonic function f . We obtain
the following expression for the middle evolute of Φ:− fx − 1

2 (y − 3x2y + y3) fxy +
1
2 (−x + x3

− 3xy2) fxx
− fy −

1
2 (x − 3xy2 + x3) fxy −

1
2 (−y + y3

− 3x2y) fxx
2xy fxy + x fx + y fy + (x2

− y2) fxx − f

 . (30)

To get an analytical expression for the construction in Corollary 7, we have
to find the isotropic representation of the Laguerre minimal surface whose
midpoint set isΦ∗. From the proof of Theorem 7, it follows that this surface
corresponds to the dual surface Φ of Φ∗, reflected at the z-axis.
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Φ∗

Φ

Φ

Φ∗

ΦE

Fig. 3 (Top) Rotational L-minimal surface Φ of the spherical type as anticaustic of the
logarithmoid (i-minimal surface)Φ∗. (Bottom) The middle evoluteΦE ofΦ is a catenoid
(rotational Euclidean minimal surface) and can be directly derived from Φ∗ by the
reflection procedure described in Corollary 7.

Corollary 8 LetΦ∗ be an isotropic minimal surface (graph of the harmonic func-
tion f ∗(x, y)) and Φi be the reflection at the z-axis of its dual surface (graph of
the harmonic function f (x, y)). Then Φi is the isotropic representation of the an-
ticausticΦ ofΦ∗ for light rays in isotropic direction. The middle evoluteΦE ofΦ
is given by (30) and is the Euclidean minimal surface derived from Φ∗ with the
reflection procedure described in Corollary 7.

Example 1 Let us discuss rotational L-minimal surfaces. To obtain those of
the spherical type, we note that the plane Π must be orthogonal to the
rotational axis A, and hence we use the coordinate system from above with
A as the z-axis. The centers of middle spheres form a rotational i-minimal
surface Φ∗. The latter surface is well-known and easily found via polar
coordinates (r, φ): We set Φ∗ : z = g(r), use the polar representation of the
Laplace operator,

∆ =
∂2

∂r2 + r−1 ∂
∂r
+ r−2 ∂

2

∂φ2 , (31)
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Φ1

Φ2

Φ

Fig. 4 A general rotational L-minimal surface Φ is the convolution surface of two L-
minimal surfaces Φ1, Φ2 of the spherical type.

and solve the resulting equation ∆g = grr + r−1gr = 0,

g(r) = c1 ln r + c2. (32)

Let us set c1 = 1, c2 = 0 w.o.l.g. Hence, the i-minimal surface of revolution
Φ∗ is obtained by rotating a logarithmic curve z = ln r about the z-axis and
therefore called a logarithmoid (see Fig. 3).

To obtain Φ from Φ∗, we compute the envelope of the middle spheres,
which are parameterized as (m,R) = (r cosφ, r sinφ, ln r,− ln r). This can
again be done by restricting to a plane through the z-axis. The envelope
consists of Π : z = 0 and the desired surface Φ, whose profile in the
(x, z)-plane is parameterized via the polar radius r of Φ∗ as

(x, z) =
(
r −

2r ln r
r2 + 1

,
2r2 ln r
r2 + 1

)
.

The parameter change t = ln r yields the representation [MN95],

(x, z) =
1

et + e−t (1 − 2t + e2t, 2tet). (33)

Note that this curve is an anticaustic of the logarithmic curve for light rays
parallel to the z-axis (Fig. 3).
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The reflection procedure from Corollary 7 transforms Φ∗ into a rota-
tional Euclidean minimal surface ΦE, the well-known catenoid. The ana-
lytic verification is simple and yields the catenary x = cosh(z+ 1) as profile
curve.

