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Abstract

We study greedy-type algorithms such that at a greedy step we
pick several dictionary elements contrary to a single dictionary ele-
ment in standard greedy-type algorithms. We call such greedy algo-
rithms super greedy algorithms. The idea of picking several elements
at a greedy step of the algorithm is not new. Recently, we observed
the following new phenomenon. For incoherent dictionaries these new
type of algorithms (super greedy algorithms) provide the same (in the
sense of order) upper bound for the error as their analogues from the
standard greedy algorithms. The super greedy algorithms are com-
putationally simpler than their analogues from the standard greedy
algorithms. We continue to study this phenomenon.

Keywords: super greedy algorithms, thresholding, convergence rate, inco-
herent dictionary

1 Introduction. Weak Super Greedy Algo-

rithm

This paper is a follow up to the paper [3]. We continue to study greedy-type
algorithms such that at a greedy step we pick several dictionary elements
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contrary to a single dictionary element in standard greedy-type algorithms.
We call such greedy algorithms super greedy algorithms. We refer the reader
to [5] for a survey of the theory of greedy approximation. The idea of picking
several elements at a greedy step of the algorithm is not new. It was used, for
instance, in [9]. A new phenomenon that we observed in [3] is the following.
For incoherent dictionaries these new type of algorithms (super greedy algo-
rithms) provide the same (in the sense of order) upper bound for the error as
their analogues from the standard greedy algorithms. The super greedy algo-
rithms are computationally simpler than their analogues from the standard
greedy algorithms. We continue to study this phenomenon here. We note
that the idea of applying super greedy algorithm to incoherent dictionaries
was used in [2] for building an efficient learning algorithm.

We recall some notations and definitions from the theory of greedy al-
gorithms. Let H be a real Hilbert space with an inner product 〈·, ·〉 and
the norm ‖x‖ := 〈x, x〉1/2 for all x ∈ H . We say a set D of functions (ele-
ments) from H is a dictionary if each g ∈ D has a unit norm (‖g‖ = 1) and
spanD = H. Let

M(D) := sup
ϕ6=ψ
ϕ,ψ∈D

|〈ϕ, ψ〉|

be the coherence parameter of dictionary D. We say that a dictionary D is
M-coherent if M(D) ≤ M . Main results of this paper concern performance
of super greedy algorithms with regard toM-coherent dictionaries. We study
two versions of super greedy algorithms: the Weak Super Greedy Algorithm
and the Weak Orthogonal Super Greedy Algorithm with Thresholding. We
now proceed to the definitions of these algorithms and to the formulations
of main results.

Let a natural number s and a weakness sequence τ := {tk}
∞
k=1, tk ∈

[0, 1], be given. Consider the following Weak Super Greedy Algorithm with
parameter s.

WSGA(s, τ). Initialization: f0 := f s,τ0 := f . Then for each m ≥ 1 we
inductively define:

(1) ϕ(m−1)s+1, . . . , ϕms ∈ D are elements of the dictionary D satisfying the
following inequality. Denote Im := [(m− 1)s+ 1, ms] and assume that

min
i∈Im

|〈fm−1, ϕi〉| ≥ tm sup
g∈D,g 6=ϕi,i∈Im

|〈fm−1, g〉|.
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(2) Let Fm := Fm(fm−1) := span(ϕi, i ∈ Im) and let PFm denote an oper-
ator of orthogonal projection onto Fm. Define the residual after mth
iteration of the algorithm

fm := f s,τm := fm−1 − PFm(fm−1).

(3) Find the approximant

Gs
m(f) := Gs,τ

m (f,D) :=
m
∑

j=1

PFj(fj−1).

In the case tk = t, k = 1, 2, . . ., we write t instead of τ in the notations. If
t = 1, we call the WSGA(s, 1) the Super Greedy Algorithm with parameter
s (SGA(s)). For s = 1 the Super Greedy Algorithm coincides with the Pure
Greedy Algorithm and the Weak Super Greedy Algorithm coincides with the
Weak Greedy Algorithm (see [5]).

For a general dictionary D we define the class of functions (elements)

A0
1(D, B) :=

{

f ∈ H : f =
∑

k∈Λ

ckgk, gk ∈ D, |Λ| <∞,
∑

k∈Λ

|ck| ≤ B

}

and we define A1(D, B) to be the closure (in H) of A0
1(D, B). For the case

B = 1, we denote A1(D) := A1(D, 1). We define the norm |f |A1(D) to be the
smallest B such that f ∈ A1(D, B).

