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Abstract

It is known that a Green’s function-type condition may bedigederive rates
for approximation by radial basis functions (RBFs). In théger, we introduce a
method for obtaining rates for approximation by functiortésk can be convolved
with a finite Borel measure to form a Green'’s function. Follogva description of
the method, rates will be found for two classes of RBFs. Sigedly, rates will be
found for the Sobolev splines, which are Green’s functi@msl the perturbation
technique will then be employed to determine rates for appration by Wend-
land functions.

1 Introduction

Radial basis function (RBF) approximation is primarily d$er constructing approx-
imants to functions that are only known at discrete sets oftpoSome advantages of

this theory are that RBF approximation methods theordyieadrk well in arbitrarily

high dimensional spaces, where other methods break dowlrease of implementa-
tion. Even though the theory tells us that there is no dinmeradibound on the appli-
cability of RBF techniques, in practice, interpolatinggarsets of data coming from
high dimensional spaces can be computationally expengiogunately, efficient al-
gorithms [7] 17, 211] have been developed to compensate ¢brditficulties and allow
for wider application of RBF methods. As a result of theirdeable properties and
efficient implementation schemes, RBF techniques are beded to solve a variety
of applied problems, some examples being problems in datang|4,(8], statistical
learning theory[[16], and numerical partial differentiguations. In particular, Flyer
and Wright have shown that RBFs perform well in problems froathematical geo-
sciences/[9, 10].

The initial approach to scattered data approximatioiR8rroncerned the station-
ary setting, with RBFs being scaled to be proportional tdithdistance. In this paper,
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we will study the alternative non-stationary setting, whis relatively new and still
contains many open problems. For such an approximationappeoach to proving
error estimates is to exploit a Green'’s function repres@maFor example, this tech-
nique was used by Hangelbroek for analyzing approximatiothim-plate splines on
the unit disk, [14] 15]. More recently, DeVore and Ron dedivates for the approxi-
mation ofLP functions by RBF spaceS« (@), [5]. Here,Sx(®) denotes a collection
of linear combinations of translates of an RBE where the translations come from
a scattered discrete set of poits— RY. In order to derive these rates, the functions
@ were required to satisfy a Green'’s function-type conditibhe focus of this paper
will be to extend a result of DeVore and Ron to include certain-Green'’s functions.
Specifically, the Wendland functions, which have some nioperties, such as com-
pact support, and are hence popular for applications [g,ddhot fit the framework
of [5]. Therefore, this paper will address a generalizatiba result from[[5] that will
allow us to derive approximation rates for the Wendland fiams. Additionally, rates
for approximation by Sobolev splines will be determined.

To begin we will prove approximation rates for functionsttt@n be convolved with
a finite Borel measure to form a Green'’s function. The moitvefor this approach is
the success of Mhaskar, Narcowich, Prestin and Ward in idgriates for perturba-
tions of Green’s functions on the sphefe,|[18]. In fact, theye able to find rates for
the Wendland functions restricted to the sphere. Afteridistsing this general result,
we will provide some examples. To be precise, polynomiatadpcing functionals
will be used to show that the Sobolev splines and Wendlanctimms can be well ap-
proximated by local translates of themselves, and an emand for approximation by
some patrticular Sobolev splines and Wendland functiorideitierived.

1.1 Notation and Definitions

The Fourier transform and Laplace transform are fundarheits for proving many
results in approximation theory. We will use them to chardze the RBFs under
consideration and to prove several results. Throughoatghper, we will use the
following conventions. Given a functioh: R? — R in L1, its Fourier transfornf will

be defined by
£ _ 1 ' —iX-
f(w)_W/Rdf(x)e dx

Given a functionf : [0,0) — R that grows no faster thagf" for somea > 0, its Laplace
transform will be defined by

