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DEMOCRACY FUNCTIONS AND OPTIMAL EMBEDDINGS FOR
APPROXIMATION SPACES

GUSTAVO GARRIGÓS, EUGENIO HERNÁNDEZ, AND MARIA DE NATIVIDADE

Abstract. We prove optimal embeddings for nonlinear approximation spaces Aα
q ,

in terms of weighted Lorentz sequence spaces, with the weights depending on the
democracy functions of the basis. As applications we recover known embeddings for
N -term wavelet approximation in Lp, Orlicz, and Lorentz norms. We also study the
“greedy classes” G α

q introduced by Gribonval and Nielsen, obtaining new counterex-
amples which show that G α

q 6= Aα
q for most non democratic unconditional bases.

1. Introduction

Let (B, ‖.‖B) be a quasi-Banach space with a countable unconditional basis B =
{ej : j ∈ N}. A main question in Approximation Theory consists in finding a
characterization (if possible) or at least suitable embeddings for the non-linear ap-
proximation spaces Aα

q (B, B), α > 0, 0 < q ≤ ∞, defined using the N-term error
of approximation σN(x, B) (see sections 2.2 and 2.3 for definitions). Such char-
acterizations or inclusions are often given in terms of “smoothness classes” of the
sort

b(B; B) :=

{

x =

∞
∑

j=1

cjej ∈ B : {‖cjej‖B}
∞
j=1 ∈ b

}

,

where b is a suitable sequence space whose elements decay at infinity, such as ℓτ or
more generally the discrete Lorentz classes ℓτ,q.

The simplest result in this direction appears when B is an orthonormal basis in a
Hilbert space H , and was first proved by Stechkin when α = 1/2 and q = 1 (see [31]
or [8] for general α, q).

Theorem 1.1. ([31, 8]). Let B = {ej}
∞
j=1 be an orthonormal basis in a Hilbert space

H, and α > 0, 0 < q ≤ ∞. Then

Aα
q (B, H) = ℓτ,q(B; H)

where τ is defined by 1
τ

= α + 1
2
.

Many results have been published in the literature similar to Theorem 1.1 when
H is replaced by a particular space (say, Lp) and the basis B is a particular one (for
example, a wavelet basis). We refer to the survey articles [5] and [35] for detailed
statements and references.
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There are also a number of results for general pairs (B,B) (even with the weaker
notion of quasi-greedy basis [13, 9, 20]). We recall two of them in the setting of
unconditional bases which we consider here. For simplicity, in all the statements we
assume that the basis is normalized, meaning ‖ej‖B = 1, ∀ j ∈ N. The first result can
be found in [21] (see also [11]).

Theorem 1.2. ([21, Th 1], [11, Th 6.1]). Let B be a quasi-Banach space and B =
{ej}

∞
j=1 a (normalized) unconditional basis satisfying the following property: there

exists p ∈ (0,∞) and a constant C > 0 such that

1

C
|Γ|1/p ≤

∥

∥

∥

∑

k∈Γ

ek

∥

∥

∥

B

≤ C|Γ|1/p (1.1)

for all finite Γ ⊂ N . Then, for α > 0 and 0 < q ≤ ∞ we have

Aα
q (B, B) = ℓτ,q(B; B)

when τ is defined by 1
τ

= α + 1
p
.

Condition (1.1) is sometimes referred as B having the p-Temlyakov property [20],
or as B being a p-space [16, 11]. For instance, wavelet bases in Lp satisfy this property
[33]. The second result we quote is proved in [13] (see also [21]).

Theorem 1.3. ([13, Th 3.1]). Let B be a Banach space and B = {ej}
∞
j=1 a (normal-

ized) unconditional basis with the following property: there exist 1 ≤ p ≤ q ≤ ∞ and
constants A, B > 0 such that when x =

∑

j∈N
cjej ∈ B we have

A ‖{cj}‖ℓq,∞ ≤ ‖x‖B ≤ B ‖{cj}‖ℓp,1 . (1.2)

Then, for α > 0 and 0 < s ≤ ∞ we have

ℓτp,s(B; B) →֒ Aα
s (B, B) →֒ ℓτq ,s(B; B) (1.3)

where 1
τp

= α + 1
p

and 1
τq

= α + 1
q
. Moreover, the inclusions given in (1.3) are best

possible in the sense described in section 4 of [13].

Condition (1.2) is referred in [13] as (B,B) having the (p, q) sandwich property,
and it is shown to be equivalent to

A′|Γ|1/q ≤
∥

∥

∥

∑

k∈Γ

ek

∥

∥

∥

B

≤ B′|Γ|1/p (1.4)

for all Γ ⊂ N finite. Observe that (1.4) coincides with (1.1) when p = q .
The purpose of this article is to obtain optimal embeddings for Aα

q (B, B) as in (1.3)
when no condition such as (1.4) is imposed. More precisely, we define the right and
left democracy functions associated with a basis B in B by

hr(N ;B, B) ≡ sup
|Γ|=N

∥

∥

∥

∑

k∈Γ

ek

‖ek‖B

∥

∥

∥

B

and hℓ(N ;B, B) ≡ inf
|Γ|=N

∥

∥

∥

∑

k∈Γ

ek

‖ek‖B

∥

∥

∥

B

for N = 1, 2, 3, . . . . We refer to section 5 for various examples where hℓ(N) and
hr(N) are computed explicitly (modulo multiplicative constants). As usual, when
hℓ(N) ≈ hr(N) for all N ∈ N we say that B is a democratic basis in B [23].
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The embeddings will be given in terms of weighted discrete Lorentz spaces ℓ q
η ,

with quasi-norms defined by

∥

∥{ck}
∥

∥

ℓ q
η
≡

(

∞
∑

k=1

∣

∣η(k) c∗k
∣

∣

q 1
k

)
1
q

,

where {c∗k} denotes the decreasing rearrangement of {|ck|} and the weight η = {η(k)}∞k=1

is a suitable sequence increasing to infinity and satisfying the doubling property (see
section 2.4 for precise definitions and references). In the special case η(k) = k1/τ we
recover the classical definition ℓq

η = ℓτ,q.

Theorem 1.4. Let B be a quasi-Banach space and B an unconditional basis. Assume
that hℓ(N) is doubling. Then if α > 0 and 0 < q ≤ ∞ we have the continuous
embeddings

ℓq
kαhr(k)(B; B) →֒ Aα

q (B, B) →֒ ℓq
kαhℓ(k)(B; B) . (1.5)

Moreover, for fixed α and q these inclusions are best possible in the scale of weighted
discrete Lorentz spaces ℓq

η, in the sense explained in sections 3, 4 and 6.

Observe that this theorem generalizes Theorems 1.2 and 1.3. In Theorem 1.2 we
have hr(N) ≈ hℓ(N) ≈ N1/p and in Theorem 1.3, hr(N) . N1/p and hℓ(N) & N1/q.
When B is democratic in B, Theorem 1.4 shows that Aα

q (B, B) ≈ ℓq
kαh(k)(B; B) with

h(k) = hr(k) ≈ hℓ(k) . Compare this result with Corollary 1 in [13, §6].
Theorem 1.4 is a consequence of the results proved in sections 3 and 4. Section

3 deals with the lower embedding in (1.5) and shows the relation to Jackson type
inequalities. Section 4 deals with the upper embedding of (1.5) and its relation to
Bernstein type inequalities. Section 5 contains various examples of democracy func-
tions and embeddings with precise references; these are all special cases of Theorem
1.4. In section 6 we apply Theorem 1.4 to estimate the democracy functions hℓ and
hr of the approximation space Aα

q .
Finally, the last section of the paper is dedicated to study the “greedy classes”

G α
q (B, B) introduced by Gribonval and Nielsen in [13], and their relations with the

approximation spaces Aα
q (B, B). The classes G α

q are defined similarly to the approx-
imation spaces, but with the error of approximation σN (x) replaced by the quantity
‖x−GN (x)‖B (see section 2.3 for details). It is easy to see that G α

q (B, B) ⊂ Aα
q (B, B),

and when B is democratic, G α
q (B, B) = Aα

q (B, B) . One may conjecture that for un-
conditional bases B the converse is true, that is G

α
q (B, B) = Aα

q (B, B) implies B
democratic. We do not know how to show this, but we can exhibit a fairly general
class of non democratic pairs (B, B) for which G α

q (B, B) 6= Aα
q (B, B) for all α > 0 and

q ∈ (0,∞] . These include wavelet bases in the non democratic settings of Lp,q and
Lp(log L)α. We also illustrate how irregular the classes G α

q (B, B) can be when B is not
democratic, showing in simple situations that they are not even linear spaces.