The following open problem (see [10], p.65, Open Problem 3.1) on the rate
of convergence of the PGA for the A1(D) is a central theoretical problem in
greedy approximation in Hilbert spaces.

Open problem. Find the order of decay of the sequence

γ(m) := sup
f,D,{G1

m}

(‖f −G1
m(f,D)‖|f |−1

A1(D)),

where the supremum is taken over all dictionaries D, all elements f ∈ A1(D)\
{0} and all possible choices of {G1

m}.
We refer the reader to [5] for a discussion of this open problem. Introduce

the following generalization of the quantity γ(m) to the case of the Weak
Greedy Algorithms

γ(m, τ) := sup
f,D,{G1,τ

m }

(‖f −G1,τ
m (f,D)‖|f |−1

A1(D)).

We prove here the following theorem.
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Theorem 1.1. Let D be a dictionary with coherence parameterM :=M(D).
Then, for s ≤ (2M)−1, the WSGA(s, t) provides, after m iterations, an
approximation of f ∈ A1(D) with the following upper bound on the error:

‖f −Gs,t
m (f,D)‖ ≤ Ct−1s−

1
2γ(m− 1, rt),

where r :=
(

1−Ms
1+Ms

)
1
2
and C is an absolute constant.

Theorem 1.1 with t = 1 gives the following assertion for the SGA(s).

Corollary 1.2. Let D be a dictionary with coherence parameterM :=M(D).
Then, for s ≤ (2M)−1, the SGA(s) provides, after m iterations, an approxi-
mation of f ∈ A1(D) with the following upper bound on the error:

‖f −Gs
m(f,D)‖ ≤ Cs−

1
2γ(m, r),

where r :=
(

1−Ms
1+Ms

)
1
2
and C is an absolute constant.

It is interesting to note that even in the case of the SGA(s), when the
weakness parameter is 1, we have the upper bound of the error in terms of
γ(m, r) not in terms of γ(m). For estimating γ(m, r) we use the following
known result from [4].

Theorem 1.3. Let D be an arbitrary dictionary in H. Assume τ := {tk}
∞
k=1

is a nonincreasing sequence. Then, for f ∈ A1(D,B) we have

‖f −G1,τ
m (f,D)‖ ≤ B(1 +

m
∑

k=1

t2k)
−tm/2(2+tm). (1.1)

For a particular case tk = 1, k = 1, 2, . . . , this theorem gives the following
result (see [8]). For each f ∈ A1(D, B), the PGA provides, afterm iterations,
an approximant satisfying

‖f −Gm(f,D)‖ ≤ Bm−1/6.

For f ∈ A1(D), we apply the PGA and the SGA(s). Then after sm
iterations of the PGA and m iterations of the SGA(s), both algorithms pro-
vide sm-term approximants. For illustration purposes, take s = N1/2 and
m = N1/2. Then the PGA gives

‖fN‖ ≤ (sm)−1/6 = N−1/6
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and the SGA(s) provides

‖fm‖ ≤ Cs−1/2m− r
2(2+r) = N− 1

4
− 1

2
θ,

where θ := r
2(2+r)

and r =
(

1−Ms
1+Ms

)1/2

, 1
4
+ 1

2
θ ≥ 1

6
. Thus, in this particular

case, the SGA(s) has a better upper bound for the error than the PGA.

2 Weak Orthogonal Super Greedy Algorithm

with Thresholding

In [3] we considered the following algorithm. Let a natural number s and a
weakness sequence τ := {tk}

∞
k=1, tk ∈ [0, 1], be given. Consider the following

Weak Orthogonal Super Greedy Algorithm with parameter s.
WOSGA(s, τ). Initially, f0 := f . Then, for each m ≥ 1 we inductively

define:
(1) ϕ(m−1)s+1, . . . , ϕms ∈ D are elements of the dictionary D satisfying

the following inequality. Denote Im := [(m− 1)s+ 1, ms] and assume that

min
i∈Im

|〈fm−1, ϕi〉| ≥ tm sup
g∈D,g 6=ϕi,i∈Im

|〈fm−1, g〉|.

(2) Let Hm := Hm(f) := span(ϕ1, . . . , ϕms) and let PHm denote an oper-
ator of orthogonal projection onto Hm. Define

Gm(f) := Gm(f,D) := Gs
m(f,D) := PHm(f).

(3) Define the residual after mth iteration of the algorithm

fm := f sm := f −Gm(f,D).

In [3] we proved the following error bound for the WOSGA(s, t).

