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Numerical Analysis of Finite Dimensional Approximations of
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Abstract

In this paper, we study finite dimensional approximations of Kohn-Sham models, which

are widely used in electronic structure calculations. We prove the convergence of the finite

dimensional approximations and derive the a priori error estimates for ground state energies

and solutions. We also provide numerical simulations for several molecular systems that support

our theory.
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linear eigenvalue problem.
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1 Introduction

Density functional theory (DFT) is a theory of many-body systems and has become a primary tool
for electronic structure calculations in atoms, molecules, and condensed matter [16, 18, 21, 23, 25,
26]. The most widely used is the Kohn-Sham model, in which a many-body problem of interacting
electrons in a static external potential is reduced to a tractable problem of non-interacting electrons
moving in an effective potential. The purpose of this paper is to analyze the finite dimensional
approximations of Kohn-Sham models so as to provide a mathematical justification for both the
directly minimizing energy functional method [24, 27] and the variational optimization method (i.e.
solving the Kohn-Sham equation self-consistently) [23] and some understanding of several existing
approximate methods in modern electronic structure calculations.

Throughout this paper, we restrict our mathematical analysis and numerical simulations to non-
relativistic, spin-unpolarized models. In the pseudopotential setting, the ground state solutions of
the Kohn-Sham model for a molecular system can be obtained by minimizing the Kohn-Sham
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energy functional

E({φi}) =
1

2

N
∑

i=1

∫

R3

|∇φi(x)|
2dx +

∫

R3

Vloc(x)ρ(x)dx +

N
∑

i=1

∫

R3

φi(x)Vnlφi(x)dx

+
1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x− y|
dxdy +

∫

R3

E(ρ(x))dx (1.1)

with respect to wavefunctions {φi}Ni=1 under the orthogonality constraints
∫

R3

φiφj = δij , 1 ≤ i, j ≤ N,

where N is the number of valence electrons in the system, ρ =
∑N
i=1 |φi(x)|

2 is the electron density,
Vloc and Vnl are the local and nonlocal pseudopotential operators respectively, that treat the core
electrons and the nuclei as a unit and represent the interactions on the valence electrons [23], and
E(ρ) denotes the exchange-correlation energy per unit volume in an electron gas with density ρ. The
Euler-Lagrange equation corresponding to this minimization problem is the so-called Kohn-Sham
equation: find λi ∈ R, φi ∈ H1(R3) (i = 1, 2, · · · , N) such that







(

− 1
2∆+ Veff ({φi})

)

φi = λiφi in R3, i = 1, 2, · · · , N,
∫

R3

φiφj = δij ,
(1.2)

where Veff ({φi}) is the effective potential relative to the last four terms in energy functional (1.1).
This is a nonlinear integro-differential eigenvalue problem, and (1.2) is often called self-consistent
field (SCF) equation as to emphasize the nonlinear feature encoded in Veff ({φi}). It is assumed
in most of the simulations that the ground state solutions can be found by occupying the lowest
eigenstates of Kohn-Sham equation (1.2). It is not known whether the assumption is true, but it
seems to be most often the case in practice.

The main difficulties of numerical analysis for Kohn-Sham models lie in what we have to either
handle the global minimization problems whose energy functionals may be nonconvex or deal with
the nonlinear eigenvalue problems whose eigenvalues may not be nondegenerate. To our best
knowledge, except for the very recent works of Cancès, Chakir, and Maday [6] and Suryanarayana
et al [29], there is no any other numerical analysis for Kohn-Sham models in the literature. We
see that the numerical analysis of Kohn-Sham models is crucial to understand the efficiency of the
numerical methods widely used in electronic structure calculations. Under a coercivity assumption
of the so-called second order optimality condition, [6] provided numerical analysis of plane wave
approximations and showed that every ground state solution can be approximated by plane wave
solutions, and [29] gave the convergence of ground state energy approximations based on finite
element discretizations only. In this paper, we shall present a systematic analysis for a general finite
dimensional discretization and prove that all the limit points of finite dimensional approximations
are ground state solutions of the system, and every ground state solution can be approximated by
finite dimensional solutions if the associated local isomorphism condition is satisfied. We provide
not only convergence of ground state energy approximations but also convergence rates of both
eigenvalue and eigenfunction approximations. We point out that the local isomorphism condition
should be very mild and is indeed satisfied if the second order optimality condition is provided.

Besides the Kohn-Sham models, there is another approach in DFT that is not so popular and
is called of orbital-free DFT [10, 31], in which approximate functionals in terms of electron density
alone are used for the kinetic energy of the non-interacting system and only the lowest eigenvalue
needs to be computed. There are several related works on its convergence analysis [8, 19, 32, 33]
and a priori error estimates [5, 6, 9].
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This paper is organized as follows. In the coming section, we give a brief overview of the
Kohn-Sham models and some preparations. In Section 3, we derive the existence of a unique local
discrete solution under some reasonable assumptions. In Section 4, we prove the convergence of
finite dimensional approximations of the ground state solutions with quite weak assumptions and
derive the error estimates of ground state energy, ground state eigenfunctions and eigenvalues.
In Section 5, we present some numerical results that support our theory. Finally, we give some
concluding remarks.

2 Preliminaries

Physically, the Kohn-Sham model is set over R3. But in a lot of computations, R3 may be replaced
by some polyhedral bounded domain Ω ⊂ R3, for example, a supercell for crystal or a large enough
cuboid for finite system, which is reasonable since the solution of (1.2) always decays exponentially
[1, 15, 28]. Thus we study numerical analysis of finite dimensional approximations of Kohn-Sham
equation as follows:







(

− 1
2∆+ Veff ({φi})

)

φi = λiφi in Ω, i = 1, 2, · · · , N,
∫

Ω

φiφj = δij , i, j = 1, 2, · · · , N
(2.1)

with the Dirichlet boundary condition φi = 0 on ∂Ω for finite systems and periodic boundary
conditions for crystals, where Ω ⊂ R3 is a polyhedral bounded domain.

We shall use the standard notation for Sobolev spaces W s,p(Ω) and their associated norms and
seminorms, see, e.g., [11]. For p = 2, we denote Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) :
v|∂Ω = 0}, where v|∂Ω = 0 is understood in the sense of trace, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω, and (·, ·) is the
standard L2 inner product. The space Y ∗, the dual of the Banach space Y , will also be used. For
convenience, the symbol . will be used in this paper. The notation A . B means that A ≤ CB
for some constant C that is independent of the mesh parameters.

Given c1 ∈ R and p, c2 ∈ [0,∞), we define

P(p, (c1, c2)) =
{

f : ∃ a1, a2 ∈ R such that c1t
p + a1 ≤ f(t) ≤ c2t

p + a2 ∀ t ≥ 0
}

.

For � ∈ RN×N , we denote its Frobenius norm by |�|. We consider the functional space1

H ≡ (H1
0 (Ω))

N = {(φ1, φ2, · · · , φN ) : φi ∈ H1
0 (Ω) (i = 1, 2, · · · , N)},

which is a Hilbert space associated with the induced norm ‖Φ‖1,Ω =

(

N
∑

i=1

(‖φi‖
2
0,Ω + ‖∇φi‖

2
0,Ω)

)1/2

and inner product (∇Φ,∇Ψ) =

N
∑

i=1

(∇φi,∇ψi) for Φ = (φ1, φ2, · · · , φN ),Ψ = (ψ1, ψ2, · · · , ψN ) ∈ H.

For simplicity of notation, we will sometimes abuse the notation by

‖Φ‖m,ω =

(

N
∑

i=1

‖φi‖
2
m,ω

)1/2

, ‖Φ‖0,p,ω =

(

N
∑

i=1

‖φi‖
p
0,p,ω

)1/p

1In fact, our theory also applies to space H = (H1
#
(Ω))N , where Ω is the unit cell of a periodic lattice R of Rd

and H
1
#
(Ω) = {v|Ω : v ∈ H

1
loc

(Rd) and v is R− periodic}.
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for subdomain ω ⊂ Ω and Φ = (φ1, φ2, · · · , φN ) ∈ H. For any Φ = (φ1, φ2, · · · , φN ),Ψ =

(ψ1, ψ2, · · · , ψN ) ∈ H, we define ρΦ =

N
∑

i=1

|φi|
2 and

ΦTΨ =

(
∫

Ω

φiψj

)N

i,j=1

∈ RN×N .

In our discussion, we shall also use the following three spaces:

SN×N = {M ∈ RN×N :MT =M}, AN×N = {M ∈ RN×N :MT = −M},

and

Q = {Φ ∈ H : ΦTΦ = IN×N}.

We may decompose H as a direct sum of three subspaces [12, 22]:

H = SΦ ⊕AΦ ⊕ TΦ

for any Φ ∈ Q, where SΦ = ΦSN×N , AΦ = ΦAN×N , and TΦ =
{

Ψ ∈ H : ΨTΦ = 0 ∈ RN×N
}

.

