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Abstract

We present a simple discrete formula for the elastic energy of a bilayer. The formula is convenient

for rapidly computing equilibrium configurations of actuated bilayers of general initial shapes. We

use maps of principal curvatures and minimum-curvature direction fields to analyze configurations.

We find good agreement between the computations and an approximate analytical solution for the

case of a rectangular bilayer. For more general shapes (simple polyiamonds), we find a range of

typical bending behaviors: overall bending directions along longest and shortest dimensions, inward

bending at corners, curvature intensification near boundaries, and conical bending and partitioned

bending zones in some cases.
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I. INTRODUCTION

A bilayer is a thin sheet consisting of two layers, each composed of a different material.

When the environment external to the bilayer undergoes a change in temperature or chemical

composition, the equilibrium strains of the two layers change by different amounts due to

their different material properties [1]. In one common type of bilayer [2], one layer, called the

substrate, has an equilibrium strain of zero throughout the external environmental change.

The other layer, called the actuated layer, has an equilibrium strain which changes from zero

to a (possibly nonuniform) value εa. Because the layers are bonded, they undergo the same

strain at their interface, and thus both layers cannot simultaneously be uniformly at their

equilibrium strains. However, each layer can be brought closer to its equilibrium strain, on

average, when the bilayer bends. Then the layer along the outer circumference is stretched

relative to the inner layer, so the average strain in each layer is different.

Bilayers are a widely-used technology for producing precisely-controllable motions and

shape changes for solid bodies. A common application is the household thermostat [1],

and newer applications include self-assembling containers [3, 4], biomedical devices [5], and

radio-frequency switches for wireless communications [6]. Bilayers can be considered as a

method for making new three-dimensional structures by inducing in-plane stress. Recent

work has used imposed stresses in deformable membranes to create wrinkled patterns [7, 8]

and other buckled and twisted shapes [9, 10].

In this study we extend a model for thin homogeneous elastic sheets to bilayers. The

previous model has been used to study a wide range of physical problems, including elastic

strains due to defects in materials [11], the crumpling of paper [12], the self-assembly of
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elastic sheets under magnetic forces [13], and the bending and buckling of spheroidal pollen

grains under osmotic pressure [14]. The simplicity of the model has made it very easy to

apply to a wide range of problems.

The present model represents the bending of a bilayer in terms of a mesh for just a single

surface—the central surface of the substrate layer. In terms of the shape of this surface,

we derive a discrete local formula for the strain in the central surface of the actuated layer.

Simple formulas for the elastic energy and its gradient are then obtained, which can be

used to find bilayer shapes as energy minima using standard optimization methods. The

computational cost of simulating a bilayer in this way is only slightly higher than that of

simulating a homogeneous elastic sheet, because the strain in the central surface of the

actuated layer is proportional to the curvature of the substrate.

The organization of the paper is as follows. In section II, we derive the bilayer model.

In section III we present sample simulations of a rectangular bilayer, and compare with an

approximate analytical solution. Section IV presents examples of bilayer bending for various

bilayer shapes, most of which are simple polyiamonds. Section V summarizes the results.

II. MODEL

We represent a bilayer in discretized form using a triangular mesh. The mesh is an

equilateral triangular lattice in the undeformed state. The substrate layer has stretching

and bending energies which approximate those of a uniform, isotropic elastic sheet. Both

energies may be obtained by summing simple quantities over the edges of the lattice [11].
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The stretching energy is

Es =
1

2
Cs
∑
i,j

(|ri − rj| − deq)2 . (1)

Here Cs is a stretching stiffness constant, deq is the length of the edges in the undeformed

mesh, and the sum is over distinct nearest-neighbor pairs of points. The bending energy is

Eb = Cb
∑
α,β

(1− nα · nβ). (2)

Cb is a bending stiffness constant, and the sum is over distinct nearest-neighbor pairs of

triangles, with the unit normal vectors to each triangle given by nα and nβ. In the un-

deformed state, the mesh lies in the x-y plane, and all of the normal vectors are êz (i.e.

pointing upwards in the z direction). The normal vector maintains the same direction with

respect to its triangle during deformations.

