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Abstract
We prove the optimal convergence estimate for first order interpolants used in finite element
methods based on three major approaches for generalizing barycentric interpolation functions to
convex planar polygonal domains. The Wachspress approach explicitly constructs rational
functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the
functions, and the Harmonic approach defines the functions as the solution of a PDE. We show
that given certain conditions on the geometry of the polygon, each of these constructions can
obtain the optimal convergence estimate. In particular, we show that the well-known maximum
interior angle condition required for interpolants over triangles is still required for Wachspress
functions but not for Sibson functions.

Keywords
Barycentric coordinates; interpolation; finite element method

1 Introduction
While a rich theory of finite element error estimation exists for meshes made of triangular or
quadrilateral elements, relatively little attention has been paid to meshes constructed from
arbitrary polygonal elements. Many quality-controlled domain meshing schemes could be
simplified if polygonal elements were permitted for dealing with problematic areas of a
mesh and finite element methods have been applied to such meshes [35,39]. Moreover, the
theory of Discrete Exterior Calculus has identified the need for and potential usefulness of
finite element methods using interpolation methods over polygonal domain meshes (e.g.
Voronoi meshes associated to a Delaunay domain mesh) [18]. Therefore, we seek to develop
error estimates for functions interpolated from data at the vertices of a polygon Ω.

Techniques for interpolation over polygons focus on generalizing barycentric coordinates to
arbitrary n-gons; this keeps the degrees of freedom associated to the vertices of the polygon
which is exploited in nodal finite element methods. The seminal work of Wachspress [37]
explored this exact idea and has since spawned a field of research on rational finite element
bases over polygons. Many alternatives to these ‘Wachspress coordinates’ have been
defined as well, including the Harmonic and Sibson interpolants. To our knowledge,
however, no careful analysis has been made as to which, if any, of these interpolation
functions provide the correct error estimates required for finite element schemes.
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We consider first-order interpolation operators from some generalization of barycentric
coordinates to arbitrary convex polygons. A set of barycentric coordinates {λi} for Ω
associated with the interpolation operator I : H2(Ω) → span{λi} ⊂ H1 (Ω) is given by

(1)

Since barycentric coordinates are unique on triangles (described in Section 2.1) this is
merely the standard linear Lagrange interpolation operator when Ω is a triangle.

Before stating any error estimates, we fix some notation. For multi-index α = (α1, α2) and
point x = (x, y), define xα ≔ xα1 yα2, α! ≔ α1α2, |α| ≔ α1 + α2, and Dα u ≔ ∂|α| u/∂xα1

∂yα2. The Sobolev semi-norms and norms over an open set Ω are defined by

The H0-norm is the L2-norm and will be denoted ‖·‖L2(Ω).

Analysis of the finite element method often yields bounds on the solution error in terms of
the best possible approximation in the finite-dimensional solution space. Thus the challenge
of bounding the solution error is reduced to a problem of finding a good interpolant. In many
cases Lagrange interpolation can provide a suitable estimate which is asymptotically
optimal. For first-order interpolants that we consider, this optimal convergence estimate
has the form

(2)

To prove estimate (2) in our setting, it is sufficient (see Section 4) to restrict the analysis to a
class of domains with diameter one and show that I is a bounded operator from H2(Ω) into
H1(Ω), that is

(3)

We call equation (3) the H1-interpolant estimate associated to the barycentric coordinates
λi used to define I.

The optimal convergence estimate (2) does not hold uniformly over all possible domains; a
suitable geometric restriction must be selected to produce a uniform bound. Even in the
simplest case (Lagrange interpolation on triangles), there is a gap between geometric criteria
which are simple to analyze (e.g. the minimum angle condition) and those that encompass
the largest possible set of domains (e.g. the maximum angle condition).

This paper is devoted to finding geometric criteria under which the optimal convergence
estimate (2) holds for several types of generalized barycentric coordinates on arbitrary
convex polygons. We begin by establishing some notation (shown in Figure 1) to describe
the specific geometric criteria.

Let Ω be a convex polygon with n vertices. Denote the vertices of Ω by vi and the interior
angle at vi by βi. The largest distance between two points in Ω (the diameter of Ω) is denoted
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diam(Ω) and the radius of the largest inscribed circle is denoted ρ(Ω). The center of this
circle is denoted c and is selected arbitrarily when no unique circle exists. The aspect ratio
(or chunkiness parameter) γ is the ratio of the diameter to the radius of the largest inscribed
circle, i.e.