2.1 Kohn-Sham models

In the most commonly setting of local density approximation (LDA) [23], the associated Kohn-Sham
energy functional of (2.1) is expressed as

E(Φ) =

∫

Ω

(

N
∑

i=1

1

2
|∇φi|

2 + Vloc(x)ρΦ +
N
∑

i=1

φiVnlφi + E(ρΦ)

)

+
1

2
D(ρΦ, ρΦ) (2.2)

for Φ = (φ1, φ2, · · · , φN ) ∈ H, where Vloc is a smooth local pseudopotential, Vnl is the nonlocal
pseudopotential operator (see, e.g., [23]) given by

Vnlφ =
M
∑

j=1

(φ, ζj)ζj

with ζj ∈ L2(Ω)(j = 1, 2, · · · ,M), D(ρΦ, ρΦ) denotes electron-electron coulomb energy with

D(f, g) =

∫

Ω

f(g ∗ r−1) =

∫

Ω

∫

Ω

f(x)g(y)
1

|x − y|
dxdy,

and E(t) is some real function over [0,∞). We may assume that Vloc ∈ L2(Ω). We see that the
function E : [0,∞) → R does not have a simple analytical expression. In applications, we shall use
some approximations to E , for which we shall make the assumption that E(t) ∈ P(3, (c1, c2)) with
c1 ≥ 0 or E(t) ∈ P(4/3, (c1, c2)) that is satisfied by most of the approximations.

First of all, we have

Proposition 2.1. Functional (2.2) is invariant with respect to unitary transformations, i.e.,

E(Φ) = E(ΦU) ∀ Φ ∈ Q

for any matrix U = (uij)
N
i,j=1 ∈ ON×N , where ON×N is the set of orthogonal matrices.
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Using similar arguments in [8], we obtain that E(Ψ) is bounded below over Q. More precisely,
we have

Proposition 2.2. There exist constants C > 0 and b > 0 such that

E(Ψ) ≥ C−1‖Ψ‖21,Ω − b ∀ Ψ ∈ Q. (2.3)

To prove the convergence of the numerical approximations, we need the lower semi-continuity
of the energy functional in the weak topology of H, whose proof can be referred to [8].

Proposition 2.3. If Ψk converge weakly to Ψ in H, then

E(Ψ) ≤ lim inf
k→∞

E(Ψk).

The ground state energy of the system is the global minimum of E(Ψ) in the admissible class
Q and we shall study the following minimization problem

inf {E(Φ) : Φ ∈ Q} . (2.4)

The existence of a minimizer of (2.4) can be found in [2, 20, 29] or by similar arguments to that
in the proof of Theorem 4.1. We see from Proposition 2.1 that if Φ is a minimizer of (2.4), then
ΦU ∈ Q is also a minimizer for any U ∈ ON×N . Note that the uniqueness of a minimizer of (2.4) is
open even up to an orthogonal transform since the energy functional may not be convex for almost
all systems of practical interest. Therefore, we need to define the set of ground state solutions as
follows

G =

{

Φ ∈ Q : E(Φ) = min
Ψ∈Q

E(Ψ)

}

.

We see that a minimizer Φ = (φ1, φ2, · · · , φN ) of (2.4) satisfies the associated Euler-Lagrange
equation:



















(AΦφi, v) =
(

N
∑

j=1

λijφj , v
)

∀ v ∈ H1
0 (Ω), i = 1, 2, · · · , N,

∫

Ω

φiφj = δij ,

(2.5)

where AΦ is the Kohn-Sham Hamiltonian operator given by

AΦ = −
1

2
∆ + Vloc + Vnl +

∫

Ω

ρΦ(y)

| · −y|
dy + E ′(ρΦ) (2.6)

with the Lagrange multiplier

Λ = (λij)
N
i,j=1 =

(
∫

Ω

φjAΦφi

)N

i,j=1

. (2.7)

We define the set of ground state eigenpairs by

Θ =
{

(Λ,Φ) ∈ RN×N ×Q : Φ ∈ G and (Λ,Φ) solves (2.5)
}

.

Proposition 2.2 and (2.7) imply that the ground state solutions are uniformly bounded

sup
(Λ,Φ)∈Θ

(‖Φ‖1,Ω + |Λ|) < C (2.8)

5



for some constant C.
To obtain the a priori error estimates of the finite dimensional approximations, we shall represent

Kohn-Sham equation in another setting. Define

Y = RN×N ×H

with the associated norm ‖(Λ,Φ)‖Y = |Λ| + ‖Φ‖1,Ω for each (Λ,Φ) ∈ Y . We may rewrite (2.5) as
a nonlinear problem as follows:

F ((Λ,Φ)) = 0 ∈ Y ∗, (2.9)

where F : Y → Y ∗ is given by

〈F ((Λ,Φ)), (�,Γ)〉 =
N
∑

i=1

(

AΦφi −
N
∑

j=1

λijφj , γi
)

+

N
∑

i,j=1

χij
(

∫

Ω

φiφj − δij
)

(2.10)

with Γ = (γ1, γ2, · · · , γN ) ∈ H and � = (χij)
N
i,j=1 ∈ RN×N .

The Fréchet derivative F ′
(Λ,Φ) of F at (Λ,Φ) : Y → Y ∗ is defined as

〈F ′
(Λ,Φ)((�,Ψ)), (�,Γ)〉

= 〈L′
Φ(Λ,Φ)Ψ,Γ〉 −

N
∑

i,j=1

(µijφj , γi) +

N
∑

i,j=1

χij

∫

Ω

(ψiφj + φiψj) ∀ (�,Ψ), (�,Γ) ∈ Y,(2.11)

where

〈L′
Φ(Λ,Φ)Ψ,Γ〉 =

1

2
E′′(Φ)(Ψ,Γ)−

N
∑

i,j=1

(λijψj , γi)

=

N
∑

i=1

(1

2
(∇ψi,∇γi) + (Vlocψi, γi) +

M
∑

j=1

(ζj , ψi)(ζj , γi) + (E ′(ρΦ)ψi, γi) +D(ρΦ, ψiγi)

−(
N
∑

j=1

λijψj , γi) +
(

2φiE
′′(ρΦ)

N
∑

j=1

φjψj , γi
)

+
N
∑

j=1

2D(φjψj , φiγi)
)

(2.12)

for Ψ = (ψ1, ψ2, · · · , ψN ) ∈ H and � = (µij)
N
i,j=1 ∈ RN×N .

2.2 Basic assumptions

The analysis of finite dimensional approximations will be carried out under certain assumptions,
which are stated as follows

A1 |E ′(t)|+ |tE ′′(t)| ∈ P(p1, (c1, c2)) for some p1 ∈ [0, 2].

A2 There exists a constant α ∈ (0, 1] such that |E ′′(t)|+ |tE ′′′(t)| . 1 + tα−1 ∀ t > 0.

A3 If (Λ,Φ) is a solution of (2.5), then L′
Φ(Λ,Φ) is an isomorphism from TΦ to TΦ, namely,

there exists a positive constant γ depending on (Λ,Φ) such that

inf
Ψ∈TΦ

sup
Γ∈TΦ

〈L′
Φ(Λ,Φ)Ψ,Γ〉

‖Ψ‖1,Ω‖Γ‖1,Ω
≥ γ. (2.13)
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We see that Assumption A2 implies Assumption A1 and the commonly used Xα and LDA
exchange-correction energy satisfy Assumption A2 [5, 8]. We shall mention that the above assump-
tions are necessary for the a priori error estimate, but none of them will be used in our convergence
analysis of finite dimensional approximations (in Section 4.1).

Remark 2.1. It is open whether Assumption A3 holds for all Kohn-Sham models, though it may
hold for semiconductors and “closed shell” atoms and molecules. We see that the following assump-
tion

〈L′
Φ(Λ,Φ)Ψ,Ψ〉 ≥ γ‖Ψ‖21,Ω ∀ Ψ ∈ TΦ, (2.14)

which implies (2.13), is employed in [6, 27]. Note that (2.14) is equivalent to (2.13) when (Λ,Φ) is
the ground state solution of (2.5).

The following lemma will be used in our analysis of the local uniqueness of discrete solution.

Lemma 2.1. Let y1 = (Λ1,Φ1) and y2 = (Λ2,Φ2) ∈ Y satisfy ‖y1‖Y + ‖y2‖Y ≤ C̄. If Assumption
A1 is satisfied, then there exists a constant CF depending on C̄ such that

‖F (y1)− F (y2)‖ ≤ CF ‖y1 − y2‖Y ∀ y1, y2 ∈ Y. (2.15)

Moreover, if Assumption A2 is satisfied, then there is a constant C′
F such that

‖F ′
y1 − F ′

y2‖ ≤ C′
F (‖y1 − y2‖

α
Y + ‖y1 − y2‖

2
Y ) ∀ y1, y2 ∈ Y. (2.16)

Proof. To prove (2.15), it is sufficient to show that

(

AΦ1
Φ1 −AΦ2

Φ2,Γ
)

≤ C‖Φ1 − Φ2‖1,Ω‖Γ‖1,Ω ∀ Γ ∈ H, (2.17)

which together with (2.10) indeed implies (2.15). Using the Hölder inequality and the Sobolev
inequality, we have for i = 1, 2, · · · , N that

(

(−
1

2
∆+ Vloc)φ1,i − (−

1

2
∆+ Vloc)φ2,i, v

)

≤
1

2
‖φ1,i − φ2,i‖1,Ω‖v‖1,Ω + ‖Vloc‖0,Ω‖φ1,i − φ2,i‖0,3,Ω‖v‖0,6,Ω

. ‖φ1,i − φ2,i‖1,Ω‖v‖1,Ω ∀ v ∈ H1
0 (Ω)

and hence

(

(−
1

2
∆ + Vloc)Φ1 − (−

1

2
∆ + Vloc)Φ2,Γ

)

. ‖Φ1 − Φ2‖1,Ω‖Γ‖1,Ω ∀ Γ ∈ H. (2.18)

Due to

(

VnlΦ1 − VnlΦ2,Γ
)

=

N
∑

i=1

(

M
∑

j=1

(ζj , φ1,i − φ2,i)ζj , γi
)

,

we obtain

(

VnlΦ1 − VnlΦ2,Γ
)

.

