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Abstract In fields ranging from computer vision to signal processing and statis-
tics, increasing computational power allows a move from classical linear models
to models that incorporate non-linear phenomena. This shift has created inter-
est in computational aspects of differential geometry, and solving optimization
problems that incorporate non-linear geometry constitutes an important compu-
tational task. In this paper, we develop methods for numerically solving optimiza-
tion problems over spaces of geodesics using numerical integration of Jacobi fields
and second order derivatives of geodesic families. As an important application of
this optimization strategy, we compute exact Principal Geodesic Analysis (PGA),
a non-linear version of the PCA dimensionality reduction procedure. By applying
the exact PGA algorithm to synthetic data, we exemplify the differences between
the linearized and exact algorithms caused by the non-linear geometry. In addition,
we use the numerically integrated Jacobi fields to determine sectional curvatures
and provide upper bounds for injectivity radii.
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statistics, differential geometry, Riemannian metrics
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1 Introduction

Manifolds, sets locally modeled by Euclidean spaces, have a long and intriguing
history in mathematics, and topological, differential geometric, and Riemannian
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geometric properties of manifolds have been studied extensively. The introduction
of high performance computing in applied fields has widened the use of differential
geometry, and Riemannian manifolds, in particular, are now used for modeling
a range of problems possessing non-linear structure. Applications include shape
modeling (complex projective shape spaces [23] and medial representations of sur-
faces [1,20]), imaging (tensor manifolds in diffusion tensor imaging [7,8,30] and
image segmentation and registration [2,31]), and several other fields (forestry [19],
human motion modeling [36,40], information geometry and signal processing [42]).

To fully utilize the power of manifolds in applied modeling, it is essential to
develop fast and robust algorithms for performing computations on manifolds,
and, in particular, availability of methods for solving optimization problems is
paramount. In this paper, we develop methods for numerically solving optimiza-
tion problems over spaces of geodesics using numerical integration of Jacobi fields
and second order derivatives of geodesic families. In addition, the approach allows
numerical approximation of sectional curvatures and bounds on injectivity radii
[19]. The methods apply to manifolds represented both parametrically and implic-
itly without preconditions such as knowledge of explicit formulas for geodesics.
This fact makes the approach applicable to a range of applications, and it allows
exploration of the effect of curvature on non-linear statistical methods.

To exemplify this, we consider the problem of capturing the variation of a set
of manifold valued data with the Principal Geodesic Analysis (PGA, [12]) non-
linear generalization of Principal Component Analysis (PCA). Until now, there
has been no method for numerically computing PGA for general manifolds with-
out linearizing the problem. Because PGA can be formulated as an optimization
problem over geodesics, the tools developed here apply to computing it without
discarding the non-linear structure. As a result, the paper provides an algorithm
for computing exact PGA for a wide range of manifolds.

1.1 Related Work

A vast body of mathematical literature describes manifolds and Riemannian struc-
tures; [5,26] provide excellent introductions to the field. From an applied point of
view, the papers [4,22,28,24,35,39] address first-order problems such as comput-
ing geodesics and solving the exponential map inverse problem, the logarithm
map. Certain second-order problems including computing Jacobi fields on diffeo-
morphism groups [44,6] have been considered but mainly on limited classes of
manifolds. Different aspects of numerical computation on implicitly defined man-
ifolds are covered in [45,33,32], and generalizing linear statistics to manifolds has
been the focus of the papers [21,29,9,12,19].

Optimization problems can be posed on a manifold in the sense that the domain
of the cost function is restricted to the manifold. Such problems are extensively
covered in the literature (e.g. [27,43]). In contrast, this paper concerns optimization
problems over geodesics with the complexity residing in the cost functions and not
the optimization domains.

The manifold generalization of linear PCA, PGA, was first introduced in [11]
but it was formulated in the form most widely used in [12]. It has subsequently
been used for several applications. To mention a few, the authors in [12,7] study
variations of medial atoms, [41] uses a variation of PGA for facial classification,
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[34] presents examples on motion capture data, and [39] applies PGA to vertebrae
outlines. The algorithm presented in [12] for computing PGA with tangent space
linearization is most widely used. In contrast, [34] computes PGA as defined in
[11] without approximations, exact PGA, on a particular manifold, the Lie group
SO(3). The paper [38] uses the methods presented here to experimentally assess
the effect of tangent space linearization on high dimensional manifolds modeling
real-life data.

A recent wave of interest in manifold valued statistics has lead to the develop-
ment of Geodesic PCA (GPCA, [19]) and Horizontal Component Analysis (HCA,
[37]). GPCA is in many respects close to PGA but GPCA optimizes for the place-
ment of the center point and minimizes projection residuals along geodesics. HCA
builds low-dimensional orthogonal decompositions in the frame bundle of the man-
ifold that project back to approximating subspaces in the manifold.

1.2 Content and Outline

The paper presents two main contributions: (1) how numerical integration of Ja-
cobi fields and second order derivatives can be used to solve optimization problems
over geodesics; and (2) how the approach allows numerical computation of exact
PGA. In addition, we use the computed Jacobi fields to numerically approximate
geometric properties such as sectional curvatures. After a brief discussion of the
geometric background, explicit differential equations for computing Jacobi fields
and second derivatives of geodesic families are presented in Section 3. The actual
derivations are performed in the appendices due to their notational complexity. In
Section 4, the exact PGA algorithm is developed. We end the paper with exper-
iments that illustrate the effect of curvature on the non-linear statistical method
and with estimation of sectional curvatures and injectivity radii bounds.

The importance of curvature computations is noted in [19], which lists the
ability to compute sectional curvature as a high importance open problem. The
paper presents a partial solution to this problem: we discuss how sectional cur-
vatures can be determined numerically when either a parametrization or implicit
representation is available.

In the experiments, we evaluate how the differences between the exact and
linearized PGA depend on the curvature of the manifold. This experiment, which
to the best of our knowledge has not been made before, is made possible by the
generality of the optimization approach that makes the algorithm applicable to a
wide range of manifolds with varying curvature.

2 Background

This section will include brief discussions of relevant aspects of differential and
Riemannian geometry. We keep the notation close to the notation used in the
book [5]; see in addition Appendix A.
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2.1 Manifolds and Their Representations

In the sequel, M will denote a Riemannian manifold of finite dimension η. We
will need M to be sufficiently smooth, i.e. of class Ck for k = 3 or 4 depending
on the application. For concrete computational applications, we will represent
M either using parametrizations or implicitly. A local parametrization is a map
x ∈ Ck(U,M) from an open subset U ⊂ Rη to M . With an implicit representation,
M is represented as a level set of a differentiable map F : Rm → Rn, e.g. M =
F−1(0). If the Jacobian matrix DF has full rank n everywhere on M , M will be an
(m−n)-dimensional manifold. The space Rm is called the embedding space. When
dealing with implicitly defined manifolds, we let m and n denote the dimension
of the domain and codomain of F , respectively, so that the dimension η of the
manifold equals m − n. Examples of applications using implicit representations
include shape and human poses models [39,18], and several shape models use
parametric representations [20,25].1

2.2 Geodesic Systems

Given a local parametrization x : U → M , a curve αt on M is a geodesic if the
curve xt in U representing αt, i.e. x−1 ◦ αt = xt, satisfies the ODE

ẍkt = −
η∑
i,j

Γ kij(xt)ẋt
iẋt

j , k = 1, . . . , η . (1)

Here Γ kij denotes the Christoffel symbols of the Riemannian metric. Conversely,
geodesics can be found by solving the ODE with a starting point x0 = q and
initial velocity ẋ0 = v as initial conditions. The exponential map Expqv maps the
initial point q ∈ M and velocity v ∈ TqM to α1, the point on the geodesic at
time t = 1. When defined, the logarithm map Logqy is the inverse of Expq, i.e.
ExpqLogqy = y. For implicitly represented manifolds, the classical ODE describing
geodesics is not directly usable because neither parametrizations nor Christoffel
symbols are directly available. Instead, the geodesic with initial point q and initial
velocity v can be found as the x-part of the solution of the IVP

ṗt = −

(
n∑
k=1

µk(xt, pt)Hxt(F
k)

)
ẋt ,

ẋt =
(
I −DxtF

†DxtF
)
pt ,

x0 = q, p0 = v ,

(2)

see [4]. Note that xt is a curve in the embedding space Rm but since M is a
subset of the embedding space and the starting point q is in M , xt will stay in

1 Other representations include discrete triangulations used for surfaces and quotients M̃/G

of a larger manifold M̃ by a group G. The latter is for example the case for Kendall’s shape-
spaces Σkd [23]. Kendall’s shape-spaces for planar points are actually complex projective spaces

CPk−2 for which parameterizations are available, and, for points in 3-dimensional space and
higher, the shape-spaces are anomalous and not manifolds. The spaces studied in [19] belong
to this class.
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M for all t. Recall that F : Rm → Rn is the map defining the manifold by e.g.
M = F−1(0) and that H(F k) denotes the Hessian of the kth component of F . F is
map between Euclidean spaces and the Hessian is therefore the ordinary Euclidean
Hessian matrix. The map µ : Rm × Rm → Rn is defined by (x, p) 7→ −(DxF

T )†p
where the symbol DF † denotes the generalized inverse or pseudo-inverse of the
non-square matrix DF . Since DF has full-rank n, DF † equals DFT (DFDFT )−1.
Numerical stability of the geodesic system is treated in [4].