Zf(2) = /0 f(t)e 2dt.
Let E be a subset oRY, then we denote bZ(E) the collection of real valued
functions defined ok that have continuous partial derivatives up to ofderhe set of
functions inC¥(R) that converge to 0 at infinity will be denoted 6§ and we represent
the compactly supported elementsafRY) by C.
The Schwartz class” of functions onRY is defined as follows. A functior :
RY — R is said to be of Schwartz class if for all multi-indicesand, there exists a



constanC, g > 0 such that

x"DBf(x)‘ <Cup

for all x e RY,
We shall use the standard definition for the spaces. A Lebesgue measurable
functionf : RY —» Risin LP(RY) for 1 < p < w if

1/p
1]l = </d|f(x)|pdx> < oo,
R

and a Lebesgue measurable functfais said to be irL®(RY) if

[|f]l = €ss supgf(x)| < co.
xcRd

Additionally a measurable functidiis said to be locally integrable, denotedldyc(Rd),
if
/ I (%) dx < o0
E

for each bounded, measurable Bet RY.
The space of finite Borel measuresRfiwill be denoted byM(RY). This space is
equipped with a norm defined by

[l = |p] (RY),

where|u| is the total variation ofs. Given a measurg € M(RY) and anLP function
f, their convolution is a.P function, and it satisfies the following generalization of
Young’s inequality,[[12, Proposition 8.49]:

sl < Il Rl (1)

In deriving error estimates for the Wendland functions, wéneed to consider a
decomposition of measures. Specifically, any meagueeM (RY) can be written as
U = Ua+ Us+ Hg, Whereps, is absolutely continuous with respect to Lebesgue measure,
Ug is a countable linear combination of Dirac measures, jand y — Ua — Lq is the
singular continuous part qf.

Our primary focus will be approximating functions that lie subspaces ofP
spaces. The spaces that we will be mainly interested in arBéssel-potential spaces
L%P(RY), which coincide with the standard Sobolev spat&®(R?) whenk is a pos-
itive integer and < p < o, cf. [19, Section 5.3]. The Bessel potential spaces are
defined by

LkP = {f:f = (14|19 %6.0€ LPRY)}

for 1 < p < w0, and they are equipped with the norm

[ Fllee = Ilgllp-



We will also be working with smoothness spaces associatddlinear operators.
If T:CK(RY) — C(RY) is linear, then we define a semi-norm and nornCFiiRY) by

Flwereer = ITE,
fllweeeayry = fllp+ I FlwwemaT) -

The completion of the spa&®(RY), with respect to the above norm, will be denoted
by W(LP(RY), T). In particular, notice that for any positive integeand 1< p < oo,
we have
W(LP(RY), (1-2)") = L"P(RY)

whereA denotes thel—dimensional Laplacian.

The approximants used in this paper will be finite linear corations of translates
of an RBF®, and the translations will come from a countableXet RY. The error
of this approximation, which is measured in a Sobolev-tygem depends on both the
function® and the seK. Therefore, given an RBP and a seX, we define the RBF
approximation spacgx (®) by

Sx(®) = { > ag®(-—&):Y CX#Y < oo} NLY(RY).
éey

Note that the functiong and setsX will be required to satisfy certain conditions so

that we may prove results about rates of approximation. Titee bounds will be stated

in terms of the fill distance

hx = supinf ||x—¢]|,,
sup i [[x—¢[l
which measures how far a point&f' can be fromX, and we additionally require the
separation radius

1
== inf -&

o = inf [1§— &,
s4e!

to be bounded in order to prevent accumulation pointXinWe will therefore be
working with sets for which the mesh ratx := hx/gx is bounded by a constant;
such sets are called quasi-uniform.

1.2 Radial Basis Functions

The two classes of RBFs that we will be interested in are thmBw splines and the
Wendland functions. The Sobolev Splingg : RY — R form a class of radial basis
functions most easily defined in terms of their Fourier tfamas:

Gy(w) == (1+]|w|[3) Y2

for y > 0. Notice thaG, is the Green’s function for the (pseudo-)differential apier
(1—A)Y/2. These functions have been studied extensivelylinl[1, 2hése papers, it
is shown thaGy is an analytic function except at 0, and several useful asyticgp-
proximations are determined. Those necessary for ourtsed listed in the following
proposition.