We will consider domains satisfying one or more of the following geometric conditions.

G1. Bounded aspect ratio: There exists γ* ∈ ℝ such that γ < γ*.

G2. Minimum edge length: There exists d* ∈ ℝ such that |vi − vj| > d* > 0 for all i
≠ j.

G3. Maximum interior angle: There exists β* ∈ ℝ such that βi < β* < π for all i.

Using several definitions of generalized barycentric functions from the literature, we show
which geometric constraints on Ω are either necessary or sufficient to ensure the estimate for
each definition. The main results of this paper are summarized by the following theorem and
Table 1. Primary attention is called to the difference between Wachspress and Sibson
coordinates: while G3 is a necessary requirement for Wachspress coordinates, it is
demonstrated to be unnecessary for the Sibson coordinates.

Theorem 1 In Table 1, any necessary geometric criteria to achieve the H1 interpolant
estimate (3) are denoted by N. The set of geometric criteria denoted by S in each row are
sufficient to guarantee the H1 interpolant estimate (3).

In Section 2, we define the various types of generalized barycentric coordinates, compare
their properties, and mention prior applications. In Section 3, we review some general
geometric results needed for subsequent proofs. In Section 4, we give the relevant
background on interpolation theory for Sobolev spaces and state some classical results used
to motivate our approach. In Section 5.1, we show that the simplest technique of
triangulating the polygon achieves the estimate if and only if G3 holds. In Section 5.2, we
show that if harmonic coordinates are used, G1 alone is sufficient. In Section 5.3, we show
that Wachspress coordinates require G3 to achieve the estimate but all three criteria are
sufficient. In Section 5.4, we show that Sibson coordinates achieve the estimate with G1 and
G2 alone. We discuss the implications of these results and future directions in Section 6.

2 Generalized Barycentric Coordinate Types
Barycentric coordinates on general polygons are any set of functions satisfying certain key
properties of the regular barycentric functions for triangles.

Definition 1 Functions λi : Ω → ℝ, i = 1, …, n are barycentric coordinates on Ω if they
satisfy two properties.

B1. Non-negative: λi ≥ 0 on Ω.

B2.

Linear Completeness: For any linear function L : Ω → ℝ, .

Remark 1 Property B2 is the key requirement needed for our interpolation estimates. It
ensures that the interpolation operation preserves linear functions, i.e. IL = L.
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We will restrict our attention to barycentric coordinates satisfying the following invariance
property. Let T : ℝ2 → ℝ2 be a composition of rotation, translation, and uniform scaling

transformations and let  denote a set of barycentric coordinates on TΩ.

B3. Invariance: .

This assumption will allow estimates over the class of convex sets with diameter one to be
immediately extended to generic sizes since translation, rotation and uniform scaling
operations can be easily passed through Sobolev norms (see Section 4). At the expense of
requiring uniform bounds over a class of diameter-one domains rather than a single
reference element, complications associated with handling non-affine mappings between
reference and physical elements are avoided [3].

A set of barycentric coordinates {λi} also satisfies these additional familiar properties:

B4.

Partition of unity: .

B5.

Linear precision: .

B6. Interpolation: λi(vj) = δij.

The precise relationship between these properties and those defining the barycentric
coordinates is given in the following proposition.

Proposition 1 The properties B1–B6 are related as follows:

i. B2 ⇔ (B4 and B5)

ii. (B1 and B2) ⇒ B6

Proof Given B2, setting L ≡ 1 implies B4 and setting L(x) = x yields B5. Conversely,
assuming B4 and B5, let L(x, y) = ax + by + c where a, b, c ∈ ℝ are constants. Let vi have

coordinates . Then

A proof that B1 and B2 imply B6 can be found in [16, Corollary 2.2].

Thus, while other definitions of barycentric coordinates appear in the literature, requiring
only properties B1 and B2 is a minimal definition still achieving all the desired properties.

In the following subsections, we define common barycentric coordinate functions from the
literature. Additional comparisons of barycentric functions can be found in the survey papers
of Cueto et al. [8] and Sukumar and Tabarraei [34].