2.3 Geodesic Families and Variations of Geodesics

In the next sections, we will treat optimization problems over geodesics of which
the PGA problem (6) constitute a concrete example; in addition, problems such as
geodesic regression [10] and manifold total least squares belong to this class. For
this purpose, we here recall the close connection between variations of geodesics,
Jacobi fields, and the differential dExp. Let αt,s be a family of geodesics parametrized
by s, i.e. for each s̃, the curve t 7→ αt,s̃ is a geodesic. By varying the parameter s, a
vector field d

dsαt,0 is obtained.2 These Jacobi fields are uniquely determined by the

initial conditions J0 and D
dtJ0, the variation of the initial points x0,s and the co-

variant derivative of the field at t = 0, respectively. Define qs = x0,s, vs = ẋ0,s, and
w = d

dsv0. If d
dsq0 = J0 and w = D

dtJ0 then d
dsExpqs(tvs)|s=0 equals Jt [5, Chap.

5]. When qs is constant, i.e. qs = q, we have the following connection between Jt
and the differential dExp:

dtv0Expqtw = Jt . (3)

Jacobi fields can equivalently be defined as solutions to an ODE that involves
the curvature endomorphism of the manifold [5, Chap. 5]. However, the curvature
endomorphism is not easily computed when the manifold is represented implicitly,
and, therefore, the ODE is hard to use for computational applications in this
case. In the next section, we numerically compute Jacobi fields by integrating the
differential of the system (2).

Jacobi fields can be used to retrieve various geometric information e.g. sectional
curvature. Let Jt denote a Jacobi field along the geodesic αt with J0 = 0 and
derivative w = D

dtJ0. Assume the vectors v0 = α̇0 and w are orthonormal. These
vectors define a plane σ = span {v0, w} in Tα0M , and Kα0(σ) denotes the sectional
curvature of the plane σ. Because Kα0(σ) occurs in a Taylor expansion of the
length ‖Jt‖, the sectional curvature can be estimated by

Kα0(σ) ≈ 6

t3
(t− ‖J(t)‖) (4)

for small t. Furthermore, if Jt is a non-zero Jacobi field with J0 = 0 along a geodesic
αt and, for some t̃ > 0, also Jt̃ = 0 then αt̃ is called a conjugate point to α0. This
can provide an upper bound on the injectivity radius of M , that, in general terms,
specifies the minimum length of non-minimizing geodesics. Figure 1 illustrates the
situation on the sphere S2. We will explore both these points in the experiments
section.

2 Recall that d
ds
αt,0 is a shorthand for d

ds
αt,s|s=0, see Appendix A.
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Fig. 1 The sphere S2 with a Jacobi field along a geodesic connecting the poles. Each pole is
a conjugate point to the other since the non-zero Jacobi field vanishes. The injectivity radius
is equal to the length of the geodesic, π.

2.4 Principal Geodesic Analysis

Principal Component Analysis (PCA) is widely used to model the variability of
data in Euclidean spaces. The procedure provides linear dimensionality reduction
by defining a sequence of linear subspaces maximizing the variance of the projec-
tion of the data to the subspaces or, equivalently, minimizing the reconstruction
errors. The kth subspace is spanned by an orthogonal basis {v1, . . . , vk} of princi-
pal components v1, . . . , vk, and the ith principal component is defined recursively
by

vi = argmax‖v‖=1
1

N

N∑
j=1

(〈
xj , v

〉2
+
i−1∑
l=1

〈
xj , v

l
〉2)

(5)

when formulated as to maximize the variance of the projection of the dataset
{x1, . . . , xN} to the subspaces span {v1, . . . , vi−1}.

PCA is dependent on the vector space structure of the Euclidean space and
hence cannot be performed on manifold valued datasets. Principal Geodesic Anal-
ysis was developed to overcome this limitation. PGA finds geodesic subspaces
centered at point µ ∈ M with µ usually being an intrinsic mean3 of the dataset
{x1, . . . , xN}, xj ∈M . The kth geodesic subspace Sk of TµM is defined as Expµ(Vk)

with Vk = span {v1, . . . , vk} being the span of the principal directions v1, . . . , vk

defined recursively by

vi = argmax‖v‖=1,v∈V ⊥i−1

1

N

N∑
j=1

d(µ, πSv (xj))
2 ,

Sv = Expµ(span {Vi−1, v}) .

(6)

3 The notion of intrinsic mean goes back to Fréchet [13] and Karcher [21]. As in [12], an

intrinsic mean is here a minimizer of argminµ∈M
∑N
j=1 d(µ, xj)

2. Uniqueness issues are treated

in [21].
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The projection πS(x) of a point x ∈M onto a geodesic subspace S = ExpqV is

πS(x) = argminy∈Sd(x, y)
2 = argminy∈S‖Logyx‖

2

= Expq(argminw∈V ‖LogExpqw
x‖2) .

(7)

The term being maximized in (6) is the sample variance of the projected data, the
expected value of the squared distance to µ, and PGA therefore extends PCA by
finding geodesic subspaces in which variance is maximized.4

Since both optimization problems (6) and (7) are difficult to optimize, PGA
has traditionally been computed using the orthogonal projection in the tangent
space of µ to approximate the true projection. With this approximation, equation
(6) simplifies to

vi ≈ argmax‖v‖=1
1

N

N∑
j=1

(〈
Logµxj , v

〉2
+
i−1∑
l=1

〈
Logµxj , v

l
〉2)

which is equivalent to (5), and, therefore, the procedure amounts to performing
regular PCA on the vectors Logµxj . We will refer to PGA with the approximation
as linearized PGA, and, following [34], PGA as defined by (6) will be referred to as
exact PGA.5 The ability to iteratively solve optimization problems over geodesics
that we will develop in the next sections will allow us to optimize (6) and hence
numerically compute exact PGA.

In general, PGA might not be well-defined as the intrinsic mean might not be
unique and both existence and uniqueness may fail for the projections (7) and the
optimization problem (6). The convexity bounds of Karcher [21] ensures unique-
ness of the mean for sufficiently local data but setting up sufficient conditions to
ensure well-posedness of (7) and (6) for general manifolds is difficult because they
depend on the global geometry of the manifold.

There is ongoing discussion of when principal components should be con-
strained to pass the intrinsic mean as in PGA or if other types of means should be
used, see [19] with discussions. In Geodesic PCA [19], the principal geodesics do
not necessarily pass the intrinsic mean, and similar optimization that allows the
PGA base point to move away from the intrinsic mean can be carried out with
the optimization approach used in this paper. PGA can also be modified by re-
placing maximization of sample variance by minimization of reconstruction error.
This alternate definition is not equivalent to the definition above, a fact that again
underlines the difference between the Euclidean and the curved situation. We will
illustrate differences between the formulations in the experiments section but we
mainly use the variance formulation (6).

3 Optimization over Geodesics

Equation (6) and (7) defining PGA are examples of optimization problems over
geodesics that in those cases are represented by their starting point µ and initial

4 A slightly different definition that uses one-dimensional subspaces and Lie group structure
was introduced in [11].

5 In [34], the fact that πS has a closed form solution on the sphere S3 when S is a one-
dimensional geodesic subspace is used to iteratively compute PGA with the [11] definition.
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velocity v. More generally, we here consider problems

min
(q,v)∈(M,TqM)

F (Expqv) (8)

where F : M → R is a function defining the cost of the geodesic Expqtv here at

time t = 1.6. In order to iteratively solve optimization problems of the form (8),
we will need derivatives of Expqv since dF (Expqv) = dyF dExpqv with y = Expqv.
Thus, we wish to compute the differential of Expqv with respect to initial point q
and initial velocity v. Since (6) is a function of the projection πS given by (7), we
will later see that we need the second order differential of Exp as well.

Only in specific cases where explicit expressions for geodesics are available
can the above mention differentials be derived in closed form. Instead, for general
manifolds, the ODEs (1) and (2) describing geodesics can be differentiated giving
systems that can be numerically integrated to provide the differentials. This ap-
proach relies on the fact that sufficiently smooth initial value problems (IVPs) are
differentiable with respect to their initial values, see e.g. [16, Chap. I.14].

