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Abstract

We link regularity and smoothness analysis of multivariate vector

subdivision schemes with network flow theory and with special linear

optimization problems. This connection allows us to prove the exis-

tence of what we call optimal difference masks that posses crucial prop-

erties unifying the regularity analysis of univariate and multivariate

subdivision schemes. We also provide efficient optimization algorithms

for construction of such optimal masks. Integrality of the correspond-

ing optimal values leads to purely analytic proofs of Ck−regularity of

subdivision.

1 Introduction

There is a large variety of results in the literature that study Hölder and
Sobolev regularity and other important properties of scalar and vector, uni-
variate and multivariate subdivision schemes, see [4, 14, 22] and references
therein.
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Such schemes are recursive algorithms for mesh refinement and, in the
regular case, are based on the repeated application of the so-called subdivi-
sion operator

SA : ℓn(Zs) → ℓn(Zs), SAc(α) =
∑

β∈Zs

A(α−Mβ)c(β), α ∈ Z
s.

The efficiency of such algorithms is guaranteed by their locality, indeed
the so-called subdivision mask A = {A(α), α ∈ Z

s} is usually finitely sup-
ported. The topology of the mesh is encoded in the dilation matrix M ∈ Zs×s.
For details on various applications of subdivision schemes see e.g. [3, 9, 10].

The methods for regularity analysis of such schemes are either based on
the so-called joint spectral radius approach [8, 12, 20] or on the restricted
radius approach [4, 6]. The results of [5] unify these approaches and show that
both characterize the regularity of subdivision in terms of the same quantity:
either called the joint spectral radius (JSR) of a certain family of square
matrices derived from the subdivision mask A, or the restricted spectral
radius (RSR) of an associated linear operator of the difference subdivision
scheme also derived from A. Hölder or Sobolev regularity of subdivision is
characterized in terms of ∞−JSR or 2−JSR, respectively. The question of
exact computation on 2−JSR in the subdivision context has been extensively
studied in [18, 21]. The numerical methods for estimation of the ∞−JSR
differ and its computation, in general, is an NP-hard problem [2]. Recent
theoretical results and numerical tests in [17] lead to exact computation of
∞−JSR for a wide class of families of matrices and rely on the special choice
of the so-called extremal matrix norm. There are also various results on
numerical methods for computation of ∞−JSR for particular subdivision
schemes e.g. [16, 19].

We are interested in pursuing further the idea in [5, 6] of using optimiza-
tion methods for estimation of ∞−JSR. In sections 3.1.1 and 5, we show that
these optimization problems are of a very special type, namely, they are net-
work flow problems, or, in general, equivalent to special linear optimization
problems. The properties of network flow problems allow for exact computa-
tion of what we call the optimal first difference subdivision mask, see section
4. The spectral properties of the corresponding optimal scheme character-
ize the convergence of SA. For such optimal masks the sufficient condition
derived in [13] for the convergence of SA also becomes necessary and, thus,
coincides with the characterization of convergence given in [5, 6]. The ad-
vantage of working with optimal difference masks is twofold. Firstly, the
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computation of the norm of the associated subdivision operator is straight-
forward, see [13], and exact, if all entries A(α) of the subdivision mask are
rational. Thus, it allows for analytic arguments in the convergence proofs.
Secondly, the proof of the existence of such optimal masks bridges the gap
between the convergence analysis of univariate and multivariate schemes SA,
i.e., the non-restricted and restricted norms of the corresponding difference
operator coincide even in the multivariate case. In section 5, we also prove
the existence of optimal masks for higher order difference schemes and pro-
vide an algorithm for their construction. In section 6, we illustrate our results
with several examples.

2 Background and notation

In this paper we make use of the following notation.

- By ǫℓ, ℓ = 1, . . . , s, we denote the standard unit vectors of Rs.

- For α ∈ Ns
0 we define |α| = α1 + . . .+ αs.

- In the multi-index notation we have zα = zα1
1 · · · zαs

s , z ∈ Cs and α ∈ Ns
0.

- The eigenvalues of the dilation matrix M ∈ Zs×s are all greater than 1 in
absolute value.

- Vector sequences c ∈ ℓn(Zs) indexed by Zs, i.e. functions from Zs into
Rn, are denoted by boldface letters. Matrix sequences A ∈ ℓn×m(Zs)
indexed by Zs, i.e. functions from Zs into Rn×m, are denoted by bold-
face capital letters. The space of such sequences with finitely many
non-zero elements is denoted by ℓn0 (Z

s) or ℓn×m
0 (Zs), respectively.

- The finitely supported matrix sequence δIn ∈ ℓn×n
0 (Zs) is defined by

δIn(α) :=

{

In, α = 0,
0, α ∈ Zs \ {0}.

- The norm on the Banach space ℓn∞(Zs) is given by

‖c‖∞ = sup
α∈Zs

‖c(α)‖∞.

- For C = (Ci,j) ∈ Rn×n we define |C| = (|Ci,j|) ∈ Rn×n.

- For a real number a we define a+ = max{a, 0} and a− = −min{a, 0}.
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2.1 Subdivision schemes

In this subsection we recall some basic facts about multivariate subdivision
schemes.

Let A ∈ ℓn×n
0 (Zs), the so-called subdivision mask, be given and be sup-

ported on {0, . . . , N}s, N ∈ N. A subdivision scheme

c
[k+1](α) = SAc

[k](α), k ∈ N0, c
[0] ∈ ℓn(Zs), α ∈ Z

s, (1)

is a repeated application of the so-called subdivision operator

SA : ℓn(Zs) → ℓn(Zs), (SAc)(α) =
∑

β∈Zs

A(α−Mβ)c(β). (2)

Equivalently, the recursion in (1) can be written as

c
[k+1] = Sk+1

A
c
[0], k ∈ N0, c

[0] ∈ ℓn(Zs),

where the iterated operator Sk+1
A

is defined similarly as in (2) by replacing
A by the so-called iterated mask A

[k+1] given by

A[k+1](α) =
∑

β∈Zs

A[k](β)A(α−Mβ), k ∈ N0, α ∈ Z
s, A

[0] = δIn . (3)

The definition of SA in (2) implies that we have |det(M)| different subdivision
rules, due to α = ε + Mβ, ε ∈ Ξ ≃ (Zs/MZs) and β ∈ Zs. The set Ξ is
usually called the set of representatives of the equivalence classes Zs/MZs.
In the simplest case, s = 1, n = 1 and M = 2, we have Ξ ≃ {0, 1}. Thus, we
have different subdivision rules for odd and even α ∈ Z. With a slight abuse
of notation we denote the subdivision scheme also by SA.