2.1 Triangulation Coordinates
The simplest method for constructing barycentric coordinates on a polygon is to triangulate
the polygon and use the standard barycentric coordinate functions of these triangles.
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Interpolation properties of this scheme are well known from the standard analysis of the
finite element method over triangular meshes, but this construction serves as an important
point of comparison with the alternative barycentric coordinates discussed later.

Let be a triangulation of Ω formed by adding edges between the vj in some fashion.
Define

to be the barycentric function associated to vi on triangles in containing vi and identically
0 otherwise. Trivially, these functions define a set of barycentric coordinates on Ω.

Two particular triangulations are of interest. For a fixed i, let m denote any triangulation
with an edge between vi−1 and vi+1. Let M denote the triangulation formed by connecting
vi to all the other vj. Examples are shown in Figure 2.

Proposition 2 (Floater et al. [16]) Any barycentric coordinate function λi according to
Definition 1 satisfies the bounds

(4)

Proposition 2 tells us that the triangulation coordinates are, in some sense, the extremal
definitions of generalized barycentric coordinates. In any triangulation of Ω, at least one
triangle will be of the form (vi−1, vi, vi+1), and hence the lower bound in (4) is always

realized by some . Thus, the examination of alternative barycentric coordinates can be
motivated as an attempt to find non-extremal generalized barycentric coordinates.

2.2 Harmonic Coordinates
A particularly well-behaved set of barycentric coordinates, harmonic coordinates, can be
defined as the solutions to certain boundary value problems. Let gi : ∂Ω → ℝ be the
piecewise linear function satisfying

The harmonic coordinate function  is defined to be the solution of Laplace’s equations
with gi as boundary data,

(5)

Existence and uniqueness of the solution are well known results [13, 30]. Properties B1 and
B2 are a consequence of the maximum principle and linearity of Laplace’s equation.

These coordinates are optimal in the sense that they minimize the norm of the gradient over
all functions satisfying the boundary conditions,
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This natural construction extends nicely to polytopes, as well as to a similar definition for
barycentric-like (Whitney) vector elements on polygons. Christensen [7] has explored

theoretical results along these lines. Numerical approximations of the  functions have
been used to solve Maxwell’s equations over polyhedral grids [12] and for finite element
simulations for computer graphics [25,21]. While it may seem excessive to solve a PDE just
to derive the basis functions for a larger PDE solver, the relatively limited geometric
requirements required for their use (see Section 5.2) make these functions a useful reference
point for comparison with simpler constructions and a suitable choice in contexts where
mesh element quality is hard to control.

2.3 Wachspress Coordinates
One of the earliest generalizations of barycentric coordinates was provided by Wachspress
[37]. Definition of these coordinates is defined based on some notation shown in Figure 3.
Let x denote an interior point of Ω and let Ai(x) denote the area of the triangle with vertices
x, vi, and vi+1 where, by convention, v0 ≔ vn and vn+1 ≔ v1. Let Bi denote the area of the
triangle with vertices vi−1, vi, and vi+1. Define the Wachspress weight function

The Wachspress coordinates are then given by

(6)

These coordinates have received extensive attention in the literature since they can be
represented as rational functions in Cartesian coordinates. Their use in finite element
schemes has been numerically tested in specific application contexts but to our knowledge
has not been evaluated in the general Sobolev error estimate context considered here. We

note that  since it is a rational function with strictly positive denominator on
Ω.

Remark 2 Since Bi does not depend on x and Ai(x) is linear in x, the Wachspress functions
are degree n − 2. By a result from Warren [38], the Wachspress functions are the unique,
lowest degree rational barycentric functions over polygons. For finite element applications,
however, the λi need not be rational.

2.4 Sibson (Natural Neighbor) Coordinates
The Sibson coordinates [32], also called the natural neighbor or natural element coordinates,
make use of Voronoi diagrams on the vertices vi of Ω. Let x be a point inside Ω. Let P
denote the set of vertices {vi} and define

We denote the Voronoi cell associated to a point p in a pointset Q by
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Note that these Voronoi cells have been restricted to Ω and are thus always of finite size. We
fix the notation

By a slight abuse of notation, we also define

The notation is shown in Figure 4. The Sibson coordinates are defined to be

It has been shown that the  are C∞ on Ω except at the vertices vi where they are C0 and
on circumcircles of Delaunay triangles where they are C1 [32,14]. Since the finite set of

vertices are the only points at which the function is not C1, we conclude that .