We will here derive explicit expressions for IVPs describing the differential
of the exponential map and Jacobi fields. In addition, we will differentiate the
IVPs a second time. The concrete expressions will allow the IVPs to be used for
iterative optimization of problems on the form (8). In particular, they will be used
for the exact PGA algorithm presented in the next section. The basic strategy is
simple: we differentiate the geodesic systems of Section 2.2. Though the resulting
equations are notationally complex, their derivation is in principle just repeated
application of the chain and product rules for differentiation. MATLAB code for
numerical integration of the systems is available at http://image.diku.dk/sommer.

Since the geodesic equations (2) contain the generalized inverse of the Jacobian
matrix DF , we will use the following formula for derivatives of generalized inverses.
When an n ×m matrix As depends on a parameter s and has full rank n, and if
its generalized inverse A†s is differentiable, then the derivative d

ds (A†s) is given by

d
ds (A†s) = −A†s

(
d
dsAs

)
A†s +

(
I −A†sAs

)(
d
dsA

T
s

)(
A†s
)T
A†sAs . (9)

This result was derived in [3,14] and [17] for the full-rank case. We will apply (9)
with As = Dxt,sF when xt,s is an s dependent family of curves in the embedding

space Rm that are geodesics on M and when t is fixed. To see that Dxt,sF
† is

differentiable with respect to s when xt,s depends smoothly on s, take a frame
of the normal space to M in a neighborhood of xt,s, and note that Dxt,sF

† is a
composition of a invertible map onto the frame depending smoothly on s and the
frame itself.

The explicit expressions for the differential equations are notationally heavy.
Therefore, we only state the results here and postpone the actual derivation to
Appendix B.

Let M ⊂ Rm be defined as a regular zero level set of a C3 map F : Rm → Rn. Using

the embedding, we identify curves in M and vectors in TM with curves and vectors in

6 Even more generally, F can be a function of the entire curve Expqtv, t ∈ R instead of just
for the point Expqtv, t = 1 Note that for PGA, the initial velocity is in addition constrained
to subspaces of TqM .

http://image.diku.dk/sommer
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Rm. Let xt be a geodesic with x0 = q and ẋ0 = v. The Jacobi field Jt along xt with

J0 = u and D
dtJ0 = w can then be found as the z-part of the solution of the IVP

(
ẏt
żt

)
= F Iq,v

(
t,

(
yt
zt

))
,(

y0
z0

)
=

(
w

u

)
,

(10)

with F Iq,v the map given in explicit form in Appendix B.

As previously noted, Jacobi fields can be described using an ODE incorporating
the curvature endomorphism in the parameterized case. We can, however, apply
a procedure similar to the implicit case and derive and IVP by differentiating
the geodesic system (1). We will use the resulting IVP (24) when working with
variations of geodesics in the parameterized case, see Appendix B.

The systems (10) and (24) are both linear in the initial values (w u)T as
expected of systems describing differentials. They are non-autonomous due to the
dependence on the position on the curve xt.

Recall the equivalence (3) between Jacobi fields and dExp: if (yt, zt) satisfy (10)
(or (24)) with initial values (w, 0)T then dvExpqw is equal to z1. Therefore, we
can compute the differential dvExpq with respect to v by numerically integrating

the system using a basis {w1, . . . , wη} for the tangent space TqM at q ∈ M . With
initial conditions (0, u)T instead, we can similarly compute the derivative with
respect to the initial point q. Note that ExpqLogqy = y implies that dyLogq =

(dLogqyExpq)
−1, a fact that allows the computation of dyLogq as well.

Assuming the manifold is sufficiently smooth, we can differentiate the systems
(10) and (24) once more and thereby obtain second order information that we will
need later. The main difficulty is performing the algebra of the already compli-
cated expressions for the systems, and, for the implicit case, we will need second
order derivatives of the generalized inverses Dxt,sF

†. For simplicity, we consider a
families of geodesics with stationary initial point. The derivations are again post-
poned to Appendix B.

Let M be of class C4, and let αt,s be a family of geodesics. Assume x : U → M is a

local parametrization containing αt,s, and let xt,s be the curve in U representing αt,s,

i.e. x−1 ◦ αt,s = xt,s. Let w ∈ TqM with α0,s = q and vs = α̇0,s. Define u = d
dsv0,

and let Vq,v0,w,u = d
ds

(
dvsExpqw

)
= d

ds

(
d
dr

(
Expqvs + rw

) )
. Then, in coordinates

defined by x, Vq,v0,w,u can be found as the r-part of the solution of the IVP

(
q̇t
ṙt

)
= GPq,v0,w,u

(
t,

(
qt
rt

))
,(

q0
r0

)
=

(
0
0

)
,

(11)

with GPq,v0,w,u the map given in explicit form in Appendix B.
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Now, let instead M ⊂ Rm be defined as a regular zero level set of a C4 map

F : Rm → Rn. Then Vq,v0,w,u can be found as the r-part of the solution of the IVP(
q̇t
ṙt

)
= GIq,v0,w,u

(
t,

(
qt
rt

))
,(

q0
r0

)
=

(
0
0

)
,

(12)

with GIq,v0,w,u the map given in explicit form in Appendix B.

We note that solutions to (11) and (12) depend linearly on u even though the
systems themselves are not linear.

3.1 Numerical Considerations

The geodesic systems (1) and (2) can in both the parametrized and implicit case
be expressed in Hamiltonian forms. In [4], the authors use this property along with
symplectic numerical integrators to ensure the computed curves will be close to
actual geodesics. This is possible since the Hamiltonian encodes the Riemannian
metric. The usefulness of pursuing a similar approach of expressing the differential
systems in Hamiltonian form and using symplectic integrators to preserve the
Hamiltonians is limited since there is no direct interpretation of such Hamiltonians
in contrast to the case for geodesic systems.

Along the same lines, we would like to use the preservation of quadratic forms
for symplectic integrators [15] to preserve quadratic properties of the differential
of the exponential map, e.g. the Gauss Lemma [5]. We are currently investigating
numerical schemes that could possibly ensure such stability.

4 Exact Principal Geodesic Analysis

As an example of how the IVPs describing differentials allow optimizing over
geodesics, we will provide algorithms that allow iterative optimization of (6) and
that thus allow PGA as defined in [12] to be computed without the traditional
linear approximation.

Solving the optimization problem (6) requires the ability to compute the pro-
jection πS . We start with the gradient needed for iteratively computing the pro-
jection before deriving the gradient of the cost function of (6). Computing these
gradients will require the differentials over geodesic families derived in Section 3.
Thereafter, we present the actual algorithms for solving the problems before dis-
cussing convergence issues.

The optimization problems (6) and (7) are posed in the tangent space of the
manifold at the sample mean and the unit sphere of that tangent space, respec-
tively. These domains have relatively simple geometry, and, therefore, the com-
plexity of the problems is contained in the cost functions. Because of this, we
will not need optimizing algorithms that are specialized for domains with compli-
cated geometry. For simplicity, we compute gradients and present steepest descent
algorithms but it is straightforward to compute Jacobians instead and use more
advanced optimization algorithms such as Gauss-Newton or Levenberg-Marquardt.
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The overall approach is similar to the approach used for computing exact
PGA in [34]. Our solution differs in that we are able to compute πS and its
differential without restricting to the manifold SO(3) and in that we optimize the
functional (6) instead of the cost function used in [11] that involves one-dimensional
subspaces.

4.1 The Geodesic Subspace Projection

We consider the projection πS(x) of a point x ∈ M on a geodesic subspace S.
Assume S is centered at µ ∈M , let V be a k-dimensional subspace of TµM such that
S = ExpµV , and define a residual function Rx,µ : V → R by w 7→ ‖LogExpµw

x‖2

that measures squared distances between x and points in S. Computing πS(x)
by solving (7) is then equivalent to finding w ∈ V minimizing Rx,µ. To find the
gradient of Rx,µ, choose an orthonormal basis for V and extend it to a basis for
TµM . Furthermore, let w0 ∈ V and choose an orthonormal basis for the tangent
space TExpµw0

M . Karcher showed in [21] that the gradient grady‖Logyx‖
2 equals

−2Logyx, and, using this, we get the gradient of the residual function as

∇w∈Vw0
Rx,µ = −2(Dw0Expµ)T1,...,k(LogExpµw0

x) (13)

with (Dw0Expµ)1,...,k denoting the first k columns of the matrix Dw0Expµ ex-

pressed using the chosen bases.7 This matrix can be computed using the IVPs
(10) or (24).