2. General Setting

2.1. Bases. Since we work in the setting of quasi-Banach spaces (B, ‖ · ‖B), we shall
often use the ρ-power triangle inequality

‖x + y‖ρ
B
≤ ‖x‖ρ

B
+ ‖y‖ρ

B
, (2.1)
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which holds for a sufficiently small ρ = ρB ∈ (0, 1] (and hence for all µ ≤ ρB); see [3,
Lemma 3.10.1]. The case ρB = 1 gives a Banach space.

A sequence of vectors B = {ej}
∞
j=1 is a basis of B if every x ∈ B can be uniquely

represented as x =
∑∞

j=1 cjej for some scalars cj, with convergence in ‖ · ‖B. The basis
B is unconditional if the series converges unconditionally, or equivalently if there is
some K > 0 such that

∥

∥

∥

∞
∑

j=1

λjcjej

∥

∥

∥

B

≤ K
∥

∥

∥

∞
∑

j=1

cjej

∥

∥

∥

B

(2.2)

for every sequence of scalars {λj}
∞
j=1 with |λj| ≤ 1 (see eg [15, Chapter 5]).

For simplicity in the statements, throughout the paper we shall assume that B is
a normalized basis, meaning ‖ej‖B = 1 for all j ∈ N . We can also assume that the
unconditionality constant in (2.2) is K = 1. To see so, one can introduce an equivalent
quasi-norm in B

|||x|||B = sup
Γfinite,|λj |≤1

‖
∑

j∈Γ

λjxjej‖B , if x =
∞

∑

j=1

xjej .

Observe that with this renorming we still have |||ej |||B = 1.
With the above assumptions, the following lattice property holds: if |yk| ≤ |xk|

for all k ∈ N and x =
∑∞

k=1 xkek ∈ B, then the series y =
∑∞

k=1 ykek converges in B

and ‖y‖B ≤ ‖x‖B. Also, using (2.2) with K = 1 we see that, for every Γ ⊂ N finite

(inf
j∈Γ

|cj|)
∥

∥

∥

∑

j∈Γ

ej

∥

∥

∥

B

≤
∥

∥

∥

∑

j∈Γ

cjej

∥

∥

∥

B

≤ (sup
j∈Γ

|cj|)
∥

∥

∥

∑

j∈Γ

ej

∥

∥

∥

B

. (2.3)

2.2. Non-Linear Approximation and Greedy Algorithm. Let B = {ej}
∞
j=1 be

a basis in B. Let ΣN , N = 1, 2, 3, . . ., be the set of all y ∈ B with at most N non-null
coefficients in the unique basis representation. For x ∈ B, the N-term error of
approximation with respect to B is defined as

σN (x) = σN (x;B, B) ≡ inf
y∈ΣN

‖x − y‖B, N = 1, 2, 3 . . .

We also set Σ0 = {0} so that σ0(x) = ‖x‖B . Using the lattice property mentioned in
§2.1 it is easy to see that for x =

∑∞
j=1 cjej we actually have

σN (x) = inf
|Γ|=N

{

∥

∥x −
∑

γ∈Γ

cγeγ

∥

∥

B

}

, (2.4)

that is, only coefficients from x are relevant when computing σN (x); see eg [11, (2.6)].
Given x =

∑∞
j=1 cjej ∈ B, let π denote any bijection of N such that

‖cπ(j)eπ(j)‖ ≥ ‖cπ(j+1)eπ(j+1)‖, for all j ∈ N. (2.5)

Without loss of generality we may assume that the basis is normalized and then (2.5)
becames |cπ(j)| ≥ |cπ(j+1)|, for all j ∈ N. A greedy algorithm of step N is a
correspondence assigning

x =
∞

∑

j=1

cjej ∈ B 7−→ Gπ
N(x) ≡

N
∑

j=1

cπ(j)eπ(j)
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for any π as in (2.5). The error of greedy approximation at step N is defined by

γN(x) = γN(x;B, B) ≡ sup
π

‖x − Gπ
N(x)‖B. (2.6)

Notice that σN (x) ≤ γN(x), but the reverse inequality may not be true in general. It
is said that B is a greedy basis in B when there is a constant c ≥ 1 such that

γN(x;B, B) ≤ c σN(x;B, B), ∀ x ∈ B, N = 1, 2, 3, . . .

A celebrated theorem of Konyagin and Temlyakov characterizes greedy bases as those
which are unconditional and democratic [23].

2.3. Approximation Spaces and Greedy Classes. The classical non-linear ap-
proximation spaces Aα

q (B, B) are defined as follows: for α > 0 and 0 < q < ∞

Aα
q (B, B) =

{

x ∈ B : ‖x‖Aα
q
≡ ‖x‖B +

[

∞
∑

n=1

(

NασN (x;B, B)
)q 1

N

]
1
q

< ∞
}

.

When q = ∞ the definition takes the form:

Aα
∞(B, B) =

{

x ∈ B : ‖x‖Aα
∞
≡ ‖x‖B + sup

N≥1
NασN (x) < ∞

}

.

It is well known that Aα
q (B, B) are quasi-Banach spaces (see eg [29]). Also, equiva-

lent quasi-norms can be obtained restricting to dyadic N ’s:

‖x‖Aα
q
≈ ‖x‖B +

[

∞
∑

k=0

(

2kασ2k(x)
)q

]
1
q

and likewise for q = ∞. This is a simple consequence of the monotonicity of σN(x)
(see eg [29, Prop 2] or [7, (2.3)]).

The greedy classes G
α
q (B, B) are defined as before replacing the role of σN (x) by

the error of greedy approximation γN(x) given in (2.6), that is

G
α
q (B, B) =

{

x ∈ B : ‖x‖G α
q
≡ ‖x‖B +

[

∞
∑

N=1

(

NαγN(x;B, B)
)q 1

N

]
1
q

< ∞
}

(2.7)

(and similarly for q = ∞). We also have the equivalence

‖x‖G α
q
≈ ‖x‖B +

[

∞
∑

k=0

(

2kαγ2k(x)
)q

]
1
q

, (2.8)

since γN(x) is non-increasing by the lattice property in §2.1.
Since σN (x) ≤ γN(x) for all x ∈ B it is clear that1

G
α
q (B, B) →֒ Aα

q (B, B) . (2.9)

When B is a greedy basis in B it holds that G α
q (B, B) = Aα

q (B, B) with equivalent
quasi-norms. For non greedy bases, however, the inclusion may be strict, and the
classes G α

q may not even be linear spaces (see section 7.1 below).

1Here, as in the rest of the paper, X →֒ Y means X ⊂ Y and there exists C > 0 such that
‖x‖Y ≤ C‖x‖X for all x ∈ X . The equality of spaces X = Y is interpreted as X →֒ Y and Y →֒ X .
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2.4. Discrete Lorentz Spaces. Let η = {η(k)}∞k=1 be a sequence so that

(a) 0 < η(k) ≤ η(k + 1) for all k = 1, 2, . . . and limk−→∞ η(k) = ∞.

(b) η is doubling, that is, η(2k) ≤ Cη(k) for all k = 1, 2, . . . , and some C > 0.

We shall denote the set of all such sequences by W. If η ∈ W and 0 < r ≤ ∞, the
weighted discrete Lorentz space ℓr

η
is defined as

ℓr
η =

{

s = {sk}
∞
k=1 ∈ c0 : ‖s‖ℓr

η
≡

[

∞
∑

k=1

(

η(k)s∗k
)r 1

k

]
1
r

< ∞
}

(with ‖s‖ℓ∞η = supk∈N η(k)s∗k when r = ∞). Here {s∗k} denotes the decreasing re-
arrangement of {|sk|}, that is s∗k = |sπ(k)| where π is any bijection of N such that
|sπ(k)| ≥ |sπ(k+1)| for all k = 1, 2, . . . (since we are assuming limk→∞ sk = 0 such π’s
always exist). When η ∈ W the set ℓr

η is a quasi-Banach space (see eg [4, §2.2]).
Equivalent quasi-norms are given by

‖s‖ℓr
η
≈

[

∞
∑

j=0

(

η(κj)s∗κj

)r
]1/r

, (2.10)

for any fixed integer κ > 1. Particular examples are the classical Lorentz sequence
spaces ℓp,r (with η(k) = k1/p), and the Lorentz-Zygmund spaces ℓp,r(log ℓ)γ (for which
η(k) = k1/p logγ(k + 1); see eg [2, p. 285]).

Occasionally we will need to assume a stronger condition on the weights η. For an
increasing sequence η we define

Mη(m) = sup
k∈N

η(k)

η(mk)
, m = 1, 2, 3, . . . .

Observe that we always have Mη(m) ≤ 1. We shall say that η ∈ W+ when η ∈ W and
there exists some integer κ > 1 for which Mη(κ) < 1. This is equivalent to say that
the “lower dilation index” iη > 0, where we let

iη ≡ sup
m≥1

log Mη(m)

− log m
.