Seung and Nelson showed that when the stretching strain is small and the radii of curva-

ture of the sheet are large relative to deq, Es and Eb converge to the stretching and bending

energies of a uniform isotropic elastic sheet with Poisson ratio ν = 1/3 [11, 15]. If the (3D)

Young’s modulus of the sheet is E and its thickness is h, then Cs and Cb are proportional

to the 2D Young’s modulus and the bending modulus of the sheet:

Cs =

√
3

2
Eh ; Cb =

2√
3

Eh3

12(1− ν2) . (3)

The substrate and actuated layers are assumed to have uniform thicknesses which are

both equal to h, and the same stretching and bending stiffness constants, for simplicity. In

the initial configuration, the lower surface of the substrate layer lies in the plane z = −h/2

and the upper surface lies in the plane z = h/2. The lower surface of the actuated layer

is bonded to the upper surface of the substrate layer at z = h/2, and the upper surface
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of the actuated layer lies in the z = 3h/2 plane. Throughout the bilayer in its initial,

flat configuration, there are planar and parallel surfaces of material, lying in the planes of

constant z between −h/2 and 3h/2. As the bilayer bends, these surfaces of material are no

longer planar, but are assumed to remain parallel. This assumption underlies the classical

theories of the bending of thin plates and bilayers (including the continuum versions of (1)

and (2)), and allows the configuration of the bilayer to be expressed entirely in terms of the

configuration of the central surface of the substrate (i.e. the material initially lying in the

plane z = 0). The central surfaces of the substrate and actuated layers may be assumed

to remain parallel under large deformations, as long as the thickness of the bilayer is small

compared to its radii of curvature at all points, in all directions.

The aforementioned triangular mesh represents the central surface of the substrate (i.e.

the material initially lying in the plane z = 0). The central surface of the actuated layer is

parallel to that of the substrate, and displaced from it by a distance h in the direction of

the substrate surface normal n.

The actuated layer is actuated by setting its equilibrium stretching strain (uniformly here)

to εa, while the equilibrium strain remains zero for the substrate. Bending causes different

stretching strains to occur in the central surfaces of the substrate and actuated layers, and

thereby allows each surface to move closer to its own equilibrium stretching strain. If the

substrate central surface has curvature κ in a certain direction at a point, then the strain in

the central surface of the actuated layer in that direction is that at the corresponding point

in the substrate plus hκ (see appendix A). We consider the central surface of the actuated

layer to be discretized by a triangular mesh of points, which are those in the substrate mesh
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plus hn. Then the strain in the actuated layer mesh can be written in terms of that in the

substrate mesh. Hence only the substrate mesh is required to characterize the full bilayer

geometry. The lengths of edges in the actuated layer mesh are those of the corresponding

edges in the substrate mesh, plus the stretching induced by bending in the direction of the

edge. This stretching is a discrete approximation of the stretching strain hκ, times the

edge length. In appendix B we derive a discrete formula for the edge stretching by using a

locally-quadratic approximation for the bilayer surface centered at midpoint of each edge.

The formula is:

Stretching due to bending ≈ h
√

3

4

4∑
k=1

ϕk, (4)

where the angles ϕk are those between the normals of the four triangles adjacent to the two

triangles which share the edge whose stretching is given. These angles are shown schemati-

cally in figure 16. The formula for the stretching energy of the actuated layer is then:

Es,a =
1

2
Cs
∑
i,j

(
|ri − rj|+

h
√

3

4

4∑
k=1

ϕk − deq − εadeq
)2

. (5)

Equation (5) is similar to (1), but includes the additional stretching due to bending in the

actuated layer (4), and the equilibrium stretching in the actuated layer εadeq. In the outer

sum in Es,a, we omit the contribution from edges which are close to the boundary of the

mesh, for which not all four of the angles {ϕk} are defined. An alternative would be to use

one-sided approximations for the stretching due to bending near the boundary, which may

give a higher order of accuracy, at the expense of increased complexity of the scheme. To

fully realize the increased accuracy in arbitrary initial planar geometries, an unstructured

triangular mesh may be preferred. However, one of the main benefits of our approach is its

simplicity.
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The bending energy of the actuated layer is close to that of the substrate layer. In

appendix A we show that the curvature κa in a given direction along the central surface

of the actuated layer is the same as the curvature of the substrate (at the corresponding

point and same direction), up to a relative error of hκ. Since hκ� 1 by assumption in our

large deformation plate theory, we take the curvature of the actuated layer to be that of the

substrate. The bending energy of the actuated layer is then the same as (2).

The total elastic energy of our model bilayer is then

ET = Es + Es,a + 2Eb. (6)

III. RECTANGULAR BILAYERS

We now test our scheme for perhaps the simplest bilayers—rectangular bilayers—which

have been studied previously [1, 16, 17]. We first consider a rectangular bilayer which is

nearly square—aspect ratio =
√

3/2 = 0.866. The stretching stiffness Cs is 8× 104, and the

bending stiffness Cb is 1. By (3), we then have that the thickness of each layer h is 0.01.

The height and width are of order one (
√

3/3 and 2/3 respectively), so we have a thin sheet.

We set εa to 10h. At equilibrium, hκ is the strain in the actuated layer due to bending in

the substrate, and this should be comparable to εa. Thus we expect κ of about 10.