To determine general rotational L-minimal surfaces, we use the isotropic
model. One can keep rotational symmetry, and thus we have to find rota-
tional surfacesΦi : z = G(r) in I3 which are graphs of biharmonic functions.
The solution of ∆2G = 0 is

G(r) = (c1 + c2r2) ln r + c3r2 + c4. (34)

The latter part z = c3r2 + c4 describes an i-sphere Si
⊂ I3, and a Euclidean

sphere S ⊂ E3. Therefore, the surfaceΦ ⊂ E3 defined by (34) is obtained by
convolution of S with the surface Φ′, which belongs to

G(r) = (c1 + c2r2) ln r. (35)

Hence, Φ is an offset of Φ′, and thus L-equivalent to Φ′. Since we are
interested in L-geometric properties, we restrict our considerations to the
case (35) and denote the corresponding surfaces in E3 again Φ. The trans-
formation to E3 may be performed via the middle spheres. We base their
parametrization (27) on a polar coordinate representation z = G(r, φ) ofΦi,

m1 = B cosφ + r−1Gφ sinφ, m2 = B sinφ − r−1Gφ cosφ,

m3 =
1 − r2

4
∆G + rGr − G, z =

1 + r2

4
∆G − rGr + G, (36)

with
B =

1
2

(rGrr + r−1Gφφ − Gr), ∆G = Grr + r−1Gr + r−2Gφφ. (37)

We insert G from (35) and due to rotational symmetry we compute only
the middle spheres (m1, 0,m3,R) centered in the (x, z)-plane,

m1 = c2r−
c3

r
, m3 = c1(1−ln r)+c2(1+ln r), R = −c1(1−ln r)+c2(1+ln r). (38)

We see that the corresponding L-minimal surface Φ1 with c2 = 0 is of
the spherical type: Because of m3 + R = 0, all middle spheres are tangent
to Π : (n1,n2,n3, h) = (0, 0,−1, 0). By Theorem 5 this is expected, since
c2 = 0 corresponds to an i-minimal surface Φi

1, namely the logarithmoid
z = c1 ln r. However, also the L-minimal surface Φ2 to c1 = 0, i.e., Φi

2 :
z = c2r2 ln r is of the spherical type. Due to m3 − R = 0, all middle spheres
are tangent to Π′ with (n1,n2,n3, h) = (0, 0, 1, 0). This is not a contradiction
to Theorem 5. Performing in E3 a reflection at z = 0, Π′ gets mapped
to Π and now the theorem can be applied to the reflected copy Φ′2 of
Φ2. This reflection in E3 corresponds to the isotropic inversion (12) in I3,
which in polar coordinates reads z′ = z/r2, r′ = 1/r. Applying this to
z = c2r2 ln r, we obtain z′ = −c2 ln r′, which is an i-minimal surface, namely
the representation of Φ′2 in the isotropic model. Hence, the fundamental
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Fig. 5 Isotropic Scherk minimal surface (left), the corresponding Laguerre minimal
surface of the spherical type Φ (middle), and the middle evolute ΦE (right).

solution z = r2 ln r of the biharmonic equation, which forms the basis of
thin plate splines (see [Duc77] and Section 4), just yields an L-minimal
surface of the spherical type.

General rotational L-minimal surfaces Φ, which belong to Φi : z = (c1 +
c2r2) ln r are not of the spherical type. However, we have shown that they
are convolution surfaces of two L-minimal surfaces Φ1, Φ2 of the spherical type
(Fig. 4). According to Kommerell’s theorem [Kom11], all these surfaces
Φ must have a catenoid as middle evolute ΦE. Since Euclidean minimal
surfaces are L-minimal, the catenoid also appears among the surfacesΦ; it
is identical with its middle evolute.

Example 2 We study the Laguerre minimal surfaces corresponding to two
well-known isotropic minimal surfaces: the isotropic Scherk minimal sur-
face [Str77], and the isotropic Enneper surface [Str76].