4.2 The Differential of the Subspace Projection

In order to optimize (6), we will need to compute gradients of the form

grad
v∈V ⊥v0
v0 d(µ, πSv (x))2 (14)

with Vv = span {v1, . . . , vk, v}, Sv = Expµ(Vv) and µ ∈ M .8 This will involve the
differential of πSv (x) with respect to v. Since πSv (x) is defined as a minimizer of
(7), its differential cannot be obtained just by applying the chain and product
rules. Instead, we use the implicit function theorem to define a map Ψ that equals
πSv (x) around a neighborhood of v in TµM . We then derive the differential of Ψ .

For the result below, we extend the domain of residual function Rx,µ defined
above from V to the entire tangent space TµM . We will a choose basis for TµM ,
and we let H(Rx,µ) denote the Hessian matrix of Rx,µ with respect to the basis.
Similarly, we will choose a basis for Vv0 , and we let H(Rx,µ|Vv0 ) denote the Hessian
matrix of Rx,µ restricted to Vv0 with respect to this basis. Using this notation, we
get the following result for the derivative of the projection πSv (x):

7 In coordinates of the bases, the differential dw0Expµ becomes a matrix that we write

Dw0Expµ. The notation ∇w∈Vw0
denotes differentiation along the basis elements of V . See

Appendix A for additional notation.
8 Since v in (6) is restricted to the unit sphere, we will not need the gradient in the direction

of v0, and, therefore, we find the gradient in the subspace V ⊥v0 instead of in the larger space

span {v1, . . . , vk}⊥. As noted in Section 2.4, the optimization approach presented here can be
extended to include optimization of the base point µ as well. Here, we use a fixed base point
that for PGA is an intrinsic mean of a data set.
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Proposition 1 Let {v1, . . . , vk} be an orthonormal basis for a subspace V ⊂ TµM .

For each v ∈ V ⊥, let Vv be the subspace span {V, v}, and let Sv = ExpµVv be the

corresponding geodesic subspace. Fix v0 ∈ V ⊥ and define w0 = LogµπSv0 (x) for an

x ∈M . Suppose the matrix Hv0(Rx,µ|Vv0 ) has full rank k+1. Extend the orthonormal

basis {v1, . . . , vk, v0/‖v0‖} for Vv0 to an orthonormal basis for TµM . Then

D
v∈V ⊥v0
v0 πSv (x) = −(Dw0Expµ)v̄x,µ,v0,Sv0

(
∇
w∈V ⊥v0
w0

Rx,µ

)T
+ wk+1

0 (Dw0Expµ)Ex,µ,v0,Sv0 .

(15)

The coordinates of the vector v̄x,µ,v0,Sv0 in the basis for Vv0 are contained in the (k+

1)st column of the matrix Hv0(Rx,µ|Vv0 )−1, the scalar wk+1
0 is the (k+1)st coordinate

of w0 in the basis, and Ex,µ,v0,Sv0 is the matrix(
−Hw0

(
Rx,µ|Vv0

)−1
Bw0,v0

Iη−(k+1)

)

with Bw0,v0 the last η − (k + 1) columns of the matrix (Hw0 (Rx,µ) (V v0))T and

Iη−(k+1) the identity matrix.

Before proving the result, we discuss its use for computing the gradient (14). The
assumption that the Hessian of the restricted residual Rx,µ|Vv0 must have full rank
is discussed below.

Because d(µ, πSv (x))2 = ‖LogµπSv (x)‖2, we have

∇
v∈V ⊥v0
v0 d(µ, πSv (x))2 = 2

(
(DπSv0 (x)

Logµ)(D
v∈V ⊥v0
v0 πSv (x))

)T
(LogµπSv0 (x)) ,

(16)

which, combined with (15), gives (14). In order to compute the right hand side
of (15), it is necessary to compute parts of the Hessian of the non-restricted
residual Rx,µ. For doing this, we will use the alternative formulation Rx,µ(w) =
‖LogxExpµw‖

2 for the residual function. With w0, v ∈ TµM let y = Expµw0.
Working in the chosen orthonormal basis, we have

∇w0Rx,µ = 2
(
(DyLogx)Dw0Expµ

)T
Logxy .

and hence

d
ds (∇w0+vsRx,µ) |s=0

= 2
(
d
ds

(
DExpµ(w0+sv)Logx

)
|s=0

(
Dw0Expµ

))T
Logxy

+ 2
(
(DyLogx) d

ds

(
Dw0+vsExpµ

)
|s=0

)T
Logxy

+ 2
(
(DyLogx)

(
Dw0Expµ

))T d
ds

(
LogxExpµ(w0 + sv)

)
|s=0 .

(17)

Note that

d
ds

(
LogxExpµ(w0 + sv)

)
|s=0 = (DyLogx)

(
Dw0Expµ

)
v .
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Using that d
ds (A−1

s ) = A−1
s ( ddsAs)A

−1
s for a time dependent, invertible matrix As

9

and the fact that ExpxLogxz = z for all z, we get

d
ds

(
DExpµ(w0+sv)Logx

)
|s=0 = d

ds

(
DLogx(Expµw0+sv)Expx

)−1

|s=0

= − (DyLogx) d
ds

(
DLogx(Expµw0+sv)Expx

)
|s=0 (DyLogx) .

The middle term of this product and the term d
ds

(
Dw0+svExpµ

)
|s=0 in (17) can

be computed using the IVPs (11),(12) discussed in Section 3.

Proof (Proposition 1) Extend the basis {v1, . . . , vk, v0/‖v0‖} for Vv0 to an orthonor-
mal basis for TµM . The argument is not dependent on this choice of basis, but
it will make the reasoning and notation easier. Let S ⊂ TµM × V ⊥ be an open
neighborhood of (w0, v0) and define the map FV : S → Rη by

FV (w, v) =



∇wRx,µ · v1
...

∇wRx,µ · vk
∇wRx,µ · v
w · u1(v)

...

w · uη−k−1(v)


=

((
V v

)T
∇wRx,µ

UTv w

)

with the vectors u1(v), . . . , uη−(k+1)(v) constituting an orthonormal basis for V ⊥v
for each v and with (V v) and Uv denoting the matrices having vi, v and ui(v)
in the columns, respectively. Since 〈∇w0Rx,µ, v〉 = dw0Rx,µ(v) = 0 for all v ∈ Vv0
because w0 is a minimizer for Rx,µ among vectors in in Vv0 , we see that FV (w0, v0)
vanishes. Therefore, if Dw(w0,v0)

FV is non-singular, the implicit function theorem
asserts the existence of a map Ψ from a neighborhood of v0 to TµM with the
property that FV (Ψ(v), v) = 0 for all v in the neighborhood. We then compute

0 = Dv0FV (Ψ(v), v) =
(
Dw(w0,v0)FV

)
(Dv0Ψ(v)) +

(
Dv(w0,v0)FV

)
and hence

D
v∈V ⊥v0
v0 Ψ(v) = −

(
Dw(w0,v0)FV

)−1
(
D
v∈V ⊥v0
(w0,v0)

FV

)
. (18)

For the differentials on the right hand side of (18), we have

D
v∈V ⊥v0
(w0,v0)

FV =
(

0 · · · 0 ∇
w∈V ⊥v0
w0

Rx,µ D
v∈V ⊥v0
(w0,v0)

(
wT0 Uv

))T
and

Dw(w0,v0)FV =

((
V v0

)T
dww0

(∇wRx,µ)

UTv0

)
=

((
Hw0 (Rx,µ)

(
V v0

))T
UTv0

)
. (19)

With the choice of basis, the above matrix is block triangular,

Dw(w0,v0)FV =

(
Aw0,v0 Bw0,v0

0 Cw0,v0

)
, (20)

9 See [3, Eq. (2)].
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with Aw0,v0 equal to Hw0(Rx,µ|Vv0 ). The requirement that Dw(w0,v0)
FV is non-

singular is fulfilled, because Hw0(Rx,µ|Vv0 ) has rank k + 1 by assumption and Uv0
has rank η − (k + 1).

Since the first k rows of D
v∈V ⊥v0
(w0,v0)

FV are zero, we need only the last η−k columns

of (Dw(w0,v0)
FV )−1 in order to compute (18). The vector v̄x,µ,v0,Sv0 as defined in

the statement of the theorem is equal to the (k + 1)st column. Let Ex,µ,v0,Sv0 be
the matrix consisting of the remaining η − (k + 1) columns. Using the form (20),
we have

Ex,µ,v0,Sv0 =

(
−Hw0

(
Rx,µ|Vv0

)−1
Bw0,v0C

−1
w0,v0

C−1
w0,v0

)
.