To close this section, we compare the intra-element smoothness properties of the coordinate
types on the interior of Ω. The triangulation coordinates are C0, the Sibson coordinates are
C1, and the Wachspress functions and the harmonic coordinates are both C∞.

3 Generalized Shape Regularity Conditions
The invariance property B3 allows estimates on diameter-one polygons to be scaled to
polygons of arbitrary size. Several well-known properties of planar convex sets to be used
throughout the analysis are given in Proposition 3. Let |Ω| denote the area of convex polygon
Ω and let |∂Ω| denote the perimeter of Ω.

Proposition 3 If Ω is a convex polygon with diam(Ω) = 1, then

i. |Ω| < π/4,

ii. |∂Ω| ≤ π,

iii. Ω is contained in a ball of radius no larger than , and

iv. If convex polygon ϒ is contained in Ω, then |∂ϒ| ≤ |∂Ω|.

The first three statements are the isodiametric inequality, a corollary to Barbier’s theorem,
and Jung’s theorem, respectively. The last statement is a technical result along the same
lines. See [11,40,31] for more details.

Certain combinations of the geometric restrictions (G1–G3) imply additional useful
properties for the analysis. These resulting conditions are listed below.

G4. Minimum interior angle: There exists β* ∈ ℝ such that βi > β* > 0 for all i.

G5. Maximum vertex count: There exists n* ∈ ℝ such that n < n*.

For triangles, G4 and G3 are the only two important geometric restrictions since G5 holds
trivially and G1⇔G4⇒G2. For general polygons, the relationships between these conditions
are more complicated; for example, a polygon satisfying G1 may have vertices which are
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arbitrarily close to each other and thus might not satisfy G5. Proposition 4 below specifies
when the original geometric assumptions (G1–G3) imply G4 or G5.

Proposition 4 The following implications hold.

i. G1 ⇒ G4

ii. (G2 or G3) ⇒ G5

Proof G1 ⇒ G4: If βi is an interior angle, then ρ(Ω) ≤ sin(βi/2) (see Figure 5). Thus

. We conclude that . Note that γ* ≥ 2 so this is well-defined.

G2 ⇒ G5: By Jung’s theorem (Proposition 3(iii)), there exists x ∈ Ω such that Ω ⊂
. By G2,  is a set of disjoint balls. Thus  contains

all of these balls. Comparing the areas of

.

G3 ⇒ G5: Since Ω is convex, . So nβ* ≥ π(n − 2). Thus .

4 Interpolation in Sobolev Spaces
Interpolation error estimates are typically derived from the Bramble-Hilbert lemma which
says that Sobolev functions over a certain domain or class of domains can be approximated
well by polynomials. The original lemma [5] applied to a fixed domain (typically the
“reference” element) and did not indicate how the estimate was impacted by domain
geometry. Later, a constructive proof based on the averaged Taylor polynomial gave a
uniform estimate under the geometric restriction G1 [10,6]. Recent improvements to this
construction have demonstrated that even the condition G1 is unnecessary [36,9]. This
modern version of the Bramble-Hilbert lemma is stated below and has been specialized to
our setting, namely, the H1 estimate for diameter 1, convex domains.

Lemma 1 ([36,9]) Let Ω be a convex polygon with diameter 1. For all u ∈ H2(Ω), there
exists a first order polynomial pu such that ‖u − pu‖H1(Ω) ≤ CBH |u|H2(Ω).

We emphasize that the constant CB H is uniform over all convex sets of diameter 1. The H1-
interpolant estimate (3) and Lemma 1 together ensure the desired optimal convergence
estimate (2).

Theorem 2 Let Ω be a convex polygon with diameter 1. If the H1-interpolant estimate (3)
holds, then for all u ∈ H2(Ω),

Proof Let pu be the polynomial given in Lemma 1 which closely approximates u. By
property B2, Ipu = pu yielding the estimate
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Corollary 1 Let diam(Ω) ≤ 1. If the H1-interpolant estimate (3) holds, then for all u ∈ H2(Ω),

Proof This follows from the standard scaling properties of Sobolev norms since property B3
allows for a change of variables to a unit diameter domain. Note that the L2-component of
the H1-norm satisfies a stronger estimate containing an extra power of diam(Ω).