N
∑

i=1

‖φ1,i − φ2,i‖0,Ω‖γi‖0,Ω . ‖Φ1 − Φ2‖1,Ω‖Γ‖1,Ω ∀ Γ ∈ H. (2.19)

Obviously

(E ′(ρΦ1
)Φ1 − E ′(ρΦ2

)Φ2,Γ) . ‖Φ1 − Φ2‖1,Ω‖Γ‖1,Ω ∀ Γ ∈ H

7



when p1 = 0 in Assumption A1. If Assumption A1 is satisfied for p1 ∈ (0, 2], then there exists
δi ∈ [0, 1] such that

(E ′(ρΦ1
)Φ1 − E ′(ρΦ2

)Φ2,Γ) =

N
∑

i=1

∫

Ω

(

E ′(ρΦ1
)φ1,i − E ′(ρΦ2

)φ2,i
)

γi

=

N
∑

i=1

∫

Ω

(E ′(ρξ) + 2ξ2i E
′′(ρξ))(φ1,i − φ2,i)γi

≤
N
∑

i=1

‖E ′(ρξ) + 2ξ2i E
′′(ρξ)‖0,3/p1,Ω‖φ1,i − φ2,i‖0,6,Ω‖γi‖0,6/(5−2p1),Ω

.

N
∑

i=1

‖ρξ‖
p1
0,3,Ω‖φ1,i − φ2,i‖1,Ω‖γi‖1,Ω . ‖Φ1 − Φ2‖1,Ω‖Γ‖1,Ω, (2.20)

where ξ = (ξ1, ξ2, · · · , ξN ) with ξi = δiφ1,i + (1 − δi)φ2,i, and the Hölder inequality, the Sobolev
inequality, and the fact

‖ρξ‖0,3,Ω . ‖ρΦ1
‖0,3,Ω + ‖ρΦ2

‖0,3,Ω . ‖Φ1‖
2
1,Ω + ‖Φ2‖

2
1,Ω ≤ C̄2

are used.
For Coulomb term, we obtain from the Young’s inequality and the Hölder inequality that

‖r−1 ∗ (ρΦ1
− ρΦ2

)‖0,∞,Ω . ‖r−1‖0,Ω̃‖ρΦ1
− ρΦ2

‖0,Ω . ‖r−1‖0,Ω̃‖Φ1 − Φ2‖1,Ω,

where Ω̃ = {x− y : x, y ∈ Ω}. Since

∫

Ω

(

(r−1 ∗ ρΦ1
)φ1,i − (r−1 ∗ ρΦ2

)φ2,i
)

v

=

∫

Ω

(r−1 ∗ ρΦ1
)(φ1,i − φ2,i)v +

∫

Ω

r−1 ∗ (ρΦ1
− ρΦ2

)φ2,iv

≤ ‖r−1 ∗ ρΦ1
‖0,∞,Ω‖φ1,i − φ2,i‖0,Ω‖v‖0,Ω + ‖r−1 ∗ (ρΦ1

− ρΦ2
)‖0,∞,Ω‖φ2,i‖0,Ω‖v‖0,Ω

. ‖φ1,i − φ2,i‖1,Ω‖v‖1,Ω + ‖Φ1 − Φ2‖1,Ω‖v‖1,Ω ∀ v ∈ H1
0 (Ω)

holds for i = 1, 2, · · · , N , we have

((r−1 ∗ ρΦ1
)Φ1 − (r−1 ∗ ρΦ2

)Φ2,Γ) . ‖Φ1 − Φ2‖1,Ω‖Γ‖1,Ω ∀ Γ ∈ H. (2.21)

Taking (2.18), (2.19), (2.20), (2.21) and definition (2.6) into account, we then arrive at (2.17).
If Assumption A2 holds, then following [6, Lemma 4.5] we obtain for Ψ = (ψ1, ψ2, · · · , ψN ),Γ =

(γ1, γ2, · · · , γN ) ∈ H that

|(E ′(ρΦ1
)Ψ,Γ)− (E ′(ρΦ2

)Ψ,Γ)| =

∫

Ω

∫ 1

0

2E ′′(ρΦ(t))(

N
∑

i=1

φi(t)(φ1,i − φ2,i))(

N
∑

i=1

ψiγi)dt

.

∫

Ω

∫ 1

0

(1 + ρα−1
Φ(t))ρ

1/2
Φ(t)ρ

1/2
Φ1−Φ2

ρ
1/2
Ψ ρ

1/2
Γ dt

(2.22)
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and

N
∑

i=1

(φ1,iE
′′(ρΦ1

)

N
∑

j=1

φ1,jψj , γi)−
N
∑

i=1

(φ2,iE
′′(ρΦ2

)

N
∑

j=1

φ2,jψj , γi)

=

∫

Ω

∫ 1

0

[

E ′′(ρΦ(t))
(

N
∑

i=1

φi(t)ψi
)(

N
∑

i=1

(φ1,i − φ2,i)γi
)

+ E ′′(ρΦ(t))
(

N
∑

i=1

(φ1,i − φ2,i)ψi
)(

N
∑

i=1

φi(t)γi
)

+ E ′′′(ρΦ(t))
(

N
∑

i=1

φi(t)(φ1,i − φ2,i)
)(

N
∑

i=1

φi(t)ψi
)(

N
∑

i=1

φi(t)γi
)

]

dt

.

∫

Ω

∫ 1

0

(1 + ρα−1
Φ(t))ρ

1/2
Φ(t)ρ

1/2
Φ1−Φ2

ρ
1/2
Ψ ρ

1/2
Γ dt, (2.23)

where Φ(t) = Φ1 + t(Φ2 − Φ1) with t ∈ [0, 1].
For all 0 < α ≤ 1/2, we have

∫ 1

0

ρ
α−1/2
Φ(t) dt =

∫ 1

0

(

N
∑

i=1

φ21,i + 2t

N
∑

i=1

φ1,i(φ2,i − φ1,i) + t2
N
∑

i=1

(φ2,i − φ1,i)
2
)α−1/2

dt

=

∫ 1

0

(

N
∑

i=1

φ21,i +

N
∑

i=1

(φ2,i − φ1,i)
2
(

t+

∑N
i=1 φ1,i(φ2,i − φ1,i)
∑N
i=1(φ2,i − φ1,i)2

)2
−

(
∑N

i=1 φ1,i(φ2,i − φ1,i)
)2

∑N
i=1(φ2,i − φ1,i)2

)α−1/2

dt

≤

∫ 1

0

|t+

∑N
i=1 φ1,i(φ2,i − φ1,i)
∑N
i=1(φ2,i − φ1,i)2

|2α−1
(

N
∑

i=1

(φ2,i − φ1,i)
2
)α−1/2

dt ≤
1

α22α
ρ
α−1/2
Φ1−Φ2

,

which together with the fact that 0 ≤ ρΦ(t) ≤ 2(ρΦ1
+ t2ρΦ1−Φ2

) implies that for all 0 < α ≤ 1

∫

Ω

∫ 1

0

(1 + ρα−1
Φ(t))ρ

1/2
Φ(t)ρ

1/2
Φ1−Φ2

ρ
1/2
Ψ ρ

1/2
Γ dt .

∫

Ω

(ρ
α/2
Φ1−Φ2

+ ρΦ1−Φ2
)ρ

1/2
Ψ ρ

1/2
Γ

. ‖ρ
α/2
Φ1−Φ2

‖0,6/α,Ω‖ρ
1/2
Ψ ‖0,12/(6−α),Ω‖ρ

1/2
Γ ‖0,12/(6−α),Ω + ‖ρΦ1−Φ2

‖0,3,Ω‖ρ
1/2
Ψ ‖0,3,Ω‖ρ

1/2
Γ ‖0,3,Ω

. (‖Φ1 − Φ2‖
α
1,Ω + ‖Φ1 − Φ2‖

2
1,Ω)‖Ψ‖1,Ω‖Γ‖1,Ω (2.24)

Similar arguments to that in (2.21) yield that

N
∑

j=1

|D(φ1,jψj , φ1,iv)−D(φ2,jψj , φ2,iv)|

≤
N
∑

j=1

|D(φ1,jψj − φ2,jψj , φ1,iv)|+
N
∑

j=1

|D(φ2,jψj , φ1,iv − φ2,iv)|

.