Table 1: Examples of Wendland functions

Function Smoothness
P10(X) = (1-r1)+ o
(Dl,l(X) =(1- r)i(3r + 1) C?
D12(X) = (1—1)2(8r2+5r +1) ct
®30(X) = (1—r1)3 o
q33,l(X) =(1- r)i(4r + 1) C?
P32(X) = (1—1)8(35r2 4 18r + 3) c*
D33(X) = (1—1)8 (32r3+ 2524+ 8r + 1) (ox

Proposition 1.1. ([2, p.253])For any multi-indexa, there are positive constants C
such that

S IXIE " for ja| > y—d and|a| odd

—d—
DG, ()| < CyaalX|5 @9 for |a| > y—dand|a| even
e for |a| < y—d and|a| odd
Cyad for |a| < y—d and|a| even

Next, the Wendland functions compose a class of compactigated RBFs that
are radially defined as piecewise polynomials, and some pbegmare provided in Ta-
bled. Wendland’s book [20] (particularly chapter 9) praesda detailed analysis of
these functions and some of their approximation propertiesiever, an exact form
for the Fourier transforms of these functions has not presliobeen found. Since we
will need this information for our approximation analysige begin by computing the
Fourier transforms of these functions. The Wendland fomsttby « are determined
by a dimension parameterand a smoothness parameteand they lie inC(RY).
In Table[1 and in what follows; will be used to denotéx||,, and= will be used to
indicate equality up to some positive constant factor.

We will now derive an explicit form of the Fourier transforrh @ in the casel
is odd. Using the notation af [20, Section 10.5],det 2n+ 1 andm= n+k. Then by
[20, Lemma 6.19] and the definition &y x, we have

Py (X) = B fm(r)r 3m2 )
whereBy, is a positive constant and the Laplace transforniyp$atisfies

1

ffm(r) = W

In order to find the inverse Laplace transform of the aboveasgion, we will make
use of partial fractions. First, note that there exist camtstoj, 3, andy; such that

1 m i m B] m yj
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and this decomposition is unique. Now for any rgahe expression on the left is real.
Therefore, taking the complex conjugate of both sides, we ge

m m \/-
BJ Yi
sn-H,]_ 1+SZ ZOSJ+1 ZO _|)1+1+%(S+|)J+l

Uniqueness of the decomposition then implies that for gach
(i) ajisreal
(i) Bj=y
To further characterize the coefficients, we replabg —sin [@). First, we have
_1)m+l m (_1)i+lg, M (_1)i+1g. _1)i+1g.
1 B N e L IR L G )
sMil)mt & it & (s—)itt &y (s+i)itt
and therefore
1 m (_1)i+mq; m (_1)i+mg. mo(_1 j+mpa.
S, e et Y, s O
i= i= =
Again using the uniqueness of the partial fraction decortipos it follows that
(i) (~1)1"ma; = a;
(i) (~1)1*"B; =By

for eachj. The first property implies that; = O for either all oddj or all evenj. The
second property tell us th#; is real whenj +m is even, and it is imaginary when
j +mis odd.

We now compute, as the inverse Laplace transform of the sunin (3).

ZO r1+ml31 ir+m§_|1rjeir
j! i= =Rk

Now if mis odd, we haven= 2| +1 and

L Wy g L Bei1 o] i,
£ (r) = : J+ r2]+1 + ' I+ r2]+1 e ir 4 g
m(r) J.; (2] +1)! ; (2] +1)! ( )

_ Bzj r2i —ir ir
20(21) J(—e™"+€"),

which can be simplified to

|
02j+1 241 2Pej1 2j41 2B2j 2
foa(r) = 20(21 1) + Z 2i+ D) coqr) — %(21) r<sin(r).

Similarly, whenm = 2| we have

I
azj

'S 2Bt g 2o
for(r) = ,;Wrzj - JZO(ZJ_7+JI)!r2”1sm(r) + % (ZJ)J r2l cogr).



