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On the injectivity of Wachspress and mean

value mappings between convex polygons
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Abstract

Wachspress and mean value coordinates are two generalizations

of triangular barycentric coordinates to convex polygons and have

recently been used to construct mappings between polygons, with ap-

plication to curve deformation and image warping. We show that

Wachspress mappings between convex polygons are always injective

but that mean value mappings can fail to be so in extreme cases.
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1 Introduction

There has recently been considerable interest in using generalized barycen-
tric coordinates to deform shapes, when modelling and processing geometry:
shapes defined either by curves or surfaces [22, 14, 18]. Most of these meth-
ods focus on two kinds of barycentric coordinates: Wachspress coordinates
[20, 21, 13] and mean value coordinates [7, 9, 14, 10, 5]. Further work on
generalized barycentric coordinates can be found in [2, 8, 11, 15, 16, 17, 19].
In the planar case, such barycentric coordinates can be used to map one
polygon into another. So far, however, nothing seems to be known about
when such mappings are injective, even though this is clearly an important
property when these mappings are used in practice.

In this paper we investigate the injectivity of Wachspress and mean value
mappings between planar convex polygons. We show that Wachspress map-
pings are always injective. However, we have found examples of mean value
mappings that are not injective when the polygons have five or more vertices.
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Figure 1: Two convex polygons.

2 Barycentric mappings

Let P, Q ⊂ R
2 be strictly convex polygons with vertices p1,p2, . . . ,pn and

q1,q2, . . . ,qn respectively, ordered anticlockwise, with n ≥ 3. By strictly,
we mean that no three vertices in the polygon are collinear. Figure 1 shows
an example with n = 5. We view both polygons as open sets of R

2 and
denote their boundaries by ∂P and ∂Q and their closures by P and Q. We
would like to define a smooth mapping f : P → Q. One way is to use
barycentric coordinates. Let λ1, λ1, . . . , λn : P → R be a sequence of non-
negative functions such that

n
∑

i=1

λi(x) = 1, x ∈ P , (1)

n
∑

i=1

λi(x)pi = x, x ∈ P. (2)

We call λ1, . . . , λn a set of barycentric coordinates for P . If n = 3, P is a
triangle, and the equations (1-2) have, by Cramer’s rule, the unique solution

λ1(x) =
A(x,p2,p3)

A(p1,p2,p3)
, λ2(x) =

A(p1,x,p3)

A(p1,p2,p3)
, λ3(x) =

A(p1,p2,x)

A(p1,p2,p3)
.

where A(p,q, r) denotes the signed area of the triangle [p,q, r],

A(p,q, r) =
1

2
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∣

∣

. (3)
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For n ≥ 4, there are several possible choices of barycentric coordinates. One
is the construction that goes back to Wachspress. For x ∈ P let

λi(x) = wi(x)
/

n
∑

j=1

wj(x), (4)

with
wi(x) = Ci

∏

j 6=i−1,i

Aj(x). (5)

where Ci = A(pi−1,pi,pi+1), and Aj(x) = A(x,pj ,pj+1); see [20, 21, 13].
Here and throughout the paper we view the index i in pi, qi, Ai, wi and so
on cyclically with respect to n.

If x is not on the boundary of P we can replace (5) by

wi(x) =
Ci

Ai−1(x)Ai(x)
, (6)

without altering λi. We will use this local expression later. A simple proof
that the λi satisfy (2) is given in the appendix of [13]. Another choice is the
mean value coordinates which, for x ∈ P , are given by (4) with

wi(x) =
1

‖x − pi‖

(

tan(αi−1(x)/2) + tan(αi(x)/2)
)