Assume {u1, . . . , uj} is chosen such that {u1(v0), . . . , uj(v0)} equals the previ-
ously chosen basis for V ⊥v0 . With this assumption, Cw0,v0 is the identity matrix
Iη−(k+1). In addition, let wk+1

0 denote the (k+ 1)st component of w0, that is, the
projection of w0 onto v0/‖v0‖. Since w0 ∈ Vv0 and by choice of Uv, Lemma 1 (see
Appendix C) gives

D
v∈V ⊥v0
(w0,v0)

(
UTv w

)
= wk+1

0 D
v∈V ⊥v0
(w0,v0)

(
UTv

v0
‖v0‖

)
= −wk+1

0 Iη−(k+1) .

Therefore,

D
v∈V ⊥v0
(w0,v0)

FV =
(

0 · · · 0 ∇
w∈V ⊥v0
w0

Rx,µ − wk+1
0 Iη−(k+1)

)T
. (21)

Note, in particular, that D
v∈V ⊥v0
(w0,v0)

FV is independent on the actual choice of bases

Uv. Combining (18), (21), and the fact that v̄x,µ,v0,Sv0 and Ex,µ,v0,Sv0 constitute

the needed columns of (Dw(w0,v0)
FV )−1, we get

D
v∈V ⊥v0
v0 Ψ(v) = −v̄x,µ,v0,Sv0 (∇

w∈V ⊥v0
w0

Rx,µ)T + wk+1
0 Ex,µ,v0,Sv0 .

Because ExpµΨ(v) = πSv (x), this provides (15).

4.3 Exact PGA Algorithm

The gradients of the cost functions enable us to iteratively solve the optimization
problems (6) and (7). We let µ be an intrinsic mean of a dataset {x1, . . . , xN},
xi ∈M . The algorithms listed below are essentially steepest descent methods but,
as previously noted, Jacobian-based optimization algorithms can be employed as
well.

Algorithm 1 for computing πS(x) updates w ∈ V instead of the actual point
y ∈ S that we are interested in. The vector w is related to y by y = Expµw.

The algorithm for solving (6) is listed in Algorithm 2. Since v in (6) is required
to be on the unit sphere, the optimization will take place on a manifold, and a
natural approach to compute iteration updates will use the exponential map of
the sphere. Yet, because of the symmetric geometry of the sphere, we approximate
this using the simpler method of adding the gradient to the previous guess and
normalizing. When computing the (k + 1)st principal direction, we choose the
initial guess as the first regular PCA vector of the data projected to V ⊥k in TµM .
See Figure 2 for an illustration of an iteration of the algorithm.
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Algorithm 1 Calculate πS(x)

Require: x ∈M , S = ExpµV geodesic subspace.
w ⇐ orthogonal projection of Logµx onto V {initial guess}
repeat
y ⇐ Expµw {vector to point}
g ⇐ −2(Dw0Expµ)T1,...,kLogyx {gradient}
w̃ ⇐ w {previous w}
w ⇐ w − g {update w}

until ‖w̃ − w‖ is sufficiently small.

Algorithm 2 Calculate the (k + 1)st principal direction of (6).

Require: µ, x1, . . . , xN ∈M , {v1, . . . , vk} orthogonal basis for Vk ⊂ TµM .
v ⇐ first PCA vector of {xj} projected first to TµM

using Logµ and then to V ⊥k {initial guess}
repeat

gj ⇐ ∇
v∈V⊥v
v d(µ, πSv (xj))

2 {for each j using (16)}
g ⇐ 1

N

∑N
j=1 gj {gradient}

ṽ ⇐ v {previous v}
v ⇐ v + g {update v}
v ⇐ v/‖v‖ {normalize}

until ‖ṽ − v‖ is sufficiently small.

Fig. 2 An iteration of Algorithm 2. The figure shows data points x1 and x2 (red points) with
projections (blue points) to the geodesic subspace S (green line). The vector v defining S is
updated to the new guess by adding the gradient g and normalizing.

4.4 Assumptions and Convergence

As discussed in section 2.4, because a uniqueness and existence of both the intrinsic
mean and optima for (6) may fail, the PGA problem may not be well defined
in itself. The uniqueness of the mean can be obtained by assuming the data is
sufficiently concentrated depending on the curvature, see [21].

The curvature of the manifold may make the optimization problems non-
convex, and convergence to a global optimum is therefore only ensured under the
assumption that the problems (6) and (7) are convex or that no local minima exist.
Giving criteria for convexity or non-existence of local optima for general manifolds
and data sets is difficult because of the dependence on the global geometry of the
manifolds.
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The rank assumption on the Hessian used in Proposition 1 is equivalent to
the residual Rx,µ having only non-degenerate critical points when restricted to
Vv0 . It is shown in [21] that Rx,µ is convex at points sufficiently close to x and
the assumption is therefore satisfied in such cases. In particular, this is satisfied
if Algorithm 2 is initialized with subspaces that provide a good approximation to
the data.

5 Experiments

We will use the optimization strategy and the developed algorithm for exact PGA
to illustrate the differences between exact and linearized PGA. Furthermore, we
will estimate sectional curvatures and compute injectivity radius bounds. Even
though the algorithms are not limited to low dimensional data, we aim at visu-
alizing the results and we will therefore provide examples with synthetic data on
low dimensional manifolds. The setup allows exploring the connection between
the geometry and curvature of the manifolds and the exact PGA result, and we
will show how the variance and residual formulation can provide fundamentally
different results. For a comparison between the methods on high dimensional man-
ifolds modeling real-life data, we refer the reader to [38] where datasets of human
vertebrae X-rays and motion capture data are treated.

The PGA algorithm is implemented in Matlab using Runge-Kutta ODE solvers.
For the logarithm map, we use the shooting algorithm developed in [39]. All tol-
erances used for the integration and logarithm calculations are set at or lower
than an order of magnitude of the precision used for the displayed results. In-
trinsic means are computed by iteratively minimizing variance using the gradient
grady‖Logyx‖

2 = −2Logyx (see [21]). The code used for the experiments is avail-
able at http://image.diku.dk/sommer.

We first consider surfaces embedded in R3 and defined by the equation

Sc = {(x1, x2, x3)|cx21 + x22 + x23 = 1}

for different values of the scalar c. For c > 0, Sc is an ellipsoid and it is equal to
S2 in the case c = 1. The surface S0 is a cylinder and, for c < 0, Sc is hyperboloid.
Consider the point p = (0, 0, 1) and note that p ∈ Sc for all c. The curvature of Sc
at p is equal to c. Note in particular that for the cylinder case the curvature is zero;
the cylinder locally has the geometry of the plane R2 even though it informally
seems to curve.

We evenly distribute 20 points along two straight lines through the origin of the
tangent space TpSc, project the points from TpSc to the surface Sc, and perform
linearized and exact PGA. Figure 3 illustrates the situation in TpS−1 and on S−1

embedded in R3, respectively. The lines are chosen in order to ensure the points
are spread over areas of the surface with different geometry. This choice is made
to illustrate the influence of the curvature; a more realistic example with points
sampled from a Gaussian will be provided below.

Since linearized PCA amounts to Euclidean PCA in TpSc, the first principal
direction found using linearized PGA divides the angle between the lines for all c.
In contrast to this, the variance and the first principal direction found using exact
PGA are dependent on c. Table 1 shows the angle between the principal directions

http://image.diku.dk/sommer
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(a) TpS−1 with sampled points and first
principal components (blue exact PGA,
green linearized PGA).

(b) S−1 with projected points and first prin-
cipal components (blue exact PGA (6), green
linearized PGA).

Fig. 3 The tangent space TpS−1 and the manifold S−1 with sample points.

found using the two methods, the variances and variance differences for different
values of c.

c: 1 0.5 0 -0.5 -1 -1.5 -2 -3 -4 -5
angle (◦): 0.0 0.1 0.0 22.3 29.2 31.5 32.6 33.8 34.2 34.5
linearized var.: 0.899 0.785 0.601 0.504 0.459 0.435 0.423 0.413 0.413 0.417
exact var.: 0.899 0.785 0.601 0.525 0.517 0.512 0.510 0.508 0.507 0.506
difference: 0.000 0.000 0.000 0.012 0.058 0.077 0.087 0.095 0.094 0.089
difference (%): 0.0 0.0 0.0 4.2 12.5 17.6 20.6 23.0 22.7 21.4

Table 1 Differences between methods for different values of c.

Let us give a brief explanation of the result. The symmetry of the sphere and
the dataset cause the effect of curvature to even out in the spherical case S1. The
cylinder S0 has local geometry equal to R2 which causes the equality between the
methods in the c = 0 case. The hyperboloids with c < 0 that can be constructed
by revolving a hyperbola around its semi-minor axis are non-symmetric causing
an increase in variance as the first principal direction approaches the hyperbolic
axis. The effect increases with the curvature causing the first principal direction to
align with the hyperbolic axis for large negative values of c. That the non-linearity
is quite complex can be seen from the decreasing differences for c = −4,−5, a
consequence of the increasing variance captured using linearized PGA. This is
caused by geodesics close to the semi-minor axis being curved upwards towards
the hyperbolic axis for large negative c. This results in increased captured variance
that dominates the otherwise decreasing trend as c drops below −3. For all negative
values of c, exact PGA is able to capture more variance in the subspace spanned
by the first principal direction than linearized PGA.