Theorem 2.1. Let D be a dictionary with coherence parameterM :=M(D).
Then, for s ≤ (2M)−1, the WOSGA(s, t) provides, after m iterations, an
approximation of f ∈ A1(D) with the following upper bound on the error:

‖fm‖
2 ≤ A(t)(sm)−1, m = 1, 2, . . . A(t) := (81/8)(1 + t)2t−4.
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In this paper we modify the WOSGA in the following way: we replace
the greedy step (1) by the thresholding step. Here is the definition of the
new algorithm. Let s be a natural number and let a weakness sequence
τ := {tk}

∞
k=1, tk ∈ [0, 1] be given.

WOSGAT(s, τ). Initially, f0 := f s,τ0 := f . Then for each m ≥ 1 we
inductively define:

(1) ϕi ∈ D where im ∈ Im are elements of the dictionary D satisfying the
following inequalities sm := |Im| ≤ s and

min
i∈Im

|〈fm−1, ϕi〉| ≥ tm‖fm−1‖
2. (2.1)

(2) Let Hm := Hm(f) := span(ϕi, i ∈ I1 ∪ . . .∪ Im) and let PHm denote an
operator of orthogonal projection onto Hm. Denote

Gm(f) := Gs,τ
m (f,D) := PHm(f).

(3) Define the residual after mth iteration of the algorithm

fm := f s,τm := f − PHm(f).

For s = 1 the WOSGA coincides with the Weak Orthogonal Greedy
Algorithm (WOGA) and the WOSGAT coincides with the Modified Weak
Orthogonal Greedy Algorithm (MWOGA) (see [10], p. 61). We note that
we can run the WOSGA and the WOGA for any f ∈ H . It is proved in [10]
that we can run the MWOGA for f ∈ A1(D). In the same way one can prove
that we can run the WOSGAT for f ∈ A1(D). We note that in step (1) of
the WOSGAT, if there are more than s ϕi’s satisfying

|〈fm−1, ϕi〉| ≥ tm‖fm−1‖
2,

the algorithm may pick any s of them and then make the projection.
If tm = t for m = 1, 2, . . ., we use t instead of τ in the notation. We

will prove an upper bound for the rate of convergence of the WOSGAT for
f ∈ A1(D) for a more general dictionary than the M-coherent dictionary.

Definition 2.1. We say that a dictionary D is (N, β)-Bessel if for any N
distinct elements ψ1, . . . , ψN of the dictionary D we have for any f ∈ H

‖PΨ(N)(f)‖
2 ≥ β

N
∑

i=1

|〈f, ψi〉|
2,

where Ψ(N) := span{ψ1, . . . , ψN}.
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Theorem 2.2. Let D be an (N, β)-Bessel dictionary. Then, for s ≤ N , the
WOSGAT(s, t) provides, after m iterations, an approximation of f ∈ A1(D)
with the following upper bound of the error:

‖f −Gm(f)‖ ≤ (1 + βt2
m
∑

j=1

sj)
−1/2.

We point out that
∑m

j=1 sj is the number of elements that the algorithm
picked up from D after m iterations. Therefore, the WOSGAT offers the
same error bound (in the sense of order) in terms of the number of elements
of the dictionary, used in the approximant, as the WOGA or the MWOGA.

We now give some sufficient conditions for a dictionary D to be (N, β)-
Bessel. We begin with a simple lemma useful in that regard.

Lemma 2.1. Let a dictionary D have the following property of (N,A)-
stability. For any N distinct elements ψ1, . . . , ψN of the dictionary D, we
have for any coefficients c1, . . . , cN

‖

N
∑

i=1

ciψi‖
2 ≤ A

N
∑

i=1

|ci|
2.

Then D is (N,A−1)-Bessel.

Proof. Let f ∈ H . We have

‖PΨ(N)(f)‖ = sup
ψ∈Ψ(N),‖ψ‖≤1

|〈PΨ(N)(f), ψ〉|

= sup
(c1,...,cN):‖c1ψ1+···+cNψN‖≤1

|
N
∑

i=1

〈f, ψi〉ci|

≥ sup
(c1,...,cN ):|c1|2+···+|cN |2≤A−1

|

N
∑

i=1

〈f, ψi〉ci| = A−1/2(

N
∑

i=1

|〈f, ψi〉|
2)1/2.

Proposition 2.3. AnM-coherent dictionary is (N, (1+M(N−1))−1)-Bessel.
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Proof. By Lemma 2.1 from [1] for an M-coherent dictionary we have

‖

N
∑

i=1

ciψi‖
2 ≤ (1 +M(N − 1))

N
∑

i=1

|ci|
2.

Applying the above Lemma 2.1, we obtain the statement of the proposition.

The following proposition is a direct corollary of Lemma 2.1.