We say that the subdivision scheme SA is convergent, if for any start-
ing sequence c ∈ ℓn∞(Zs), there exists a uniformly continuous vector-valued
function fc ∈ (C0(Rs))n such that

lim
r→∞

sup
α∈Zs

‖fc(M
−rα)− Sr

A
c(α)‖∞ = 0.

To distinguish between scalar and vector subdivision schemes we denote
their masks by a and A, respectively.
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2.2 Linear optimization and network flows

To familiarize the reader with terminology used in this paper, in this subsec-
tion, we introduce some basic notions from the theory of network flows and
linear optimization.

A linear optimization (linear programming, LP) problem ([26]) is to max-
imize, or minimize, a linear function of n variables subject to a finite number
of linear constraints, each being a linear equation or a linear inequality. Since
each equation can be written as two inequalities, every LP problem may be
written as

maximize dTx subject to Cx ≤ b, (4)

where C is an m × n matrix, b and d are (column) vectors of suitable di-
mensions, and x ∈ Rn is the vector containing the n optimization variables
x1x2, . . . , xn. A feasible solution of (4) is a vector x ∈ Rn satisfying all the
constraints. A feasible solution is called optimal, if no other feasible solution
attains a larger value on the objective function dTx. There are practical,
efficient algorithms for solving LP problems, see [26]. For LP problems there
exist a powerful duality theory, which associates to every LP problem another
LP problem, called the dual problem, and shows close connections between
these two problems. In particular, the two problems have the same optimal
value (under a weak assumption). If we take the dual twice, we are back to
the original problem. We discuss duality in more detail for the special case
of network flow problems.

A special class of LP problems, arising in several applications and useful
in the context of subdivision, consists of network flow problems. Given a
directed graph G = (V,E) with vertex set V and edge set E (where each
edge is an ordered pair of vertices), real numbers bv for each v ∈ V and real
numbers (costs) cuv for each (u, v) ∈ E; we write uv sometimes instead of
(u, v). The minimum cost network flow problem is the following LP problem

minimize
∑

(u,v)∈E

cuvfuv

subject to
∑

u:(v,u)∈E

fvu −
∑

u:(u,v)∈E

fuv = bv (v ∈ V )

fuv ≥ 0 ((u, v) ∈ E).

(5)

5



The interpretation of (5) is as follows: The variable fuv represents the flow
from u to v along the edge (u, v), and cuv is the unit cost of sending this flow,
so the objective function represents the total cost. The constraints represent
flow balance at every vertex: the total flow leaving a vertex v minus the
total flow into the same vertex equals the given number bv, which is called
the supply at v. Finally, flows fuv are required to be nonnegative at each edge.
Often one also has upper bounds (capacities) on flows, but we do not need
this here. We assume that problem (5) has a feasible solution (conditions

that guarantee this are known, and require that
∑

v∈V

bv = 0, see [1]). This

condition on bv has a natural interpretation in the subdivision context, see
Remark 2. The dual of the minimum cost network flow problem (5) is

maximize
∑

v∈V

bv xv

subject to
xu − xv ≤ cuv ((u, v) ∈ E).

(6)

In this problem the variables xv are associated with vertices and may be
interpreted as a kind of potential. Now, assume fuv ((u, v) ∈ E) and xv

(v ∈ V ) are feasible solutions of (5) and (6), respectively. Then

∑

(u,v)

cuvfuv ≥
∑

(u,v)

(xu − xv)fuv =
∑

v

(
∑

u

fvu −
∑

u

fuv)xu =
∑

v

bvxv.

This shows weak duality which says that the optimal value of (5) is not smaller
than the optimal value of (6). Actually, a stronger result, the duality theorem,
says that these two optimal values are equal. This fact is exploited in very
efficient algorithms for solving the minimum cost network flow problem, see
[1]. An important result is the integrality theorem which says that, if each bv
is an integer, then problem (5) has an optimal solution where each fuv is an
integer. We then say that the optimal solution is integral. This integrality
property is due to special properties of the coefficient matrix of the flow
balance equations, and for other classes of LP problems it may happen that
no optimal solution is integral (i.e., in every optimal solution, at least one
variable is not an integer).
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3 First difference subdivision schemes and net-

work flow problems

In this section we show that optimization problems considered in [6] for
convergence analysis of subdivision are of a very special type, namely, they
are network flow problems.

3.1 Scalar case

For simplicity of presentation we start with the scalar multivariate case, i.e.
n = 1. The subdivision mask a ∈ ℓ0(Z

s) is a finitely supported sequence
of real numbers a(α), α ∈ Zs. The convergence analysis of such subdivision
schemes relies on what we call the backward difference operator ∇ : ℓ(Zs) →
ℓs(Zs) given by

∇ =







∇1
...
∇s






, (∇ℓc) (α) = c(α)− c(α− eℓ), α ∈ Z

s, c ∈ ℓ(Zs). (7)

A matrix sequence B ∈ ℓs×s(Zs) that satisfies

∇Sr
a
= Sr

B
∇, r ∈ N, (8)

defines the so-called difference subdivision operator SB : ℓs×s(Zs) → ℓs×s(Zs)
by

SBd(α) =
∑

β∈Zs

B(α−Mβ)d(β), d ∈ ℓs(Zs). (9)

The existence of B is equivalent to the fact that a satisfies sum rules of order
1, see [23] for details. The assumption that a satisfies sum rules of order 1
is by no means restrictive, as it is also a necessary condition for convergence
of Sa, see e.g. [4, 20].