Lemma 1.2. Let &gy be a Wendland function with d odd, and define n and m by
d=2n+1and m=n+k. Then the exact form of the Fourier transformajfy is
found by substituting the above representations,ohfo ®q k(X) = By fm(r)r —3m-2.

We can now determine propertiescb@j,k that will be required for the error bounds.
The proof is omitted as the result follows easily from thenfatas computed fof,.

Proposition 1.3. Let d and k be non-negative integers with d odd, and conﬁi!dg}(x) =
Bm fm(r)r=3m-2, Then(-)~3™2f,, is an analytic function, and

r73m72 fm(r) — O(r72m72)
asr—s oo,
Let us now take a closer look at the 1-dimensional case.

Proposition 1.4. If k € N, then there exists € R and he L'(R) such that

kil ' .
20, | (x) = By (% + % cogx) + C&)EX) + h(X)> ) 5)

whereh is the Fourier transform of h.

Proof. Since the case whekas odd is similar to the case whekés even, we will only
prove the former. Recall thak, x(x) = Bx fk(r)r 32, so let us begin by examining
the functionfy. Fork = 2| + 1 and some constands, b;, andc;, we have

isin(r)

| [ [
-1 2] 2j 2
rf(n) =S ard + Y birfcogr) - ¢jre! (6)
20T, 2
We can then define an analytic functifn: R — R by

fi(x) = x|~ (X)),

and we will have@*+2dy | (x) = Bx ¥+ 1fi (x). Now sincedy y € L1(R) anddy (x) =
Bx fk(r)r —3¢=2, f(x) must have a zero of ordek3- 1 at 0, and thereforéy(x) has a
power series of the form

fi(x) = djx. (7)
j=3k+1
In order to verify [5), we first need to determine some of thefficients in [6).
From our previous work, we know that € R, and we can finégy andb, as follows.
In the partial fraction decompositionl(3), multiply botlies bys™ (1 +s?)™1, By
substituting the values= 0 ands = —i, we find thatay, = 1 andBy = (—1)™/2™+1,
and thereforey = 1/k! andby = (—1)k/(k12k+1),
We can now finish the proof by showing that

Pi(x) 1= x4 () — (% + () il cogx) — ¢ Sir;EX)>

ki2k



is the Fourier transform of ah! function. Sincehy(x) is identically 0 fork =1, we
need only considek > 3. This can be verified by determining that(x) has two
continuous derivatives ih?, cf. [11, p. 219]. Considering the representatian (7), it is
clear thafy(x) has two continuous derivatives, and the decay of theseifimsctan be
bounded usind{6). O O

2 General Error Estimates

In the paper([B], the authors made use of a Green'’s funcjipa-tondition in order
to determine rates of approximation, df! [5, Property A2he¥ were concerned with
approximating functions il.P(RY) by approximation spaceS (®), whereX has no

accumulation points an is finite. The essence of their argumentis as follows.

Property 1. Suppose TCK(RY) — C¢(RY) is a linear operator® € Li: (RY), and for
any f e CK(RY) we have

- /RdT F(O)D(- —t)dt. ®)

Now, given anf € CX(RY), we can form an approximant by replacidgwith a
suitable kernel in(8). Since we are interested in approtiimge by Sx(®), the kernel
should have the form

KC)= 3 ALEO(—E). 9)

geX(t)

The collection of possible kernels is restricted by reaugjri
X(t) C B(t,Chx)NX

for a constan€ > 0 and additionally requiring\(t, &) to be inL* for all . An essential
ingredient for deriving approximation rates is showing thaan be well approximated
by K. We therefore define the error kernel

E(xt) :=d(x—1t) — K(x,t). (10)
and assume the following property, cfl [5, Property A4].

Property 2. Given®, there exists a kernel K of the forfd (9) and constantsl, k > 0,
and C> 0 such that

—I
[E(x,t)| < Chg ¢ (Hllxr:itllz)

X

for all x,t € RY.