Proposition 2.4. Let a dictionary D have the RIP(N, δ): for any distinct
ψ1, . . . , ψN

(1− δ)

N
∑

i=1

|ci|
2 ≤ ‖

N
∑

i=1

ciψi‖
2 ≤ (1 + δ)

N
∑

i=1

|ci|
2.

Then D is (N, (1 + δ)−1)-Bessel.

3 Proofs

Proof of Theorem 1.1. Let

f =

∞
∑

j=1

cjgj, gj ∈ D,

∞
∑

j=1

|cj| ≤ 1, |c1| ≥ |c2| ≥ . . . . (3.1)

Every element of A1(D) can be approximated arbitrarily well by elements of
the form (3.1). It will be clear from the below argument that it is sufficient
to consider elements f of the form (3.1). Suppose ν is such that |cν | ≥ a/s ≥
|cν+1|, where a = t+3

2t
. Then the above assumption on the sequence {cj}

implies that ν ≤ ⌊s/a⌋ and |cs+1| < 1/s. We claim that elements g1, . . . , gν
will be chosen among ϕ1, . . . , ϕs at the first iteration. Indeed, for j ∈ [1, ν]
we have

|〈f, gj〉| ≥ |cj | −M

∞
∑

k 6=j

|ck| ≥ a/s−M(1 − a/s) > a/s−M.

For all g distinct from g1, . . . , gs we have

|〈f, g〉| ≤M + 1/s.
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Our assumption s ≤ 1/(2M) implies that M + 1/s ≤ t(a/s−M). Thus, we
do not pick any of g ∈ D distinct from g1, . . . , gs until we have chosen all
g1, . . . , gν.

Denote

f ′ := f −
ν

∑

j=1

cjgj =
∞
∑

j=ν+1

cjgj .

It is clear from the above argument that

f1 = f − PH1(f) = f ′ − PH1(f
′) = f ′ −Gs

1(f
′). (3.2)

Define a new dictionary

Ds :=

{

∑

j∈Λ cjgj

‖
∑

j∈Λ cjgj‖
: |Λ| = s, gj ∈ D, cj ∈ R

}

.

Let Jl = [(l − 1)s+ ν + 1, ls+ ν]. We write

f ′ =
∞
∑

l=1

∑

j∈Jl

cjgj =
∞
∑

l=1

‖ψl‖
ψl

‖ψl‖
, (3.3)

where ψl =
∑

j∈Jl
cjgj. Apparently ψl

‖ψl‖
∈ Ds for l ≥ 1. Equation (3.3)

implies that

f ′ ∈ A1(D
s,

∞
∑

l=1

‖ψl‖).

By Lemma 2.1 from [1] we bound

(1−Ms)
∑

j∈Jl

c2j ≤ ‖ψl‖
2 ≤ (1 +Ms)

∑

j∈Jl

c2j . (3.4)

Then we obtain

∞
∑

l=1

‖ψl‖ ≤ (1 +Ms)1/2
∞
∑

l=1

(
∑

j∈Jl

c2j )
1/2. (3.5)

Since the sequence {cj} has the property

|cν+1| ≥ |cν+2| ≥ . . . ,

∞
∑

j=ν+1

|cj| ≤ 1, |cν+1| ≤ a/s (3.6)
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we may apply the simple inequality,

(
∑

j∈Jl

c2j)
1/2 ≤ s1/2|c(l−1)s+ν+1|,

so that we bound the sum in the right side of (3.5)

∞
∑

l=1

(
∑

j∈Jl

c2j )
1/2 ≤ s1/2

∞
∑

l=1

|c(l−1)s+ν+1|

≤ s1/2(a/s+
∞
∑

l=2

s−1
∑

j∈Jl−1

|cj|) ≤ (a + 1)s−1/2. (3.7)

Using the above inequality in (3.5), we obtain that

f ′ ∈ A1(D
s, (3/2)1/2(a+ 1)s−

1
2 ). (3.8)

Assume u :=
∑

aihi ∈ A1(D
s, B), where B is an absolute constant. Then

for any ψ ∈ Ds we have

v := u− 〈u, ψ〉ψ ∈ A1(D, 2B),

since |〈u, ψ〉| = |〈
∑

aigi, ψ〉| ≤ ‖ψ‖
∑

|ai| ≤ B. Along with (3.2) and (3.8)
the above argument shows that

f1 ∈ A1(D
s, 2(3/2)1/2(a + 1)s−1/2). (3.9)

Consider the following quantity

qs := qs(fm−1) := sup
hi∈D

i∈[1,s]

‖PH(s)(fm−1)‖,

where H(s) := span(h1, . . . , hs). It is clear that

qs = sup
H(s)

max
ψ∈H(s),‖ψ‖≤1

|〈fm−1, ψ〉| = sup
gs∈Ds

|〈fm−1, g
s〉|.