We use a mesh with equilibrium edge length 1/60, yielding a discretization with 1661

points (4983 degrees of freedom) and 4820 edges. We use a large-scale quasi-Newton scheme

to minimize the discrete energy (6), the limited-memory Broyden-Fletcher-Goldfarb-Shanno

(LM-BFGS) method with a cubic line search. We use an exact formula for the gradient

of ET which can be computed quickly. An exact gradient formula handles large differences
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FIG. 1: Bending of a rectangular bilayer discretized with 1661 points and 4820 edges. The stretch-

ing stiffness Cs is 8× 104, and the bending stiffness Cb is 1. The thickness is h = 0.01, the initial

height (along y) is
√

3/3, the initial width (along x) is 2/3. The actuation strain εa is 10h. a,

Configuration of rectangular sheet in equilibrium, with bending along the shorter dimension. b,

2-norm of energy gradient versus iteration number in LM-BFGS method, leading up to stagnation,

when the equilibrium is reached. c, Color map of maximum principal curvature at the midpoints of

edges. Gray edges are too close to the boundary to obtain estimates. d, Direction field showing the

directions of minimum principal curvature at the midpoints of edges. e, Color map of stretching

strain in each edge of the substrate central surface.
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in elastic constants better than a finite difference approximation. The initial guess for the

minimization routine is the flat state. In figure 1a we show the equilibrium reached by

the minimization scheme after it stagnates at about 2500 iterations. The sheet has curled

along its shorter dimension, yielding a “cigar” shape, one of two equilibria previously found

for rectangular bilayers [17]. The decrease of the 2-norm of ∇ET with iteration number is

shown in panel b, and at stagnation, no further decrease of ET is obtained along the steepest

descent direction −∇ET . At stagnation, the 2-norm of ∇ET is 7 × 10−3, and the ∞-norm

is 4× 10−4.

Panel c gives a color map showing the larger of the two principal curvatures at the mid-

points of the edges in the equilibrium configuration in ‘a’. Here the bilayer is shown in its

initial flat state for clarity. The colors of the edges are the same in ‘a’ and ‘c’, so the corre-

spondence between points on the initial and final shape can be seen. We estimate the prin-

cipal curvatures using the method described in appendix C. The estimate can be obtained

for all edges except those adjacent to the boundary. Over most of the bilayer the maximum

principal curvature lies between 8.5 and 10.5. Near the boundary, there is more variation.

Panel d gives a field of line segments showing the directions of minimum-magnitude prin-

cipal curvature at the edge midpoints. For a developable surface, the minimum-magnitude

principal curvature is zero at each point. The zero-curvature direction field has integral

curves that are straight lines, called generators, which cover the surface [18]. The shape

in panel a (and the other equilbrium shapes in this work) are approximately developable,

so the lines in panel d approximate the generators of a developable surface. The lines are

mostly horizontal, showing a cylindrical shape, except near the corners, which curl inward.
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For cylindrical bending, we can compare our results with an approximate analytical

continuum solution. Let us assume that the bilayer bends with uniform curvature κ in the y

direction, and zero curvature in x. Let us also assume uniform strains εx and εy in the x and

y directions. Then, by [11, 15] the elastic energy per unit area over the bilayer is uniform

and equal to

eT =

√
3

8
Cs
(
3ε2x + 3ε2y + 2εxεy

+3(εx − εa)2 + 3(εy + hκ− εa)2 + 2(εx − εa)(εy + hκ− εa)
)

+

√
3

2
Cbκ

2. (7)

In (7), the first three of the six terms in the sum multiplying Cs correspond to the substrate

stretching energy, and the second three correspond to the actuated layer stretching energy.

The last term corresponds to the combined bending energy. The equilibrium, found by

minimizing eT with respect to εx, εy, and κ, is

εx =
εa
2

; εy = 0; κ =
εa
h
. (8)

For the parameters in this simulation,

εx = 0.05; εy = 0; κ = 10. (9)

In figure 1c, most of the curvature values (at edges away from the boundaries) lie between

8.5 and 10.5, close to the value of κ in (9). The curvature is somewhat nonuniform in the

simulation, unlike in the analytical approximation. Panel e shows the stretching strain in

each of the edges. For the horizontal edges away from the sheet boundaries, the strain lies

between 0.045 and 0.055, with an average value close to εx in (9). For the other edges (at

±π/3 radians from horizontal), the strain lies in the range 0.012–0.016, while that predicted

by the analytical solution is εx cos2 π/3 + εy sin2 π/3 = 0.0125.
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FIG. 2: Rectangular bilayer bending with the same parameters as in figure 1 and three values

of equilibrium edge length: 1/30 (a,b), 1/45 (c,d) and 1/60 (e,f). Panels a, c, and e show the

maximum principal curvatures at the edge midpoints, and panels b, d, and f show the stretching

strains in each edge.