, (7)

where ‖ · ‖ is the Euclidean norm in R
2 and αi(x) denotes the angle at x

in the triangle [x,pi,pi+1]; see [7]. These mean value coordinates λi extend
continuously to the boundary ∂P in the same way as Wachspress and all
other barycentric coordinates. Using (1–2), it can be shown (see [8]) that if

x = (1 − µ)pℓ + µpℓ+1, (8)

for some ℓ and some µ ∈ [0, 1], with indexes treated cyclically, then

λℓ(x) = 1 − µ, λℓ+1(x) = µ, and λi(x) = 0 for i 6= ℓ, ℓ + 1. (9)

Consider next a barycentric mapping from P to Q. We define the mapping
f : P → R

2 by

f(x) =
n

∑

i=1

λi(x)qi, x ∈ P . (10)
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Then (1) implies that f(x) is a convex combination of the points qi and so
f(P ) ⊂ Q. Further, by (9), if x is the boundary point (8) then

f(x) = (1 − µ)qℓ + µqℓ+1.

Thus f maps ∂P to ∂Q in a piecewise linear fashion, mapping vertices and
edges of ∂P to corresponding vertices and edges of ∂Q.

Figure 2 shows examples of Wachspress and mean value mappings.

3 Conditions for injectivity

We start by deriving conditions on barycentric coordinates for injectivity:
both sufficient conditions and necessary conditions.

Using basic results of real analysis, see for example [12], it can be shown
that a sufficient condition for the injectivity of f in (10) is that its Jaco-
bian J(f) is strictly positive in P . This motivates looking for an expression
for J(f) in terms of signed areas of triangles formed by vertices of Q. If
f(x) = (f(x), g(x)), and ∂rh(x) := ∂h/∂xr , r = 1, 2, the Jacobian of f is the
determinant

J(f) =

∣

∣

∣

∣

∂1f ∂1g
∂2f ∂2g

∣

∣

∣

∣

.

Lemma 1 For any set of differentiable functions λ1, . . . , λn satisfying (1),

J(f)(x) = 2
∑

1≤i<j<k≤n

det(λi, λj, λk)(x) A(qi,qj ,qk), (11)

where

det(a, b, c) =

∣

∣

∣

∣

∣

∣

a b c
∂1a ∂1b ∂1c
∂2a ∂2b ∂2c

∣

∣

∣

∣

∣

∣

. (12)

Proof. Differentiating (1) and (10) gives the matrix identity





1 f g
0 ∂1f ∂1g
0 ∂2f ∂2g



 =





λ1 · · · λn

∂1λ1 · · · ∂1λn

∂2λ1 · · · ∂2λn











1 q1
1 q2

1

...
...

...
1 q1

n q2
n






.

Applying the Cauchy-Binet theorem (see [1], formula (1.23)) to this equation
and using the fact that the determinant of the matrix on the left equals J(f),
the result follows. 2

4



a)

b)

Figure 2: Barycentric mappings between pentagons: a) Wachspress mapping,
b) mean value mapping.
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Since Q is strictly convex we have that A(qi,qj,qk) > 0 whenever 1 ≤
i < j < k ≤ n because the triangle [qi,qj,qk] is positively oriented. Thus
Lemma 1 leads to a sufficient condition for injectivity.

Theorem 1 If λ1, . . . , λn are differentiable barycentric coordinates such that
for all x ∈ P , det(λi, λj, λk)(x) ≥ 0 for all i, j, k with 1 ≤ i < j < k ≤ n
and det(λi, λj, λk)(x) > 0 for some i, j, k with 1 ≤ i < j < k ≤ n then f is
injective.

Conversely, we derive necessary conditions for injectivity.

Theorem 2 If λ1, . . . , λn are differentiable barycentric coordinates and f is
injective then for all r, s, t with 1 ≤ r < s < t ≤ n,

∑

r≤i<s≤j<t≤k<n+r

det(λi, λj, λk) ≥ 0 in P. (13)

Proof. If f is injective then J(f) ≥ 0 in P . Let Q be the polygon with vertices

q1 = · · · = qr−1 = (0, 0), qr = · · · = qs−1 = (1, 0),

qs = · · · = qt−1 = (0, 1), qt = · · · = qn = (0, 0).