For example, η = {kα logβ(k+1)} has iη = α, and hence η ∈ W+ iff α > 0. In general,
if η is obtained from a increasing function φ : R

+ → R
+ as η(k) = φ(ak), for some

fixed a > 0, then iη > 0 iff iφ > 0, the latter denoting the standard lower dilation
index of φ (see eg [24, p. 54] for the definition).

Below we will need the following result:

Lemma 2.1. If η ∈ W+ then there exists a constant C > 0 such that

n
∑

j=0

η(κj) ≤ Cη(κn), ∀ n ∈ N, (2.11)

where κ > 1 is an integer as in the definition of W+.

Proof. Write δ = Mη(κ) < 1. By definition Mη(κ) ≥ η(κj)/η(κj+1), and therefore

η(κj) ≤ δη(κj+1), ∀ j = 0, 1, 2, . . . . (2.12)
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Iterating (2.12) we deduce that η(κj) ≤ δn−jη(κn), for j = 0, 1, 2, . . . , n and hence
n

∑

j=0

η(κj) ≤ η(κn)

n
∑

j=0

δn−j ≤ η(κn)
1

1 − δ
.

�

Remark 2.2. If η is increasing and doubling, then {kα η(k)} ∈ W+ for all α > 0.
Also, if η ∈ W+ then ηr ∈ W+, for all r > 0.

We now estimate the fundamental function of ℓr
η. We shall denote the indicator

sequence of Γ ⊂ N by 1Γ, that is the sequence with entries 1 for j ∈ Γ and 0 otherwise.

Lemma 2.3. (a) If η ∈ W then
∥

∥1Γ

∥

∥

ℓ∞η
= η(|Γ|), ∀ finite Γ ⊂ N.

(b) If η ∈ W+ and r ∈ (0,∞) then
∥

∥1Γ

∥

∥

ℓr
η
≈ η(|Γ|), ∀ finite Γ ⊂ N

with the constants involved independent of Γ.

Proof. Part (a) is trivial since η is increasing. To prove (b) use (2.10) and the previous
lemma. �

Finally, as mentioned in §1, given a (normalized) basis B in B we shall consider the
following subspaces

ℓq
η(B, B) :=

{

x =
∞

∑

j=1

cjej ∈ B : {cj}
∞
j=1 ∈ ℓq

η

}

,

endowed with the quasi-norm ‖x‖ℓq
η(B,B) := ‖{cj}‖ℓq

η
. These spaces are not necessarily

complete, but they are when

‖
∑

j

cjej‖B ≤ C‖{cj}‖ℓq
η
, ∀ finite {cj},

a property which holds in certain situations (see eg Remark 3.2). When this is the
case, the space ℓq

η(B, B) is just an isomorphic copy of ℓq
η inside B.

2.5. Democracy Functions. Following [23], a (normalized) basis B in a quasi-
Banach space B is said to be democratic if there exists C > 0 such that

∥

∥

∥

∑

k∈Γ

ek

∥

∥

∥

B

≤ C
∥

∥

∥

∑

k∈Γ′

ek

∥

∥

∥

B

,

for all finite sets Γ, Γ′ ⊂ N with the same cardinality. This notion allows to characterize
greedy bases as those which are both unconditional and democratic [23].

As we recall in §5, wavelet bases are well known examples of greedy bases for many
function spaces, such as Lp, Sobolev, or more generally, the Triebel-Lizorkin spaces.
However, they are not democratic in some other instances such as BMO, or the Orlicz
LΦ and Lorentz Lp,q spaces (when these are different from Lp). In fact, it is proved in
[38] that the Haar basis is democratic in a rearrangement invariant space X in [0, 1] if
and only if X = Lp for some p ∈ (1,∞).
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Thus, non-democratic bases are also common. To quantify the democracy of a
(normalized) system B = {ej}

∞
j=1 in B one introduces the following concepts:

hr(N ;B, B) ≡ sup
|Γ|=N

∥

∥

∥

∑

k∈Γ

ek

∥

∥

∥

B

and hℓ(N ;B, B) ≡ inf
|Γ|=N

∥

∥

∥

∑

k∈Γ

ek

∥

∥

∥

B

,

which we shall call the right and left democracy functions of B (see also [9, 19,
12]). We shall omit B or B when these are understood from the context.

Some general properties of hℓ and hr are proved in the next proposition.

Proposition 2.4. Let B = {ej}
∞
j=1 be a (normalized) unconditional basis in B with

the lattice property from §2.1. Then

(a) 1 ≤ hℓ(N) ≤ hr(N) ≤ N1/ρ, ∀ N = 1, 2, . . ., where ρ = ρB is as in (2.1).
(b) hℓ(N) and hr(N) are non-decreasing in N = 1, 2, 3 . . .
(c) hr(N) is doubling, that is, ∃ c > 0 such that hr(2N) ≤ c hr(N), ∀ N ∈ N.
(d) There exists c ≥ 1 such that hℓ(N + 1) ≤ c hℓ(N) for all N = 1, 2, 3 . . .

Proof. (a) and (b) follow immediately from the lattice property of B and the ρ-
triangular inequality.
(c) Given N ∈ N, choose Γ ⊂ N with |Γ| = 2N such that

∥

∥

∑

k∈Γ ek

∥

∥

B
≥ hr(2N)/2.

Partitioning arbitrarily Γ = Γ′ ∪ Γ′′ with |Γ′| = |Γ′′| = N , and using the ρ-power
triangle inequality, one easily obtains

1
2
hr(2N) ≤

∥

∥

∥

∑

k∈Γ

ek

∥

∥

∥

B

=
∥

∥

∥

∑

k∈Γ′

ek +
∑

k∈Γ′′

ek

∥

∥

∥

B

≤ 21/ρhr(N) .

(d) Given N ∈ N, choose Γ ⊂ N with |Γ| = N such that
∥

∥

∑

k∈Γ ek

∥

∥

B
≤ 2hℓ(N). Let

Γ′ = Γ ∪ {ko} for any ko /∈ Γ. Then

hℓ(N + 1) ≤
∥

∥

∥

∑

k∈Γ′

ek

∥

∥

∥

B

≤
(
∥

∥

∥

∑

k∈Γ

ek

∥

∥

∥

ρ

B

+ 1
)1/ρ

≤ (2ρ[hℓ(N)]ρ + 1)1/ρ.

Thus, using (a) we obtain hℓ(N + 1) ≤ (2ρ + 1)
1
ρ hℓ(N) ≤ 2 · 21/ρhℓ(N). �

Remark 2.5. We do not know whether property (d) can be improved to show that
hℓ(N) is actually doubling. This seems however to be case in all the examples we have
considered below (see §5).

3. Right Democracy and Jackson Type Inequalities

Our first result deals with inclusions for the greedy classes G
α
q (B, B).

Theorem 3.1. Let B = {ej}
∞
j=1 be a (normalized) unconditional basis in B. Fix α > 0

and q ∈ (0,∞). Then, for any sequence η such that {kαη(k)}∞k=1 ∈ W+ the following
statements are equivalent:

1. There exists C > 0 such that for all N = 1, 2, 3, . . .
∥

∥

∥

∑

k∈Γ

ek

∥

∥

∥

B

≤ Cη(N) , ∀ Γ ⊂ N with |Γ| = N. (3.1)

2. Jackson type inequality for ℓ∞
kαη(k)(B, B): ∃ Cα > 0 such that ∀ N = 0, 1, 2 . . .

γN(x) ≤ Cα(N + 1)−α‖x‖ℓ∞

kαη(k)
(B,B), ∀ x ∈ ℓ∞

kαη(k)(B, B). (3.2)
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3. ℓ∞kαη(k)(B, B) →֒ G α
∞(B, B) .

4. ℓq
kαη(k)(B, B) →֒ G α

q (B, B) .

5. Jackson type inequality for ℓ q
kαη(k)(B, B): ∃ Cα,q > 0 such that ∀ N = 0, 1, 2, . . .

γN(x) ≤ Cα,q(N + 1)−α‖x‖ℓ q
kαη(k)

(B,B), ∀ x ∈ ℓ q
kαη(k)(B, B) . (3.3)

Proof. “1 ⇒ 2” Let x =
∑

k∈N
ckek ∈ ℓ∞kαη(k)(B, B) and let π be a bijection of N such

that

|cπ(k)| ≥ |cπ(k+1)|, k = 1, 2, 3, . . . (3.4)

For fixed N = 0, 1, 2, . . ., denote λj = 2j(N +1). Then, the ρ-power triangle inequality
and (2.3) give

∥

∥x − Gπ
N(x)

∥

∥

ρ

B
=

∥

∥

∥

∞
∑

k=N+1

cπ(k)eπ(k)

∥

∥

∥

ρ

B

≤
∞

∑

j=0

∥

∥

∥

∑

λj≤k<λj+1
cπ(k)eπ(k)

∥

∥

∥

ρ

B

≤
∞

∑

j=0

|cπ(λj)|
ρ
∥

∥

∥

∑

λj≤k<λj+1
eπ(k)

∥

∥

∥

ρ

B

.