We index the entries Bj,ℓ(α) of the matrices B(α) by j = 1, . . . , s and by
ℓ = 1, . . . , s to match the indexing of the entries ∇ℓ of the difference opera-
tor ∇. One of the approaches for characterizing convergence of subdivision
schemes studies the spectral properties of the operator SB. Let r ∈ N. The
results of [13] use the non-restricted norm

‖Sr
B
‖∞ = max

ε∈Ξr

∥

∥

∥

∥

∥

∑

β∈Zs

∣

∣B[r](ε−M rβ)
∣

∣

∥

∥

∥

∥

∥

∞

, Ξr ≃ (Zs/M r
Z
s) ,
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to derive sufficient conditions for convergence of the subdivision scheme Sa.
In [6] the authors use the restricted norm

‖Sr
B
|∇‖∞ = max

‖∇c‖∞=1
‖Sr

B
∇c‖∞ (10)

to characterize the convergence of Sa. Due to (8), the operator SB maps
the difference subspace ∇ℓ(Zs) into itself and, thus, its restriction Sr

B
|∇ to

∇ℓ(Zs) is well-defined.
Define K = {−N−1, . . . , 0}s. Due to B ∈ ℓs×s

0 (Zs) and by the periodicity
of the operator SB, we have

‖Sr
B
|∇‖∞ = max

‖∇c|K‖∞=1
max
ε∈Ξr

∥

∥

∥

∥

∥

∑

β∈K

B[r](ε−M rβ)(∇c)(β)

∥

∥

∥

∥

∥

∞

. (11)

The problem of computing of ‖Sr
B
|∇‖∞ in (11) consists of several linear

optimization problems for the finitely many unknowns c(β), β ∈ {−N −
2, . . . , 0}s. Indeed, to compute the maximum in (11), it suffices, for each pair
(ε, j) ∈ Ξr × {1, . . . , s}, to solve the linear optimization problem

max
∑

β∈K

s
∑

ℓ=1

B
[r]
j,ℓ(ε−M rβ)(∇ℓc)(β)

subject to
−1 ≤ c(β)− c(β − ǫℓ) ≤ 1, β ∈ K, ℓ = 1, . . . , s.

(12)

and, then, determine, over all (ε, j) ∈ Ξr × {1, . . . , s}, the maximum of the
corresponding optimal values in (12). See [6] for details. In the following
two subsections, we show that the problem in (12) can be interpreted as a
network flow problem.

3.1.1 Dual of a minimum cost problem and its properties

In this subsection we show that the problem in (12) is the dual of a minimum
cost network flow problem introduced in subsection 2.2. To arrive at this
conclusion we need to introduce some additional notation.

We define a directed graph G = (V,E) with the vertex set V = {−N −
2, . . . , 0}s and the edge set

E = {(u, v) = (β, β − ǫℓ) : β ∈ {−N − 1, . . . , 0}s, ℓ = 1, . . . , s}.
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Note that the undirected graph corresponding to G is connected. Moreover,
G is acyclic, i.e. G does not contain a directed cycle. For a fixed r ∈ N and
for each pair (ε, j) ∈ Ξr × {1, . . . , s}, we also define a function d : E → R by

d(e) = duv = B
[r]
j,ℓ(ε−M rβ), e = (u, v) = (β, β − ǫℓ) ∈ E.

Definition 1 A function x : V → R, where x(v) = xv denotes the function
value at a vertex v ∈ V , is called C−smooth if

− 1 ≤ xu − xv ≤ 1 for all (u, v) ∈ E. (13)

We call such a function C−smooth to emphasize that the constraints in (13)
appear in convergence analysis of Sa.

Note that solving (12) for the unknown sequence c amounts to solving
for x the problems

z∗C = max {
∑

(u,v)∈E

duv(xu − xv) : x is C-smooth} (14)

and then finding the maximum of these values over ε ∈ Ξr and j = 1, . . . , s.
We compare next the properties of the optimization problem (14) with

the properties of the difference subdivision operator SB.

Remark 2 Define the weights

bdv =
∑

u:(v,u)∈E

dvu −
∑

u:(u,v)∈E

duv for v ∈ V.

The identity
∑

v∈V

bdv =
∑

v∈V

(

∑

u:(v,u)∈E

dvu −
∑

u:(u,v)∈E

duv
)

= 0 (15)

is due to the simple fact that each of the terms duv appears in the above
identity twice with the opposite signs. Note that the identity (15) is equivalent
to

‖SB∇c‖∞ = 0 for a constant sequence c(α) = c(β), α, β ∈ Z
s.

The property z∗C = ‖Sr
B
|∇‖∞ ≤ ‖Sr

B
‖∞ = ‖d‖1 =

∑

(u,v)∈E

|duv| is reflected

in the following lemma.
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Lemma 3 The problem (14) has an optimal solution, so it is feasible and
not unbounded. Moreover, its optimal value z∗C satisfies

0 ≤ z∗C ≤ ‖d‖1 =
∑

(u,v)∈E

|duv|.

Proof. The constant function x = 0 is C-smooth, so problem (14) is feasible,
i.e., has feasible solutions, and z∗C ≥ 0. If x is C-smooth, then the objective
function

f d(x) =
∑

(u,v)∈E

duv(xu − xv)

satisfies

f d(x) ≤ |f d(x)| ≤
∑

(u,v)∈E

|duv(xu − xv)|

=
∑

(u,v)∈E

|duv||xu − xv| ≤
∑

(u,v)∈E

|duv| = ‖d‖1.

�

Moreover, we associate to G symmetric directed graph Ḡ = (V, Ē) with
the edge set

Ē = E ∪ {(v, u) : (u, v) ∈ E}.

It is easy to see that the linear optimization problem in (14) is equivalent to

(DualFlow(d))

max
∑

v∈V

bdv xv

subject to
xv − xu ≤ 1 ((u, v) ∈ Ē).

3.1.2 Minimum cost network flow problem

In this subsection we cast a more detailed look at network flow problems
introduced in subsection 2.2. The problem in DualFlow(d) is the standard
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form of a dual of the following minimum cost network flow problem

(Flow(d))

min
∑

(u,v)∈Ē

fuv

subject to
∑

u:(v,u)∈Ē

fvu −
∑

u:(u,v)∈Ē

fuv = bdv (v ∈ V )

fuv ≥ 0 ((u, v) ∈ Ē).

The flow variable fuv in Flow(d) represents the flow from u to v along the
edge (u, v). The linear constraints (equations) are flow balance constraints,
see (5). For each vertex v, these constraints imply that the difference between
total flow out of vertex v and the total flow into the same vertex is equal to bdv,
which may be considered as the divergence (net supply) at v. A feasible flow
f is a function f : Ē → R whose function values f((u, v)) = fuv satisfy the
constraints of Flow(d). An optimal flow f ∗ is a feasible flow that minimizes

the objective function
∑

(u,v)∈Ē

fuv in Flow(d).

Remark 4 If f ∗ is an optimal flow, then, for each edge (u, v) ∈ E, either
f ∗
uv or f ∗

vu is zero. Otherwise, one could reduce both f ∗
uv and f ∗

vu by the same
small positive quantity, which would contradict the optimality of f ∗.