N
∑

j=1

‖φ1,j − φ2,j‖1,Ω‖ψj‖1,Ω‖v‖1,Ω +

N
∑

j=1

‖φ1,i − φ2,i‖1,Ω‖ψj‖1,Ω‖v‖1,Ω

. ‖Φ1 − Φ2‖1,Ω‖Ψ‖1,Ω‖v‖1,Ω ∀ Ψ ∈ H, ∀ v ∈ H1
0 (Ω). (2.25)

Therefore, taking (2.11), (2.12), (2.22), (2.23), (2.24) and (2.25) into account, we get

〈(F ′
y1 − F ′

y2)((�,Ψ)), (�,Γ)〉 . (‖y1 − y2‖
α
Y + ‖y1 − y2‖

2
Y )‖(�,Ψ)‖Y ‖(�,Γ)‖Y ∀ (�,Ψ), (�,Γ) ∈ Y,

which implies (2.16) and completes the proof.
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3 Finite dimensional approximations

For the sake of generality, we will not concentrate on any specific approximation, rather we shall
study approximations in a class of finite dimensional subspaces Sn ⊂ X (n = 1, 2, · · · ) that satisfy

lim
n→∞

inf
ψ∈Sn

‖ψ − φ‖1,Ω = 0 ∀ φ ∈ X, (3.1)

where X is some Banach space containing the eigenfunctions of (2.1), say, H1
0 (Ω) or H

1
#(Ω).

Assumptions (3.1) is apparently very mild and satisfied by several typical finite dimensional
subspaces used in practice, for instance, spaces spanned by plane wave bases [7], spaces spanned by
wavelets [3, 13], and piecewise polynomial finite element spaces [11]. As a result, we may investigate
all these kinds of finite dimensional approximation approaches in computational either physics or
quantum chemistry in a unified framework. For convenience, here and hereafter we consider the
case of X = H1

0 (Ω) only.
We see that finite dimensional subspaces

Hn ≡ SNn ⊂ H

satisfying

lim
n→∞

inf
Ψ∈Hn

‖Ψ− Φ‖1,Ω = 0 ∀ Φ ∈ H. (3.2)

We shall study the numerical analysis of the following minimization problem

inf{E(Φn) : Φn ∈ Hn ∩Q}. (3.3)

The existence of a minimizer of (3.3) can be obtained by similar arguments to that in the proof of
Theorem 4.1 (c.f., also, [6, 8]). However, the uniqueness is unknown even up to a unitary transform.
Therefore we define the set of finite dimensional ground state solutions:

Gn =

{

Φn ∈ Hn ∩Q : E(Φn) = min
Ψ∈Hn∩Q

E(Ψ)

}

.

Given n ≥ 1, any minimizer Φn = (φ1,n, φ2,n, · · · , φN,n) of (3.3) solves



















(AΦn
φi,n, v) =

(

N
∑

j=1

λij,nφj,n, v
)

∀ v ∈ Sn, i = 1, 2, · · · , N,

∫

Ω

φi,nφj,n = δij

(3.4)

with the Lagrange multiplier

Λn = (λij,n)
N
i,j=1 =

(
∫

Ω

φj,nAΦn
φi,n

)N

i,j=1

. (3.5)

Define the set of finite dimensional ground state eigenpairs

Θn =
{

(Λn,Φn) ∈ RN×N × (Hn ∩Q) : Φn ∈ Gn and (Λn,Φn) solves (3.4)
}

.

Proposition 2.2 and (3.5) imply that the finite dimensional approximations are uniformly bounded

sup
(Λn,Φn)∈Θn,n≥1

(‖Φn‖1,Ω + |Λn|) < C (3.6)
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for some constant C.
We then address the Galerkin discretization of (2.9). Let

Yn = RN×N ×Hn

and Fn : Yn → Y ∗
n be an approximation of F defined by

〈Fn((Λn,Φn)), (�n,Γn)〉 = 〈F ((Λn,Φn)), (�n,Γn)〉 ∀ (Λn,Φn), (�n,Γn) ∈ Yn.

Then discrete problem (3.4) can be rewritten as

Fn((Λn,Φn)) = 0 ∈ Y ∗
n . (3.7)

We also denote the derivative of Fn at (Λn,Φn) ∈ Yn by F ′
n,(Λn,Φn)

: Yn → Y ∗
n as follows:

〈F ′
n,(Λn,Φn)

((�n,Ψn)), (�n,Γn)〉 = 〈L′
Φn

(Λn,Φn)Ψn,Γn〉 −
N
∑

i,j=1

(µij,nφj,n, γi,n)

+

N
∑

i,j=1

χij,n

∫

Ω

(ψi,nφj,n + φi,nψj,n).

Given (Λ,Φ) ∈ SN×N ×Q, we define

XΦ = SN×N × (SΦ ⊕ TΦ) ⊂ Y

with the induced norm ‖(�,Ψ)‖XΦ
= |�|+ ‖Ψ‖1,Ω for each (�,Ψ) ∈ XΦ and

XΦ,n = SN×N × (Hn ∩ (SΦ ⊕ TΦ)).

We assume here and hereafter that y0 ≡ (Λ0,Φ0) is a solution of (2.5) satisfying (2.13), where
Λ0 = (λ0,ij)

N
i,j=1 and Φ0 = (φ0,1, φ0,2, · · · , φ0,N ). We shall derive the existence of a unique local

discrete solution yn ∈ XΦ0,n of (3.4) in the neighborhood of y0.

Lemma 3.1. F ′
y0 : XΦ0

→ X∗
Φ0

is an isomorphism.

Proof. It is sufficient to prove that equation

F ′
y0((�,Ψ)) = (�, g) (3.8)

is uniquely solvable in XΦ0
for every (�, g) ∈ X∗

Φ0
. To this end we define the following bilinear

forms aΦ0
: H×H → R and bΦ0

, cΦ0
: H× RN×N → R by

aΦ0
(Ψ,Γ) = 〈L′

Φ0
(Λ0,Φ0)Ψ,Γ〉,

bΦ0
(Ψ, �) =

N
∑

i,j=1

χij(φ0,i, ψj),

cΦ0
(Ψ, �) =

N
∑

i,j=1

χij
(

(φ0,i, ψj) + (φ0,j , ψi)
)

.

Using (2.11), we may rewrite (3.8) as follows: find � ∈ SN×N and Ψ ∈ SΦ0
⊕ TΦ0

such that














aΦ0
(Ψ,Γ)− bΦ0

(Γ,�) = (g,Γ) ∀ Γ ∈ SΦ0
⊕ TΦ0

,

cΦ0
(Ψ, �) =

N
∑

i,j=1

χijηij ∀ � ∈ SN×N .
(3.9)
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For any given � ∈ SN×N , we can choose Ψ = Φ0�, and thus

cΦ0
(Ψ, �) = 2

N
∑

i,j=1

|χij |
2, (3.10)

where ΦT0 Φ0 = IN×N is used. Note that a simple calculation leads to

‖Ψ‖1,Ω = ‖Φ0�‖1,Ω . (

N
∑

i,j=1

|χij |
2)1/2‖Φ0‖1,Ω. (3.11)

By taking into account (2.3), (3.10) and (3.11), we obtain

inf
χ∈SN×N

sup
Ψ∈SΦ0

cΦ0
(Ψ, �)

‖Ψ‖1,Ω(
∑N

i,j=1 |χij |
2)1/2

≥ κc, (3.12)

where κc > 0 is independent of �. Hence, there exists a unique solution ΨS ∈ SΦ0
such that

cΦ0
(ΨS , �) =

N
∑

i,j=1

χijηij ∀ � ∈ SN×N .

Therefore (3.9) is equivalent to: find Ψ0 ∈ TΦ0
such that

aΦ0
(Ψ0,Γ) = (g,Γ)− aΦ0

(ΨS,Γ) ∀ Γ ∈ TΦ0
. (3.13)

The unique solvability of (3.13) is a direct consequence of (2.13).
Using similar arguments to that from (3.10) to (3.12), we get

inf
χ∈SN×N

sup
Ψ∈SΦ0

bΦ0
(Ψ, �)

‖Ψ‖1,Ω(
∑N

i,j=1 |χij |
2)1/2

≥ κb,

where κb > 0 is independent of �. This implies that equation

bΦ0
(Γ,�) = aΦ0

(Ψ0 +ΨS,Γ)− (g,Γ) ∀ Γ ∈ SΦ0

has a unique solution �S ∈ SN×N .
We have proved that for any (�, g) ∈ X∗

Φ0
in (3.9), there exists a unique solution (�S ,Ψ0+ΨS).

This indicates that F ′
y0 is an isomorphism from XΦ0

to X∗
Φ0

and completes the proof.

Note that F ′
y0 : XΦ0

→ X∗
Φ0

being an isomorphism is equivalent to the following inf-sup condition

inf
y1∈XΦ0

sup
y2∈XΦ0

〈F ′
y0y1, y2〉

‖y1‖XΦ0
‖y2‖XΦ0

= β > 0 (3.14)

with the constant satisfying β−1 = ‖F ′
y0
−1‖.