Section 5 is an investigation of the geometric conditions under which the H1-interpolant
estimate (3) holds for the barycentric functions discussed in Section 2. Under the geometric
restrictions G1 and G5, one method for verifying (3) (utilized in [6] for simplicial
interpolation) is to bound the H1-norm of the basis functions. In several cases we will utilize
this criteria which is justified by the following lemma.

Lemma 2 Under G1 and G5, the H1-interpolant estimate (3) holds whenever there exists a
constant Cλ such that

(7)

Proof This follows almost immediately from the Sobolev embedding theorem; see [2, 23]:

where Cs is the Sobolev embedding; i.e., ‖u‖C0(Ω̅) ≤ Cs ‖u‖H2(Ω) for all u ∈ H2(Ω). The
constant Cs is independent of the domain Ω since the boundaries of all polygons satisfying
G1 are uniformly Lipschitz [23].

5 Error Estimate Requirements
5.1 Estimate Requirements for Triangulation Coordinates

Interpolation error estimates on triangles are well understood: the optimal convergence
estimate (2) holds as long as the triangle satisfies a maximum angle condition [4,19]. In fact,
it has been shown that the triangle circumradius controls the error independent of any other
geometric criteria [22]. This result can be directly applied to ITri, the interpolation operator

associated to coordinates . This convention will also be used to define IOpt, IWach, and
ISibs as the interpolation operators associated with with harmonic, Wachspress, and Sibson
coordinates, respectively.

Lemma 3 Under G3, the H1 interpolant estimate (3) holds for ITri. Conversely, G3 is a
necessary assumption to achieve (3) with ITri.

Proof All angles of all triangles of any triangulation of Ω satisfying G3 are less than β*.
Thus, the sufficiency of G3 follows immediately from the maximum angle condition on
simplices [4]. An example from the same paper involving the interpolation of a quadratic
function over a triangle also establishes the necessity of the condition.

5.2 Estimate Requirements for Harmonic Coordinates
Recalling the notation from Figure 1, let T be the triangulation of Ω formed by connecting c
to each of the vi; see Figure 6a.
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Proposition 5 Under G1 all angles of all triangles of T are less than π−arcsin(1/γ*).

Proof Consider the triangle with vertices c, vi and vi+1. Without loss of generality, assume
that |c − vi| < |c − vi+1|. First we bound ∠cvi+1vi. By the law of sines,

(8)

If ∠cvivi+1 > π/2 then ∠cvi+1vi < π/2. Otherwise, (8) implies ∠cvi+1vi < π/2.

To bound angle ∠cvivi+1, it suffices to consider the case when ∠cvivi+1 > π/2, as shown in
Figure 6b. Define y to be the point on the line through vi and vi+1 which forms a right
triangle with vi and c. Since ∠cvivi+1 > π/2, y is exterior to Ω, as shown. Observe that

Since , the result follows.

For the final case, it suffices to assume ∠vicvi+1 > π/2, as shown in Figure 6c. Define y in
the same way, but note that in this case y is between vi and vi+1, as shown. Similarly,

, implying ∠vivi+1c > arcsin(1/γ*). Since ∠vicvi+1 < π − ∠vivi+1c, the result
follows.

Lemma 4 Under G1 the operator IOpt satisfies the H1 interpolant estimate (3).

Proof Since the differential equation (5) is linear, IOpt u is the solution to the differential
equation,

(9)

where gu is the piecewise linear function which equals u at the vertices of Ω. Following the
standard approach for handling nonhomogeneous boundary data we divide: IOpt u = uhom +
unon where unon ∈ H1(Ω) is some function satisfying the boundary condition (i.e., unon = gu
on ∂Ω) and uhom solves,

(10)

Specifically we select unon to be the standard Lagrange interpolant of u over triangulation T
(described earlier). Since Proposition 5 guarantees that no large angles exist in the
triangulation, the standard interpolation error estimate holds,

(11)

where CBA only depends upon the aspect ratio bound γ* since diam(Ω) = 1. The triangle
inequality then implies that ‖unon‖H1(Ω) ≤ max(1, CBA) ‖u‖H2(Ω).
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Next a common energy estimate (see [13]) for (10) implies that |uhom|H1(Ω) ≤ |unon|H1(Ω). The
Poincaré inequality (see [23]) ensures that ‖uhom‖L2(Ω) ≤ CP |u|H1(Ω) where CP only depends
on the diameter of Ω which we have fixed to be 1. The argument is completed by combining
the previous estimates:

5.3 Estimate Requirements for Wachspress Coordinates
Unlike the harmonic coordinate functions, the Wachspress coordinates can produce
unsatisfactory interpolants unless additional geometric conditions are imposed. We present a
simple counterexample (observed qualitatively in [16] and in Figure 7) to show what can go
wrong.