Then A(qi,qj ,qk) = 1/2 if 1 ≤ i < r ≤ j < s ≤ k < t or r ≤ i < s ≤ j <
t ≤ k ≤ n and zero otherwise. Substituting these values into (11) gives

∑

1≤i<r≤j<s≤k<t

det(λi, λj , λk) +
∑

r≤i<s≤j<t≤k≤n

det(λi, λj, λk) ≥ 0. (14)

Replacing i, j, k by k, i, j in the first sum and using the fact that

det(λk, λi, λj) = det(λi, λj, λk),

the first sum can be written as

∑

1≤k<r≤i<s≤j<t

det(λi, λj, λk) =
∑

r≤i<s≤j<t
n+1≤k<n+r

det(λi, λj, λk−n).

Replacing λk−n by λk, combining this second expression with the second sum
in (14) gives (13). 2
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We have thus derived sets of sufficient conditions and necessary condi-
tions for injectivity, based on the signs of the determinants det(λi, λj, λk).
Finding conditions that are both sufficient and necessary could be difficult.
Interestingly, a similar difficulty arose in [3, 4, 6] when trying to characterize
bases of functions that guarantee convexity preservation of curves: when the
control polygon is convex, the curve should be too. So far, a characterization
is not known. However, as we will see in the next section, the sufficient con-
ditions of Theorem 1 are good enough to show that Wachspress mappings are
injective and we use the necessary ones to help to derive a counterexample
for mean value mappings.

For barycentric coordinates expressed in the form (4), the following iden-
tity helps to simplify the task of checking the signs of these determinants.

Lemma 2 For differentiable functions a, b, c, and µ,

det(µa, µb, µc) = µ3det(a, b, c). (15)

Proof. Recalling (12), expand the second and third rows of the determinant
det(µa, µb, µc) using the product rule. Then, subtracting ∂1µ times the first
row from the second row and subtracting ∂2µ times the first row from the
third row, gives the result. 2

4 Wachspress mappings

We now use the sufficient conditions of Theorem 1 to show that Wachspress
mappings are injective.

Theorem 3 If λ1, . . . , λn are the Wachspress coordinates (4–5) then f is
injective.

Proof. The proof uses Theorem 1 and consists of two steps dealing with
x ∈ P and x ∈ ∂P , respectively.

Step 1: First let x ∈ P and choose i, j, k such that 1 ≤ i < j < k ≤ n. We
will show that det(λi, λj, λk)(x) > 0. Since x is not on the boundary of P
we can define λi in (4) using the rational weight function wi of (6), i.e., as
λi = µwi, where µ = 1/

∑

j wj > 0, and then by Lemma 2, it is sufficient to
show that det(wi, wj, wk)(x) > 0. To this end, observe that

det(wi, wj, wk) = wi∇wj ×∇wk + wj∇wk ×∇wi + wk∇wi ×∇wj, (16)
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where ∇w := (∂1w, ∂2w) and p× q := p1q2 − p2q1. Using (3), differentiation
of Ai(x) with respect to x1 and x2 gives

∇Ai =
1

2
rot(pi+1 − pi), (17)

where rot(p1, p2) := (−p2, p1), a rotation through a positive angle of π/2.
Therefore, from (6), we have

∇wi = −wi

(

rot(pi − pi−1)

2Ai−1(x)
+

rot(pi+1 − pi)

2Ai(x)

)

,

and it follows that
∇wi ×∇wj = wiwjSij, (18)

where
Sij = Ri−1,j−1 + Ri−1,j + Ri,j−1 + Rij ,

and

Rij =
rot(pi+1 − pi) × rot(pj+1 − pj)

4Ai(x)Aj(x)
=

(pi+1 − pi) × (pj+1 − pj)

4Ai(x)Aj(x)
. (19)

Substituting (18) into (16) gives

det(wi, wj, wk) = wiwjwk(Sij + Sjk + Ski),

where we have used the fact that Rij = −Rji and consequently Sij = −Sji.
Now, each of the three S terms expands into four R terms, giving twelve R
terms altogether. We can group these twelve terms into four groups of three
such that each group has the form

Tpqr := Rpq + Rqr + Rrp.