In figure 2, we show the results from figure 1c and e together with solutions on two coarser

meshes, with equilibrium edge lengths of 1/30 (a,b), 1/45 (c,d), and 1/60 (e,f). Panels a,

c, and e compare maximum principal curvatures using the same color scale. Panels b, d,

and f compare stretching strains (with nearly the same color scales). The distributions and

overall magnitudes of these quantities are quite similar from the finest to the coarsest mesh.
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FIG. 3: Rectangular bilayer bending with the same parameters as in figure 1 and three initial

aspect ratios: (a) Aspect ratio = 1.15 (initial width = 2/3, initial height =
√

3/3 = 0.577), (b)

Aspect ratio = 2.31 (initial width = 0.8, initial height =
√

3/5 = 0.346) (c) Aspect ratio = 3.46

(initial width = 6/7, initial height =
√

3/7 = 0.247).

In figure 3, we compare results across three aspect ratios of the initial rectangular shape.

All three shapes have maximum curvature along the short direction, although for the largest

aspect ratio (panel c) this is difficult to discern since the strip is much shorter in this

direction, so it does not show as much overall difference in the z coordinate along this

direction. Also, it has larger curvature in the long direction than the shapes in panels a and
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FIG. 4: Bending of an equilateral triangular bilayer with the same elastic parameters as in figure

1. The top edge has length 7/9. The values on the color bar indicate the maximum of the

principal curvatures at each edge midpoint. a, 3D configuration with coloring given in b, Color

map of maximum principal curvatures at each edge midpoint. c, Direction field showing direction

of minimum principal curvature at the midpoints of edges.

b. However, for this strip the average curvature along the short direction is 10 times that

in the longer direction. The average of the curvature in the short direction decreases from

about 9 for the most square shape (a) to about 8 for the most elongated shape (c).

IV. GENERAL BILAYERS

We now consider the bending of a set of bilayers with more general planar shapes. Most

of the shapes we consider are connected clusters of a small number of equilateral triangles,

also called “polyiamonds”, a class of polyforms [19]. Such shapes can be represented with

equilateral triangular meshes of various levels of refinement, without jagged edges (as occur

for the rectangles in figure 3, for example).
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FIG. 5: Bending of a V-shaped bilayer with the same elastic parameters as in figure 1. The bottom

edge has length 7/9. The values on the color bar indicate the maximum of the principal curvatures

at each edge midpoint. a, 3D configuration with coloring given in b, Color map of maximum

principal curvatures at each edge midpoint. c, Direction field showing the directions of minimum

principal curvature at the midpoints of edges.

In figure 4 we show the bending of an equilaterial triangular bilayer with the same elastic

parameters as the rectangular bilayer just considered. The maximum curvature, which

occurs along the edges, is comparable in magnitude to the maximum curvatures of the

rectangles in figure 3, but unlike for the rectangles, here there is a large flattened region at

the center. The minimum-curvature direction field (panel c) shows the triangular symmetry

of the shape. This equilibrum is not the shape with minimum elastic energy (or global

equilibrium), however. Cylindrical bending of the triangle is also an equilbrium, and has

smaller total elastic energy.

Figure 5 shows the bending of a V-shaped bilayer. Here the two arms of the V bend mainly

along the longer dimension, in contrast to the rectangular shapes in figure 3, which bend
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FIG. 6: Bending of a bilayer in the shape of a rhombus with the same elastic parameters as in

figure 1. The horizontal width is 1/3. The values on the color bar indicate the maximum of the

principal curvatures at each edge midpoint. a, 3D configuration with coloring given in b, Color map

of maximum principal curvatures at each edge midpoint. c, Direction field showing the directions

of minimum principal curvature at the midpoints of edges.

along the shorter dimension. Bending along the longer dimension is also an equilibrium for

a rectangle, with slightly lower elastic energy than for bending along the shorter dimension

[17]. For the V shape, there is a sharp transition to a region of higher curvature near the

boundary, with bending in the opposite direction. The minimum-curvature direction field

in panel c shows that near the boundary, there is sharp transition in bending direction.

Bending is nearly transverse to the boundary near the edges, and parallel to the boundary

further inside.

Figure 6 shows the bending of a rhombus. Here the bending is mainly along the shorter

dimension, akin to the rectangles of figure 3. The direction of bending does not change

except at the farther pair of opposing tips. Near the edges there are regions of increased
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FIG. 7: Bending of a tetriamond bilayer with the same elastic parameters as in figure 1. The

horizontal width is 1/3. The values on the color bar indicate the maximum of the principal

curvatures at each edge midpoint. a, 3D configuration with coloring given in b, Color map of

maximum principal curvatures at each edge midpoint. c, Direction field showing the directions of

minimum principal curvature at the midpoints of edges.

curvature, larger than those in figure 3.