Let Ωε be the pentagon defined by the vertices

with ε > 0. As ε → 0, Ωε approaches a square so G1 is not violated. Consider the interpolant

of  where x = (x1, x2). Observe that u has value 1 at v1 and value 0 at the other
vertices of Ωε. Hence

Using the fact that ∂u/∂y = 0, we write

The last term in this sum blows up as ε → 0.

Lemma 5 .

The proof of the lemma is given in the appendix. As a corollary, we observe that ‖u −
Iu‖H1(Ωε) cannot be bounded independently of ε. Since ‖u‖H2(Ωε) is finite, this means the
optimal convergence estimate (2) cannot hold without additional geometric criteria on the
domain Ω. This establishes the necessity of a maximum interior angle bound on vertices if
Wachspress coordinates are used.

Under the three geometric restrictions G1, G2, and G3, (2) does hold which will be shown in
Lemma 6. We begin with some preliminary estimates.
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Proposition 6 For all x ∈ Ω, .

Proof In [17, Equation (17)] it is shown that the . Since diam(Ω) = 1 the
result follows.

Next we show that the triangular areas Bi are uniformly bounded from below given our
geometric assumptions.

Proposition 7 Under G1, G2, and G3, there exists B* such that Bi > B*.

Proof By G2, the area of the isosceles triangle with equal sides of length d* meeting with
angle βi at vi is a lower bound for Bi, as shown in Figure 8 (left). More precisely, Bi > (d*)2

sin(βi/2) cos(βi/2). G3 implies that cos(βi/2) > cos(β*/2). G4 (which follows from G1 by
Proposition 4) implies that sin(βi/2) > sin(β*/2). Thus Bi > B* ≔ (d*)2 sin(β*/2) cos(β*/2).

Proposition 7 can be extended to guarantee a uniform lower bound on the sum of the
Wachspress weight functions.

Proposition 8 Under G1, G2, and G3, there exists w* such that for all x ∈ Ω,

Proof Let vi be the nearest vertex to x, breaking any tie arbitrarily. We will produce a lower
bound on wi(x). Let j ∉ {i − 1, i}. G2 implies that |x − vj| > d*/2 and |x − vj+1| > d*/2. G3
implies that ∠xvjvj+1 < β* and ∠xvj+1vj < β*. It follows that Aj (x) > (d*)2 sin(π − β*)/4
(see Figure 8 (right)). We now use Proposition 7 and property G5 (which follows from
either G2 or G3 by Proposition 4) to conclude that

Lemma 6 Under G1, G2, and G3, (7) holds for the Wachspress coordinates.

Proof The gradient of  can be bounded using Proposition 8:

(12)

Recalling Proposition 3,  and Bi < π/4. Using Proposition 6 and the
arithmetic mean-geometric mean inequality, we derive
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(13)

By induction, one can show that  for n ≥ 4. Using this, we
substitute (13) into (12) to get

Since |Ω| < π/4 by Proposition 3, we thus have a uniform bound

5.4 Estimate Requirements for Sibson Coordinates
The interpolation estimate for Sibson coordinates is computed using a very similar approach
to that of the previous section on Wachspress coordinates. However in this case the
geometric condition G3 is not necessary. We begin with a technical property of domains
satisfying conditions G1 and G2.

Proposition 9 Under G1 and G2, there exists h* > 0 such that for all x ∈ Ω, B(x, h*) does
not intersect any three edges or any two non-adjacent edges of Ω.

Proof Let x ∈ Ω, h ∈ (0, d*/2), and suppose that two disjoint edges of Ω, ei and ej, intersect
B(x, h). Let Li and Lj be the lines containing ei and ej and let θ be the angle between these
lines; see Figure 9. We first consider the case where Li and Lj are not parallel and define z =
Li ∩ Lj.