Differences between the maximal variance PGA formulation (6) and the formu-
lation that minimizes residual errors can be exemplified on simple geometries when
the spread of the data is large. Similar examples for Geodesic PCA with variance
formulation is reported [19]. In Figure 4, points are sampled along a great circle
through the north pole on a sphere (c = 1). In order to illustrate the result of
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maximizing projection variance, we start with the PGA center point fixed to the
north pole. In this case, each iteration of the optimization procedure pushes the
first principal component v1 away from the direction of the great circle. In fact,
the optimal direction is orthogonal to the direction of the great circle. This very
counter-intuitive effect is caused by the projection of the points on the southern
hemisphere moving closer to the south pole as the principal subspaces moves away
from the great circle thus causing the measured variance to increase. In fact, the
cost function (6) is non-differentiable at the optimal direction and the projections
become discontinuous functions of v1. If we instead choose the formulation that
minimizes residuals, the first principal component will align with the direction
of the great circle. To show that this effect persists under permutations of the

(a) Top view of the sphere S1. (b) Southern hemisphere of S1.

Fig. 4 The sphere S1 with points (red) sampled along a great circle (black dotted circle) with
tangent vector (red arrow). The optimization for the first principal component v1 is stopped
before it reaches its optimum (25 iterations). The actual optimum (black arrow) is orthogonal
to the great circle containing the data points. The variance is measured for the points (blue)
projected to the current guess for the first principal subspace (black circle). As the guess for v1

moves away from being tangent to the circle containing the data points, points on the southern
hemisphere move southwards causing the measured variance to increase.

data, we sample points uniformly along a geodesic on an ellipsoid (c = 0.5) adding
Gaussian noise on the component orthogonal to the geodesic (std. dev. 0.1). This
time, we optimize for the mean. The ellipsoidal geometry forces the mean to be
close to the geodesic which is the reason for sampling on an ellipsoid; on a sphere,
the mean is unstable under permutations of the data when the data lies close
to a great circle. In Figure 5, we show the first principal component as computed
with the variance and residual formulation, respectively. As for the example on the
sphere, the optimization converges to a first principal component orthogonal to
the geodesic with the variance formulation. We again stop the optimization after
a number of iterations before it reaches its non-differentiable optimum. With the
residual formulation, the first principal component aligns with the geodesic along
which the points are sampled. See also [19] for futher discussions on variance vs.
residual formulations.

To investigate the difference between exact and linearized PGA with more than
one principal direction, we consider a four dimensional manifold embedded in R5
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(a) First principal component (black ar-
row), variance formulation.

(b) First principal component (black ar-
row), residual formulation.

Fig. 5 An ellipsoid (c = 0.5) with points (red) sampled uniformly along a geodesic (black
dotted circle). Gaussian noise (std. dev. 0.1) is added to displace the points orthogonally
to the geodesic. The black arrows show the result of the optimization with (a) the variance
formulation and (b) the residual formulation. With the variance formulation, the optimization
is again stopped before it reaches its non-differential optimum orthogonal to the geodesic along
which the points are sampled. The results show that the orthogonality of the first principal
component observed in Figure 4 also occurs with perturbed data.

and defined by

M4 = {(x1, x2, x3, x4, x5)|x21 − 2x22 + x23 − 2x24 + x25 = 1} .

We make the situation more realistic than in the previous experiment by sampling
32 random points in the tangent space TpM4, p = (0, 0, 0, 0, 1). Since TpM4 is
an affine subspace of R5 orthogonal to the x5 axis, we can identify it with R4

by the map (x1, x2, x3, x4) 7→ (x1, x2, x3, x4, 1). We use this identification when
sampling by defining a normal distribution in R4, sampling the 32 points from
the distribution, and mapping the results to TpM4. The covariance is set to Σ =
diag(2, 1, 2/3, 1/3) to get non-spherical distribution and to increase the probability
of data spreading over high-curvature parts of the manifold. Table 2 lists the
variances and variance differences for the four principal directions for both methods
along with angular differences. The lower variance for exact PGA compared to the
linearized method for the 2nd principal direction is due to the greedy definition of
PGA; when maximizing variance for the 2nd principal direction, we keep the first
principal direction fixed. Hence we may get lower variance than what is obtainable
if we were to maximize for both principal directions together.

We clearly see angular differences between the principal directions. In addi-
tion, there is significant difference in accumulated variance in the first and third
principal direction. We note that the percentage difference is calculated from what
corresponds to the accumulated eigenspectrum in PCA. The percentage difference
of the increase between the second and third principal direction, corresponding to
the squared length of the third eigenvalue in PCA, is greater.
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Princ. comp.: 1 2 3 4
angle (◦): 10.1 10.6 12.0 12.2
linearized var.: 1.58 3.86 4.13 4.35
exact var.: 1.93 3.85 4.24 4.35
difference: 0.35 -0.01 0.11 0.00
difference (%): 21.9 -0.3 2.6 0.0

Table 2 Differences between the methods on M4. The variances of the data projected to the
subspaces spanned by the first k principal directions and the percentage and angular differences
are shown for k = 1, . . . , 4.

5.1 Curvature and Conjugate Points

Again considering the surfaces Sc, we can approximate the sectional curvature Kp
of Sc at p using (4). The approximation is dependent on the value of the positive
scalar t with increasing precision as t decreases to zero. Table 3 shows the result
of the sectional curvature approximation for two values of t compared to the real
sectional curvature.

c: 1 0 -1 -2 -3
Kp: 1 0 -1 -2 -3
Kp est., t = 0.01: 1.000 0.000 -1.000 -2.000 -3.000
Kp est., t = 0.1: 1.000 0.000 -1.001 -2.002 -3.005

Table 3 Sectional curvature at p for different values of c.

Now let Jt be the Jacobi field with J0 = 0 and D
dtJ0 = (1, 0, 0)T along the

geodesic xt = Exppt(0, 1, 0)T . Figure 6 shows ‖Jt‖ for different values of c. We
see that ‖Jπ‖ = 0 for the spherical case S1 showing that x1 is a conjugate point
and hence giving the upper bound π on the injectivity radius. The situation is
illustrated in Figure 1. The local geometric equivalence between the cylinder S0
and R2 causes the straight line for c = 0. For all c ≤ 1, the injectivity radius of Sc
is π, but for c < 1, the point xπ is not a conjugate point10. By looking at ‖Jt‖, we
are only able to detect conjugate points and hence, with this experiment, we only
get the bound on the injectivity radius for c ≥ 1. For c > 1 the injectivity radius
decreases below 1 as seen in the case S2 with ‖Jt̃‖ = 0 for t̃ ≈ π/

√
2.

6 Conclusion and Outlook

Optimization problems over geodesics can be solved by constructing IVPs for nu-
merical computation of Jacobi fields and second order differentials. We use this to
develop an algorithm for numerically computing exact Principal Geodesic Analysis
and thereby eliminating the need for the traditionally used linear approximations.
In addition, the numerically computed Jacobi fields allow injectivity radii bounds
and estimation of sectional curvatures partially solving an open problem stated in
[19].

10 For c < 1, xπ is a cut point [5, Chap. 13].
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Fig. 6 ‖Jt‖ for c = 2, 1, 0,−1 when J0 = 0, D
dt
J0 = (1, 0, 0)T , and xt = Exppt(0, 1, 0)T .

We use the developed algorithm to explore examples of manifold valued datasets
where the principal subspaces computed by exact PGA differs from linearized
PGA, and we show how the differences depend on the curvature of the manifolds
and which formulation of PGA is used. In addition, we approximate sectional
curvatures and bound injectivity radii and evaluate the computed results.