An oblique strip, a cluster of four equilateral triangles (a tetriamond), is shown in figure

7. The bending is essentially cylindrical, and this time along the longer dimension. The

minimum-curvature direction field is almost orthogonal to the longer edges, but there is a

noticeable deviation from orthogonality. The curvature is nearly uniform over the middle

part of the bilayer, and varies more near the tips with acute angles. The final shape maintains

the 180-degree rotational symmetry of the initial shape.

A different tetriamond is shown in figure 8. The bending is again essentially cylindrical,

but this time along the shorter dimension. Now the minimum-curvature direction field is

essentially orthogonal to the upper and lower edges, giving a shape with bilateral symmetry.

16



 

 

7

8

9

10

11

12

E

F

G

FIG. 8: Bending of a tetriamond bilayer with the same elastic parameters as in figure 1. The

horizontal width is 1/3. The values on the color bar indicate the maximum of the principal

curvatures at each edge midpoint. a, 3D configuration with coloring given in b, Color map of

maximum principal curvatures at each edge midpoint. c, Direction field showing the directions of

minimum principal curvature at the midpoints of edges.

A pentiamond, or hexagon with a wedge removed, is shown in figure 9. The 3D config-

uration has a bilateral symmetry inherited from the 2D shape. The bending is not quite

cylindrical. The minimum-curvature direction field gradually rotates, moving around the

central corner. At the central corner, the curvature is significantly increased, perhaps indi-

cating a smoothed version of a conical singularity.

Figure 10 shows the bending of a different pentiamond. Again, the curvature is largest

at the concave angle. The minimum-curvature directions are mainly vertical on the right

side of panel c, and transition to an oblique angle on the left side, yielding an approximate

partition into two regions of bending. Overall, the bending is mainly along the longest

dimension of the shape.
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FIG. 9: Bending of a pentiamond bilayer with the same elastic parameters as in figure 1. The

horizontal width is 1/3. The values on the color bar indicate the maximum of the principal

curvatures at each edge midpoint. a, 3D configuration with coloring given in b, Color map of

maximum principal curvatures at each edge midpoint. c, Direction field showing the directions of

minimum principal curvature at the midpoints of edges.

A strip-like pentiamond is shown in figure 11, similar to the tetriamond of figure 7. Unlike

that shape, here the initial and final shapes have bilateral symmetry. Similarly to the shape

of figure 7, the bending is mainly along the longer dimension, and curvature varies most

near the two ends.

In figure 12, another pentiamond bilayer is shown. The shape has no symmetries, and

the overall bending is strip-like, with the minimum-curvature directions mainly orthogonal

to the longest linear dimension of the object.

The last of the four pentiamonds is shown in figure 13, another shape without symmetries.

The bending is most similar to that of figure 10, with the minimum-curvature direction field

again split mainly into two regions, with some amount of convergence at the concave angle.
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FIG. 10: Bending of a pentiamond bilayer with the same elastic parameters as in figure 1. The top

edge has length 1/2. The values on the color bar indicate the maximum of the principal curvatures

at each edge midpoint. a, 3D configuration with coloring given in b, Color map of maximum

principal curvatures at each edge midpoint. c, Direction field showing the directions of minimum

principal curvature at the midpoints of edges.

The bending is mainly along the longest dimension.

We consider only two of the twelve hexiamonds. In figure 14, a hexagonal bilayer is shown.

The bending is roughly cylindrical, and nearly along a line connecting two opposite vertices.

The curvature distribution has a bilateral symmetry, with the strongest intensification of

curvature at the sides parallel to the bending direction.

A second hexiamond, with rotational and reflectional symmetries, is shown in figure 15.

The bending is mainly cylindrical here also, but there is a deviation in bending direction

near the 60-degree corners, similar to that which has occured in most but not all of the

60-degree corners in the bilayers previously discussed. These corners curl inward toward the

center of the shape.
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FIG. 11: Bending of a pentiamond bilayer with the same elastic parameters as in figure 1. The

bottom edge has length 1/4. The values on the color bar indicate the maximum of the principal

curvatures at each edge midpoint. a, 3D configuration with coloring given in b, Color map of

maximum principal curvatures at each edge midpoint. c, Direction field showing the directions of

minimum principal curvature at the midpoints of edges.

We have presented just a single equilibrium shape for a variety of bilayer shapes, most

corresponding to simple polyiamonds. These shapes show how the simple cylindrical bending

of figures 1 and 3 are modified for oblique shapes and shapes with different or no symmetries.