Let vi and vj be the endpoints of ei and ej nearest to z. Since h < d*/2 both vi and vj cannot
live in B(x, h); without loss of generality assume that vi ∉ B(x, h).

Since dist(vj, Li) < 2h,

(14)

Let W be the sector between Li and Lj containing x. Now Ω ⊂ B(vj, 1) ∩ W ⊂ B(z, 1 + |z −
vj|) ∩ W. It follows that ρ(Ω) ≤ (1 + |vj − z|) sin θ. Using (14) and G1,
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where the final inequality holds because by G2 |z − vj| ≥ |vi − vj| ≥ d*. Thus

(15)

Estimate (15) holds in the limiting case: when Li and Lj are parallel. In this case Ω must be
contained in a strip of width 2h which for small h violates the aspect ratio condition.

The triangle is the only polygon with three or more pairwise non-adjacent edges. So it
remains to find a suitable h* so that B(x, h*) does not intersect all three edges of the triangle.
For a triangle, ρ(Ω) is the radius of the smallest circle touching all three edges. Since under

G1 ρ(Ω) ≥ 1/γ*,  intersects at most two edges. Thus  is sufficiently
small to satisfy the proposition in all cases.

Proposition 9 is a useful tool for proving a lower bound on D(x), the area of the Voronoi cell
of x intersected with Ω.

Proposition 10 Under G1 and G2, there exists D* > 0 such that D(x) > D*.

Proof Let h* be the constant in Proposition 9. We consider two cases, based on whether the
point x is near any vertex of Ω, as shown in Figure 10 (left).

Case 1: There exists vi such that x ∈ B(vi, h*/2).

Consider the sector of B(x, h*/2) specified by segments which are parallel to the edges of Ω
containing vi, as shown in Figure 10 (right). This sector must be contained in Ω by
Proposition 9 and in the Voronoi cell of x by choice of h* < d*. Thus by G4 (using

Proposition 4(i)) .

Case 2: For all vi, x ∉ B(vi, h*/2).

In this case, B(x, h*/4) ∩ Ω ⊂ VP′ (x). If B(x, h*/4) intersects zero or one boundary edge of

Ω, then . Otherwise B(x, h*/4) intersects two adjacent boundary edges. By G4,

.

General formulas for the gradient of the area of a Voronoi cell are well-known and can be
used to bound the gradients of D(x) and D(x) ∩ Ci.

Proposition 11 |∇ D(x)| ≤ π and |∇(D(x) ∩ Ci)| ≤ 1.

Proof The gradient of the area of a Voronoi region is known to be
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where Fj is the length of the segment separating the Voronoi cells of x and vj [27,28]. Then
applying Proposition 3 gives

Similarly,

and since Fi ≤ diam(Ω), |∇(D(x) ∩ Ci)| ≤ 1.

Propositions 10 and 11 give estimates for the key terms needed in proving (7) for the Sibson
coordinates λSibs.

Lemma 7 Under G1 and G2, (7) holds for the Sibson coordinates.

Proof  is estimated by applying Propositions 10 and 11:

Integrating this estimate completes the result.

Corollary 2 By Lemma 2, the H1 interpolant estimate (3) holds for the Sibson coordinates.

6 Final Remarks
Geometric requirements needed to ensure optimal interpolation error estimates are necessary
for guaranteeing the compatibility of polygonal meshes with generalized barycentric
interpolation schemes in finite element methods. Moreover, the identification of necessary
and unnecessary geometric restrictions provides a tool for comparing various approaches to
barycentric interpolation. Specifically we have demonstrated the necessity of a maximum
interior angle restriction for Wachspress coordinates, which was empirically observed in
[16], and shown that this restriction is unneeded when using Sibson coordinates.

Table 1 provides a guideline for how to choose barycentric basis functions given geometric
criteria or, conversely, which geometric criteria should be guaranteed given a choice of basis
functions. While utilized throughout our analysis, the aspect ratio requirement G1 can likely
be substantially weakened. Due to a dependence on specific affine transformations, such
techniques on triangular domains [4,19] (i.e., methods for proving error estimates under the
maximum angle condition rather than the minimum angle condition) cannot be naturally
extended to polygonal domains. Although aimed at a slightly different setting that we have
analyzed, challenges in identifying sharp geometric restrictions are apparent from the
numerous studies on quadrilateral elements, e.g., [20,41,1,24]. A satisfactory generalization
of the maximum angle condition to arbitrary polygons is a subject of further investigation.