We are currently extending the methods to work for quotient manifolds M/G

and thereby allowing the similar computations to be performed on practically
all commonly occurring non-triangulated manifolds. We expect this would allow
Geodesic PCA to be computed on general quotient manifolds as well. In addition,
we are working on giving a theoretical treatment of the differences between the
variance and residual formulations of PGA. Finally, we expect to use the automatic
computation of sectional curvatures to investigate further the effect of curvature
on exact PGA and other statistical methods for manifold valued data.
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A Notation

In general, the paper follows the notation in [5]. Subscripts are used for curves on M dependent
on a parameter, e.g. the curve αt is a map (−ε, ε)→M . The subscript notation should not be
confused with differentiation with respect to the parameter t. When a local parametrization
x : U ⊂ Rη →M is available, it is often used to represent a curve αt so that xt = (x1t , . . . , x

η
t )

is a curve in U satisfying x−1 ◦ αt = xt.
The derivative d

dt
αt of the curve αt evaluated at t̃ belongs to the tangent space Tαt̃M . The

shorthand d
dt
αt̃ will be used for such vectors, i.e. d

dt
αt|t=t̃. In addition, when differentiating

curves with respect to t, we often use the shorthand α̇t. With these conventions, d
dt
αt|t=0, the

initial velocity of the curve αt, will be written α̇0.
Let df denote the differential of a map f : M → N and write dpf for the differential

evaluated at p ∈ M . When bases for TpM and Tf(p)M are specified, or when M and N are
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Euclidean spaces, Df is used instead of df . For maps on product manifolds, e.g. (v, w) 7→
g(v, w) : M × M̃ → N , we will need to distinguish differentiation with respect to one of the
variables only. Letting one of the parameters have a fixed value w0, the differential of the
restricted function v 7→ g(v, w0) from M to N evaluated at v0 is denoted dv

(v0,w0)
g. Similarly,

if V is a submanifold of M , the differential of f |V : V → N will be denoted dv∈V f and its
evaluation at v0 ∈ V will be written dv∈Vv0

f .

When defined, the inverse of the exponential map Expq is the logarithm map denoted
Logq(q̃). Subsets ExpqBr(0) of M with Br(0) being a ball in TqM and with the radius r > 0
sufficiently small are examples of neighborhoods of q in which Logq(q̃) is defined. Whenever
the Log-map is used, we will restrict to such neighborhoods without explicitly mentioning it.

When h : M → R is a real valued function,the gradient of h with respect to the metric is
denoted gradh, i.e. gradh satisfies dph(v) =

〈
gradph, v

〉
for all v ∈ TpM . Whenever a basis of

TpM is specified, or when M is Euclidean, we switch to the usual notation ∇h. Similarly, the
Hessian of h is defined by the relation Hessian(h)X = ∇Xgradh for all vector fields X using
the covariant derivative ∇X . Again, when a basis of TpM is specified, or when M is Euclidean,
the usual notation H(h) will be used.

B Expressions for the Derivative ODEs

Because we will work with curves on manifolds that are either embedded in a Euclidean
space or where local parametrizations are available, we can perform the derivations needed
for the differential systems in Euclidean spaces: the embedding space Rm for the implicit
case, and the parameter space U ⊂ Rη when a parametrization x : U → M is available. The
tensors we construct below will be tensors on the Euclidean spaces Rη or Rm; they will be
used as a compact notational representations, and we do not attempt to give them intrinsic
geometric interpretations. The tensors will be embedding or coordinate dependent ; this is by
construction, and the tensors are thereby inherently different from intrinsic and coordinate
independent tensors such as the curvature endomorphism.

The notation will as far as possible follow the tensor notation used in [5]; however, we again
note that we use the embedding or parametrization to define the tensors on Euclidean domains.
We will use the common identification between tensors and multilinear maps, i.e. the tensor

T : (Rk)r → R defines a map multilinear map T̃ : (Rk)r−1 → Rk by
〈
T̃ (y1, . . . , yr−1), yr

〉
=

T (y1, . . . , yr). We will not distinguish between a tensor and its corresponding multilinear map,
and hence, in the above case, write T for both maps.

For s-dependent vector fields vs,1, . . . , vs,r and tensor field Ts, we will use the equality

d
ds
T0(v0,1, . . . , v0,r)

=
(
d
ds
T0
)

(v0,1, . . . , v0,r) + T0( d
ds
v0,1, . . . , v0,r) + · · ·+ T0(y0,1, . . . ,

d
ds
v0,r)

(22)

for the derivative with respect to s. If Txs is a composition of an z-dependent tensor field Tz and

an s-dependent curve xs, the derivative d
ds
Txs equals the covariant tensor derivative∇ d

ds
xs
Txs

[5, Chap. 4]. Since we will only use tensors on Euclidean spaces, such tensor derivatives will
consist of component-wise derivatives.

In the following, when a parametrization x is available, we let TPz be the z-dependent
3-tensor on Rη defined by

TPz (v1, v2, v3) = −
η∑

i,j,k

Γkij(z)v
i
1v
j
2v
k
3

such that the kth component of TPxt (ẋt, ẋt) equals the right hand side of (1). Note that T pz is
symmetric in the first two components since the Christoffel symbols are symmetric in i and j.

Similarly, in the implicit case, we let the z-dependent 3-tensor T I,pz and 2-tensor T I,xz equal
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the right hand side of the p and x parts of (2), respectively:

T I,pz (v1, v2) = −
(

n∑
k=1

µk(z, v1)Hz(Fk)

)
v2 ,

T I,xz (v) =
(
I −DzF †DzF

)
v .

The derivation below of (10) concerns the implicit case.

To derive F Iq,v , we let xt,s be a family of geodesics with xt,0 = xt, and define qs = x0,s and

vs = ẋ0,s. Assuming d
ds
q0 = u and d

ds
v0 = w, the Jacobi field Jt equals d

ds
Expqs (tvs)|s=0, and,

therefore, we can obtain Jt by differentiating the geodesic system (2). Since M is embedded
in Rm, we consider all curves and vectors to be elements of Rm.

We use the map µ of section 2.2 to define the tensors

Tµz (v) = µ(z, v) , THz (v1, v2) = −
(

n∑
k=1

vk1Hz(Fk)

)
v2 ,

TDz (v) = (DzF ) v , and TD
†

z (v) = (DzF )† v.

Note, in particular, that T I,pz (v1, v2) = THz (Tµz (v1), v2). In addition, we will use the notation
Λ(A,B) for the right hand side of equation (9) so that the derivative of a generalized inverse

can be written d
ds

(A†s) = Λ(As,
d
ds
As). We claim that d

ds
Expqs (tvs)|s=0 equals the z-part of

the solution of (10) with

F Iq,v

(
t,

(
yt
zt

))
=

T I,pxt (pt, żt) +∇ztTHxt (T
µ
xt (pt), ẋt) + THxt (T

µ
xt (yt)− Λ(TDxt ,∇ztT

D
xt

)T pt, ẋt)

T I,xxt (yt)− Λ(TDxt ,∇ztT
D
xt

)TDxt (pt)− T
D†
xt
∇ztTDxt (pt)

 .

(23)

Here pt = pt,0 where pt,s are the p-parts of the solutions to (2) with initial conditions qs and
vs. To justify the claim, we differentiate the system (2). Using (22), we get

d
dt

d
ds
pt,0 = d

ds
ṗt,0 = d

ds
T I,pxt,0 (pt,0, ẋt,0)

= ∇ d
ds
xt,0

THxt (T
µ
xt

(pt), ẋt) + THxt (∇ d
ds
xt,0

Tµxt (pt) + Tµxt (
d
ds
pt,0), ẋt)

+ T I,pxt (pt,
d
ds
ẋt,0)

and

d
dt

d
ds
xt,0 = d

ds
ẋt,0 = d

ds
T I,xt,0 (pt,0) = ∇ d

ds
xt,0

T I,xxt (pt) + T I,xxt ( d
ds
pt,0) .

Note that the tensor derivative ∇ d
ds
xt,0

THxt consists of derivatives of Hxt (F
k). Both the deriva-

tives ∇ d
ds
xt,0

Tµxt and ∇ d
ds
xt,0

T I,xxt involve derivatives of generalized inverses. Therefore, we

apply (9) to differentiate Tµxt and get that

∇ d
ds
xt,0

Tµxt = −Λ(TDxt ,∇ d
ds
xt,0

TDxt )
T .

The tensor derivative ∇ d
ds
xt,0

TDxt consists of derivatives of Dxt,sF . Similarly,

∇ d
ds
xt,0

T I,xxt = −Λ(TDxt ,∇ d
ds
xt,0

TDxt )T
D
xt
− TD

†
xt
∇ d
ds
xt,0

TDxt .

By differentiating the initial conditions, we get (10) with y = d
ds
pt,0, z = d

ds
xt,0, and F Iq,v as

defined in (23).
As noted, we can obtain an IVP in the parametrized case using a similar procedure. Let

αt be a geodesic in the C3 manifold M . We assume x : U → M is a local parametrization
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containing αt, and we let xt be the curve in U representing αt, i.e. x−1 ◦ αt = xt. Let α0 = q
and α̇0 = v, and let u,w be vectors in TqM . We associate TM with Rη using x. The Jacobi

field Jt along αt with J0 = u and D
dt
J0 = w can then be found as the z-part of the solution of

the IVP (
ẏt
żt

)
= FPq,v

(
t,

(
yt
zt

))
,(

y0
z0

)
=

(
w
u

)
,

(24)

with FPq,v the map constructed below.