The objective function
∑

(u,v)∈Ē

fuv represents the total flow cost. The prob-

lem Flow(d) is a quite special network flow problem: the costs, i.e. the co-
efficients of fuv in the objective function, on the edges are all 1; and there
is no upper bound on the flow in each edge. These properties together with
∑

v∈V

bdv = 0 and the fact that the undirected graph associated with G is con-

nected, imply that the problem Flow(d) is feasible and has an optimal solu-
tion, see [26]. The existence of an optimal solution of Flow(d) also follows
from Lemma 3 as the dual problem DualFlow(d) has an optimal solution.
The following result is one of the consequences of this duality relationship.

Theorem 5 The optimal value z∗C in (14) equals the optimal value in the
network flow problem Flow(d).

Proof. This follows from the network flow duality theory, see e.g. [1]. �
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3.2 Vector case

In the vector case, i.e. n > 1, the mask A ∈ ℓn×n(Zs) has matrix entries
A(α), α ∈ Zs. The associated first difference scheme is given by repeated
applications of the operator SB : ℓns(Zs) → ℓns(Zs). There is no conceptual
change in the structure of the linear optimization problems in (12), see [6]
for details. Therefore, even in the vector case, the convergence analysis of
subdivision schemes profits from the theory of network flows. We omit the
formulations of the corresponding results to avoid repetitions.

4 Optimal first difference masks

In this section we show that there exists an optimal difference mask B
∗ ∈

ℓs×s
0 (Zs), possibly different for each r ∈ N, such that the corresponding op-

erator SB
∗ in (9) satisfies ∇Sr

a
= SB

∗∇ and

‖SB
∗‖∞ = ‖SB

∗|∇‖∞ = ‖Sr
B
|∇‖∞ (16)

for any other SB satisfying ∇Sr
a
= Sr

B
∇. The algorithm for construction of

B
∗ in section 4.3 is such that for a given difference mask B with rational

entries the optimal mask is also rational. Thus, the norm ‖SB
∗‖∞ is rational,

which allows for analytic arguments in convergence proofs for Sa. In the
multivariate case, such masks B∗ possibly differ for each r ∈ N, see Example
12.

4.1 Univariate case

In the univariate case, it is well known that the operator SB is unique and
the maximizing sequence in (12) is determined uniquely, up to a constant
sequence, by

c(β)− c(β − 1) = sgnB[r](ε−M rβ), β ∈ {−N − 1, . . . , 0},

i.e. z∗C = ‖Sr
B
|∇‖∞ = ‖Sr

B
‖∞ = ‖d‖1 for any r ∈ N. The same holds for

higher order difference schemes. This property of z∗C also follows directly
from Theorem 6 in section 4.2 and Theorem 15 in section 5.

12



4.2 Multivariate case

In the multivariate case, the difference subdivision operator SB in (8) is not
unique, see [6].

Fix r ∈ N, ε ∈ Ξr and j = 1, . . . , s. The next result shows that there
exists B

∗ ∈ ℓs×s
0 (Zs) such that

z∗C =
∑

β∈K

s
∑

ℓ=1

|B∗
j,ℓ(ε−M rβ)| =

∑

(u,v)∈Ē

f ∗
uv,

i.e., the restricted and non-restricted norms of SB
∗ coincide.

Theorem 6 Let d : E → R be given. Let f ∗ be an optimal flow in Flow(d)
and let x∗ be an optimal solution of DualFlow(d). Define the function d∗ :
E → R by d∗uv = f ∗

uv − f ∗
vu for each (u, v) ∈ E.

Then bdv = bd
∗

v for all v ∈ V , i.e. Flow(d) and Flow(d∗) coincide, and so
do DualFlow(d) and DualFlow(d∗). Moreover, the common optimal value of
these problems is equal to ‖d∗‖1, i.e.

∑

(u,v)∈Ē

f ∗
uv =

∑

v∈V

bd
∗

v x∗
v = ‖d∗‖1.

Proof. Let x∗ be an optimal solution of Dualflow(d). Define d∗ as stated
in the theorem. Then, as f ∗ is a feasible solution of Flow(d), for each v ∈ V ,
we have

bdv =
∑

u:(v,u)∈Ē

f ∗
vu −

∑

u:(u,v)∈Ē

f ∗
uv

=
∑

u:(v,u)∈E

(f ∗
vu − f ∗

uv)−
∑

u:(u,v)∈E

(f ∗
uv − f ∗

vu)

=
∑

u:(v,u)∈E

d∗vu −
∑

u:(u,v)∈E

d∗uv = bd
∗

v

which proves the first statement.
Next, as f ∗ is optimal, by Remark 4, for each (u, v) ∈ E at most one of

the two variables f ∗
uv and f ∗

vu can be positive. So for each (u, v) ∈ E

f ∗
uv + f ∗

vu = |f ∗
uv − f ∗

vu| = |d∗uv|

13



and therefore, since Flow(d) and Dualflow(d) have the same optimal value

∑

v∈V

bd
∗

v x∗
v =

∑

(u,v)∈Ē

f ∗
uv =

∑

(u,v)∈E

(f ∗
uv + f ∗

vu) =
∑

(u,v)∈E

|d∗uv| = ‖d∗‖1

as desired. �

We are guaranteed to have an integral optimal d∗, i.e. a rational optimal
B

∗, under the additional assumption that d is integral.

Corollary 7 Let d : E → Z and f ∗ be an integral optimal flow in Flow(d).
Then d∗ : E → Z defined by d∗uv = f ∗

uv − f ∗
vu, (u, v) ∈ E, satisfies

∑

(u,v)∈Ē

f ∗
uv = ‖d∗‖1.

Proof. The network flow theory (see Subsection 2.2 or [1]) guarantees the
existence of an integral optimal solution f ∗ of Flow(d), if d is integral. The
claim follows then from Theorem 6. �

Remark 8 It can happen that ‖d∗‖1 < ‖d‖1. For example, consider a di-
rected graph with vertices V = {u = (0, 0), v = (0, 1), w = (1, 1), z = (1, 0)}
and let duv = dvw = 1 and dzw = −1. Then bdu = 1 , bdz = −1 and bdv = bdw = 0.
An optimal flow f ∗ is given by f ∗

uz = 1 and zero otherwise, so d∗uz = 1 and
zero otherwise. One of the optimal dual solutions is x∗

u = 0, x∗
v = x∗

z = −1
and x∗

w = −2. The common optimal value is 1 (recall that we have taken the
negative in the dual), and so ‖d∗‖1 = 1 while ‖d‖1 = 3.