There are exactly λj = 2j(N +1) elements in the interior sum, so using (3.1) we obtain

‖x − Gπ
N(x)‖ρ

B
≤ Cρ

∞
∑

j=0

(

c∗λj
η(λj)

)ρ
= Cρ

∞
∑

j=0

(

λα
j c∗λj

η(λj)
)ρ

λ−αρ
j

≤ Cρ‖x‖ρ
ℓ∞
kαη(k)

(B,B) (N + 1)−αρ
∑∞

j=0 2−jαρ

= Cα,ρ (N + 1)−αρ ‖x‖ρ
ℓ∞
kαη(k)

(B,B) .

The result follows taking the supremum over all bijections π satisfying (3.4).

Remark 3.2. The special case N = 0 in (3.2) says that

‖x‖B ≤ C‖x‖ℓ∞
kαη(k)

(B,B), (3.5)

which in particular implies ℓq
kαη(k)(B, B) →֒ B, for all q ∈ (0,∞].

“2 ⇒ 3” This is immediate from the definition of G α
∞ (and Remark 3.2), since

‖x‖G α
∞

(B,B) := ‖x‖B + sup
N≥1

NαγN(x) ≤ Cα‖x‖ℓ∞
kαη(k)

(B,B).

“3 ⇒ 1” Let Γ ⊂ N with |Γ| = N. Choose Γ′ with |Γ′| = N and so that Γ ∩ Γ′ = ∅,
and consider x =

∑

k∈Γ ek +
∑

k∈Γ′ 2ek . Then

γN(x) =
∥

∥

∑

k∈Γ

ek

∥

∥

B
, (3.6)

and therefore
Nα

∥

∥

∑

k∈Γ

ek

∥

∥

B
= NαγN(x) ≤ ‖x‖G α

∞
(B,B). (3.7)

On the other hand, call ω(k) = kαη(k). By monotonicity, Lemma 2.3 and the doubling
property of ω we have

‖x‖ℓ∞ω (B,B) ≤ 2
∥

∥1Γ∪Γ′

∥

∥

ℓ∞ω
= 2ω(2N) ≤ c ω(N) . (3.8)

Combining (3.7) and (3.8) with the inclusion ℓ∞kαη(k)(B, B) →֒ G α
∞(B, B) gives (3.1).
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“5 ⇒ 1” Let Γ ⊂ N with |Γ| = N , and choose Γ′ and x as in the proof of 3 ⇒ 1. As
before call ω(k) = kαη(k). Then Lemma 2.3 and the assumption ω ∈ W+ give

‖x‖ℓq
ω(B,B) ≤ 2

∥

∥1Γ∪Γ′

∥

∥

ℓq
ω
≈ ω(2N) ≤ c ω(N) .

Since we are assuming 5 we can write (recall (3.6))
∥

∥

∑

k∈Γ

ek

∥

∥

B
= γN(x) ≤ Cα,ρ(N + 1)−α‖x‖ℓq

ω(B,B) . N−αω(N) = η(N),

which proves (3.1).

“1 ⇒ 4” The proof is similar to 1 ⇒ 2 with a few modifications we indicate next.
Given x ∈ ℓq

kαη(k)(B, B) and π as in (3.4) we write x =
∑∞

j=−1

∑

2j<k≤2j+1 cπ(k)eπ(k).

Then arguing as before (with N = 2m) we obtain

‖x − Gπ
2m(x)‖µ

B
≤

∞
∑

j=m

|cπ(2j)|
µ
∥

∥

∥

∑

2j<k≤2j+1 eπ(k)

∥

∥

∥

µ

B

,

where we choose now any µ < min{q, ρB}. Taking the supremum over all π’s and
using (3.1) we obtain

γ2m(x;B, B)µ ≤ Cµ
∞

∑

j=m

(

c∗2j η(2j)
)µ

.

Therefore
[

∞
∑

m=0

(

2mαγ2m(x)
)q

]
1
q
≤ C

[

∞
∑

m=0

2mαq
(

∞
∑

j=0

[

c∗2j+m η(2j+m)
]µ

)q/µ]1/q

.

Since q/µ > 1, we can use Minkowski’s inequality on the right hand side to obtain

[

∞
∑

m=0

(

2mαγ2m(x)
)q

]
1
q

≤ C
[

∞
∑

j=0

(

∞
∑

m=0

2mαq
[

c∗2j+m η(2j+m)
]q

)µ/q]1/µ

= C
[

∞
∑

j=0

2−jαµ
(

∞
∑

ℓ=j

2ℓαq
[

c∗2ℓ η(2ℓ)
]q

)µ/q]1/µ

≤ C ′ ‖{ck}‖ℓ q
kαη(k)

.

This implies the desired estimate

‖x‖G α
q (B,B) . ‖{ck}‖ℓ q

kαη(k)
,

using the dyadic expressions for the norms in (2.8) and (2.10) (and Remark 3.2).

“4 ⇒ 5” This is trivial since 4 implies ℓq
kαηk(B, B) →֒ G α

q (B, B) →֒ G α
∞(B, B), and this

clearly gives (3.3). �

Remark 3.3. The equivalences 1 to 3 remain true under the weaker assumption
{kαη(k)} ∈ W.

Remark 3.4. Observe that if any of the statements in 2 to 5 of Theorem 3.1 holds
for one fixed α > 0 and q ∈ (0,∞], then the assertions remain true for all α and q (as
long as {kαη(k)} ∈ W+), since the statement in 1 is independent of these parameters.
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Corollary 3.5. Optimal inclusions into G α
q .

Let B be a (normalized) unconditional basis in B. Fix α > 0 and q ∈ (0,∞]. Then

ℓq
kαhr(k)(B, B) →֒ G

α
q (B, B). (3.9)

Moreover, if ω ∈ W+ then, ℓq
ω(B, B) →֒ G α

q (B, B) if and only if ω(k) & kαhr(k).

Proof. For q < ∞, the inclusion (3.9) is an application of 4 in the theorem with η = hr

(after noticing that {kαhr(k)} ∈ W+ by Proposition 2.4 and Remark 2.2). The second
assertion is just a restatement of 1 ⇔ 4 with η(k) = ω(k)/kα. For q = ∞ use 3 instead
of 4. �

We now prove similar results for the approximation spaces Aα
q (B, B).

Theorem 3.6. Let B = {ej}
∞
j=1 be a (normalized) unconditional basis in B. Fix α > 0

and q ∈ (0,∞]. Then, for any sequence η ∈ W+ the following are equivalent:

1. There exists C > 0 such that for all N = 1, 2, 3, . . .
∥

∥

∥

∑

k∈Γ

ek

∥

∥

∥

B

≤ Cη(N) , ∀ Γ ⊂ N with |Γ| = N. (3.10)

2. ℓq
kαη(k)(B, B) →֒ Aα

q (B, B) .

3. Jackson type inequality for ℓ q
kαη(k)(B, B): ∃ Cα,q > 0 such that ∀ N = 0, 1, 2, . . .

σN (x) ≤ Cα,q(N + 1)−α‖x‖ℓ q
kαη(k)

(B,B), ∀ x ∈ ℓq
kαη(k)(B, B) . (3.11)

Proof. 1 ⇒ 2 follows directly from Theorem 3.1 and G α
q →֒ Aα

q . Also, 2 ⇒ 3 is trivial
since Aα

q →֒ Aα
∞, and 3 is equivalent to ℓq

kαη(k)(B, B) →֒ Aα
∞.

We must show 3 ⇒ 1. Let κ > 1 be a fixed integer as in the definition of the class W+

(and in particular satisfying (2.11)), and denote 1∆ =
∑

k∈∆ ek for a set ∆ ⊂ N. For
any Γn ⊂ N with |Γn| = κn, we can find a subset Γn−1 with |Γn−1| = κn−1 such that

‖1Γn − 1Γn−1‖B ≤ 2σκn−1(1Γn).

Repeating this argument we choose Γj−1 ⊂ Γj with |Γj| = κj and so that

‖1Γj
− 1Γj−1

‖B ≤ 2σκj−1(1Γj
), for j = 1, 2 . . . , n .

Setting Γ−1 = ∅, and using the ρ-power triangle inequality we see that

‖1Γn‖
ρ
B

=
∥

∥

∥

n
∑

j=0

1Γj
− 1Γj−1

∥

∥

∥

ρ

B

≤
n

∑

j=0

‖1Γj
− 1Γj−1

‖ρ
B
≤ 2ρ

n
∑

j=0

σκj−1(1Γj
)ρ .

Now, the hypothesis (3.11) and Lemma 2.3 give

σκj−1(1Γj
) . κ−jα‖1Γj

‖ℓ q
kαη(k)

(B,B) ≈ η(κj).