To derive FPq,v , we let αt,s be a family of geodesics with αt,0 = αt, and define qs = α0,s

and vs = α̇0,s. Let xt,s represent αt,s using x. Again assuming d
ds
q0 = u and d

ds
v0 = w, we

can obtain Jt by differentiating the geodesic system (1). Using (22) and symmetry of TPz , we
have

d
dt2

d
ds
xt,0 = d

ds
ẍt,0 = d

ds
TPxt,0 (ẋt,0, ẋt,0)

= ∇ d
ds
xt,0

TPxt (ẋt, ẋt) + 2TPxt,0 ( d
dt

d
ds
xt,0, ẋt) ,

d
ds
x0,0 = u, d

dt
d
ds
x0,0 = w

(25)

because xt,s are solutions to (1) with initial conditions qs and vs. Therefore, setting yt =
d
dt

d
ds
xt,0 and zt = d

ds
xt,0, we get (24) with

FPq,v(t,

(
yt
zt

)
) =

(
∇ztTPxt (ẋt, ẋt) + 2TPxt (yt, ẋt)

yt

)
.

As noted above, the derivative ∇ d
ds
xt,0

TPxs consists of just the component-wise derivatives of

TPz , i.e. the derivatives of the Christoffel symbols.

For deriving the second order differentials, we will need second order derivatives of generalized
inverses. Let At,s be an s- and t-dependent matrix of full rank. From repeated application of

the product rule and (9), we see that when the s- and t-dependent matrices At,s and A†t,s are

differentiable with respect to both variables and the mixed partial derivative ∂2

∂s∂t
At,s exists

then ∂2

∂s∂t
(A†t,s) = Λ̃(At,s,

∂
∂t
At,s,

∂
∂s
At,s,

∂2

∂s∂t
At,s) where

Λ̃(A,B,C,D) = −Λ(A,C)BA† −A†DA† −A†BΛ(A,C)−
(
Λ(A,C)A+A†C

)
BT (A†)TA†

+ (I −A†A)
(
DT (A†)TA† +BT

(
Λ(A,C)TA† + (A†)TΛ(A,C)

))
.

(26)

We start the derivation with the parameterized case. We will use the tensors introduced
in the beginning of this section and for the first order differentials.

We compute the q and r parts of GPq,v0,w,u separately; denote them GP,qq,v0,w,u and GP,rq,v0,w,u,

respectively. Let (ywt,s, z
w
t,s) be solutions to (24) with IV’s (w, 0)T and along the curves xt,s

that represents the geodesics αt,s. In addition, let ywt and zwt denote ywt,0 and zwt,0, respectively.

Let also (yut , z
u
t ) be solutions to (24) with IV’s (u, 0)T along xt = xt,0. Differentiating system

(24), we get
d
dt

d
ds

(zwt,0) = d
ds

(żwt,0) = d
ds

(ywt,0)

and, using symmetry of the tensors,

d
dt

d
ds

(ywt,0) = d
ds

(ẏwt,0) = d
ds
∇zwt,0T

P
xt,0

(ẋt,0, ẋt,0) + 2 d
ds
TPxt,0 (ywt,0, ẋt,0)

= ∇zut ∇zwt T
P
xt

(ẋt, ẋt) +∇ d
ds
zwt,0

TPxt (ẋt, ẋt) + 2∇zwt T
P
xt

(yut , ẋt)

+ 2∇zut T
P
xt

(ywt , ẋt) + 2TPxt (
d
ds
ywt,0, ẋt) + 2TPxt (y

w
t , y

u
t ) .

(27)
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Therefore, letting qt = d
ds
ywt,0 and rt = d

ds
zwt,0, we get GP,qq,v0,w,u(t, (rt qt)T ) as the right hand

side of (27) and GP,rq,v0,w,u(t, (rt qt)T ) equal to qt. The initial values are both 0 since yw0,s and
zw0,s equal 0 and w, respectively, and, therefore, are not s-dependent.

For the implicit case, we will again compute the r and q parts of GIq,v0,w,u separately.

Let now (ywt,s, z
w
t,s) be solutions to (10) along the geodesics xt,s and with IV’s (w, 0)T , and let

(yut , z
u
t ) be solutions to (10) along xt and with IV’s (u, 0)T . Let also pt,s denote the p-parts

of the solutions to (2) with initial conditions q and vs, and write pt = pt,0, ywt = ywt,0, and
zwt = zwt,0. Recall that all curves and vectors are considered elements of the embedding space
Rm.

Differentiating system (10), we get

d
dt

d
ds
ywt,0 = d

ds
ẏwt,0 = d

ds
T I,pxt,0 (pt,0, ż

w
t,0) + d

ds
∇zwt,0T

H
xt,0

(Tµxt,0 (pt,0), ẋt,0)

+ d
ds
THxt,0 (Tµxt,0 (ywt,0)− Λ(TDxt,0 ,∇zwt,0T

D
xt,0

)T pt,0, ẋt,0) .

Using the map Λ̃ defined in (26), we have

d
ds
Λ(TDxt,0 ,∇zwt,0T

D
xt,0

)T = Λ̃(TDxt ,∇zwt T
D
xt
,∇zut T

D
xt
,∇zut ∇zwt T

D
xt

)T .

Combining the equations, we get

d
dt

d
ds
ywt,0 = ∇zut T

I,p
xt

(pt, ż
w
t ) + T I,pxt (yut , ż

w
t ) + T I,pxt (pt,

d
dt

d
ds
zwt,0)

+∇zut ∇zwt T
H
xt

(Tµxt (pt), ẋt) +∇ d
ds
zwt,0

THxt (T
µ
xt

(pt), ẋt)

+∇zwt T
H
xt

(Tµxt (y
u
t )− Λ(TDxt ,∇zut T

D
xt

)T pt, ẋt) +∇zwt T
H
xt

(Tµxt (pt), ż
u
t )

+∇zut T
H
xt

(Tµxt (y
w
t )− Λ(TDxt ,∇zwt T

D
xt

)T pt, ẋt)

+ THxt (T
µ
xt

( d
ds
ywt,0)− Λ(TDxt ,∇zut T

D
xt

)T ywt , ẋt)

− THxt (Λ̃(TDxt ,∇zwt T
D
xt
,∇zut T

D
xt
,∇zut ∇zwt T

D
xt

)T pt + Λ(TDxt ,∇zut T
D
xt

)T yut , ẋt)

+ THxt (T
µ
xt

(ywt )− Λ(TDxt ,∇zwt T
D
xt

)T pt, ż
u
t ) .

Substituting d
ds
zwt,0 with rt and d

ds
ywt,0 with qt, we get GI,qq,v0,w,u as the right hand side of the

equation. Likewise,

d
dt

d
ds
zwt,0 = d

ds
T I,xxt,0 (ywt,0)− d

ds
Λ(TDxt,0 ,∇zwt,0T

D
xt,0

)TDxt,0 (pt,0)− d
ds
TD
†

xt,0
∇zwt,0T

D
xt,0

(pt,0)

= ∇zut T
I,x
xt

(ywt ) + T I,xxt ( d
ds
ywt,0)

− Λ̃(TDxt ,∇zwt T
D
xt
,∇zut T

D
xt
,∇zut ∇zwt T

D
xt

)TDxt (pt)

− Λ(TDxt ,∇zwt T
D
xt

)∇zut T
D
xt

(pt)− Λ(TDxt ,∇zwt T
D
xt

)TDxt (y
u
t )

− Λ(TDxt ,∇zut T
D
xt

)∇zwt T
D
xt

(pt)− TD
†

xt
∇zut ∇zwt T

D
xt

(pt)− TD
†

xt
∇zwt T

D
xt

(yut ) .

Again, after substituting d
ds
ywt,0 with qt as above, we get GI,rq,v0,w,u as the right hand side of

the equation. As for the parametric case, both initial values are zero.

C The Projection Differential

For the proof of Proposition 1, we will need the following result to show that equation (15) is
independent of the chosen basis.

Lemma 1 Let S be an open subset of Rk and U : S → Mk×(k−1) a C1 map with the
property that for any v ∈ S, the columns of the matrix ( v

‖v‖ U(v)) constitute an orthonormal

basis for Rk. Let ujv denote the jth column of U(v). Then for any v0 ∈ S and w ∈ Rk,
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〈
d
dt
ujv0+tw|t=0, v0

〉
= −

〈
ujv0 , w

〉
. As consequence of this, if Ũ : S → Rk−1 denotes the map

v 7→ U(v)T v0
‖v0‖

then

D
v∈span (u1

v0
,...,uk−1

v0
)

v0 Ũ(v) = −Ik−1

in the basis u1v0 , . . . , u
k−1
v0 for span (u1v0 , . . . , u

k−1
v0 ).
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