While this approach can be used to provide estimates for gmpelar RBFs, e.g.
the thin-plate splines, not all RBFs are Green'’s functiofiserefore our goal will be
to extend the class of applicable RBFs. Note that n [5], tith@rs were concerned
with proving error bounds that account for the local densityhe data sites. As our
goal is to extend the class of applicable RBFs, we will notass this more technical



approach; instead we will assurXds quasi-uniform, and our bound will be written in
terms of the global density paramels.

We will now show that it is possible to replace Property 1 byadition that only
requiresd to be “close” to a function that satisfies this property. Sfpeadly, we will
consider RBFsp that satisfy the following.

Property 1. Let T:CK(RY) — C¢(RY) and Ge L (RY) be a pair satisfying Property

loc
1, and suppose & ®x L, + vy whered L|10C(Rd), Un is a sequence of compactly sup-

ported, finite Borel measures witfun|| bounded by a constant, ang is a sequence
of finite Borel measures withwv,|| converging to 0.

The following provides an error bound for approximation 8(®) whereX is
quasi-uniform, and the error is measured as

éa(f,S((q’))p:SEiSn(f@)||f _SHLP(Rd)

forl<p<oeo.

Theorem 2.1. Let X be a quasi-uniform set iR9. Supposeb is an RBF satisfying
Property 1’ and Property 2, and let € CK(RY), then

E(f,5(®))p < ChL | lwLp(ra) )
foranyl < p< oo,

Proof. First, we define a sequence of approximants by

_ CD(-—E)'/H%de*un(t)A(t,E)dt.

Note that this sum is finite due to the compact suppofiT 6f 1, and the conditions
imposed orA(-,-). Now

=Rl =

Tf(t)G(~—t)dt—/ Tf*un(t)K(-,t)dt‘
Rd Rd

/ﬂ%de*un(t) (D(—t) = K(-,))dt+T f 5 v

IN

/Rd IT £ n(t)][P(- — 1) — K(-, 1) dt+ [T v

and by Property 2,

—l
—t
[f —Fal SChQ*d/Rd [T f pn(t)] <1+ %) dt+ [T f vn|.



Therefore

1t —Fallp

IN

—I
Chifd |Tf*un|*<1+%> | —|—||Tf>»<vn||p
p

CHIT 1kl [+ 1T [ o [ vnl|

by the generalization of Young'’s inequality stated in egqpra{d). Hence, foN suffi-
ciently large (depending oX), we will have

IN

[T =il < CRIT .
O O

Now that we have established this result @ we would like to extend it to all
of W(LP(RY),T). This is accomplished in the following corollary using a siéy
argument.

Corollary 2.2. Suppose £ W(LP(RY),T), then
E(F,5(®))p < Ch [ f lyy(Lo(ra)T)

Proof. Let f, € C? be a sequence convergingftin W(LP(RY), T), and let, € Sx(P)
be a sequence of approximants satisfying

[0 = Fnllp < C | nlwLp(ra).T) -

Then
I =Fall, < [If = fall[,+[Ifn —Fall,
< |If = fallp +Ch% [ falwLe(ra) ) -
Now sincef, converges td in W(LP(RY), T), the result follows. O O

3 Special Cases

In this section we will provide some examples, showing howedafy the properties
listed above. However, we will first need to take a look at lqmalynomial repro-
ductions. As in[[5], this will be a crucial part of verifying®perty 2. To that end let
® € C"(RY) be the RBF under consideration, andRetenote the space of polynomials
of degree at most— 1 onRY. For a finite sel c RY, let Ay be the set of extensions
to C(RY) of linear combinations of the point evaluation functiongjs Ply — R. We
now assume the following, cf.|[5, p.9]:

(i) There is a constar@; such thaiX(t) ¢ B(t,Cihx) N X for all t € RY.
(i) Forallt, there exists\; € Ay such that\; agrees with onP.

(iii) ||At]| < C, for some constar®; independent dff.