We state next some necessary and sufficient conditions for d = d∗. These
sufficient conditions are easy to check and, if satisfied, yield d∗ without solving
DualFlow(d).

Recall that an edge e ∈ Ē has the form e = (u, v) and that, for u =
(u1, u2, . . . , us), v = (v1, v2, . . . , vs), we have |vk − uk| = 1 for some k and
vj = uj for all j 6= k. We say that e is a k-positive edge, if vk = uk + 1,
while if vk = uk − 1 we call e a k-negative edge. A path P in Ḡ is called
monotone if, for a fixed k, it either contains only k-positive edges or only
k-negative edges. The path P in the support of f ∗ consists of the edge set
{(u, v) ∈ P : f ∗

uv > 0}.
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Theorem 9 Let f ∗ be an optimal solution in Flow(d) for a graph Ḡ. Then
each path P in the support of f ∗ is monotone.

Proof. Assume that the support of f ∗ contains a path P which is not mono-
tone. Say that P has m edges and that its vertices (in that order) are
u0, u1, . . . , um ∈ V . We represent P by a (0, 1,−1)-matrix A of size m × s
whose i−th row is ui − ui−1. The definition of E assures that each entry
in A is either 0, 1 or −1. Since P is not monotone, A contains a column
with both 1 and −1. We choose such a column k for which the rows i1 and
i2 containing 1 and −1 are such that |i1 − i2| is minimal; we may assume
i1 < i2. Note that in these rows i1 and i2 the only non-zero entries are in the
k−th column.

Let the matrix A′ be obtained from A by deleting rows i1 and i2. Then
A′ corresponds to a new path P ′ having the same end vertices as P . We may
define a new flow f ′ accordingly by replacing a flow of one unit along P by
a flow of one unit along P ′. Then, since the symmetric difference between
P and P ′ is a cycle, f ′ satisfies the flow balance constraints. Moreover,
∑

f ′
uv =

∑

f ∗
uv − 2, contradicting that f ∗ was optimal. Thus we have shown

that the support of f ∗ only contains paths that are monotone. �

For i = 1, . . . , s define Ei = {(u, u− ǫi) ∈ E}. Then {Ei : i = 1, . . . , s}
is a partition of the edge set E, i.e. the sets Ei are disjoint and E is the
union of Ei.

Theorem 10 Consider a graph Ḡ. Let κi ∈ {−1, 1} for 1 ≤ i ≤ s, and
assume that sign (duv) ∈ {0, κi} for all (u, v) ∈ Ei, 1 ≤ i ≤ s.

(i) The flow f ∗ with

(f ∗
uv, f

∗
vu) =

{

(duv, 0), if κi = 1,
(0,−duv), if κi = −1

for all (u, v) ∈ Ei, i = 1, . . . , s,

is optimal for Flow(d) with optimal value ‖d‖1.

(ii) The function x∗ : V → R with x∗(v) = −
∑s

i=1 κivi for v = (v1, v2, . . . , vs) ∈
V is optimal in DualFlow(d) with optimal value ‖d‖1.

Proof. To prove (i) and (ii) we use the standard technique, based on weak
duality (see Subsection 2.2 and [26]). It suffices to show that f ∗ and x∗

15



defined in (i) and (ii), respectively, are feasible and

∑

v∈V

bdvx
∗(v) =

∑

(u,v)∈Ē

f ∗
uv.

Let i = 1, . . . , s and e = (u, v) ∈ Ei. Then

x∗(u)− x∗(v) = x∗(u)− x∗(u− ǫi) = κiui − κi(ui − 1) = κi.

This shows that |x∗(u)−x∗(v)| = 1 for each edge (u, v) ∈ Ē, so x∗ is feasible
in DualFlow(d). Clearly f ∗ is feasible in Flow(d) as f ∗

uv ≥ 0 and its divergence
in a vertex v ∈ V equals the divergence of d in v which is bdv. Moreover, we
have

∑

v∈V

bdvx
∗(v) =

∑

v∈V

(
∑

u:(v,u)∈E

dvu −
∑

u:(u,v)∈E

duv)x
∗(v)

=
∑

(u,v)∈E

duv(x
∗(u)− x∗(v))

=

s
∑

i=1

∑

(u,v)∈Ei

duv(x
∗(u)− x∗(v))

=

s
∑

i=1

∑

(u,v)∈Ei

duvκi =

s
∑

i=1

∑

(u,v)∈Ei

|duv|

=

s
∑

i=1

∑

(u,v)∈Ei

(f ∗
uv + f ∗

vu) =
∑

(u,v)∈Ē

f ∗
uv

Therefore, by duality (Theorem 5) it follows that f ∗ is optimal in Flow(d),
x∗ is optimal in DualFlow(d) and, finally, that the optimal value equals ‖d‖1.

�

Corollary 11 Consider a graph Ḡ, and let d be nonnegative. Define f ∗
uv =

duv and f ∗
vu = 0 for each (u, v) ∈ E and x∗(v) = −

∑s
i=1 vi for v =

(v1, v2, . . . , vs) ∈ V . Then f ∗ is optimal in Flow(d), x∗ is optimal in DualFlow(d)
and the optimal value equals ‖d‖1.
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Proof. Let κi = 1 for each i ≤ s and apply Theorem 10. �

We conclude this subsection with an example of an optimal first difference
mask B

∗ that satisfies
‖SB

∗‖∞ = ‖SB
∗|∇‖∞,

but does not satisfy
‖S2

B
∗‖∞ 6= ‖S2

B
∗|∇‖∞.

Example 12 Let M = 2I. Consider a bivariate scalar subdivision scheme
with the mask

a =

...
...

...
...

...
. . . 0 0 1

4
1
2

1
4

. . .

. . . 0 1
2

1 1
2

0 . . .

. . . 1

4

1
2

1
4

0 0 . . .
...

...
...