This paper emphasizes three specific barycentric coordinates (harmonic, Wachspress, and
Sibson) but several others have been introduced in the literature. Maximum entropy [33],
metric [26], and discrete harmonic [29] coordinates can all be studied either by specific
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analysis or generalizing the arguments given here to wider classes of functions. The mean
value coordinates defined by Floater [15] are of particular interest in this regard as they are
defined by an explicit formula and appear to not require a maximum angle condition. The
formal analysis of these functions, however, is not trivial. Additional generalizations could
be considered by dropping certain restrictions on the coordinates, such as non-negativity, or
the mesh elements, such as convexity. Working with non-convex elements, however, would
require some non-obvious generalization of the geometric restrictions G1–G5.

A Proof of Lemma 5

Proof The explicit formula for the Wachspress weight associated to v1 is

where x = (x, y) is an arbitrary point inside Ωε. The other weights can be computed
similarly, yielding the coordinate function

The y partial derivative term is computed to be

Define the subregion  by

Observe that . Fix 0 < ε < 1. We bound the numerator by

Since |y − 1| < ε on , we can bound the denominator by

Putting these results together, we have that
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Let  for ease of notation. Since ,

thereby proving the lemma.
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Fig. 1.
Notation used throughout paper.
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Fig. 2.
Triangulations m and M are used to produce the minimum and maximum barycentric
functions associated with vi, respectively.
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Fig. 3.
Left: Notation for Ai(x). Right: Notation for Bi.
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Fig. 4.
Geometric calculation of a Sibson coordinate. Ci is the area of the Voronoi region associated
to vertex vi inside Ω. D(x) is the area of the Voronoi region associated to x if it is added to
the vertex list. The quantity D(x) ∩ Ci is exactly D(x) if x = vi and decays to zero as x moves
away from vi, with value identically zero at all vertices besides vi.
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Fig. 5.
Proof that G1 ⇒ G4. The upper angle in the triangle is ≤ βi/2 ≤ π/2 and the hypoteneuse is ≤
diam(Ω) = 1. Thus ρ(Ω) ≤ sin(βi/2).
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Fig. 6.
(a) Triangulation used in the analysis of Harmonic coordinates. (b) Notation for proof of the
bound for ∠cvivi+1 in a case where it is > π/2. (c) Notation for proof of the bound for
∠vicvi+1 in a case where it is > π/2.
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Fig. 7.
Example showing the necessity of condition G3 for attaining the optimal convergence
estimate (2) with the Wachspress coordinates. As the shape approaches a square, the level

sets of  collect at the top edge, causing a steep gradient and thus preventing a bound on
the H1 norm of the error. The figures from left to right correspond to ε values of 0.1, 0.05,
and 0.025.
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Fig. 8.
Left: Justification of claim that Bi > (d*)2 sin(βi/2) cos(βi/2) in the proof of Proposition 7.
The shaded triangle is isosceles with angle βi and two side lengths equal to d* as indicated.
Computing the area of this triangle using the dashed edge as the base yields the estimate.
Right: Justification of claim that Aj (x) > (d*)2 sin(π − β*)/4 in the proof of Proposition 8.
The indicated angle is at least π − β* by G3 and |vj − vj+1| > d*. Computing the area of the
triangle using edge vjvj+1 as the base yields the estimate.
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Fig. 9.
Notation for proof of Proposition 9.
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Fig. 10.
The proof of Proposition 10 has two cases based on whether x is within h*/2 of some vi or
not. When x is within h*/2 of vi, the shaded sector shown on the right is contained in VP′ (x)
∩ Ω.
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Table 1

‘N’ indicates a necessary geometric criterion for achieving the H1 interpolant estimate (3). The set of criteria
denoted ‘S’ in each row, taken together, are sufficient to ensure the H1 interpolant estimate (3).

G1
(aspect
ratio)

G2
(min edge

length)

G3
(max interior

angle)

Triangulated λTri - - S,N

Harmonic λHar S - -

Wachspress λWach S S S,N

Sibson λSibs S S -
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