10



Based on these assumptioAstakes the forny ¢ x 1) A(¢,t)Js, and we can define a
kernel approximant te by

Kxt) = A(@(x—)
= Y ALEDx-E).

geX(t)

One way to verify the validity of our assumptions is the fallog. For eachx €
hxZ9, we denote byQy the cube of side lengthx centered ak. This provides a
partition of RY into cubes. We then associate to each oQh¢he ballB(x,Cshx) for
some constariz, and for each in a fixedQy,, we defineX(t) = X N B(xp,Cshx). By
choosingCs appropriately and bounding the possible valuebygfone can show that
there exists\; satisfying the above properties, wi = 2, for all t € Q,, cf. [20,
Chapter 3]. Asxg was arbitrary, the result holds for dlie R%. Note that by using
the same seX(t) for all t in a given cube&,,, we are able to choose the coefficients
A(&,t) so that they are continuous with respect to the interior of the cube. To see
this, let{pi}["; be a basis foP and letB(xg,Cshx) N X = {E,-}’J-\‘:l. We now define the
matrix M; j := pi(j) and thet dependent vectgB(t); := pi(t). SinceA; reproduces
polynomials, there exists a vectar(t) such thatMa(t) = B(t) for all t € Qy,. We
could therefore choose a specifigt) by means of a pseudo-inverse, i.e.(t) :=
MT(MMT)~1B(t). In this form it is clear thatr is a continuous function of and
A= ZiN:1 ai(t) 9 satisfies properties (i) and (ii). Property (iii) followsofn the fact
that the pseudo-inverse gives the minimum norm solution.

3.1 Sobolev Splines

We are now in a position to prove Property 2 for the Sobolewn®plG, wherey is a
positive even integer. In particular, we will show that #hés a kerneKy so that

o v (1, Xt ™
IGy(x—t) —Ky(x,t)| <Ch ° (14 e :

whend is odd and obtain a similar result fdreven. From the argument above, we
know that there exista; that reproduces polynomials of degneand satisfies the re-
quired form defined in the previous section. Uskgwe define the kernel approximant
to Gy by

Ky(x.1) = A(Gy(x— ).

Property 2 will only be verified fot = 0 as all other cases work similarly. First
suppose thatx||, > 2C;1hx, thenGy is analytic inB(x,C1hx). If we letRbe the degree
y Taylor polynomial of® atx, then we get

|Gy(x) = Ky(%,0)| = |Gy(x) = R(X) = Ao(Gy(x— -) = R(x—))|,
and therefore

|Gy(9) = Ky(x,0)] < (1+C2) ||Gy — Rl| gy

11



From Taylor's remainder theorem, we get

|Gy(x) — Ky(x,0)| < ———h}{™|

(y+1)! Gyl \lew( B(xCihx)) ’

and applying propositidn 1.1 gives

Gy(x) —Ky(x,0)| < ChE™[x%* (12)
—d-1
< chf (1+”;(|X|2> . (12)

Now if ||x||, < 2C1hx andd is odd, we defin&R to be the degreg—d — 1 Taylor
polynomial ofGy at O; if d is even, leRR to be the degreg—d — 2 Taylor polynomial
of Gy at 0. Ford odd, we get

|Gy(x) = Ky(x,0)| < chy |Gyl |WV*d’°°(B(O,3C1h><)) ;
and by Propositionh 111, we have
|Gy(x) — Ky(x,0)| <Chl .
By making use of the assumptiop||, < 2C1hx, we finally get
—d-1
|Gy(x) —Ky(x,0)| <Cht, (1+ %) . (13)

Similarly for d even, we have
a1y M) T
|Gy(x) — Ky(x,0)| < Ch} (1+ h—) : (14)
X

Putting these estimates together, equatibnk (L2), (18){E4) imply Property 2
for the Sobolev splines. Note that Property 1’ is clearlys$iad forG = G, andT =