Thus, combining these two expressions we obtain

‖1Γn‖B .
[

n
∑

j=0

η(κj)ρ
]1ρ

≤ C η(κn) , (3.12)

where the last inequality follows from the assumption η ∈ W+ and Lemma 2.1. This
shows (3.10) when N = κn, n = 1, 2, . . . The general case follows easily using the
doubling property of η. �
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Remark 3.7. As before, if any of the statements in 2 or 3 holds for one fixed α > 0
and q ∈ (0,∞], then the assertions remain true for all α and q, since 1 is independent
of these parameters.

Remark 3.8. Observe also that 1 ⇒ 2 ⇒ 3 hold with the weaker assumption
{kαη(k)} ∈ W+ from Theorem 3.1 (and in particular hold for η = hr as stated in
(1.5)). However, the stronger assumption η ∈ W+ is crucial to obtain 3 ⇒ 1, and
cannot be removed as shown in Example 5.6 below.

Corollary 3.9. Optimality of the inclusions into Aα
q
.

Let B be a (normalized) unconditional basis in B. Fix α > 0 and q ∈ (0,∞]. Then

ℓq
kαhr(k)(B, B) →֒ Aα

q (B, B). (3.13)

If for some ω ∈ W+ we have ℓq
ω(B, B) →֒ Aα

q (B, B), then necessarily ω(k) & kα.
Moreover if ω(k) = kαη(k), with η increasing and doubling, then

(a) if iη > 0, then necessarily η(k) & hr(k), and hence ℓq
kαη(k) →֒ ℓq

kαhr(k).

(b) if iη = 0, then η(k) & hr(k)/(log k)1/ρ and ℓq
kαη(k) →֒ ℓq

{kαhr(k)/(log k)1/ρ}.

Proof. The inclusion (3.13) is actually a consequence of (3.9). Assertion (a) is just
2 ⇒ 3 ⇒ 1 in the theorem. For assertion (b) notice that in the last step of the proof
of 3 ⇒ 1, the right hand inequality of (3.12) can always be replaced by

‖1Γn‖B .
[

n
∑

j=0

η(κj)ρ
]1ρ

. η(κn) n1/ρ

when η is increasing. Thus hr(N) . η(N)(log N)1/ρ holds for N = κn, and by the
doubling property also for all N ∈ N. Finally, if ℓq

ω(B, B) →֒ Aα
q (B, B) for some general

ω ∈ W+, then given Γ ⊂ N with |Γ| = N we trivially have

ω(N) ≈ ‖1Γ‖ℓq
ω

& ‖1Γ‖Aα
∞
≥ (N/2)α σN/2(1Γ) ≥ (N/2)α.

�

Remark 3.10. Assertion (b) shows that the inclusion in (3.13) is optimal, except
perhaps for a logarithmic loss. The logarithmic loss may actually happen, as there
are Banach spaces B with hr(N) ≈ log N and so that

Aα
q (B) = ℓ q

kα = ℓq
{kαhr(k)/ log k}.

See Example 5.6 below.

4. Left Democracy and Bernstein Type Inequalities

It is well known that upper inclusions for the approximation spaces Aα
q , as in (1.5),

depend upon Bernstein type inequalities. In this section we show how the left democ-
racy function of B is linked with these two properties.

We first remark that, for each α > 0 and 0 < q ≤ ∞, the approximation classes Aα
q

and G α
q satisfy trivial Bernstein inequalities, namely, there exists Cα,q > 0 such that

‖x‖Aα
q (B,B) ≤ ‖x‖G α

q (B,B) ≤ Cα,q Nα‖x‖B, ∀ x ∈ ΣN , N = 1, 2, . . . (4.1)

This follows easily from the definition of the norms and the trivial estimates σN(x) ≤
γN(x) ≤ ‖x‖B.
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We start with a preliminary result which is essentially known in the literature (see
eg [29]). As usual B = {ej}

∞
j=1 is a fixed (normalized) unconditional basis in B.

Proposition 4.1. Let E be a subspace of B, endowed with a quasi-norm ‖.‖E satisfying
the ρ-triangle inequality for some ρ = ρE. For each α > 0 the following are equivalent:

1. ∃ Cα > 0 such that ‖x‖E ≤ Cα Nα ‖x‖B, ∀ x ∈ ΣN , N = 1, 2, . . .

2. Aα
ρ (B, B) →֒ E .

3. G
α
ρ (B, B) →֒ E .

Proof. “1 ⇒ 2” Given x ∈ Aα
ρ (B, B), by the representation theorem for approximation

spaces [29] one can write x =
∑∞

k=0 xk with xk ∈ Σ2k , k = 0, 1, 2, . . . , such that

(

∞
∑

k=0

2kαρ‖xk‖
ρ
B

)1/ρ

≤ C‖x‖Aα
ρ (B,B) .

The hypothesis 1 and the ρE-triangular inequality then give

‖x‖ρ
E
≤

∞
∑

k=0

‖xk‖
ρ
E
≤ Cρ

α

∞
∑

k=0

2kαρ‖xk‖
ρ
B
≤ C ′ ‖x‖ρ

Aα
ρ (B,B).

“2 ⇒ 3”. This follows from the trivial inclusion G
α
ρ (B, B) →֒ Aα

ρ (B, B) .

“3 ⇒ 1”. This is immediate using (4.1). �

Theorem 4.2. Let B = {ej}
∞
j=1 be a (normalized) unconditional basis in B. Fix α > 0

and q ∈ (0,∞]. Then, for any increasing and doubling sequence {η(k)} the following
statements are equivalent:

1. There exists C > 0 such that for all N = 1, 2, 3, . . .
∥

∥

∥

∑

k∈Γ

ek

∥

∥

∥

B

≥ 1
C

η(N), ∀ Γ ⊂ N with |Γ| = N. (4.2)

2. Bernstein type inequality for ℓ q
kαη(k)(B, B): ∃ Cα,q > 0 such that

‖x‖ℓ q
kαη(k)

(B,B) ≤ Cα,q Nα ‖x‖B, ∀ x ∈ ΣN , N = 1, 2, 3, . . . (4.3)

3. Aα
q (B, B) →֒ ℓ q

kαη(k)(B, B) .

4. G
α
q (B, B) →֒ ℓ q

kαη(k)(B, B).

Proof. “1 ⇒ 2”. Let x =
∑

k∈Γ ckek ∈ ΣN . For any bijection π with |cπ(k)| decreasing,
and any integer m ∈ {1, . . . , N} we have

|cπ(m)| η(m) ≤ C |cπ(m)|
∥

∥

m
∑

j=1

eπ(j)

∥

∥

B
≤ C

∥

∥

m
∑

j=1

cπ(j)eπ(j)

∥

∥

B
≤ C‖x‖B ,

using (2.3) in the second inequality. This gives

‖x‖ℓq
kαη(k)

=
[

N
∑

m=1

(mαη(m)c∗m)q 1

m

]1/q

≤ C‖x‖B

[

N
∑

m=1

mαq 1

m

]1/q

≈ ‖x‖B Nα.

“2 ⇒ 1”. For any Γ ⊂ N with |Γ| = N , applying (4.3) to 1Γ =
∑

k∈Γ ek we obtain

‖1Γ‖B ≥ 1
Cα,q

N−α‖1Γ‖ℓq
kαη(k)

(B,B) & η(N),
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where in the last inequality we have used ‖1Γ‖ℓ q
ω

& ω(N), when ω ∈ W.

“2 ⇒ 3”. We have already proved that 1 ⇔ 2; since 1 does not depend on α, q, then
2 actually holds for all α̃ > 0. In particular, from Proposition 4.1, we have

Aα̃
ρ →֒ E := ℓq

kα̃η(k)
(B, B) (4.4)

for α̃ ∈ (α
2
, 3α

2
) and some sufficiently small ρ > 0. Now, from the general theory

developed in [7], the spaces Aα
q satisfy a reiteration theorem for the real interpolation

method, and in particular
Aα

q =
(

Aα0
q0

,Aα1
q1

)

1/2, q
, (4.5)

when α = (α0 + α1)/2 with α1 > α0 > 0, and q0, q1, q ∈ (0,∞]. On the other hand,
for the family of weighted Lorentz spaces it is known that

(

ℓq
ω0

, ℓq
ω1

)

θ, q
= ℓq

ω , 0 < θ < 1, 0 < q ≤ ∞, (4.6)

when ω0, ω1 ∈ W+ and ω = ω1−θ
0 ωθ

1 (see eg [25, Theorem 3]). Thus, for fixed α and q,
we can choose the parameters accordingly, and use the inclusion (4.4), to obtain

Aα
q =

(

Aα0
ρ ,Aα1

ρ

)

1/2, q
→֒

(

ℓq
kα0η(k), ℓ

q
kα1η(k)

)

1/2, q
= ℓq

kαη(k)(B, B).

“3 ⇒ 4”. This is trivial since G α
q →֒ Aα

q .