These examples may be useful test cases from which to abstract the general dependence of

bilayer bending on initial shape.

V. CONCLUSION

We have presented a simple discrete formula for the elastic energy of a bilayer, in terms

of the geometry of a single mesh representing the central surface of the substrate layer. The

formula allows for fast simulations of bending bilayers with general geometries. We have
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FIG. 12: Bending of a pentiamond bilayer with the same elastic parameters as in figure 1. The top

edge has length 2/3. The values on the color bar indicate the maximum of the principal curvatures

at each edge midpoint. a, 3D configuration with coloring given in b, Color map of maximum

principal curvatures at each edge midpoint. c, Direction field showing the directions of minimum

principal curvature at the midpoints of edges.

found good agreement between our simulations of a rectangular bilayer, and an approximate

analytical solution.

Simulations of a set of shapes composed of clusters of equilateral triangles (polyiamonds)

present some generic behaviors of bilayers which may lead to an understanding of the rela-

tionship between bending directions and bilayer shapes. Some of the bilayers show cylindrical

bending in the same direction over the entire bilayer, and often along either the shortest

or longest linear extent of the initial shape. Slight deviations in bending direction occur

sometimes but not always near acute-angled corners of the bilayers, where the shape bends

inwards towards the center. Larger variations in curvature occur near edges and corners, and

the curvature is particularly intensified near obtuse-angled corners, as in the pentiamond
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FIG. 13: Bending of a pentiamond bilayer with the same elastic parameters as in figure 1. The top

edge has length 1/3. The values on the color bar indicate the maximum of the principal curvatures

at each edge midpoint. a, 3D configuration with coloring given in b, Color map of maximum

principal curvatures at each edge midpoint. c, Direction field showing the directions of minimum

principal curvature at the midpoints of edges.

which is a hexagon with a sector removed. In this shape and some others, the direction

of bending changes gradually, leading to bending which is somewhat conical rather than

cylindrical. Some other shapes are nearly partitioned into two regions, with bending along

distinct directions in each region.

Because the bilayers are thin, the equilibria are all close to developable surfaces. Unlike

thin homogeneous sheets, in bilayers there is always considerable in-plane stretching energy,

in the direction of small curvature. The equilibria we have found preserve many of the initial

symmetries of the flat bilayer. Performing our simulations with other initial guesses for the

equilibria can produce different and possibly less symmetrical equilibria.
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FIG. 14: Bending of a hexagonal bilayer with the same elastic parameters as in figure 1. The sides

have length 1/3. The values on the color bar indicate the maximum of the principal curvatures at

each edge midpoint. a, 3D configuration with coloring given in b, Color map of maximum principal

curvatures at each edge midpoint. c, Direction field showing the directions of minimum principal

curvature at the midpoints of edges.

Appendix A: Extension due to bending

Let us consider a point X0 on the central surface of the substrate. Let the curvature at

X0 in a direction v be κ, and the radius of curvature be R = 1/κ. Consider the intersection

of the surface with the plane spanned by v and the normal to the surface, n. This is a

curved line passing through X0. A short segment of length l near X0 is approximated by an

arc of a circle tangent to the surface at X0 with radius R. The set of corresponding points

on the central surface of the actuated layer is a parallel curve, approximated by a concentric

arc with radius R + h, and length l + δl. Because the arcs are concentric,

l + δl

l
=
R + h

R
and thus

δl

l
= hκ, (A1)
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FIG. 15: Bending of a hexiamond with the same elastic parameters as in figure 1. The four shorter

sides have length 1/3 and the two longer sides have length 2/3. The values on the color bar indicate

the maximum of the principal curvatures at each edge midpoint. a, 3D configuration with coloring

given in b, Color map of maximum principal curvatures at each edge midpoint. c, Direction field

showing the directions of minimum principal curvature at the midpoints of edges.

so the strain in the actuated layer is hκ plus that in the substrate. Furthermore, the ratio

of the curvature of the actuated layer central surface κa to that of the substrate κ is

κa
κ

=
R

R + h
=

1

1 + hκ
= 1− hκ+O

(
(hκ)2

)
. (A2)

Appendix B: Discrete formula for extension due to bending

In order to derive equation (4), we consider the discretization in the vicinity of a point

on the central surface of the substrate, which is assumed to be a smooth surface. Without

loss of generality, we can assume that the point is at the origin in (x, y, z), and that, up to

quadratic order, the central surface of the subtrate is given by

z(x, y) =
1

2
kxx

2 +
1

2
kyy

2. (B1)
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FIG. 16: Schematic diagram of a set of triangles showing the notation used in deriving the formula

for the strain in edge X̃1-X̃2 due to bending. Here the amount of bending is exaggerated so the

differences between vectors are visible.