...
...

supported on {0, . . . , 3}2. The bold entry corresponds to the index (0, 0). In
this case, the directed graph G = (V,E) has vertices V = {−5, . . . , 0}2 and
the edge set E = {(β, β − ǫℓ) : β ∈ {−4, . . . , 0}2, ℓ = 1, 2}. The nonzero
part of the optimal mask B

∗ ∈ ℓ2×2
0 (Z2) for the first difference scheme is

B
∗ =

1

4

(

0 0
0 0

) (

0 0
0 0

) (

0 0
1 0

) (

0 0
0 0

)

(

0 0
1 0

) (

0 0
0 0

) (

1 0
−1 0

) (

1 0
0 0

)

(

0 0
−1 0

) (

2 0
0 0

) (

2 0
0 2

) (

0 0
0 2

)

(

1 0

0 1

) (

1 0
0 2

) (

0 0
0 1

) (

0 0
0 0

)

The bold entry again corresponds to the index (0, 0). The nonzero entries of
its second iterated mask (B∗)[2] for the coset ε = (2, 1) are

(B∗)[2](2, 5) =

(

0 0
1
8

0

)

, (B∗)[2](6, 5) =

(

1
8

0
− 1

16
0

)

(B∗)[2](2, 1) =

(

1
8

0
− 1

16
1
8

)

and (B∗)[2](6, 1) =

(

0 0
0 1

8

)

.
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On the contrary, the corresponding linear optimization problem for ε = (2, 1)
and j = 2 in (14) and with nonzero values

d(0,0)(−1,0) = d(−1,−1)(−2,−1) = −
1

16
,

d(0,0)(0,−1) = d(−1,0)(−1,−1) = d(0,−1)(−1,−1) =
1

8
,

yields z∗C = 6
16

. And, indeed, the corresponding nonzero entries of the optimal
second iterated mask constructed from d∗ for this coset are

...
...

. . .

(

0 0
1
16

0

)

. . .

(

1
8

0
− 1

16
0

)

. . .

...
...

. . .

(

1
8

0
0 1

16

)

. . .

(

0 0
0 3

16

)

. . .

...
...

4.3 Flow algorithm

In this section we present the successive shortest path algorithm ([1]) for our
minimum cost network flow problems. This algorithm determines the opti-
mal flow f ∗ in Flow(d), which defines an optimal mask of the first difference
schemes as stated in Theorem 6. An advantage of using this particular algo-
rithm is that it guarantees an integral solution, if the input is integral. For a
given flow f , the algorithm defines the so-called residual network G(f) which
consists of

- the given vertices V of the graph Ḡ,

- all edges e = (u, v) ∈ Ē and their copies, called "backward" edges e−1

whose direction is opposite to e. These edges are created only for the
edges e ∈ Ē that consitute the shortests paths determined by Dijkstra’s
algorithm in step 2.2. of the Flow algorith given below.

In the residual network G(f) each edge is assigned a capacity r(u,v) = fuv for
e = (u, v) ∈ Ē and for backward edges

r(u,v)−1 =

{

fuv if, fuv > 0,

0 otherwise.

18



For a given function π : V → Z, each edge in G(f) is also assigned the
so-called reduced cost

cπ(u,v) = 1− π(u) + π(v), (u, v) ∈ Ē,

and for the backwards edges (u, v)−1, (u, v) ∈ Ē,

cπ(u,v)−1 = −1 − π(u) + π(v).

The purpose of introducing the backward edges is that they allow us to
decrease the flow through the original edges in Ē by sending it along the
corresponding backward edges.

The algorithm starts with the zero flow f = 0 and performs a finite
number of iterations consisting of adding the flow along the shortest path
between the end vertices of an edge (u, v) where duv is nonzero. The shortest
path is computed in the residual network G(f) using the reduced costs cπ.
The function π is introduced to ensure that the reduced costs stay nonnega-
tive, which makes the shortest path calculation more efficient, as we can use
Dijkstra’s algorithm. For further explanation and details on the successive
shortest path algorithm, see [1].

Flow algorithm:

Input: a function d : E → Z.

1. Initial step: Compute bdv for v ∈ V . Set ǫ(v) := bdv for v ∈ V . Define E+ = {v ∈ V : ǫ(v) > 0}
and E− = {v ∈ V : ǫ(v) < 0}. Initialize the flow f := 0, define the residual network G(f), and set

π(v) = 0 for each v ∈ V .

2. While E+ 6= ∅ do

2.1 Choose any v+ ∈ E+ and v− ∈ E−.

2.2 Dijkstra’s algorithm: uses as edge lengths the reduced costs cπ
(u,v)

= 1 − π(u) + π(v) to

compute the shortest path distances δ(v) from v+ to each other vertex v ∈ V ; determines

the shortest path P from v+ to v−.

2.3 Update π by π := π − δ, compute γ := min{ǫ(v+),−ǫ(v−),min{rij : (i, j) ∈ P}} and

augment f by adding a flow of value γ along the path P . Update the residual network

G(f), i.e. update the reduced costs; set ǫ(v+) = ǫ(v+)− γ, ǫ(v−) = ǫ(v−) + γ; update E+,

E−.

Output: optimal flow f∗ and optimal dual variable x := −π.

Theorem 13 The flow algorithm solves both Flow(d) and the dual problem
Dualflow(d). Its complexity is O(Bn2) where B = (1/2)

∑

v |b
d
v| is an upper

bound on the number of iterations, and O(n2) is the complexity of Dijkstra’s
algorithm for solving the shortest path problem with nonnegative costs in a
graph with n vertices.
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Proof. The correctness of the general algorithm is shown in [1]. The com-
plexity statement follows from the fact that in each iteration, by integrality
of d, the flow is augmented by a positive integer. �

The next simple example illustrates the flow algorithm. It also stresses
the necessity of using the algorithm for finding the optimal flow f ∗ even for
seemingly simple examples of our very special network flow problems.

Example 14 Consider the graph Ḡ with s = 2 and assume d is such that
bdv = 1 when v ∈ {(0, 0), (−2,−2)}, bdv = −1 when v ∈ {(−1,−1), (−3,−3)},
and bdv = 0 otherwise. Initially, in the flow algorithm,

f = 0, E+ = {(0, 0), (−2,−2)}, E− = {(−1,−1), (−3,−3)},

and we (may) choose v+ = (−2,−2) and v− = (−1,−1). A shortest path
P from v+ to v− consists of the nodes (−2,−2), (−1,−2), (−1,−1) and it
has cost 2. Note that the updated edge cost for each edge in P is −1. In the
next, and final, iteration, we (must) choose v+ = (0, 0) and v− = (−3,−3)
the shortest path P ′ consists of the nodes (0, 0), (0,−1), (−1,−1), (−1,−2),
(−2,−2), (−2,−3), (−3,−3). As a result, the flow cancels out on P , and
we have an optimal flow with f = 1 on four edges so the optimal value is 4.

This example shows that the obvious heuristic method of successively
adding a shortest path, while maintaining previous paths, may go wrong.
Doing so we would get a solution with two paths, one of length 2 and the
other of length 6, so a total cost of 8, while the optimal value is 4.