(1—N)Y/2,

Theorem 3.1. For any positive even integgr> d+ 1 and anyl < p < «, the following
rates are valid for approximation by the Sobolev splings G

i) Ifdisodd
E(f,(Gy))p < Ch§|f|LV>p(Rd)

i) Ifdiseven

(f SX <Ch>< |f|LVPRd

12



3.2 Wendland Functions

We now come to the reason for studying perturbations: tovdeqpproximation results
for the Wendland functions. We will begin by using the polgmal reproducing func-
tionalsA; to verify Property 2. Note thaPy (x —t) andA¢(Pq (X —-)) are both zero
for ||x—t||, > 1+ Cihx. Therefore in order to verify Property 2, it suffices to show
that for |[x—t||, < 14 Cihx we have|®q (X —t) — Ag(Pax(x—-))| < ChE. Similar

to the Sobolev splines, we will only verify this inequalityrt = 0. To begin, fixx, and

let Rbe the X — 1 degree Taylor polynomial dby c atx. Then

|®g k(%) — Ao(Pak(x—))] |(@ax — R)(X) = Ao((Pax — R)(x—-))|

[l | |q’d,k - R| |L°°(B(X,C1hx))

IN

IN

C¢a,kh>2<k |20l ‘ ‘q’d,k‘ ‘WZkvw(B(x,Clhx))

We have therefore shown that eabl satisfies Property 2 witkh = 2k.

The challenge in proving rates for the Wendland functionzeaps when trying to
prove Property 1'. To accomplish this, we can work in the kudomain, where
the convolution becomes a standard product. For exampéaaw thatG = ® « u for
somey € M(RY), we can verify thaG/® is the Fourier transform of somee M(RY).
The difficulty lies in characterizing the space of Fouriansforms oM (RY). This is
known to be a very difficult problem, cf.][3]. However, in cairt situations, we are able
to make this determination. Our approach will be to work uride assumption that the
functions being approximated have added smoothness, amdivagditionally work
in odd space dimensioth, since we know the exact form of the Fourier transform of
®y k. In this situation, we can choose our Green’s funct®to be the Sobolev spline

God 4 2k12-

Lemma 3.2. Let G and®y « be defined as above with&kZ*. In this case we have
pi=(G/®)" e LY(RY)

Proof. First, itis clear thaG/® is a radialL}(RY) function, sou € L®(R%). Addition-
ally, we can write

ux =@ [”
0

wherelJ is a Bessel function of the first kind. In this form, we can bdwnfor r large,
and hence show that it has sufficient decay to belifRY). Verifying the decay ofu
is accomplished using the fact that

(1_|_ t2)7(d+1)/2
(1+t2)(d+2k+1)/2(j)(t)t

92342 /2(1t)dlt

S (29,2 =29, 12

and integrating by parts + 5) /2 times. Note that Propositign 1.3 is used to bound the
decay at each step. O O

13



With u defined as in the previous lemma, we get

Godyoki2 = Pg* U,

and by choosingi, to be the restriction oft to B(0,n), we can see that Property 1" is
satisfied. Therefore we have the following theorem.

Theorem 3.3. For any positive integer k and any odd space dimension d, we ha

E(F, S (Pgk))p < Cf’&k | ] 2dr2kt2,p
for1<p<oo.

Upon inspection, one can can see that we have to assume a bigheof smooth-
ness on the functions being approximated than the rate afoajppation. Notice
that the approximated functiorfs are assumed to be i?4t2%+2P byt the rate of
approximation is only1>2<k. Despite this shortcoming, the derived rate is better than
what is currently known in certain cases. [nl[20], Wendlamdedmines a rate of
h&dﬁkﬂ)/z*d(l/zfl/ P)+ for bounding the_P(Q) error in approximating functions from
W(d+2+1)/22(0) whereQ is a bounded domain iRY. First, notice that when approx-
imating arbitrarily smooth functions and<l p < 2, Theoreni 313 provides a better rate
aslong ak > (d+1)/2. However, the improvement is most noticeable whésiclose
to «. Also note that the prior rate suffers the same drawback a@®rEn{3.B; when
p = 1, theL! smoothness needed to beird+2+1/22(Q) is greater thanl 4 2k + 1.