An arbitrary smooth surface can be brought into this form (up to quadratic order), in the

vicinity of a point on the surface, by translating the point to the origin and rotating the

surface about the point so that the directions of principal curvature lie along the x and y

axes.

We now assume that the origin coincides with the midpoint of an edge in our triangulation

of the substrate central surface. We determine the stretching of this edge in the actuated

layer relative to that in the substrate, under the bending of the substrate given by (B1).

In figure 16 we show a portion of the triangular mesh consisting of the two triangles which

bound the X1-X2 edge, and the four other triangles which share an edge with these triangles.
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We can approximate the curvatures of the surface simply in terms of the angles between the

normals to these triangles. In general the mesh has an arbitrary orientation with respect to

the directions of principal curvature (here, the x and y axes). Thus in figure 16 we assume

an arbitrary angle φ between the x-axis and the projection of the X1-X2 edge on the x-y

plane. We first assume that the x-y coordinates of the eight points in figure 16 lie on the

undeformed equilateral triangular lattice, which is a good approximation for small strains:

X1,x =
deq
2

cosφ,X1,y =
deq
2

sinφ, (B2)

(X2,x,X2,y) = − (X1,x,X1,y) (B3)

(X3,x,X3,y) = (X1,x,X1,y) + deq

(
cos
(
φ− π

3

)
, sin

(
φ− π

3

))
(B4)

(X4,x,X4,y) = (X3,x,X3,y)− deq (cosφ, sinφ) (B5)

(X5,x,X5,y) = (X4,x,X4,y)− deq (cosφ, sinφ) (B6)

(X6,x,X6,y) = (X1,x,X1,y) + deq

(
cos
(
φ+

π

3

)
, sin

(
φ+

π

3

))
(B7)

(X7,x,X7,y) = (X6,x,X6,y)− deq (cosφ, sinφ) (B8)

(X8,x,X8,y) = (X7,x,X7,y)− deq (cosφ, sinφ) (B9)

The z coordinates of X1-X8 are found by inserting the x-y coordinates in (B2)-(B9) into

(B1). The points which correspond to X1-X2 in the central surface of the actuated layer are

X̃1 = X1 + hn1 (B10)

X̃2 = X2 + hn2 (B11)
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where n1 and n2 are the unit normal vectors to the surface (B1) at X1 and X2, respectively:

n1 =

(
−kx

deq
2

cosφ, −ky
deq
2

sinφ, 1

)(
1 +O

(
d2eq
))

(B12)

n2 =

(
kx
deq
2

cosφ, ky
deq
2

sinφ, 1

)(
1 +O

(
d2eq
))
. (B13)

We may now determine the length of the edge X̃1-X̃2 relative to deq:

∣∣∣X̃1 − X̃2

∣∣∣− deq = −hdeq(kx cos2 φ+ ky sin2 φ)
(
1 +O

(
d2eq
))

(1 +O (h)) . (B14)

If the corresponding edge X1-X2 in the substrate has a length d different from deq, then

(B14) still holds but with d in place of deq. Thus it gives the difference in stretching between

the actuated layer central surface and the substrate at corresponding edges.

We now show that (B14) is approximately −h
√

3 times the average of the angles between

the normals to the four triangles adjacent to the two triangles which share the X1-X2 edge.

We define vectors normal to triangles 1-6

n1 = (X1 −X3)× (X4 −X3) (B15)

n2 = (X4 −X2)× (X2 −X1) (B16)

n3 = (X4 −X5)× (X2 −X5) (B17)

n4 = (X7 −X6)× (X1 −X6) (B18)

n5 = (X7 −X1)× (X2 −X1) (B19)

n6 = (X7 −X2)× (X8 −X2) (B20)

The angle between n1 and n2 is

ϕ1 = Arccos

(
n1 · n2

‖n1‖‖n2‖

)
(B21)
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Using (B15,B16) we define a function a1 by

4

3
n1 · n2 = d4eq(1 + d2eqa1(kx, ky, φ)), (B22)

a1 has terms which are quadratic in kx and ky and include trigonometric functions of φ. We

also define b1 and c1 for terms in the denominator of (B21):

4

3
‖n1‖2 = d4eq(1 + d2eqb1(kx, ky, φ)) (B23)

4

3
‖n2‖2 = d4eq(1 + d2eqc1(kx, ky, φ)) (B24)

Thus

n1 · n2

‖n1‖‖n2‖ = 1 + d2eq

(
a1 −

b1
2
− c1

2

)(
1 +O

(
d2eq
))
. (B25)

We define a2 and b2 in terms of n2 and n3:

4

3
n3 · n2 = d4eq(1 + d2eqa2(kx, ky, φ)) (B26)