For any Φ ∈ Q, we define

QΦ = {Ψ ∈ Q : ‖Ψ− Φ‖0,Ω = min
U∈ON×N

‖ΨU − Φ‖0,Ω}.

In our analysis, we need the following lemma, whose proof is referred to [6].
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Lemma 3.2. If Φ ∈ Q, then Ψ ∈ QΦ can be represented by

Ψ = Φ+ S(W )Φ +W,

where W ∈ TΦ and S(W ) ∈ SN×N satisfying

|S(W )| = |(IN×N −WTW )1/2 − IN×N | ≤ ‖W‖20,Ω ≤ ‖Ψ− Φ‖20,Ω. (3.15)

Before giving a discrete counterpart with Lemma 3.1, we also need to introduce two projections.
First, we define the projection Π̃n : Q → Hn ∩Q such that

‖Π̃nΦ− Φ‖1,Ω = min
Ψ∈Hn∩Q

‖Ψ− Φ‖1,Ω ∀ Φ ∈ Q.

To project further into XΦ,n, we then define Πn : SN×N ×Q → XΦ,n by

Πn(Λ,Φ) = (Λ, (Π̃nΦ)Ũ) ∀ (Λ,Φ) ∈ SN×N ×Q,

where

Ũ = arg min
U∈ON×N

‖(Π̃nΦ)U − Φ‖0,Ω.

From Lemma 3.2, we see that Πn : SN×N ×Q → XΦ,n is well-defined.

Lemma 3.3. If Assumption A2 is satisfied, then there exists n0 > 1 such that F ′
n,Πny0

: XΦ0,n →
X∗

Φ0,n
is an isomorphism for all n ≥ n0. Moreover, there is a constant M > 0 such that

‖F ′
n,Πny0

−1‖ ≤M ∀ n ≥ n0.

Proof. We first prove that

lim
n→∞

‖Πny − y‖XΦ
= 0 ∀ y ≡ (Λ,Φ) ∈ SN×N ×Q. (3.16)

Using the fact that Φ ∈ Q and (Π̃nΦ)Ũ ∈ QΦ, we have

|Ũ − I| = ‖(Π̃nΦ)Ũ − Π̃nΦ‖0,Ω ≤ ‖(Π̃nΦ)Ũ − Φ‖0,Ω + ‖Π̃nΦ− Φ‖0,Ω . ‖Π̃nΦ− Φ‖1,Ω,

which implies

‖(Π̃nΦ)Ũ − Φ‖1,Ω ≤ ‖Π̃nΦ− Φ‖1,Ω + ‖(Π̃nΦ)Ũ − Π̃nΦ‖1,Ω

≤ ‖Π̃nΦ− Φ‖1,Ω + |Ũ − I| · ‖Π̃nΦ‖1,Ω

. ‖Π̃nΦ− Φ‖1,Ω. (3.17)

Let Φn ≡ (φn1 , φ
n
2 , · · · , φ

n
N ) = arg min

Ψ∈Hn

‖Ψ− Φ‖1,Ω, we may estimate ‖Π̃nΦ− Φ‖1,Ω as follows:

‖Π̃nΦ− Φ‖1,Ω ≤
N
∑

i=1

‖
Qnφ

n
i

‖Qnφni ‖0,Ω
− φi‖1,Ω

≤
N
∑

i=1

(‖Qnφ
n
i − φi‖1,Ω + ‖

Qnφ
n
i

‖Qnφni ‖0,Ω
−Qnφ

n
i ‖1,Ω)

≤
N
∑

i=1

(1 +
‖Qnφni ‖1,Ω
‖Qnφni ‖0,Ω

)‖φi −Qnφ
n
i ‖1,Ω,
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where Qn is the Gram-Schmidt orthogonal operator:

Qnφ
n
i = φni −

i−1
∑

j=1

(Qnφ
n
j , φ

n
i )

(Qnφnj , Qnφ
n
j )
Qnφ

n
j i = 1, · · · , N.

Note that

‖φi −Qnφ
n
i ‖1,Ω ≤ ‖φni − φi‖1,Ω +

i−1
∑

j=1

‖Qnφnj ‖1,Ω

‖Qnφnj ‖
2
0,Ω

((Qnφ
n
j , φ

n
i − φi) + (Qnφ

n
j − φj , φi))

≤ (1 +

i−1
∑

j=1

‖Qnφ
n
j ‖1,Ω

‖Qnφnj ‖0,Ω
)‖φi − φni ‖1,Ω +

i−1
∑

j=1

‖Qnφ
n
j ‖1,Ω

‖Qnφnj ‖
2
0,Ω

‖φj −Qnφ
n
j ‖1,Ω,

we conclude

‖Π̃nΦ− Φ‖1,Ω . ‖Φn − Φ‖1,Ω = inf
Ψ∈Hn

‖Ψ− Φ‖1,Ω. (3.18)

Using (3.17), (3.18) and the definition of Πn, we arrive at

‖Πny − y‖XΦ
. inf

Ψ∈Hn

‖Ψ− Φ‖1,Ω, (3.19)

which together with (3.2) leads to (3.16).
We then show the invertibility of F ′

n,y0 : XΦ0,n → X∗
Φ0,n

. We obtain from (3.14) that

sup
y2∈XΦ0

〈F ′
y0y1, y2〉

‖y1‖XΦ0
‖y2‖XΦ0

≥ β ∀ y1 ∈ XΦ0,n.

Let PΦ0

n : SΦ0
∩ TΦ0

→ Hn ∩ (SΦ0
∩ TΦ0

) be a projection operator satisfying

(

∇Φ1,∇(Φ2 − PΦ0

n Φ2)
)

= 0 ∀ Φ1 ∈ Hn ∩ (SΦ0
∩ TΦ0

).

Set
ηn = sup

Ψ∈SΦ0
∩TΦ0

,‖Ψ‖1,Ω≤1

‖Ψ− PΦ0

n Ψ‖0,Ω,

we have (see, e.g., [34])

‖Ψ− PΦ0

n Ψ‖0,Ω . ηn‖Ψ‖1,Ω ∀ Ψ ∈ SΦ0
∩ TΦ0

with lim
n→∞

ηn = 0. (3.20)

Let Pn = (I, PΦ0

n ), we obtain from definition (2.11) and (3.20) that

〈F ′
y0y1, Pny2〉 = 〈F ′

y0y1, y2〉 − 〈F ′
y0y1, y2 − Pny2〉

= 〈F ′
y0y1, y2〉+

1

2
(∇Φ1,∇(Φ2 − PΦ0

n Φ2))− 〈F ′
y0y1, y2 − Pny2〉

≥ 〈F ′
y0y1, y2〉 − c‖y1‖XΦ0

‖y2 − Pny2‖0,Ω

≥ 〈F ′
y0y1, y2〉 − cηn‖y1‖XΦ0

‖y2‖XΦ0
,

which implies that there exists ñ such that for all n ≥ ñ, there holds

sup
y2∈XΦ0,n

〈F ′
y0y1, y2〉

‖y1‖XΦ0
‖y2‖XΦ0

≥
β

2
∀ y1 ∈ XΦ0,n,
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or equivalently

inf
y1∈XΦ0,n

sup
y2∈XΦ0,n

〈F ′
y0y1, y2〉

‖y1‖XΦ0
‖y2‖XΦ0

≥
β

2
.

Thus F ′
n,y0 is an isomorphism from XΦ0,n to X∗

Φ0,n
satisfying

‖F ′
n,y0

−1‖ ≤ 2β−1 ∀ n ≥ ñ.

Note that F ′
n satisfies the following discrete Hölder condition

‖F ′
n,y0 − F ′

n,Πny0‖ . ‖y0 −Πny0‖
α
XΦ0

+ ‖y0 −Πny0‖
2
XΦ0

.

It follows from (3.16) that there exists n0 > ñ such that the inf-sup constant of F ′
n,Πny0

is uniformly
away from zero for all n ≥ n0. This completes the proof.

Theorem 3.1. If Assumption A2 is satisfied, then there exist δ > 0, n1 > n0 such that (3.4) has
a unique local solution yn = (Λn,Φn) ∈ XΦ0,n ∩Bδ(y0) for all n ≥ n1.

Proof. The idea is to construct a contractive mapping whose fixed point is yn. We rewrite (3.7) as

Fn(yn)− Fn(Πny0) = −Fn(Πny0).

Using (2.15), we have

‖Fn(Πny0)‖X∗

Φ0,n
= ‖F (Πny0)|XΦ0,n

− F (y0)|XΦ0,n
‖X∗

Φ0,n

≤ ‖F (Πny0)− F (y0)‖X∗

Φ0

. ‖y0 −Πny0‖XΦ0
.

From Lemma 3.3, we may define the map N : BR(Πny0) ∩XΦ0,n → XΦ0,n by

F ′
n,Πny0(N (x) −Πny0) = −Fn(Πny0)− (x −Πny0)

∫ 1

0

(

F ′
n,Πny0+t(x−Πny0)

− F ′
n,Πny0

)

dt

when n ≥ n0.
We will show that N is a contraction from BR(Πny0) ∩ XΦ0,n into BR(Πny0) ∩ XΦ0,n if R is

chosen sufficiently small and n is large enough.
First, we prove that N maps BR(Πny0) ∩XΦ0,n to BR(Πny0) ∩XΦ0,n for sufficiently small R.