“4 ⇒ 2”. This is trivial from (4.1). �

Remark 4.3. Observe that 3 ⇒ 4 ⇒ 2 ⇔ 1 hold with the weaker assumption
{kαη(k)} ∈ W.

Corollary 4.4. Optimal inclusions of Aα
q

into ℓq
ω
.

Let B be a (normalized) unconditional basis in B. Fix α > 0 and q ∈ (0,∞].

(a) If hℓ(N) is doubling then Aα
q (B, B) →֒ ℓ q

kαhℓ(k)(B, B).

(b) If for some ω ∈ W we have Aα
q (B, B) →֒ ℓ q

ω(B, B) then necessarily ω(k) . kαhℓ(k),
and hence ℓ q

kαhℓ(k) →֒ ℓ q
ω.

Proof. Part (a) is an application of 1 ⇒ 3 in the theorem with η = hℓ (which under
the doubling assumption satisfies {kαhℓ(k)} ∈ W+ for all α > 0). Part (b) is just a
restatement of 3 ⇒ 1 in the theorem, setting η(k) = ω(k)/kα and taking into account
Remark 4.3. �

5. Examples and Applications

In this section we describe the democracy functions hℓ and hr in various examples
which can be found in the literature. Inclusions for Aα

q (B, B) and G α
q (B, B) will be

obtained inmediately from the results of sections 3 and 4. The most interesting case
appears when B is a wavelet basis, and B a function or distribution space in R

d which
can be characterized by such basis (eg, the general Besov or Triebel-Lizorkin spaces,
Bα

p,q and F s
p,q, and also rearrangement invariant spaces as the Orlicz and Lorentz

classes, LΦ and Lp,q). Such characterizations provide a description of each B as a
sequence space, so for simplicity we shall work in this simpler setting, reminding in
each case the original function space framework.

Let D = D(Rd) denote the family of all dyadic cubes Q in R
d, ie

D =
{

Qj,k = 2−j([0, 1)d + k) : j ∈ Z, k ∈ Z
d
}

.
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We shall consider sequences indexed by D, s = {sQ}Q∈D, endowed with quasi-norms
of the following form

∥

∥

∥

(

∑

Q∈D

(

|Q|γ−
1
2 |sQ|χQ( · )

)r
)1/r∥

∥

∥

X

, (5.1)

where 0 < r ≤ ∞, γ ∈ R and X is a suitable quasi-Banach function space in R
d,

such as the ones we consider below. The canonical basis Bc = {eQ}Q∈D is formed by
the sequences eQ with entry 1 at Q and 0 otherwise. In each of the examples below,
the greedy algorithms and democracy functions are considered with respect to the
normalized basis B =

{

eQ/‖eQ‖B

}

. Similarly, when stating the corresponding results
for the functional setting we shall write W for the wavelet basis.

Example 5.1. X = Lp(Rd), 0<p<∞. In this case, it is customary to consider the
sequence spaces fsp,r, s ∈ R, 0 < r ≤ ∞, with quasi-norms given by

∥

∥s
∥

∥

fsp,r
:=

∥

∥

∥

(

∑

Q∈D

(

|Q|−
s
d
− 1

2 |sQ|χQ( · )
)r

)1/r∥
∥

∥

Lp(Rd)
.

It was proved in [16, 11, 18] that, for all s ∈ R and 0 < r ≤ ∞,

hℓ(N ; fsp,r) ≈ hr(N ; fsp,r) ≈ N1/p (5.2)

and

Aα
q (fsp,r) = ℓτ,q(fsp,r) =

{

s : {sQ‖eQ‖fsp,r
}Q ∈ ℓτ,q

}

, (5.3)

if 1
τ

= α + 1
p
, as asserted in Theorem 1.2.

It is well-known that fsp,r coincides with the coefficient space under a wavelet basis W

of the (homogeneous) Triebel-Lizorkin space Ḟ s
p,r(R

d), defined in terms of Littlewood-
Paley theory (see eg [10, 26, 22]). In particular, under suitable decay and smoothness
on the wavelet family (so that it is an unconditional basis of the involved spaces) the
statement in (5.3) can be translated into

Aα
q (W, Ḟ s

p,r(R
d)) = G

α
q (W, Ḟ s

p,r(R
d)) = Ḃs+αd

q,q (Rd)

when 1
q

= α
d

+ 1
p
. We refer to [16, 17, 5, 11] for details and further results.

Example 5.2. Weighted Lebesgue spaces X = Lp(w), 0 < p < ∞. For
weights w(x) in the Muckenhoupt class A∞(Rd), one can define sequence spaces fsp,r(w)
with the quasi-norm

∥

∥s
∥

∥

fsp,r(w)
:=

∥

∥

∥

(

∑

Q∈D

(

|Q|−
s
d
− 1

2 |sQ|χQ( · )
)r

)1/r∥
∥

∥

Lp(Rd,w)
.

Similar computations as in the previous case in this more general situation will also
lead to the identities in (5.2) and (5.3), with fsp,r replaced by fsp,r(w). We refer to
[27, 21] for details in some special cases.

When W is a (sufficiently smooth) orthonormal wavelet basis and w is a weight in
the Muckenhoupt class Ap(R

d), 1 < p < ∞, then f0p,2(w) becomes the coefficient space
of the weighted Lebesgue space Lp(w) (see eg [1]). One then obtains as special case

hℓ(N ;W, Lp(w)) ≈ hr(N ;W, Lp(w)) ≈ N
1
p .
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Moreover, if ω ∈ Aτ (R
d) ,

Aα
τ (W, Lp(w)) ≈ G

α
τ (W, Lp(w)) ≈ Ḃαd

τ,τ (w
τ/p), if 1

τ
= α + 1

p
,

where Ḃα
τ,q(w) denotes a weighted Besov space (see [27] for details).

Example 5.3. Orlicz spaces X = LΦ(Rd). Following [12], we denote by fΦ the
sequence space with quasi-norm

‖s‖fΦ :=
∥

∥

∥

(

∑

Q∈D

(

|sQ|
χQ( · )
|Q|1/2

)2
)1/2∥

∥

∥

LΦ(Rd)
,

where LΦ is an Orlicz space with non-trivial Boyd indices. If we denote by ϕ(t) =
1/Φ−1(1/t), the fundamental function of LΦ, then it is shown in [12] that

hℓ(N ; fΦ) ≈ inf
s>0

ϕ(Ns)
ϕ(s)

and hr(N ; fΦ) ≈ sup
s>0

ϕ(Ns)
ϕ(s)

,

with the two expressions being equivalent iff ϕ(t) = t1/p (ie, iff LΦ = Lp). Thus,
these are first examples of non-democratic spaces, with a wide range of possibilities
for the democracy functions. The theorems in sections 3 and 4 recover the embed-
dings obtained in [12] for the approximation classes Aα

q (fΦ) and G α
q (fΦ) in terms of

weighted discrete Lorentz spaces. When using suitable wavelet bases, these lead to
corresponding inclusions for Aα

q (W, LΦ) and G α
q (W, LΦ), some of which can be ex-

pressed in terms of Besov spaces of generalized smoothness (see [12] for details).

Example 5.4. Lorentz spaces X = Lp,q(Rd), 0 < p, q < ∞. Consider sequence
spaces lp,q defined by the following quasi-norms

‖s‖lp,q :=
∥

∥

∥

(

∑

Q∈D

(

|sQ|
χQ( · )
|Q|1/2

)2
)1/2∥

∥

∥

Lp,q(Rd)
.

Their democracy functions have been computed in [14], obtaining

hℓ(N ; lp,q) ≈ N
1

max(p,q) and hr(N ; lp,q) ≈ N
1

min(p,q) .

These imply corresponding inclusions for the classes Aα
s (lp,q) and G α

s (lp,q) in terms
of discrete Lorentz spaces ℓτ,s (as described in the theorems of sections 3 and 4).
The spaces lp,q characterize, via wavelets, the usual Lorentz spaces Lp,q(Rd) when
1 < p < ∞ and 1 ≤ q < ∞ ([32]). Hence inclusions for Aα

s (W, Lp,q) and G α
s (W, Lp,q)

can be obtained using standard Besov spaces.

Example 5.5. Hyperbolic wavelets. For 0 < p < ∞, consider now the sequence
space

‖s‖f
p
hyp

:=
∥

∥

∥

(

∑

R

(

|sR|
χR( · )
|R|1/2

)2
)1/2∥

∥

∥

Lp(Rd)
.

where R runs over the family of all dyadic rectangles of R
d, that is R = I1 × . . .× Id,

with Ii ∈ D(R), i = 1, . . . , d. This gives another example of non-democratic basis. In
fact, the following result is proved in [37, Proposition 11] (see also [34]):

(a) If 0 < p ≤ 2,

hℓ(N ; fphyp) ≈ N1/p(log N)( 1
2
− 1

p
)(d−1) and hr(N ; fphyp) ≈ N1/p.
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(b) If 2 ≤ p < ∞,

hℓ(N ; fphyp) ≈ N1/p and hr(N ; fphyp) ≈ N1/p(log N)( 1
2
− 1

p
)(d−1) .