4

3
‖n3‖2 = d4eq(1 + d2eqb2(kx, ky, φ)) (B27)

The angle between n2 and n3 is

ϕ2 = Arccos

(
n2 · n3

‖n2‖‖n3‖

)
(B28)

We expand Arccos in a Taylor series

Arccos(1− x) =
√

2x+O(x3/2). (B29)

Thus

1

2
(ϕ1 + ϕ2) =

1√
2
deq

(√
−a1 +

b1 + c1
2

+

√
−a2 +

b2 + c1
2

)(
1 +O

(
d2eq
))

(B30)
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Using trigonometric identities one can show that

1√
2

(√
−a1 +

b1 + c1
2

+

√
−a2 +

b2 + c1
2

)
=

1√
3

(
kx cos2 φ+ ky sin2 φ

)
. (B31)

Therefore by (B14),

− h
√

3
ϕ1 + ϕ2

2

(
1 +O

(
d2eq
))

(1 +O (h)) =
∣∣∣X̃1 − X̃2

∣∣∣− deq. (B32)

A more symmetrical formula is obtained by using the angles

ϕ3 = Arccos

(
n4 · n5

‖n4‖‖n5‖

)
; ϕ4 = Arccos

(
n5 · n6

‖n5‖‖n6‖

)
(B33)

By symmetries of the lattice (B2)-(B9) and the quadratic surface, ϕ3 = ϕ2 and ϕ4 = ϕ1.

Thus a more symmetrical alternative to (B32) is

− h
√

3
ϕ1 + ϕ2 + ϕ3 + ϕ4

4

(
1 +O

(
d2eq
))

(1 +O (h)) =
∣∣∣X̃1 − X̃2

∣∣∣− deq. (B34)

(B34) is more accurate than (B32) for surface approximations which are of higher than

quadratic order, in which case the principal curvatures have a nonzero gradient at the origin.

Let us now assume that the substrate central surface is strained from the undeformed

triangular mesh, given by (B2)-(B9), with a nonzero in-plane strain tensor αij. The deriva-

tion leading to (B34) can be repeated, but now there is an additional factor of 1 + O(‖α‖)

multiplying the left side of (B34). This error is of the same order as errors already present

in the single-plate model represented by (1) and (2) alone. These errors are due to the use

of only the linear part of the strain tensor in infinitessimal strain theory, and also due to

the discrete approximation (1) (see [11]).
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Appendix C: Estimate of principal curvatures at a point

We now use the framework from appendix B to obtain a discrete estimate for the principal

curvatures at the midpoint of an edge in our mesh. We consider the edge shown in figure

16, oriented at an angle φ with respect to the x axis, and π/2−φ with respect to the y axis.

The x and y axes are again assumed to be the directions of principal curvatures, and near

the edge midpoint the surface is (B1). We can use (B34) to estimate the curvature k1 in the

direction of the edge X1-X2 (i.e. along the angle φ in figure 16):

hk1deq ≈
ϕ1 + ϕ2 + ϕ3 + ϕ4

4
. (C1)

We can similarly estimate the curvatures along the directions φ ± π/3. Let k2 denote the

curvature in the direction φ+π/3, at the midpoint of X1-X2. We apply formula (C1) to the

edges X2-X7 and X1-X4 which have angle φ + π/3, and take the average as an estimate of

the curvature at the midpoint of X1-X2. We take the average of (C1) applied to the edges

X1-X7 and X2-X4 to estimate k3, the curvature in direction φ− π/3.

The curvatures k1-k3 are related to the principal curvatures kx and ky by

k1 = kx cos2 φ+ ky sin2 φ. (C2)

k2 = kx cos2
(
φ+

π

3

)
+ ky sin2

(
φ+

π

3

)
. (C3)

k3 = kx cos2
(
φ− π

3

)
+ ky sin2

(
φ− π

3

)
. (C4)

Given our estimates of k1-k3 at the midpoint of a given edge, we regard (C2)-(C4) as a system

of three nonlinear equations to be solved for three unknowns: the principal curvatures kx

and ky, and the angle φ which orients the mesh with respect to the directions of principal
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curvature. The equations are simpler in terms of the alternate set of three variables

{ky, u, A}, u = cos2 φ, A = kx − ky. (C5)

The solutions are

u =
1

2
+

(2k1 − k2 − k3) sign(k2 − k3)
2
√

3(k3 − k2)2 + (2k1 − k2 − k3)2
, A =

k2 − k3√
3u(1− u)

, ky = k1 − Au. (C6)

Using (C6) and (C2)-(C4) we can estimate the principal curvatures at the midpoints of all

the edges in our mesh except those near the boundary, for which not all the edges needed

to estimate k1, k2, and k3 exist.
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