There are two ways of doing this. One is

det(wi, wj, wk) = wiwjwk(Ti,j,k + Ti,j−1,k−1 + Ti−1,j,k−1 + Ti−1,j−1,k),

and the other is

det(wi, wj, wk) = wiwjwk(Ti−1,j−1,k−1 + Ti,j,k−1 + Ti,j−1,k + Ti−1,j,k).
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Figure 3: At least two cross products are positive

Now, since Rii = 0, we see that Tpqr = 0 whenever p = q or q = r. Therefore,
using either expression, we see that det(wi, wj, wk) > 0 if

Tijk > 0, 1 ≤ i < j < k ≤ n.

To show this, observe from the cross product in (19) and from the convexity
of P that at least two of the terms Rij , Rjk, Rki must be strictly positive.
We may assume without loss of generality that these are Rij and Rjk. If the
third term Rki is non-negative, as illustrated in Figure 3(a), then Tijk > 0
as claimed. Thus it remains to treat the case that Rki < 0, as illustrated in
Figure 3(b). To this end, with Lα denoting the infinite line that extends the
line segment [pα,pα+1], consider the three lines Li, Lj , Lk. They intersect in
three points: r1 the intersection of Li and Lj ; r2 the intersection of Li and
Lk; and r3 the intersection of Lj and Lk; see Figure 4. Then, recalling the
‘half the base times the height’ rule for the area of a triangle, it is easy to
see that

pi+1 − pi

Ai(x)
=

r2 − r1

A(x, r1, r2)
,

pj+1 − pj

Aj(x)
=

r3 − r1

A(x, r1, r3)
,

pk+1 − pk

Ak(x)
=

r3 − r2

A(x, r2, r3)
,

and it follows from (19) that

Rij =
A(r1, r2, r3)

2A(x, r1, r2)A(x, r1, r3)
,
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Rjk =
A(r1, r2, r3)

2A(x, r1, r3)A(x, r2, r3)
,

Rki =
−A(r1, r2, r3)

2A(x, r2, r3)A(x, r1, r2)
.

So

Tijk =
(A(r1, r2, r3))

2

2A(x, r1, r2)A(x, r1, r3)A(x, r2, r3)
> 0.

This shows that det(wi, wj, wk)(x) > 0 for x ∈ P .

Step 2: It remains to deal with x ∈ ∂P , which we may assume to be as in (8)
for some ℓ and µ ∈ [0, 1). Since the λi are continuous on the whole of P and
det(λi, λj, λk)(x) > 0 on P , we know that det(λi, λj, λk)(x) ≥ 0 by Step 1.
However, for general n, it is possible that there are some triples i, j, k with
1 ≤ i < j < k ≤ n such that det(λi, λj, λk)(x) = 0. In fact, recalling (12),
this is the case when none of i, j, k equal either ℓ or ℓ + 1, for then λi(x) =
λj(x) = λk(x) = 0. We will, however, show that det(λℓ−1, λℓ, λℓ+1)(x) > 0
which is sufficient for injectivity by Theorem 1. To simplify this task we
again appeal to Lemma 2 but this time must use the polynomial wi. We will
show that det(wℓ−1, wℓ, wℓ+1)(x) > 0 with wi as in (5). From (16), we can
write the determinant as

det(wℓ−1, wℓ, wℓ+1) = wℓ−1∇wℓ ×∇wℓ+1 + w2

ℓ∇

(

wℓ+1

wℓ

)

×∇wℓ−1, (20)
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valid as long as wℓ 6= 0. This expression is convenient because

wℓ+1

wℓ

=
Cℓ+1

Cℓ

Aℓ−1

Aℓ+1

,

and, using (17),

∇

(

Aℓ−1

Aℓ+1

)

=
rot(pℓ − pℓ−1)

2Aℓ+1

−
Aℓ−1rot(pℓ+1 − pℓ)

2A2
ℓ+1

.