The isotropic Scherk minimal surface Φi is given as graph of the func-
tion:

f (x, y) = e2xsin(2y). (39)

Using (26) we obtain Φ:

Φ :
2e2x

x2 + y2 + 1

 (x2
− y2

− 1) sin(2y) + 2xy cos(2y) − x sin(2y)
(y2
− x2

− 1) cos(2y) + 2xy sin(2y) − y sin(2y)
2x sin(2y) + 2y cos(2y) − sin(2y)

 . (40)

The middle evolute ΦE obtained using (30) is given by:

ΦE : 2e2x

−(y − 3x2y + y3) cos(2y) + (−x + x3
− 3xy2

− 1) sin(2y)
−(x − 3xy2 + x3) cos(2y) + (y − y3 + 3x2y − 1) sin(2y)

(4xy + y) cos(2y) + (2x2
− 2y2 + x − 1

2 ) sin(2y)

 . (41)
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Fig. 6 Isotropic Enneper minimal surface (left), the corresponding Laguerre minimal
surface of the spherical type Φ (middle), and the middle evolute ΦE (right).

The second example is the isotropic Enneper surface given in polar
coordinates as graph of the function:

Φi : f (r, ϕ) =
3
2

r
2
3 sin

(2
3
ϕ
)
. (42)

The corresponding Laguerre minimal surface of the spherical type, Φ, is
given by:

Φ :
1

r1/3(r2 + 1)


cos(ϕ3 )(8r2 cos(ϕ3 )4

− 10r2 cos(ϕ3 )2 + r2
− 1)

− sin(ϕ3 )(8r2 cos(ϕ3 )4
− 6r2 cos(ϕ3 )2

− r2
− 1)

−r sin( 2ϕ
3 )

 . (43)

The middle evolute is given by:

ΦE :


−

1
6 r−1/3(16 cos(ϕ3 )4r2

− 12 cos(ϕ3 )2r2 + r2
− 5) sin(ϕ3 )

1
6 r−1/3(16 cos(ϕ3 )4r2

− 20 cos(ϕ3 )2r2 + 5r2
− 5) cos(ϕ3 )

−
5
3 sin(ϕ3 ) cos(ϕ3 )r2/3

 . (44)

4 Computational Issues

The present section concerns the computational design of Laguerre min-
imal surfaces. From our previous results it follows, that the design of a
Laguerre minimal surface can be realized by solving the biharmonic equa-
tion in the isotropic model. To this end we describe two approaches.

4.1 Thin plate splines

We address the following problem: Given a set of planes in E3 denoted by
P = {Pi : i = 1, . . . ,N}, we want to find a Laguerre minimal surface Φ that
is tangent to all planes Pi ∈ P.
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Fig. 7 The general construction scheme for a Laguerre minimal surface using thin
plate spline interpolation. A set of prescribed tangent planes (top left) is mapped to
a set of points (top right) in the isotropic model. A thin plate spline surface (bottom
right) interpolating these points is constructed, and finally mapped back to extract
the Laguerre minimal surface (bottom left). The prescribed tangent planes are indeed
tangent to the generated Laguerre minimal surface.

Let us transform this problem into the isotropic model. The planes
Pi ∈ P get mapped to a set of pointsQ, and the condition thatΦ touches all
planes in P translates to the condition that Φi interpolates the point set Q.
Thus, in the isotropic model our problem reduces to the following: Given
a set of data points find a biharmonic function that interpolating these
points. We can get such a function using thin plate spline interpolation. It
works as follows:

Given data points {(xi, yi, zi) : i = 1, . . . ,N}, find a function of the form:

f (x, y) = a0 + axx + ayy +
N∑

i=1

wiU(‖(x, y)T
− (xi, yi)T

‖), U(r) := r2 ln(r),

such that f (xi, yi) = zi for all i = 1, . . . ,N. Clearly, this problem amounts to
solving a linear system of equations. It is well-known that this system is
regular if (xi, yi) , (x j, y j) for all i , j [Duc77]. This implies that as long as
there are no parallel planes in our set P, the interpolation problem can be
solved uniquely.