Note that F ′
n,Πny0

is an isomorphism on XΦ0,n if n is sufficiently large. For each x ∈ BR(Πny0), we
have N (x) −Πny0 ∈ XΦ0,n and

‖N (x)−Πny0‖XΦ0

≤ M
(

‖Fn(Πny0)‖X∗

Φ0,n
+R

∫ 1

0

‖F ′
n,Πny0+t(x−Πny0)

− F ′
n,Πny0‖dt

)

≤ CM
(

‖Πny0 − y0‖XΦ0
+R(Rα +R2)

)

.

Since CM(‖Πny0− y0‖XΦ0
+R1+α+R3) can be estimated by R when R is sufficiently small and n

is sufficiently large, we have that N (x) ∈ BR(Πny0). It is clear that R can be chosen independently
of n.

Next, we show that N is a contraction on BR(Πny0) ∩ XΦ0,n. If x1, x2 ∈ BR(Πny0) ∩ XΦ0,n,
then

F ′
n,Πny0(N (x1)−N (x2)) = (x1 − x2)

∫ 1

0

(

F ′
n,Πny0 − F ′

n,x1+t(x2−x1)

)

dt.
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Thus, ‖N (x1)−N (x2)‖XΦ0
can be estimated as

‖N (x1)−N (x2)‖XΦ0

≤ M‖x2 − x1‖XΦ0

∫ 1

0

∥

∥F ′
n,Πny0 − F ′

n,x1+t(x2−x1)

∥

∥dt

≤ CM(Rα +R2)‖x1 − x2‖XΦ0
.

We obtain for sufficiently small R that CM(Rα + R2) < 1 and hence N is a contraction on
BR(Πny0).

We are now able to use Banach’s Fixed Point Theorem to obtain the existence and uniqueness
of a fixed point yn of map N : BR(Πny0) ∩ XΦ0,n → BR(Πny0) ∩ XΦ0,n, which is the solution of
Fn(yn) = 0. This completes the proof.

4 Numerical analysis

In this section, we shall prove the convergence of finite dimensional approximations and derive
various error estimates under different assumptions.

4.1 Convergence

The purpose of this subsection is to prove the convergence of the numerical ground state solutions,
for which we need to introduce the following distances between two sets. We define the distance
between two subsets A,B ⊂ Y by

D(A,B) = sup
(Λ,Φ)∈A

inf
(�,Ψ)∈B

(|Λ − �|+ ‖Φ−Ψ‖1,Ω)

and the distance between two sets M,N ⊂ H by

dH(M,N) = sup
Φ∈M

inf
Ψ∈N

‖Φ− Ψ‖1,Ω.

Theorem 4.1. There hold

lim
n→∞

D(Θn,Θ) = 0, (4.1)

lim
n→∞

En = min
Ψ∈Q

E(Ψ), (4.2)

where En = E(Φn) for any Φn ∈ Gn.

Proof. Let (Λn,Φn) ∈ Θn for n = 1, 2, · · · . Given any subsequence {Φnk
} of {Φn} with 1 ≤ n1 <

n2 < · · · < nk < · · · , we obtain from the Banach-Alaoglu Theorem and (3.6) that there exist Φ ∈ H
and a weakly convergent subsequence {Φnkj

} ⊂ {Φnk
} such that

Φnkj
⇀ Φ in H. (4.3)

Next we shall prove Φ ∈ G and

lim
j→∞

‖Φ− Φnkj
‖1,Ω = 0, (4.4)

lim
j→∞

E(Φnkj
) = min

Ψ∈Q
E(Ψ). (4.5)
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From (4.3) and Proposition 2.3, we have

lim inf
j→∞

E(Φnkj
) ≥ E(Φ). (4.6)

Note that (3.2) implies that {Φnkj
} is a minimizing sequence for E(Ψ) and the Rellich theorem

shows that
∫

Ω

φi,nkj
φj,nkj

→

∫

Ω

φiφj j → ∞.

Therefore Φ ∈ Q is a minimizer of E(Ψ), which together with (4.6) leads to

lim
j→∞

E(Φnkj
) = E(Φ) = min

Ψ∈Q
E(Ψ). (4.7)

This further implies (4.5) and Φ ∈ G.
Since H1

0 (Ω) is compactly imbedded into Lp(Ω) for p ∈ [2, 6), we have that φi,nkj
→ φi strongly

in Lp(Ω) as j → ∞ for i = 1, 2, · · · , N . This indicates that {ρΦnkj

} converges to ρΦ strongly in

Lq(Ω) for q ∈ [1, 3), from which we obtain that

lim
j→∞

∫

Ω

Vloc(x)(ρΦnkj

(x)− ρΦ(x))dx = 0,

lim
j→∞

∫

Ω

(

E(ρΦnkj

)− E(ρΦ(x))
)

dx = 0,

and

lim
j→∞

D(ρΦnkj

, ρΦnkj

) = D(ρΦ, ρΦ). (4.8)

Consequently, we can get from (4.7) to (4.8) that each term of E(·) converges and in particular

lim
j→∞

N
∑

i=1

‖∇φi,nkj
‖20,Ω =

N
∑

i=1

‖∇φi‖
2
0,Ω.

Using (4.3) and the fact that H is a Hilbert space under norm

(

N
∑

i=1

‖∇φi‖
2
0,Ω

)1/2

, we obtain (4.4).

If (Λ,Φ) solves (2.5), then

lim
j→∞

|Λ− Λnkj
| = 0

is a direct consequence of (2.7), (3.5) and (4.4). Hence we arrive at (4.1). This completes the
proof.

Remark 4.1. Theorem 4.1 states that all the limit points of finite dimensional approximations
are ground state solutions. We note that [29] gave the convergence of ground state energy ap-
proximations only while we provide further convergence of approximations of both eigenvalues and
eigenfunctions.
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4.2 Error estimates for the energy approximation

We shall derive the quadratic convergence rate of ground state energy approximations, which is a
generalization and improvement of [6, 29].

Theorem 4.2. Let E be the ground state energy of (2.4) and En be the ground state energy of
(3.3), namely, E = E(Φ) for all Φ ∈ G and En = E(Φn) for all Φn ∈ Gn. If Assumption A1 holds,
then

|E − En| . d2H(G,Hn). (4.9)

Proof. We see from the definition of ground state energies E and En that

0 ≤ En − E ≤ E(Ψ)− E ∀ Ψ ∈ Hn ∩Q.

Following [6, 27], if Assumption A1 holds, we obtain from the Taylor expansion that for any
Ψ ∈ Q, there holds

E(Ψ)− E(Φ) = (E′(Φ),Ψ− Φ) +
1

2
〈E′′(ξ)(Ψ − Φ),Ψ− Φ〉, (4.10)

where ξ = Φ + δ(Ψ− Φ) with δ ∈ [0, 1]. Since Φ is a ground state solution, we get from (2.5) that

(E′(Φ),Ψ− Φ) = 2(ΦΛ,Ψ− Φ) = 2(ΦUUTΛU,ΨU − ΦU),

where the orthogonal transform U diagonalizes the Lagrange multiplier Λ by

UTΛU = diag{λ̃1, · · · , λ̃N}.

Denote Φ̃ = ΦU and Ψ̃ = ΨU , we have

(E′(Φ),Ψ − Φ) = 2
N
∑

i=1

λ̃i

∫

Ω

φ̃i(ψ̃i − φ̃i) .

N
∑

i=1

‖φ̃i − ψ̃i‖
2
0,Ω

. ‖Φ̃− Ψ̃‖21,Ω = ‖Φ−Ψ‖21,Ω. (4.11)

It is observed by a simple calculation that

〈E′′(ξ)Ψ,Γ〉 = 2

N
∑

i=1

(Aξψi, γi) + 4

N
∑

i,j=1

D(ξiψi, ξjγj) + 4

N
∑

i,j=1

∫

Ω

E ′′(ρξ)ξiψiξjγj

and hence

〈E′′(ξ)(Ψ − Φ),Ψ− Φ〉 . ‖Ψ− Φ‖21,Ω, (4.12)

where the hidden constant depends on the H-norm of Ψ.
Taking (4.10), (4.11) and (4.12) into account, we have proved that for Φ ∈ G there holds

E(Ψ)− E(Φ) . ‖Φ−Ψ‖21,Ω ∀ Ψ ∈ Hn ∩Q,

which together with the definition of Π̃n and (3.18) implies that Π̃nΦ ∈ Hn ∩Q and

0 ≤ En − E ≤ E(Π̃nΦ)− E(Φ) . ‖Π̃nΦ− Φ‖21,Ω . d2H(G,Hn),

where the hidden constant, by using (3.6), is only dependent on the problem. This completes the
proof.
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4.3 Error estimates for ground state solutions

In this subsection, we shall derive the a priori error estimates for finite dimensional approximations
of Kohn-Sham equations under Assumptions A2 and A3. Note that y0 ≡ (Λ0,Φ0) is a solution of
(2.5) satisfying (2.13).