Using these observations, we now evaluate (20) at x = (1 − µ)pℓ + µpℓ+1.
Since wℓ−1(x) = 0 and

∇wℓ−1(x) = K rot(pℓ+1 − pℓ),

where
K = Cℓ−1

∏

j 6=ℓ−1,ℓ,ℓ+1

Aj(x) > 0,

we find

det(wℓ−1, wℓ, wℓ+1)(x) = K1A(pℓ−1,pℓ,pℓ+1) + K2A(pℓ,pℓ+1,pℓ+2),

where

K1 = K
Cℓ+1

Cℓ

w2
ℓ (x)

Aℓ+1(x)
> 0,

and

K2 = K
Cℓ+1

Cℓ

w2
ℓ (x)Aℓ−1(x)

A2
ℓ+1

(x)
> 0.

2

5 Mean value mappings

Mean value mappings are defined by (10), (4) and (7). Following numerous
numerical tests, we conjecture that they are always injective when n = 4.
However, we have discovered counterexamples when n = 5. These were found
by exploiting Theorem 2.
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Figure 5: Counterexample 1: Mean value mapping between two convex poly-
gons. Top: The gray region G corresponds to negative Jacobian in P . Bot-
tom: The image of G, the foldover area, is bounded by the black dots in Q.
Only a scaled part of Q near its vertex q3 is shown.
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Figure 6: Counterexample 2: A foldover of a mean value mapping over two
strictly convex polygons. P is non-uniformly scaled and only a part of Q is
shown in order to emphasize the foldover.
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5.1 Counterexample 1

Let us suppose that P is given by p1 = (0, 0), p2 = (0.7, 0.1), p3 = (2, 0.5),
p4 = (0.7, 0.9) and p5 = (0, 1). Moreover, let x = (1.2, 0.5) ∈ P . By
evaluating det(λi, λj, λk)(x) for the mean value coordinates of P one obtains
that

det(λ1, λ2, λ5)(x) = −0.00011838,
det(λ1, λ3, λ5)(x) = −0.00040841,
det(λ1, λ4, λ5)(x) = −0.00011838.

(21)

Therefore,

det(λ1, λ2, λ5)(x) + det(λ1, λ3, λ5)(x) + det(λ1, λ4, λ5)(x) = −0.00064517.

As this value is negative, it violates the necessary conditions of Theorem
2 for n = 5, r = 1, s = 2 and t = 5. Consequently, by choosing Q to
be, for example, given by q1 = (2.5, 0), q2 = q3 = q4 = (3.5, 0.5) and
q5 = (2.5, 1), we arrive at an example of a mean value mapping over convex
polygons where the Jacobian is negative at some interior points. Indeed,
J(f)(x) = −0.00064517.

Figure 5 depicts the situation and shows the region of P where the cor-
responding Jacobian is negative. Moreover, it shows a star of line segments
in P . One can see the intersections of their images in Figure 5 – a fact that
contradicts the injectivity of mean value mappings over convex polygons.

5.2 Counterexample 2

In this second example we assume that P has vertices p1 = (0, 0), p2 =
(0.7, 0), p3 = (10, 0.5), p4 = (0.7, 0.1), p5 = (0, 1) and Q is given by q1 =
(13, 0), q2 = (14.999, 4.99), q3 = (15, 5), q4 = (14.999, 5.01) and q5 =
(13, 10).

Note that in this example both P and Q are strictly convex polygons.
Still, Figure 6 shows that the corresponding mean value mapping is not
injective.
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