Our first method for designing Laguerre minimal surfaces (Figure 7)
can be summarized as follows:

1. Prescribe a set P = {Pi : i = 1, . . . ,N} as tangent planes in E3.
2. Transform this set to a point set (xi, yi, zi) i = 1, . . . ,N, in I3.



22

Fig. 8 Given a set of prescribed tangent planes (left), we obtain a Laguerre minimal
surface (right) using the thin plate spline based approach. Notice the cusps in the
constructed Laguerre minimal surface.

3. Solve the thin plate spline (TPS) interpolation problem for the data
(xi, yi, zi).

4. Transform the TPS solution back to E3.

This construction does not always lead to pleasing results, as the resulting
Laguerre minimal surface may have cusps. Therefore the tangent planes
have to be prescribed in a meaningful way in order to get nice surfaces
(Figure 8).

4.2 The “Björling-Problem” for Laguerre minimal surfaces

A simply connected Euclidean minimal surface (i.e. a surface with mean
curvature zero) can be characterized by its boundary curve together with
tangent planes along this curve. It is natural to explore the following ques-
tion: Which boundary conditions uniquely determine a Laguerre minimal
surface? To answer this question, we reformulate the problem in terms of
the isotropic model. Since Laguerre minimal surfaces are transformed into
graphs of biharmonic functions, we need to find boundary conditions that
characterize biharmonic functions. This problem is well-studied and the
solution is as follows [Cia78]:

Theorem 9 LetΩ ⊆ R2 be a bounded domain with Lipschitz-continuous bound-
ary Γ. Then a biharmonic function onΩ is uniquely defined by its values on Γ and
its derivative into the direction of the inner normal of Γ on Γ.

In the Laguerre model this corresponds to the following statement:

Theorem 10 A Laguerre minimal surface is uniquely determined by its boundary
curve ΓL and the tangent planes along ΓL.

Proof We transform this situation into the isotropic model. By (16) the
family of tangent planes along ΓL gets transformed to a curve Γ in isotropic
space. In order to transform the boundary value problem in the Laguerre
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Fig. 9 Construction of a Laguerre minimal surface from a boundary strip. The figure
shows the input condition (top left), the corresponding boundary strip in the isotropic
model (top right), the solution Φi of the biharmonic boundary value problem (bottom
right) and the corresponding Laguerre minimal surface Φ.

model into the isotropic boundary value problem of Theorem 9, we have
to assign normal derivatives to the curve Γ from our initial data in the
Laguerre model. This is done as follows:

By (17), every point P (=sphere of radius 0) of ΓL corresponds to a
paraboloid of revolution which clearly touchesΓ at the point corresponding
to the prescribed tangent plane in P. Now we assign normal derivatives
to the curve Γ by taking the normal derivatives of the paraboloids at the
corresponding points (Figure 10).

Solving the biharmonic equation with these boundary conditions yields
the isotropic representation of the Laguerre minimal surface with the pre-
scribed properties.�

The proof of Theorem 10 gives us a way to design a Laguerre minimal
surface from a boundary strip (i.e. points with tangent planes, see Figure
9):
1. Transform the boundary conditions to the isotropic model as in the

proof of Theorem 10.
2. Solve the biharmonic boundary value problem.
3. Transform the resulting surface back into the Laguerre model.

For the numerical solution of Step 2, we use a 13-point mask ∆2
h over a

square grid given by:

∆2
h =

1
h4


0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0


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as a discretization of the ∆2 operator, where h denotes the resolution of
the underlying grid. The solution of the boundary value problem then
amounts to solving a linear system. This naive discretization method has
the advantage that the transfer from the isotropic model to the Laguerre
model is particularly easy using (2), because over a square grid the x- and
y-derivatives can be discretized naturally.