We define bilinear form a′(Φ0; ·, ·) by

a′(Φ0; Ψ,Γ) = 〈L′
Φ0

(Λ0,Φ0)Ψ,Γ〉 ∀ Ψ,Γ ∈ H.

Obviously, a′(Φ0; ·, ·) is continuous on H×H.
Now we shall introduce the following adjoint problem: for f ∈ (L2(Ω))N , find Ψf ∈ TΦ0

such
that

a′(Φ0; Ψf ,Γ) = (f,Γ) ∀ Γ ∈ TΦ0
. (4.13)

Since L′
Φ0

(Λ0,Φ0) is an isomorphism, (4.13) has a unique solution and

‖Ψf‖1,Ω . ‖f‖0,Ω. (4.14)

Let K : ((L2(Ω))N , (·, ·)) → (TΦ0
, (∇·,∇·)) be the operator satisfying

(∇Kw,∇v) = (w, v) ∀ w ∈ (L2(Ω))N , ∀ v ∈ TΦ0
. (4.15)

Then K is compact. Set

ρn = sup
f∈(L2(Ω))N ,‖f‖0,Ω≤1

inf
Ψ∈Hn

‖∇
(

(L′
Φ0

(Λ0,Φ0))
−1Kf −Ψ

)

‖0,Ω,

we then have the following estimate (see, e.g., [4])

‖∇
(

(L′
Φ0

(Λ0,Φ0))
−1Kf − P ′

n(L
′
Φ0

(Λ0,Φ0))
−1Kf

)

‖0,Ω . ρn‖f‖0,Ω ∀ f ∈ (L2(Ω))N (4.16)

with
lim
n→∞

ρn = 0,

where P ′
n : TΦ0

→ TΦ0
∩Hn is the projection operator satisfying

(∇(Φ1 − P ′
nΦ1),∇Φ2) = 0 ∀ Φ2 ∈ TΦ0

∩Hn.

Theorem 4.3. If Assumptions A2 and A3 are satisfied, then there exists δ > 0 such that for
sufficiently large n, (3.4) has a unique local solution (Λn,Φn) ∈ XΦ0,n ∩Bδ(y0) satisfying

‖Φ0 − Φn‖1,Ω . dH(G,Hn) (4.17)

and

‖Φ0 − Φn‖0,Ω + |Λ0 − Λn| . ρn‖Φ0 − Φn‖1,Ω (4.18)

with ρn → 0 as n→ ∞.

Proof. We obtain from Theorem 3.1 that there exists δ > 0 such that for sufficiently large n, (3.4)
has a unique local solution yn ≡ (Λn,Φn) ∈ XΦ0,n ∩Bδ(y0). Hence, we have

Fn(yn)− Fn(Πny0) = −Fn(Πny0),
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which leads to

F ′
n,Πny0(yn −Πny0) = −Fn(Πny0)− (yn −Πny0)

∫ 1

0

(

F ′
n,Πny0+t(yn−Πny0)

− F ′
n,Πny0

)

dt.

Using the similar arguments in the proof of Theorem 3.1, we obtain from Lemma 3.3 that for
sufficiently large n

‖yn −Πny0‖XΦ0
. ‖y0 −Πny0‖XΦ0

+ ‖yn −Πny0‖XΦ0
(‖yn −Πny0‖

α
XΦ0

+ ‖yn −Πny0‖
2
XΦ0

),

which together with (3.16) and the fact that yn ∈ Bδ(y0) implies that for sufficiently large n

‖yn − Πny0‖XΦ0
. ‖y0 −Πny0‖XΦ0

. (4.19)

Using (3.19) and (4.19), we conclude

‖yn − y0‖XΦ0
. ‖yn −Πny0‖XΦ0

+ ‖y0 −Πny0‖XΦ0
. inf

Ψ∈Hn

‖Ψ− Φ0‖1,Ω,

which implies (4.17).
Since there exists δi ∈ [0, 1] such that

(E ′(ρΦn
)φi,n − E ′(ρΦ0

)φ0,i, φj,n) =

∫

Ω

(E ′(ρξ) + 2ξ2i E
′′(ρξ))(φi,n − φ0,i)φj,n,

where ξ = (ξ1, ξ2, · · · , ξN ) with ξi = δiφi,n + (1− δi)φ0,i, using Assumption A2 we get

(E ′(ρΦn
)φi,n − E ′(ρΦ0

)φ0,i, φj,n) .

∫

Ω

(ρξ + ραξ )(φi,n − φ0,i)φj,n

. ‖ραξ ‖0,3/α,Ω‖φi,n − φ0,i‖0,Ω‖φj,n‖0,6/(3−2α),Ω + ‖ρξ‖0,3,Ω‖φi,n − φ0,i‖0,Ω‖φj,n‖0,6,Ω

. ‖φi,n − φ0,i‖0,Ω,

from which we have
(

(E ′(ρΦn
)− E ′(ρΦ0

))φi,n, φj,n
)

= (E ′(ρΦn
)φi,n − E ′(ρΦ0

)φ0,i, φj,n) + (E ′(ρΦ0
)(φ0,i − φi,n), φj,n)

. ‖φi,n − φ0,i‖0,Ω.

Note that

λij,n − λ0,ij = (AΦn
φi,n, φj,n)− (AΦ0

φ0,i, φ0,j)

= (AΦ0
(φi,n − φ0,i), φj,n − φ0,j) +

∫

Ω

n
∑

k=1

λ0,ikφ0,k(φj,n − φ0,j)

+

∫

Ω

n
∑

k=1

λ0,jkφ0,k(φi,n − φ0,i) +

∫

Ω

(E ′(ρΦn
)− E ′(ρΦ0

))φi,nφj,n

+D(φi,nφj,n, ρΦn
− ρΦ0

).

Hence we conclude that

|Λn − Λ0| . ‖Φn − Φ0‖
2
1,Ω + ‖Φn − Φ0‖0,Ω. (4.20)

By Lemma 3.2, we decompose Φn as

Φn = Φ0 + S(W )Φ0 +W, (4.21)
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where W ∈ TΦ0
and S(W ) ∈ SN×N satisfying

|S(W )| ≤ ‖W‖20,Ω ≤ ‖Φ0 − Φn‖
2
0,Ω. (4.22)

Setting Ψ = ΨΦn−Φ0
and applying the duality problem of (4.13), we obtain

‖Φn − Φ0‖
2
0,Ω = (Φn − Φ0,Φn − Φ0)

= (Φn − Φ0,S(W )Φ0) + (Φn − Φ0,W )

= (Φn − Φ0,S(W )Φ0) + a′(Φ0; Ψ,W ),

which together with (4.21) leads to

‖Φn − Φ0‖
2
0,Ω = (Φn − Φ0,S(W )Φ0)− a′(Φ0; Ψ,S(W )Φ0) + a′(Φ0; Ψ,Φn − Φ0)

= (Φn − Φ0,S(W )Φ0)− a′(Φ0; Ψ,S(W )Φ0) + a′(Φ0; Ψ− P ′
nΨ,Φn − Φ0)

+a′(Φ0;P
′
nΨ,Φn − Φ0).

Note that from (2.5) and (3.4), we have

2a′(Φ0;P
′
nΨ,Φn − Φ0) = E′′(Φ0)(P

′
nΨ,Φn − Φ0)− E′(Φn)(P

′
nΨ) + E′(Φ0)(P

′
nΨ)

+2

N
∑

i,j=1

(λij,n − λ0,ij)

∫

Ω

φj,nP
′
nψi

while the fact that Ψ ∈ TΦ0
yields

∫

Ω

φj,nP
′
nψi =

∫

Ω

(φj,n − φ0,j)ψi +

∫

Ω

φj,n(P
′
nψi − ψi),

we then come to

‖Φn − Φ0‖
2
0,Ω = (Φn − Φ0,S(W )Φ0)− a′(Φ0; Ψ,S(W )Φ0) + a′(Φ0; Ψ− P ′

nΨ,Φn − Φ0)

−
1

2

(

E′(Φn)(P
′
nΨ)− E′(Φ0)(P

′
nΨ)− E′′(Φ0)(P

′
nΨ,Φn − Φ0)

)

+
N
∑

i,j=1

(λij,n − λ0,ij)
(

∫

Ω

(φj,n − φ0,j)ψi +

∫

Ω

φj,n(P
′
nψi − ψi)

)

.

Using the Taylor expansion, we have that there exists δ ∈ [0, 1] such that

E′(Φn)(P
′
nΨ)− E′(Φ0)(P

′
nΨ)− E′′(Φ0)(P

′
nΨ,Φn − Φ0)

= E′′(ξ)(P ′
nΨ,Φn − Φ0)− E′′(Φ0)(P

′
nΨ,Φn − Φ0)

. (‖Φn − Φ0‖
α
1,Ω + ‖Φn − Φ0‖

2
1,Ω)‖Φn − Φ0‖

2
0,Ω, (4.23)

where ξ = Φ0+δ(Φn−Φ0) and the last inequality is obtained by the similar arguments in the proof
of (2.22) or Lemma 4.5 in [6] when Γ1 = Φn−Φ0, Γ2 = Φn−Φ0 and Γ3 = P ′

nΨ, and using the fact

‖P ′
nΨ‖1,Ω . ‖Ψ‖1,Ω . ‖Φn − Φ0‖0,Ω.