5 Optimal higher order difference schemes

In this section we investigate the existence of optimal masks for higher order
difference schemes used for studying the regularity of subdivision in the scalar
case, i.e. n = 1. The vector case is more technical, but the computation of the
restricted norms we consider here and the derivation of the optimal difference
schemes are conceptually very similar to what we do in the scalar case. The
unconvinced reader is referred to [5] and Example 17.

The smoothness analysis of Sa is based on the spectral properties of the
higher order difference schemes SBk

, k ≥ 2, derived from Sa. In our notation,
we have B1 = B, where B is the first difference scheme from section 3.1.
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The k−th order backward difference operator ∇k : ℓ(Zs) → ℓNs,k(Zs), Ns,k =
(

s+ k − 1
s− 1

)

, is defined by

∇k = (∇µ1
1 . . .∇µs

s )µ=(µ1,...,µs)∈Ns
0

|µ|=k

, (17)

where, for ℓ = 1, . . . , s,

∇µℓ

ℓ = ∇ℓ∇
µℓ−1
ℓ , µℓ ∈ N, ∇0

ℓ = id.

The k − th order difference schemes SBk
satisfy

∇kSr
a
= Sr

Bk
∇k, r ∈ N. (18)

We denote the entries of the matrices B
[r]
k (α) by B

[r]
k,j,µ(α), j = 1, . . . , Ns,k,

and µ = (µ1, . . . , µs) matches the ordering of ∇µ1

1 . . .∇µs
s in ∇k. By [5],

the study of the spectral properties of SBk
|∇k leads to computation of the

restricted norms

‖Sr
Bk

|∇k‖∞ = max
‖∇kc|K‖∞=1

max
ε∈Ξr

∥

∥

∥

∥

∥

∑

β∈K

B
[r]
k (ε−M rβ)(∇k

c)(β)

∥

∥

∥

∥

∥

∞

,

where K = {−N − k, . . . , 0}s. Let r ∈ N, j = 1, . . . , Ns,k and ε ∈ Ξ. See [5]
for details. The linear constraints ‖

(

∇kc
)

(β)‖∞ ≤ 1 for β ∈ K do not allow
us to interpret the linear optimization problem

max
∑

β∈K

∑

µ∈Ns
0

|µ|=k

B
[r]
k,j,µ(ε−M rβ)(∇µ1

1 . . .∇µs

s c)(β)

subject to
−1 ≤ (∇µ1

1 . . .∇µs
s c) (β) ≤ 1, β ∈ K, µ ∈ Ns

0, |µ| = k,
(19)

as a network flow problem, compare with (5). However, we can still show
that for each r ∈ N there exists an optimal mask B

∗ such that

‖Sr
Bk

|∇k‖∞ = ‖SB
∗|∇k‖∞ = ‖SB

∗‖∞

and
∇kSr

A
= Sr

Bk
∇k = SB

∗∇k.
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Denote by 1 and by 0 vectors of all ones and all zeros, respectively. The
problem in (19) is equivalent to

z∗ = max{dT (∆x) : −1 ≤ ∆x ≤ 1} (20)

with appropriately defined vector d ∈ R|N+k|s of the corresponding entries
of B

[r]
k,j,µ(ε−M rβ) in the objective function and the matrix ∆ reflecting the

linear constraints in (19).

Theorem 15 There exists a vector d∗ ∈ R
Ns,k(N+k+1)s such that the solution

of (20) satisfies
z∗ = ‖d∗‖1.

Proof. Note that

z∗ = max{
(

dT∆
)

x :

(

∆
−∆

)

x ≤

(

1

−1

)

}.

By duality [24], we get

z∗ = min{1T (w + y) :
(

wT yT
)

(

∆
−∆

)

= dT∆, w, y ≥ 0}

= min{1T (w + y) : (d+ y − w)T∆ = 0, w, y ≥ 0}.

Moreover, due to the fact that the supports of the optimal w and y are
disjoint, we obtain

z∗ = min{1T |g| : (d+ g)T∆ = 0, g ∈ R
m}

= min{‖d− g‖1 : gT∆ = 0, g ∈ R
m}. (21)

Define d∗ = d− g. �

Note that the entries of d∗ define the elements of the optimal mask B
∗

for the corresponding r ∈ N, j = 1, . . . , Ns,k and ε ∈ Ξ.
We would like to emphasize that the value z∗ coincides with the one

determined by solving (19), which was already studied in [5] for k ≥ 1 and in
[6] for k = 1. The equivalent formulation of (19) in (21) allows us not only to
show the existence of optimal masks, but also yields its new, very intuitive
interpretation: geometrically, z∗ is the distance from d to the nullspace of
∆T in the ‖ · ‖1 norm.
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6 Examples

In this section we illustrate our results with several examples. We give op-
timal masks for first and second difference schemes only for simplicity of
presentation. The higher order difference masks can be determined analo-
gously.

Example 16 Let M =

(

2 1
0 2

)

. In this case Ξ ≃ {(0, 0), (1, 0), (1, 1), (1, 2)}.

Consider a scalar bivariate subdivision mask a given in terms of the associ-
ated symbol

a(z) =
∑

α∈Z2

a(α)zα =
1

4
b2(z), b(z) =

∑

ε∈Ξ

zε, z ∈ (C \ {0})2.

The optimization problem in (21) implemented in Matlab yields an optimal
mask B

∗ ∈ ℓ2×2
0 (Z2) given in terms of the associated matrix symbol

B∗(z) =
1

4

(

b11(z) b12(z)
b21(z) b22(z)

)

with

b11(z) = (1 + z1)(1 + 2z1z2 + z21z
2
2), b12(z) = 0,

b21(z) = −591/1739− z2 − 709/1074z1z2 − 709/1074z1z
2
2 − z21z

2
2 − 591/1739z21z

3
2 ,

b22(z) = 1439/1074 + 2z1 + 709/1074z21 + 709/1074z1z2 + 2z21z2 + 1439/1074z31z2.

Note that there is also an optimal mask with integral bij(z) given by

b11(z) = (1 + z1)(1 + 2z1z2 + z21z
2
2), b12(z) = 0,

b21(z) = −z2 − z1z
2
2 − z21z

2
2 − z21z

3
2 and b22(z) = 1 + 2z1 + z21 + 2z21z2 + 2z31z2.

If we start the flow algorithm from section 4.3 with d derived from this optimal
B

∗, we get d∗ = d as an output. For optimal masks we get

‖SB
∗‖∞ = ‖SB

∗|∇‖∞ =
3

4
,

which implies convergence of Sa, i.e. continuity of its limits.