Let ψ =
∑s

i=1 aihi. Again by Lemma 2.1 from [1] we bound

(1−Ms)

s
∑

i=1

a2i ≤ ‖ψ‖2 ≤ (1 +Ms)

s
∑

i=1

a2i . (3.10)
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Therefore,

(1 +Ms)−1
s

∑

i=1

〈fm−1, hi〉
2 ≤ ‖PH(s)(fm−1)‖

2 ≤ (1−Ms)−1
s

∑

i=1

〈fm−1, hi〉
2.

(3.11)
Let pm := PHm(fm−1). In order to relate q2s to ‖pm‖

2 we begin with the fact
that

q2s ≤ sup
hi∈D

i∈[1,s]

(1−Ms)−1
s

∑

i=1

〈fm−1, hi〉
2.

Consider an arbitrary set {hi}
s
i=1 of distinct elements of the dictionary

D. Let V be a set of all indices i ∈ [1, s] such that hi = ϕk(i), k(i) ∈ Im.
Denote V ′ := {k(i), i ∈ V }. Then

s
∑

i=1

〈fm−1, hi〉
2 =

∑

i∈V

〈fm−1, hi〉
2 +

∑

i∈[1,s]\V

〈fm−1, hi〉
2. (3.12)

From the definition of {ϕk}k∈Im we get

max
i∈[1,s]\V

|〈fm−1, hi〉| ≤ t−1 min
k∈Im\V ′

|〈fm−1, ϕk〉|. (3.13)

Using (3.13) we continue (3.12)

≤
∑

k∈V ′

〈fm−1, ϕk〉
2 + t−2

∑

k∈Im\V ′

〈fm−1, ϕk〉
2 ≤ t−2

∑

k∈Im

〈fm−1, ϕk〉
2.

Therefore,

q2s ≤ (1−Ms)−1t−2
∑

k∈Im

〈fm−1, ϕk〉
2 ≤

1 +Ms

t2(1−Ms)
‖pm‖

2.

This results in the following inequality

‖pm‖
2 ≥

t2(1−Ms)

1 +Ms
q2s . (3.14)

Thus we can interpret WSGA(s, t) as WGA(rt) with respect to the dic-

tionary Ds, where r =
(

1−Ms
1+Ms

)
1
2

. Using (3.9), we get

‖f s,tm ‖ = ‖(f1)
s,t
m−1‖ ≤ 61/2(a + 1)s−1/2γ(m− 1, rt).
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This completes the proof of Theorem 1.1.
Proof of Theorem 2.2. For the {ϕi} from the definition of the WOSGAT,
denote

Fm := span(ϕi, i ∈ Im).

It is easy to see that Hm = Hm−1 ⊕ Fm. Therefore,

fm = f − PHm(f) = fm−1 +Gm−1(f)− PHm(fm−1 +Gm−1(f))

= fm−1 − PHm(fm−1).

Then the inclusion Fm ⊂ Hm implies

‖fm‖ ≤ ‖fm−1 − PFm(fm−1)‖. (3.15)

Using the notation pm := PFm(fm−1), we continue

‖fm−1‖
2 = ‖fm−1 − pm‖

2 + ‖pm‖
2

and by (3.15)
‖fm‖

2 ≤ ‖fm−1‖
2 − ‖pm‖

2. (3.16)

We now prove a lower bound for ‖pm‖. By our assumption that the
dictionary is (N, β)-Bessel we get

‖PFm(fm−1)‖
2 ≥ β

∑

i∈Im

|〈fm−1, ϕi〉|
2.

Then, by the thresholding condition of the greedy step (1), we obtain

‖PFm(fm−1)‖
2 ≥ βt2sm‖fm−1‖

4. (3.17)

Substituting this bound in (3.16), we get

‖fm‖
2 ≤ ‖fm−1‖

2
(

1− βt2sm‖fm−1‖
2
)

. (3.18)

We now apply the following lemma from [4].

Lemma 3.1. Let {am}
∞
m=0 be a sequence of nonnegative numbers satisfying

the inequalities

a0 ≤ A, am ≤ am−1(1− λ2mam−1/A), m = 1, 2, . . .

Then we have for each m

am ≤ A(1 +

m
∑

k=1

λ2k)
−1.

12



It gives us

‖fm‖ ≤ (1 + βt2
m
∑

j=1

sj)
−1/2.

✷
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