If Hd denotes the multidimensional (hyperbolic) Haar basis, then f
p
hyp becomes the co-

efficient space of the usual Lp(Rd) if 1 < p < ∞ (and the dyadic Hardy space Hp(Rd)
if 0 < p ≤ 1). In this case, one obtains corresponding inclusions for the classes
Aα

q (Hd, L
p) and G α

q (Hd, L
p) (see also [19, Thm 5.2]), some of which could possibly be

expressed in terms of Besov spaces of bounded mixed smoothness [19, 6].

Example 5.6. Bounded mean oscillation. Let bmo denote the space of se-
quences s = {sI}I∈D with

‖s‖bmo = sup
I∈D

( 1

|I|

∑

J⊂I ,J∈D
|sJ |

2|J |
)1/2

< ∞ . (5.4)

This sequence space gives the correct characterization of BMO(R) for sufficiently
smooth wavelet bases appropriately normalized(see [36, 10, 16]). Their democracy
functions are determined by

hℓ(N ; bmo) ≈ 1 , hr(N ; bmo) ≈
(

log N
)1/2

. (5.5)

The first part of (5.5) is easy to prove, and the second follows, for instance, by an
argument similar to the one presented in the proof of [28, Lemma 3]. Our results of
sections 3 and 4 give in this case the inclusions:

ℓq

kα
√

log k
→֒ G

α
q (bmo) →֒ Aα

q (bmo) →֒ ℓq
kα = ℓ1/α,q . (5.6)

However, this is not the best one can say for the approximation classes Aα
q . A result

proved in [30] (see also Proposition 11.6 in [16]) shows that one actually has

Aα
q (bmo) = Aα

q (ℓ∞) = ℓ1/α,q,

for all α > 0 and q ∈ (0,∞]. For 0 < r < ∞ one can define the space bmor

replacing the 2 by r in (5.4); it can then be shown that hr(N ; bmor) ≈
(

log N
)1/r

and Aα
q (bmor) = ℓ1/α,q.

6. Democracy Functions for Aα
q (B, B) and G α

q (B, B)

As usual, we fix a (normalized) unconditional basis B = {ej}
∞
j=1 in B. In this

section we compute the democracy functions for the spaces Aα
q (B, B) and G α

q (B, B),
in terms of the democracy functions in the ambient space B. To distinguish among
these notions we shall use, respectively, the notations

hℓ(N ;Aα
q ), hℓ(N ; G α

q ) and hℓ(N ; B),

and similarly for hr (recall the definitions in section 2.5). Since we shall use the
embeddings in sections 3 and 4, observe first that

hℓ(N ; ℓq
ω(B, B)) ≈ hr(N ; ℓq

w(B, B)) ≈ ω(N), (6.1)

for all ω ∈ W+ and 0 < q ≤ ∞. This is immediate from the definition of the spaces
ℓq
ω(B, B) and Lemma 2.3.

Proposition 6.1. Fix α > 0 and 0 < q ≤ ∞. If hℓ( · ; B) is doubling then
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(a) hℓ(N ; G α
q ) ≈ Nαhℓ(N ; B).

(b) hr(N ; G α
q ) ≈ Nαhr(N ; B).

In particular, B is democratic in G α
q (B, B) if and only if B is democratic in B.

Proof. The inequalities “&” in (a), and “.” in (b) follow immediately from the em-
beddings

ℓq
kαhr(k)(B; B) →֒ G

α
q (B, B) →֒ ℓq

kαhℓ(k)(B; B)

and the remark in (6.1). Thus we must show the converse inequalities. To establish
(a), given N = 1, 2, 3, . . . choose Γ with |Γ| = N and so that ‖1Γ‖B ≤ 2hℓ(N ; B).
Then, using the trivial bound in (4.1) we obtain

hℓ(N ; G α
q ) ≤ ‖1Γ‖G α

q
. Nα‖1Γ‖B ≈ Nαhℓ(N ; B).

We now prove “&” in (b). Given N = 1, 2, . . ., choose first Γ with |Γ| = N and
‖1Γ‖B ≥ 1

2
hr(N ; B), and then any Γ′ disjoint with Γ with |Γ′| = N . Then

hr(2N ; G α
q ) ≥

∥

∥1Γ∪Γ′

∥

∥

G α
q

& NαγN(1Γ∪Γ′; B) & Nα
∥

∥1Γ

∥

∥

B
≈ Nαhr(N ; B).

The required bound then follows from the doubling property of hr. �

Proposition 6.2. Fix α > 0 and 0 < q ≤ ∞, and assume that hℓ( · ; B) is doubling.
Then

(a) hℓ(N ;Aα
q ) ≈ Nαhℓ(N ; B).

(b) hr(N ;Aα
q ) . Nαhr(N ; B).

In particular, if B is democratic in B then B is democratic in Aα
q (B, B).

Proof. As before, “&” in (a), and “.” in (b) follow immediately from the embeddings

ℓq
kαhr(k)(B; B) →֒ Aα

q (B, B) →֒ ℓq
kαhℓ(k)(B; B).

The converse inequality in (a) follows from the previous proposition and the trivial
inclusion G

α
q →֒ Aα

q . �

As shown in Example 5.6, the converse to the last statement in Proposition 6.2 is
not necessarily true. The space B = bmo is not democratic, but their approximation
classes Aα

q (bmo) = ℓ1/α, q are democratic. Moreover, this example shows that the
converse to the inequality in (b) does not necessarily hold, since

hr(N ;Aq
α(bmo)) = Nα but Nαhr(N ; bmo) ≈ Nα(log N)1/2.

Nevertheless, we can give a sufficient condition for hr(N ;Aα
q ) ≈ Nαhr(N ; B), which

turns out to be easily verifiable in all the other examples presented in §5.

PROPERTY (H). We say that B satisfies the Property (H) if for each n =
1, 2, 3, ... there exist Γn ⊂ N, with |Γn| = 2n, satisfying the property

‖1Γ′‖B ≈ hr(2
n−1; B), ∀ Γ′ ⊂ Γn with |Γ′| = 2n−1.

Proposition 6.3. Assume that B satisfies the Property (H). Then, for all α > 0 and
0 < q ≤ ∞

hr(N ;Aα
q ) ≈ Nαhr(N ; B)
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Proof. We must show “&”, for which we argue as in the proof of Proposition 6.1.
Given N = 2n, select Γn as in the definition of Property (H). Then,

hr(N ;Aα
q ) ≥

∥

∥1Γn

∥

∥

Aα
q

& Nα σN/2(1Γn).

Now, the property (H) (and the remark in (2.4)) give

σN/2(1Γn) = inf
{

‖1Γ′‖B : Γ′ ⊂ Γ, |Γ′| = N/2
}

≈ hr(N/2; B) ≈ hr(N ; B).

Combining these two facts the proposition follows for N = 2n. For general N use the
result just proved and the doubling property of hr. �

As an immediate consequence, the property (H) allows to remove the possible log-
arithmic loss for the embedding ℓq

kαhr(k)(B, B) →֒ Aα
q (B, B) discussed in Corollary 3.9.

Corollary 6.4. More about optimality for inclusions into Aα
q
.

Assume that (B,B) satisfies property (H). If for some α > 0, q ∈ (0,∞] and ω ∈ W+

we have ℓq
ω(B, B) →֒ Aα

q (B, B), then necessarily ω(k) & kαhr(k), and therefore ℓq
ω →֒

ℓq
kαhr(k).

The following examples show that Property (H) is often satisfied.

Example 6.1. Wavelet bases in Orlicz spaces LΦ(Rd) satisfy the property (H).
Indeed, recall from [12, Thm 1.2] (see also Example 5.3) that

hr(N ; LΦ) ≈ sup
s>0

ϕ(Ns)/ϕ(s) . (6.2)

Moreover, any collection Γ of N pairwise disjoint dyadic cubes with the same fixed
size a > 0 satisfies

‖1Γ‖LΦ ≈ ϕ(Na)/ϕ(a) , (6.3)

(see eg [12, Lemma 3.1]). Thus, for each N = 2n, we first select an = 2jnd so that
hr(2

n; LΦ) ≈ ϕ(2nan)/ϕ(an) , and then we choose as Γn any collection of 2n pairwise
disjoint cubes with constant size an. Then, any subfamily Γ′ ⊂ Γn with |Γ′| = N/2,
satisfies

‖1Γ′‖LΦ ≈ ϕ((N/2)an)/ϕ(an) ≈ ϕ(Nan)/ϕ(an) ≈ hr(N) ≈ hr(N/2),

by (6.3) and the doubling property of ϕ and hr.