3.3 Improved Estimates for the Wendland Functions

In the generality of Theorefn 3.3 the assumed smoothnesgatagrthan the rate of
approximation. One source of this disparity was that wheifying Property 1’, we
comparedpy  to the Green’s functio,q. 2«41 Which has a Fourier transform with a
faster rate of decay. In this section, we propose an altemmathod and show that for
d =1 we have®, = G2 * 4 for some finite Borel measuye and hence improve
the error estimates. Notice that the Fourier transforn,gfandGy» have the same
rate of decay, so in this situation, we are no longer losinlg® of approximation from
the perturbation technique.

Our approach to verifying Property 1’ will be to vieM(R) as a Banach algebra
and use an invertibility result of Benedetto. The first stepoi show thaﬁb/é is the
Fourier transform of somg € M(R). Then the following theorem will give condi-
tions for i~1 = G/® being the Fourier transform of an element\¢fR). Recall the
decomposition of measures: a Borel meaguan be written agl; + s+ Lg. Using
this notation, we state the following theorem of Benedédttote that the author proved
this theorem in a more general setting wRthreplaced by an arbitrary locally compact
Abelian group.

Theorem 3.4. ([3, Theorem 2.4.4])et u € M(R) such thatfi| never vanishes and
sl < inf [[1g(X)] -
xeR

Thenfi—1 is the Fourier transform of an element of( ).
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We now fixk > 1, and we must select a Green’s functiBrand corresponding
differential operatoil so that(i)l’k/é satisfies the necessary conditions. Considering
the decay ofb; x, we chooseés = (1+|-|**2) "L andT = (1+ (—1)k"1AkH1). Note
that for 1< p <  we haveW(LP(R), T) is equivalent to the spac¥¥**+2P(R) and
L2k+2*p(R).

With this Green’s functiorG, we can verify the hypotheses of Theoreml 3.4. By
Propositio 1.1, we know that for sonBg > 0 andC € R we have

I (—1)kt1 cSin) ¢
209 = buict i (g + S cos -0 4w
whereh is the Fourier transfoArm of at function,h. The fact thaﬁ)l,k/é is positive

follows from the positivity of®, i, cf. [20, Chapter 10]. Now left be the measure

defined by

k-
u_¢l,k+\/ZTBk< 60+( Dbl ¢ 1 h>.

_ —=X —
KI2k+1 (6-1+31) 2 [*131]4'\/%

Thenp is a finite Borel measure with = qblﬁk/é. Additionally, u has no singular
continuous part, and

kt+1
) = B -+ S cos@)) = 2
Therefore Theoreri 3.4 implies thatfl = G/élﬁk is the Fourier transform of some
finite Borel measurgi. By letting fin be the restriction ofi to B(0,n), we can see that
G = ®y*fl
= @y fin+ Py (U — [in),
and hence corollafy 2.2 applies.

Theorem 3.5. Let @4, be as above, and let X be a quasi-uniform subsé.oThen
for f € LZ*2P(R) and1 < p < », we have

@@(faSX((Dl,k))p < Ch>2<k|f||_2k+2,p(R)
By examining this example, we can determine what the anaegesult would be
for the remaining Wendland functions.Kf> 1, then it is known that
Ca(1+ [|w][5) (T2 < By () < Co(1+ |l [f) " *FHFD/2

for some positive constantg andc,, cf. [20, Theorem 10.35]. Therefore, we could
chooseG to be the Sobolev spline of orddr- 2k + 1, so thaG and&)d’k have similar
decay. In this situationé/&)d k IS a continuous function that is bounded above and
bounded away from 0. If we could show tlﬁy@d k is the Fourier transform of an
element oM (RRY), then we could apply corollafy 2.2 to obtain the following.

Conjecture 3.6. Let ®y be as above with k 1, and let X be a quasi-uniform subset
of RY. Then for fe LI+2+LP(RY) and1 < p < », we have

éa(f,S(((Dd’k))p < Ch>2<k |f ||_d+2k+1,p(Rd) .
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