5 Metric duality, geometrical optics and Lie transforms of L-minimal
surfaces

5.1 Isotropic L-minimal surfaces

Whereas Laguerre and Möbius geometry in E3 are not equivalent, their
isotropic counterparts are isomorphic. Isotropic Möbius geometry corre-
sponds to isotropic Laguerre geometry via the metric duality in I3. We
briefly discuss the application of duality to isotropic Willmore surfaces Φi

and then view this geometric transformation from E3.

Fig. 10 Construction of normal derivatives in the isotropic model: A point in the La-
guerre model is mapped to a paraboloid of revolution with z-parallel axis. The normal
derivatives of the image paraboloids of the input curve Γ serve as input data for the
boundary value problem.

Fig. 11 Example of Laguerre minimal surface Φ with negative curvature (left) and the
corresponding isotropic surface Φi (right).
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Fig. 12 Another example of a Laguerre minimal surfaceΦ (left) and the corresponding
isotropic surface Φi (right).

LetΦi be an i-Willmore surface, i.e., the graph z = f (x, y) of a biharmonic
function f . Φi is a minimizer of the isotropic Willmore energy Ω from
equation (24). Metric duality, realized via the polarity with respect to the i-
sphere (9), mapsΦi to a surfaceΦ∗ with parametrization (10). The isotropic
surface area elements dAi, dA∗i ofΦi andΦ∗, respectively, satisfy the relation
dAi = K∗i dA∗i where K∗i = 1/Ki is the isotropic curvature ofΦ∗. Further using
the relation Hi = H∗i /K

∗

i between i-mean curvatures,Ω =
∫

(H2
i −Ki)dAi can

be expressed as

Ω =

∫ (H∗i )
2
− K∗i

K∗i
dA∗i . (45)

This is exactly the isotropic counterpart of the functional Ω in (1) which
is minimized by L-minimal surfaces of Euclidean geometry. Therefore, we
have the expected result that the surfacesΦ∗ are isotropic L-minimal surfaces.

5.2 Metric duality in I3 as a Lie transformation in E3

We are interested in those surfaces of E3 which correspond to the surfaces
Φ∗ ⊂ I3. As a preparation it is necessary to interpret duality in I3 from E3.
This leads us into Lie sphere geometry [Bla29, Cec92], which subsumes both
Laguerre geometry and Möbius geometry. In Lie geometry, we have the
class of Lie spheres, which is the union of the sets of oriented planes, oriented
spheres including points, and the ideal point ∞ of Möbius geometry. The
fundamental relation between Lie spheres is contact, which is taken from
Laguerre geometry and enriched by the following two cases:∞ is in contact
with all oriented planes and no oriented sphere; parallel oriented planes
are in contact.

An analytical treatment is based on hexaspherical coordinates, which
are six homogeneous coordinates (x0, . . . , x5) assigned to Lie spheres. The
hexaspherical coordinates of an oriented plane (n1,n2,n3, h) are:

(x0, . . . , x5) = (−h, h,n1,n2,n3, 1), (46)
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those of an oriented sphere (m1,m2,m3,R) are defined as

(x0, . . . , x5) = (1 +m2
1 +m2

2 +m2
3 − R2, 1 − (m2

1 +m2
2 +m2

3 − R2),
2m1, 2m2, 2m3, 2R). (47)

The ideal point∞ corresponds to (x0, . . . , x5) = (1,−1, 0, 0, 0, 0). Hexaspheri-
cal coordinates of a Lie sphere are homogeneous, and thus define a point in
5-dimensional projective space P5. Since hexaspherical coordinates satisfy
the relation:

〈X,X〉 := −x2
0 + x2

1 + x2
2 + x2

3 + x2
4 − x2

5 = 0, (48)

the image points of Lie spheres form a quadric (Lie quadric Λ) in P5. Van-
ishing of the bilinear form to the quadratic form (48), 〈X,Y〉 = 0 (conjugacy
with respect to Λ), characterizes contact of the corresponding Lie spheres
in E3. Lie transformations are defined as contact preserving bijections on the
set of Lie spheres. They correspond to automorphic projective mappings
of Λ in P5.