Taking (4.14), (4.16), (4.22) and (4.23) into account, we obtain that

‖Φn − Φ0‖0,Ω . ‖Φn − Φ0‖
2
0,Ω + ρn‖Φn − Φ0‖1,Ω + ‖Φn − Φ0‖

α
1,Ω‖Φn − Φ0‖0,Ω

+ |Λn − Λ0|(‖Φn − Φ0‖0,Ω + ρn),

which together with (4.20) and Theorem 4.1 produces

‖Φn − Φ0‖0,Ω . ρn‖Φn − Φ0‖1,Ω

when n≫ 1. This completes the proof.
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Remark 4.2. Theorem 4.3 shows that under certain assumptions every ground state solution can
be approximated with some convergent rate by finite dimensional solutions. We see that [6] pro-
vided numerical analysis of plane wave approximations only while our results apply to general finite
dimensional discretizations and the analysis is systematic and carried out under very mild assump-
tions.

Remark 4.3. If in addition, Vloc ∈ H1(Ω), ζj ∈ H1(Ω) (j = 1, 2, · · · ,M) and E ∈ C1([0,∞)) ∩
C3((0,∞)), then for sufficiently large n, estimates (4.17) and (4.18) are also satisfied with ρ̃n → 0
as n→ ∞. Here

ρ̃n = sup
f∈H,‖f‖1,Ω≤1

inf
Ψ∈Hn

‖∇
(

(L′
Φ0

(Λ0,Φ0))
−1Kf −Ψ

)

‖0,Ω

and K : (H, (∇·,∇·)) → (TΦ0
, (∇·,∇·)) satisfying (4.15).

Remark 4.4. Let y0 ≡ (Λ0,Φ0) be the ground state solution of (2.5) satisfying (2.13). We assume

that Ω is a convex bounded domain and Sn is replaced by the standard finite element space Sh,k0 (Ω)
of piecewise polynomials of degree k (k = 1, 2) of H1

0 (Ω) over a shape-regular mesh with size h. Let
(Λh,k,Φh,k) ∈ XΦ0,h be the ground state solution of (3.4) and Assumption A2 hold. Then

|Λ0 − Λh,1|+ ‖Φ0 − Φh,1‖0,Ω + h‖Φ0 − Φh,1‖1,Ω . h2

when h ≪ 1. If in addition, Vloc ∈ H1(Ω), ζj ∈ H1(Ω) (j = 1, 2, · · · ,M) and E ∈ C1([0,∞)) ∩
C3((0,∞)), then

|Λ0 − Λh,2|+ h‖Φ0 − Φh,2‖0,Ω + h2‖Φ0 − Φh,2‖1,Ω . h4

when h≪ 1.

5 Numerical examples

In this section, we will report several numerical examples that support our theory. These numerical
experiments were carried out on LSSC3 cluster in the State Key Laboratory of Scientific and
Engineering Computing, Chinese Academy of Sciences. Our code is based on the PHG finite
element toolbox developed in the State Key Laboratory of Scientific and Engineering Computing,
Chinese Academy of Sciences.

In these examples, we solved Kohn-Sham equation (2.5). We chose our computational domain
Ω as [−10.0, 10.0]3. In computation, we used the norm-conserving pseudopotential [30] obtained by
fhi98PP software and applied the local density approximation (LDA) for the exchange-correction
potential. We applied the standard linear and quadratic finite element discretizations over uniform
tetrahedral triangulations. The finite dimensional nonlinear eigenvalue problems were then solved
by self consistent field iterations. In each iteration, the Kohn-Sham Hamiltonian is constructed
from a trial electron density, the electron density is then obtained from the low-lying eigenfunctions
of the discretized Hamiltonian, the resulting electron density and the trial electron density are
then mixed and form a new trial electron density. The loop continues until self-consistency of the
electron density is reached.

We present numerical results for N2, C2H4 and SiH4 molecules. Since analytical solutions are
not available, we use the numerical solutions on a very fine grid for references to calculate the
approximation errors.

Let us first come to the ground state total energy approximations. The errors of total energy
of N2, C2H4 and SiH4 are presented in Figures 5.1, 5.2 and 5.3, respectively. We can see that
convergence rates for linear and quadratic finite elements are h2 and h4 respectively, which agrees
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well with the results predicted by Theorem 4.2. We then present the approximation errors of the
first two eigenvalues for these three molecules, see Figures 5.4, 5.5 and 5.6. We may see that these
results coincide well with our theory (see, e.g., Remark 4.4), too.
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Figure 5.1: N2: errors of the ground state total energy
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Figure 5.2: C2H4: errors of the ground state total energy

6 Concluding remarks

We have analyzed finite dimensional approximations of Kohn-Sham models. We have proved the
convergence and shown the optimal a priori error estimates of finite dimensional approximations.

As we see, the ground state solutions oscillate near the nuclei [14, 17]. It is natural to apply
adaptive finite element discretizations to carry out the electronic structure calculations. Indeed, it
is our on-going work to study the convergence and complexity of adaptive finite element methods
that will be addressed elsewhere.
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Figure 5.3: SiH4: errors of the ground state total energy
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Figure 5.4: N2: errors of the first and second eigenvalues
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chemistry, Ann. I. H. Poincaré-AN, 26 (2009), pp. 2425-2455.

[3] T.A. Arias, Multiresolution analysis of electronic structure: Semicardinal and wavelet bases,
Rev. Mod. Phys., 71 (1999), pp. 267-311.

[4] G. Bao and A. Zhou, Analysis of finite dimensioanl approximations to a class of partial differ-
ential equaitons, Math. Meth. Appl. Sci., 27 (2004), pp. 2055-2066.

24



10
−0.6

10
−0.4

10
−0.2

10
0

10
0.2

10
−2

10
−1

10
0

10
1

mesh size h

er
ro

r 
of

 e
ig

en
va

lu
e

 

 
for the 1st eigenvalue
for the 2nd eigenvalue
a line with slope 2

(a) Linear finite elements

10
−0.6

10
−0.4

10
−0.2

10
0

10
0.2

10
−3

10
−2

10
−1

10
0

10
1

mesh size h

er
ro

r 
of

 e
ig

en
va

lu
e

 

 
for the 1st eigenvalue
for the 2nd eigenvalue
a line with slope 4

(b) Quadratic finite elements

Figure 5.5: C2H4: errors of the first and second eigenvalues

10
−0.6

10
−0.4

10
−0.2

10
0

10
0.2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

mesh size h

er
ro

r 
of

 e
ig

en
va

lu
e

 

 
for the 1st eigenvalue
for the 2nd eigenvalue
a line with slope 2

(a) Linear finite elements

10
−0.6

10
−0.4

10
−0.2

10
0

10
0.2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

mesh size h

er
ro

r 
of

 e
ig

en
va

lu
e

 

 
for the 1st eigenvalue
for the 2nd eigenvalue
a line with slope 4

(b) Quadratic finite elements

Figure 5.6: SiH4: errors of the first and second eigenvalues

[5] E. Cancès, R. Chakir, and Y. Maday, Numerical analysis of nonlinear eigenvalue problems, J.
Sci. Comput., 45 (2010), pp. 90-117.

[6] E. Cancès, R. Chakir, and Y. Maday, Numerical analysis of the planewave discretization of
some orbital-free and Kohn-Sham models, arXiv:1003.1612, 2010.

[7] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods, Springer-Verlag,
Berlin Heidelberg, 2007.

[8] H. Chen, X. Gong, and A. Zhou, Numerical approximations of a nonlinear eigenvalue problem
and applications to a density functional model, Math. Meth. Appl. Sci., 33 (2010), pp. 1723-
1742.

[9] H. Chen, L. He, and A. Zhou, Finite element approximations of nonlinear eigenvalue problems
in quantum physics, Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 1846-1865.

[10] H. Chen and A. Zhou, Orbital-free density functional theory for molecular structure calcula-
tions, Numer. Math. Theor. Meth. Appl., 1 (2008), pp. 1-28.

25

http://arxiv.org/abs/1003.1612


[11] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1978.

[12] A. Edelman, T.A. Arias, and S.T. Smith, The geometry of algorithms with orthogonality con-
straints, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 303-353.

[13] L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S.A. Ghasemi, A. Willand, D. Caliste, O.
Zilberberg, M. Rayson, A. Bergman, and R. Schneider, Daubechies wavelets as a basis set for
density functional pseudopotential calculations, J. Chem. Phys., 129 (2008), pp. 014109-014112.

[14] X. Gong, L. Shen, D. Zhang, and A. Zhou, Finite element approximations for Schrödinger
equations with applications to electronic structure computations, J. Comput. Math., 26 (2008),
pp. 310-323.

[15] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Østergaard Sørensen, Electron wave-
functions and densities for atoms, Annales Henri Poincaré, 2 (2001), pp. 77-100.
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