The next example is of a vector bivariate subdivision scheme introduced
in [7]. The corresponding dilation matrix is M = 2I and Ξ ≃ {0, 1}2.
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Example 17 We transform the mask in [7] following the steps in [5, Exam-
ple 5.2] and obtain

A =
1

8

(

1 1
0 0

) (

2 1
0 1

) (

1 0
0 1

)

(

1 1
0 0

) (

4 2
0 2

) (

5 1
0 3

) (

2 0
0 1

)

(

2 1
0 1

) (

5 1
0 3

) (

4 0
0 2

) (

1 0
0 0

)

(

1 0

0 1

) (

2 0
0 1

) (

1 0
0 0

)

.

The optimal difference mask is given by its symbol B∗(z) = 1
8
(bij(z))1≤i,j≤4

with integral entries

b11(z) = (1 + z2)
2(1 + z1)(z2z1 + 1), b12(z) = (1− z1)a11(z),

b13(z) = b14(z) = 0, b21(z) = 0, b22(z) = a22(z), b23(z) = b24(z) = 0,

b31(z) = 0, b12(z) = (1− z2)a11(z), b33(z) = (1 + z2)(1 + z1)
2(z2z1 + 1),

b34(z) = 0, b41(z) = 0, b42(z) = a22(z), b43(z) = b44(z) = 0,

The entries b11, b13, b31 and b33 are computed using the optimization prob-
lem in (21) for the scalar mask given by a11(z), which is defined by the A11(α)
elements of A. If we start the flow algorithm from section 4.3 with d derived
from this optimal b11, b13, b31 and b33, we get d∗ = d as an output. The rest of
the entries in B∗(z) are defined so that the associated operator SB

∗ satisfies








∇1 0
0 1
∇2 0
0 1









SA = SB
∗









∇1 0
0 1
∇2 0
0 1









with ∇ℓ, ℓ = 1, 2, defined in (17), see [4, 5] for more details on the structure
of the difference operator ∇ and difference masks in the vector case. For the
optimal mask B

∗ we have

‖SB
∗|∇‖∞ = ‖SB

∗‖∞ =
3

4
.
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In the next example we determine an optimal second difference mask for
the so-called butterfly scheme studied in e.g. [15].

Example 18 The dilation matrix is M = 2I and the mask is given by its
symbol

a(z) =
1

2
(z1 + 1)(z2 + 1)(z1z2 + 1)(z21z

2
2 −

1

16
c(z)), z ∈ (C \ 0)2,

where

c(z) = 2z2 + 2z1 − 4z1z2 − 4z1z
2
2 − 4z21z2 + 2z1z

3
2 + 2z31z2 + 12z21z

2
2

−4z31z
2
2 − 4z21z

3
2 − 4z31z

3
2 + 2z41z

3
2 + 2z31z

4
2 .

To show the C1−regularity of the butterfly scheme by solving the optimization
problem in (21), we have to determine an optimal mask for the third iteration
of the second difference operator. An optimal mask for the second difference
scheme is determined easily, if for its derivation, instead of ∇2 in (17), we
make use of all three factors (z1 + 1)(z2 + 1)(z1z2 + 1) as it is done in [15].
The diagonal structure of the symbol B∗(z) = 1

16
(bij(z))1≤i,j≤3 with non-zero

elements

b11(z) = (1 + z1)
−1(1 + z1z2)

−1A(z), b22(z) = (1 + z1)
−1(1 + z2)

−1A(z),

b33(z) = (1 + z2)
−1(1 + z1z2)

−1A(z),

implies that the corresponding mask is optimal. This special structure of the
symbol allows us to use the univariate strategy in section 4.1 to show the
optimality of the mask. The iterates of SB

∗ are also optimal and ‖S2
B

∗‖∞ <
1/2 implies that the scheme is C1.

The last example shows that although the optimal mask determined by
solving the optimization problem in Theorem 15 can be non-integral, the
optimal value z∗ still is. We were not able to find subdivision schemes with
integral masks (after an appropriate normalization), which did not possess
either integral optimal masks for higher order difference schemes or for which
z∗ were not integral.

Example 19 Let M = 2I and

a(z) = 4

(

1 + z1
2

)(

1 + z2
2

)3(
1 + z1z2

2

)3

.
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The associated bivariate scheme generates a three-directional box spline. Mat-
lab yields ‖SB

∗
2
‖∞ = z∗ = 3

8
< 1

2
implying the C1−regularity of the scheme.

The optimal second difference mask 25B∗
2 ∈ ℓ3×3

0 (Z2) satisfying (18) is not
integral and we think it will serve no purpose to present it here. How-
ever, it allows us to derive another optimal second difference mask given
by B∗

2(z) = 2−5 (bij(z))i,j=1,...,3 with integral

b11(z) = z2(z2 + 1)(z21z
4
2 + 2z21z

3
2 + 5z1z

2
2 + z21z

2
2 + z2 + 3z1z2 + 3),

b12(z) = (1− z1)(z1z
2
2 + 1)2, b13(z) = 0, b21(z) = 0

b22(z) = (z2 + 1)2(z1z2 + 1)3, b31(z) = z42 − z62 ,

b32(z) = z22(−1 + z21z
4
2 − z1 + z42z1 − 4z1z2 + 4z1z

3
2),

b33(z) = (1 + z1)(z31z
3
2 + (2z22 − z32)z

2
1 + (3z22 + 4z32 + z42 + 3z2)z1 + 1 + z22 + z2).

7 Summary

In this paper we establish a link between convergence analysis of multivariate
subdivision schemes and network flows as well as between the regularity anal-
ysis of subdivision and linear optimization. Advances in network flow theory
and linear optimization provide efficient algorithms for determining what we
call optimal difference masks. The regularity of the underlying subdivision
scheme can be easily read off the corresponding optimal values, which deter-
mine the norm of the difference operators defined by such optimal difference
masks. We would like to emphasize that we only prove the existence of the
optimal masks, which are by no means unique. The existence of the opti-
mal masks shows that there are no conceptual differences in the analysis of
multivariate and univariate subdivision schemes. Moreover, if the subdivi-
sion mask has only rational entries, then so does the first difference optimal
mask. There are no theoretical results that guarantee the same in the case
of higher order difference masks, but we were not able to find an example
of a subdivision scheme with rational entries whose higher order difference
schemes would be irrational.
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