Duality δ in I3 maps point (p1, p2, p3) to plane z = p1x+p2y−p3. Let us now
interpret a point Pi in I3 as the image of an oriented plane P : (n1,n2,n3, h)
of E3. By equation (16), the duality in I3 reads:

Pi =
1

n3 + 1
(n1,n2, h) 7→ P∗ : z =

1
n3 + 1

(n1x + n2y − h).

The plane P∗ ⊂ I3 is a special i-M-sphere, and corresponds to an oriented
sphere in E3. Equation (17) tells us that this oriented sphere, which we
denote by Pδ, has the following center and radius:

Pδ : (m1,m2,m3,R) =
1

n3 + 1
(−n1,−n2, h,−h).

The center of Pδ is almost Pi; it is obtained by reflecting Pi at the z-axis. This
is just an Euclidean congruence transformation and therefore we consider
the sphere:

P′ : (m1,m2,m3,R) =
1

n3 + 1
(n1,n2, h,−h), (49)

as image of the oriented plane P. Up to the reflection, the mapping α : P 7→
P′ is the transformation which is induced in E3 by the metric duality of I3. In
fact, α is not just defined on oriented planes, but also on oriented spheres,
since δmaps i-M-spheres to i-M-spheres. This suggests to treat αwithin Lie
sphere geometry. We will now show that α is a Lie transformation. To do
so, we have to convert to hexaspherical coordinates. Using homogeneity,
we find for the oriented sphere P′ the hexaspherical representation:

P′ : (x′0, . . . , x
′

5) = (1,n3,n1,n2, h,−h),

which fits into the involuntary projective mapping,

(x′0, x
′

1, x
′

2, x
′

3, x
′

4, x
′

5) = λ · (x5, x4, x2, x3, x1, x0). (50)
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It is easily seen that it maps Λ onto itself, and therefore describes a Lie
transformation.

Let us add a few elementary properties of Λ. All oriented planes P are
mapped to spheres P′ which satisfy m3 + R = 0 and therefore are tangent
to Π : (n1,n2,n3, h) = (0, 0,−1, 0). Hence, P′ is the sphere which has center
Pi and is tangent to Π. An elementary expression for the transformation α
acting on oriented spheres follows from equations (47) and (50),

(m′1,m
′

2,m
′

3,R
′) =

1
2(R +m3)

(2m1, 2m2, 1 − b, 1 + b)

b = m2
1 +m2

2 +m2
3 − R2. (51)

Fixed oriented spheres, S = α(S), satisfy the relations:

R +m3 = 1, m2
1 +m2

2 = 2 − 4m3,

and thus they are tangent to the oriented plane (n1,n2,n3, h) = (0, 0,−1, 1)
and centered on the rotational paraboloid x2 + y2 = 2 − 4z. These fixed
spheres are also tangent to the oriented sphere (m1,m2,m3,R) = (0, 0,−1/2,
−1/2).

5.3 Lie transformed L-minimal surfaces and geometrical optics

Finally, we are able to interpret an isotropic L-minimal surface Φ∗ in E3,
i.e., perform the transfer from the isotropic model to the standard model
of Laguerre geometry. The corresponding surface in E3 is called α(Φ) and
by the discussions of the previous subsection, it arises from the L-minimal
surface Φ ⊂ E3 by application of the Lie transformation α.

We have also seen that the transfer from Φi to α(Φ) is very simple:
α(Φ) is the envelope of all spheres which are centered at Φi and tangent
to Π (xy-plane with orientation (0, 0,−1)). This has a simple interpretation
within geometrical optics (Figure 13): Reflecting z-parallel lines at Φi we
obtain lines orthogonal to α(Φ) and thus α(Φ) is an anticaustic of Φi for
illumination with z-parallel lines.