Example 6.2. Wavelet bases in Lorentz spaces Lp,q(Rd), 1 < p, q < ∞. These
also satisfy the property (H). Indeed, it can be shown that any set Γ consisting of N
disjoint cubes of the same size has

‖1Γ‖Lp,q ≈ N
1
p ,

while sets ∆ consisting of N disjoint cubes all having different sizes satisfy

‖1∆‖Lp,q ≈ N
1
q .

(see [14, (3.6) and (3.8)]). Since hr(N) ≈ N1/(p∧q), we can define the Γn’s with sets of
the first type when p ≤ q, and with sets of the second type when q < p, to obtain in
both cases a collection satisfying the hypotheses of property (H).
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Example 6.3. The hyperbolic Haar system in Lp(Rd) from Example 5.5 also
satisfies property (H). In this case, again, any set Γ consisting of N disjoint rectangles
has

‖1Γ‖Lp(Rd) = N
1
p .

On the other hand, if ∆n denotes the set of all the dyadic rectangles in the unit cube
with fixed size 2−n, then

‖1∆n‖Lp(Rd) ≈ 2n/p n(d−1)/2 ≈ |∆n|
1/p(log |∆n|)

(d−1)(
1
2
−1

p
)
. (6.4)

Moreover, it is not difficult to show that any ∆′ ⊂ ∆n with |∆′| = |∆n|/2 also satisfies
(6.4) (with ∆n replaced by ∆′). Hence, combining these two cases and using the
description of hr(N) in Example 5.5, one easily establishes the property (H).

7. Counterexamples for the classes G α
q (B, B)

7.1. Conditions for G α
q

6= Aα
q
. Recall from section 2.3 that G α

q (B, B) →֒ Aα
q (B, B),

with equality of the spaces when B is a democratic basis. It is known that there are
some conditional non-democratic bases for which G

α
q = Aα

q (see [13, Remark 6.2]).
For unconditional bases, however, one could ask whether non-democracy necessarily
implies that G α

q 6= Aα
q . We do not know how to prove such a general result, but we

can show that the inclusion Aα
q →֒ G

α
q must fail whenever the gap between hℓ(N) and

hr(N) is at least logarithmic (and even less than that). More precisely, we have the
following.

Proposition 7.1. Let B be an unconditional basis in B and α > 0. Suppose that
there exist integers pN ≥ qN ≥ 1, N = 1, 2, . . . such that

lim
N→∞

pN

qN

= ∞ and
hr(qN)

hℓ(pN )
&

(

pN

qN

)α

. (7.1)

Then the inclusion Aα
τ (B, B) →֒ G α

τ (B, B) does not hold for any τ ∈ (0,∞].

Proof. For each N , choose Γl, Γr ⊂ N with |Γl| = pN , |Γr| = qN , and such that

‖1Γl
‖B ≤ 2hℓ(pN), ‖1Γr‖B ≥ 1

2
hr(qN ) . (7.2)

Set xN = 1Γr + 2 · 1Γl−Γl∩Γr . Since #(Γl − Γl ∩ Γr) ≥ pN − qN , when k ∈ [1, pN − qN ]
we have

‖xN − Gk(xN )‖B ≥ ‖1Γr‖B ≥ 1
2
hr(qN ) .

Therefore, using pN − qN > pN/2 (since pN/qN > 2 for N large), we obtain that

‖xN‖G α
τ (B,B) ≥

1
2

[

pN /2
∑

k=1

(

kαhr(qN )
)τ 1

k

]
1
τ

& hr(qN) pα
N . (7.3)

On the other hand, we can estimate the norm of xN as follows:

‖xN‖B . ‖1Γr‖B + ‖1Γl−Γl∩Γr‖B ≤ hr(qN ) + 2hℓ(pN) . hr(qN) (7.4)

where the last inequality is true for N large due to (7.1). Thus

σk(xN ) ≤ ‖xN‖B . hr(qN ) . (7.5)

Next, if k ≥ qN , by (7.2)

σk(xN) ≤ 2‖1Γl−Γl∩Γr‖B ≤ 2‖1Γl
‖B . hℓ(pN) . (7.6)
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Combining (7.4), (7.5), and (7.6) we see that

‖xN‖Aα
τ (B,B) . hr(qN ) +

[

qN−1
∑

k=1

(

kαhr(qN)
)τ 1

k
+

pN+qN
∑

k=qN

(

kαhℓ(pN)
)τ 1

k

]
1
τ

. hr(qN ) +
[

hr(qN )τ (qN)ατ + hℓ(pN)τ (pN)ατ
]

1
τ

. hr(qN ) + hr(qN)(qN )α . hr(qN)(qN )α (7.7)

where in the second inequality we have used the elementary fact
∑a+b

k=a kγ−1 . bγ if
b ≥ a, and the third inequality is due to (7.1). Therefore, from (7.3) and (7.7) we
deduce

‖xN‖G α
τ

‖xN‖Aα
τ

&
hr(qN )(pN)α

hr(qN )(qN)α
=

(pN

qN

)α

−→ ∞

as N → ∞. This shows the desired result. �

Corollary 7.2. Let B be an unconditional basis such that hℓ(N) . Nβ0 and hr(N) &
Nβ1, for some β1 > β0 ≥ 0. Then, G α

q 6= Aα
τ , for all α > 0 and all τ ∈ (0,∞].

Proof. Choose r, s ∈ N , such that α+β0

α+β1
< r

s
< 1. Take pN = N s and qN = N r. Then,

limN→∞
pN

qN
= limN→∞ N s−r = ∞ and

hr(qN)

hℓ(pN)
&

N rβ1

N sβ0
> Nα(s−r) =

(N s

N r

)α

=
(pN

qN

)α

,

which proves (7.1) in this case, so that we can apply Proposition 7.1. �

Corollary 7.3. Let B be an unconditional basis such that for some β ≥ 0 and γ > 0
we have either

(i) hr(N) & Nβ(log N)γ and hℓ(N) . Nβ , or

(ii) hr(N) & Nβ and hℓ(N) . Nβ(log N)−γ .

Then, G α
q 6= Aα

q for all α > 0 and all τ ∈ (0,∞].

Proof. i) Choose a, b ∈ N such that 0 < a
b

< γ
α+β

. Let pN = Na2Nb
and qN = 2Nb

.

Then, limN→∞
pN

qN
= limN→∞ Na = ∞ and

hr(qN )

hℓ(pN)
&

(2Nb
)β(log 2Nb

)γ

Naβ(2Nb)β
≈

N bγ

Naβ
= N bγ−aβ > Naα =

(pN

qN

)α

which proves (7.1) in this case, so that we can apply Proposition 7.1 to conclude the
result. The proof of ii) is similar with the same choice of pN and qN . �

7.2. Non linearity of G α
q (B, B). We conclude by showing with simple examples that

G α
q (B, B) may not even be a linear space when the basis B is not democratic.
Let B = ℓp ⊕ℓ1 ℓq, 0 < q < p < ∞; that is, B consists of pairs (a, b) ∈ ℓp × ℓq,

endowed with the quasi-norm ‖a‖ℓp + ‖b‖ℓq . We consider the canonical basis in B.

Now, set β = α + 1
p

and x = {(k−β, 0)}k∈N ∈ B. For N = 1, 2, 3, . . . we have

γN(x) =
(

∑

k>N

1

kβp

)1/p

≈
( 1

Nβp−1

)1/p

= N−α .
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This shows that x ∈ G α
∞(B, B). Similarly, if we let γ = α + 1

q
, then y = {(0, j−γ)}j∈N

belongs to G α
∞. We will show, however, that x + y 6∈ G α

∞. In fact, we will find a
subsequence NJ of natural numbers so that

γNJ
(x + y) ≈

1

N
αβ/γ
J

(7.8)

(notice that β < γ since we chose q < p). To prove (7.8) let A1 = {1} and

Aj =
{

k ∈ N :
1

jγ
≤

1

kβ
<

1

(j − 1)γ

}

, j = 2, 3, . . .

The number of elements in Aj is

|Aj| ≈ jγ/β − (j − 1)γ/β ≈ j
γ
β
−1 , j = 1, 2, 3, . . . (7.9)

For J = 2, 3, 4, . . . let NJ =
∑J

j=1 |Aj| + J . From (7.9) we obtain

NJ ≈
J

∑

j=1

j
γ
β
−1 + J ≈ J

γ
β + J ≈ J

γ
β ,

since γ > β . Thus,

γNJ
(x + y) ≈

(

∑

k>J
γ
β

k−βp
)1/p

+
(

∑

j>J

j−γq
)1/q

≈
[

(Jγ/β)−βp+1
]1/p

+
[

J−γq+1
]1/q

= J−αγ/β + J−α ≈ J−α ≈ (NJ)−αβ/γ ,

proving (7.8).
A simple modification of the above construction can be used to show that the set

G α
s (B, B) is not linear, for any α > 0 and any s ∈ (0,∞).
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