We can summarize our results as follows:

Theorem 11 An isotropic Laguerre minimal surface Φ∗ (i-curvature K∗i and i-
mean curvature H∗i ) is a minimizer of the functional (45) and arises from an
isotropic Willmore surface Φi (graph z = f (x, y) of a biharmonic function f ) by
the metric duality in I3.Φi corresponds to an L-minimal surfaceΦ in the standard
model of Laguerre geometry andΦ∗ corresponds to a Lie transformed version α(Φ)
ofΦ. The surface α(Φ) is an anticaustic ofΦi for light rays parallel to the isotropic
direction (z-axis).

If Φi is i-minimal, Φ∗ is also i-minimal and thus Theorem 6 is a special
case of Theorem 11. Moreover, we see that the duality between i-minimal
surfaces in I3 leads to a duality between L-minimal surfaces of the spherical type.
The duality transformation is provided by the Lie transformation α.
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Φi

Fig. 13 The anticaustic map provides the transfer from an isotropic Willmore surfaceΦi

(graph z = f (x, y) of a biharmonic function f ) to a Lie-transformed Laguerre minimal
surface α(Φ) (shown in purple). The latter surface is orthogonal to rays obtained by
reflecting the z-parallel rays at Φi. The surface α(Φ) is constructed as the envelope of
spheres centered on Φi and touching the xy plane. One such touching sphere is shown
on the left.

Lie transformations map principal curvature lines (as sets of contact
elements) onto principal curvature lines. Since i-principal curvature lines of
Φi correspond to principal curvature lines ofΦ, we see that the anticaustic
map transfers the i-principal curvature lines ofΦi to the principal curvature
lines of α(Φ).

For applications, the class of surfaces α(Φ) may have the following ad-
vantage over L-minimal surfaces Φ: If Φi has a sign change in Gaussian
curvature along a curve (parabolic line), the dual surface Φ∗ has a sin-
gularity there and the transfer back to E3 (which is again a point-plane
transformation) will result in a parabolic curve of α(Φ). Since α(Φ) is re-
lated toΦi by two point-plane transformations, modeling of parabolic lines
is not difficult. On the other hand, there is only one point-plane transfor-
mation between Φi and Φ; modeling parabolic lines on Φ (singularities of
Φi) is not just difficult, it is impossible. It follows already from the func-
tional (1) that L-minimal surfaces Φ cannot have generic parabolic lines,
K = 0,H , 0, which is a limitation for design. It may not be too limiting
for architecture, but still we expect that the surfaces α(Φ) should be even
more useful.

6 Conclusion and Future Work

We have shown that L-minimal surfaces are easily accessible through their
close relation to biharmonic functions. This provides a new approach to
the computation of L-minimal surfaces and also gives us a new tool for
their study. Various relations to geometrical optics and new constructions
of L-minimal surfaces as well as Euclidean minimal surfaces are a result of
our investigations.

Having this new approach to L-minimal surfaces at our disposal, we
will present more results in forthcoming publications. Generalizing re-
sults by König [Kön26, Kön28] and Musso and Nicolodi [MN95], we will
present a study of all ’ruled’ L-minimal surfaces. These are those L-minimal
surfaces which may be defined as envelope of a one-parameter family of
oriented right circular cones. Our main goal for future research is a con-
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struction of discrete L-minimal surfaces. As a first contribution in that direc-
tion, we have found a construction of quadrilateral edge offset meshes (as
defined in [PLW∗07]) which discretize L-minimal surfaces. Quad meshes
with the edge offset property are discrete versions of L-isothermic surfaces.
Hence, the discretized surfaces are exactly those L-minimal surfaces which
are also L-isothermic. These are L-transformed Euclidean minimal sur-
faces, L-minimal surfaces of the spherical type and L-transformed surfaces
of Bonnet [Bla29].
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Bla25. B W.: Über die Geometrie von Laguerre III: Beiträge zur
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