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Abstract

The Lauricella functions, which are generalizations of the Gauss hypergeo-
metric function 2F1, arise naturally in many areas of mathematics and statistics.
So far as we are aware, there is little or nothing in the literature on how to cal-
culate numerical approximations for these functions outside those cases in which
a simple one-dimensional integral representation or a one-dimensional series rep-
resentation is available. In this paper we present first-order and second-order
Laplace approximations to the Lauricella functions F

(n)
A and F

(n)
D . Our extensive

numerical results show that these approximations achieve surprisingly good ac-
curacy in a wide variety of examples, including cases well outside the asymptotic
framework within which the approximations were derived. Moreover, it turns out
that the second-order Laplace approximations are usually more accurate than
their first-order versions. The numerical results are complemented by theoreti-
cal investigations which suggest that the approximations have good relative error
properties outside the asymptotic regimes within which they were derived, in-
cluding in certain cases where the dimension n goes to infinity.

Key Words and Phrases : Gauss hypergeometric function; Lauricella functions; vector-
argument hypergeometric functions.

1 Introduction

The Lauricella functions F
(n)
A , F

(n)
B , F

(n)
C and F

(n)
D were introduced in the case n = 3

by Lauricella (1893). Each of these functions is a generalization of the classical Gauss
hypergeometric function 2F1 (e.g. Abramowitz and Stegun, 1972, Chapter 15), and 2F1

is recovered when n = 1. An extensive account of many of the mathematical properties
of Lauricella functions for a general positive integer n, and discussion of problems in
mathematics and statistics in which they arise, are given in the book by Exton (1976).
These functions appear in a wide variety of settings; see, for instance, Dickey (1983),
Lijoi and Regazzini (2004), Kerov and Tsilevich (2004) and Scarpello and Ritelli (2012).

Our starting point in this paper is the question of how to calculate good approxima-
tions for Lauricella functions, a problem which, so far as we are aware, has received little
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or no attention in the literature. We derive first- and second-order Laplace approxima-
tions for the functions F

(n)
A and F

(n)
D , focusing on those situations in which convenient

one-dimensional integral representations or one-dimensional series representations are
not available. Our numerical results indicate that it is nearly always preferable to use
one of the second-order versions. These approximations are shown to be highly accurate
for a broad range of argument values, and not just in the asymptotic regimes in which
they were derived. In a companion paper, Butler and Wood (2014), we study statisti-

cal applications of F
(n)
A , F

(n)
D and Φ

(n)
2 , a confluent form of F

(n)
D which is important in

various statistical and other contexts, and we derive Laplace approximations for Φ
(n)
2 .

Software in Matlab and R along with instructions are available for first- and second-
order Laplace approximations for F

(n)
A , F

(n)
D , and Φ

(n)
2 . They may be downloaded from

http://faculty.smu.edu/rbutler and are function programs supplied as M- and R-files.
A different type of generalization of the univariate hypergeometric functions are

the hypergeometric functions of matrix argument; see Muirhead (1982) for a detailed
account and Richards (2012) for more recent developments. The matrix-argument gen-
eralizations are quite different to the Lauricella generalizations of the Gauss hyper-
geometric function. Laplace approximations have been successfully used for various
matrix-argument hypergeometric functions by Butler and Wood (2002, 2003).

The outline of this paper is as follows. In §2 we present mathematical definitions and
relevant integral representations. In §3 and §4 Laplace approximations are presented for
F

(n)
A and F

(n)
D respectively, and numerical results demonstrating the level of accuracy

are presented in §6. Asymptotic properties of the approximations are discussed in §5.
Many of the more detailed calculations are presented in the appendices.

2 Review of F
(n)
A and F

(n)
D

2.1 Hypergeometric series representations

Let (a,m) = Γ(a + m)/Γ(a) denote the Pochhammer symbol with Γ as the classical
gamma function; note that when m is a positive integer we shall define (a,m) = a ... (a+

m − 1) when a is a non-positive integer. The Lauricella function F
(n)
A has parameters

given by scalar a and n-vectors b = (b1, . . . , bn)T and c = (c1, . . . , cn)T and an n-vector

argument x = (x1, . . . , xn)T . The defining expansion for F
(n)
A is

F
(n)
A (a,b; c; x) =

∞∑
m1=0

· · ·
∞∑

mn=0

(a,m1 + · · ·mn)
n∏
i=1

{
(bi,mi)x

mi
i

(ci,mi)mi!

}
(1)

which is convergent for
∑n

i=1 |xi| < 1; see Exton (1976, p. 41).

Function F
(n)
D has parameters given by scalars a and c, an n-vector b = (b1, . . . , bn)T ,

and an n-vector argument x = (x1, . . . , xn)T . The defining expansion for F
(n)
D is

F
(n)
D (a,b; c; x) =

∞∑
m1=0

· · ·
∞∑

mn=0

(a,m1 + · · ·mn)

(c,m1 + · · ·mn)

n∏
i=1

{
(bi,mi)x

mi
i

mi!

}
(2)

and is convergent for max1≤i≤n |xi| < 1.
In the special case when n = 1, b1 = b, c1 = c, and x1 = x,

F
(1)
A (a, b; c;x) = F

(1)
D (a, b; c;x) = 2F1 (a, b; c;x),

where 2F1 denotes the Gauss hypergeometric function.
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2.2 Integral representations

There are a number of integral representations of F
(n)
A and F

(n)
D , each of which places

different conditions on the function parameters; see Exton (1976) for a detailed account.
We first consider one-dimensional representations. When Re(a) > 0,

F
(n)
A (a,b; c; x) = Γ(a)−1

∫ ∞
0

e−tta−1

n∏
i=1

1F1 (bi; ci;xit)dt, (3)

where 1F1 is the confluent hypergeometric function. For arbitrary a, the function
F

(n)
A also has the following multi-dimensional Euler-type integral representation when

Re(bi) > 0 and Re(ci − bi) > 0 for i = 1, . . . , n:

F
(n)
A (a,b; c; x) =

n∏
i=1

Γ(ci)

Γ(bi)Γ(ci − bi)

∫ 1

0

· · ·
∫ 1

0

(
1− uTx

)−a n∏
i=1

{
ubi−1
i (1− ui)ci−bi−1

}
du,

(4)
where u = (u1, . . . , un)T , uTx =

∑n
i=1 uixi and du =

∏n
i=1 dui.

When Re(a) > 0 and Re(c− a) > 0,

F
(n)
D (a,b; c; x) =

Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ua−1(1− u)c−a−1

n∏
i=1

(1− uxi)−bidu. (5)

For arbitrary a, and when Re(bi) > 0 for i = 1, . . . , n and Re(c − b+) > 0, where

b+ =
∑n

i=1 bi, the function F
(n)
D has representation

F
(n)
D (a,b; c; x) =

Γ(c)

Γ(c− b+)
∏n

i=1 Γ(bi)

∫
ui≥0, u+≤1

(1− u+)c−b+−1 (1− uTx
)−a n∏

i=1

ubi−1
i du,

(6)
where u+ =

∑n
i=1 ui.

3 Approximation of F
(n)
A

3.1 One-dimensional integral representation

If Re(a) > 0 and an accurate method for calculating the confluent hypergeometric

function 1F1 is available, then approximation of F
(n)
A through the one-dimensional in-

tegration of (3) will be difficult to beat. To see that such integration is generally
well-behaved, note that the integrand in (3) has the dominant factor e−tta−1 which de-
creases like a gamma density to offset the increasing 1F1 factors. As t→∞, these terms
have order 1F1 (bi; ci;xit) ∼ cie

xittbi−ci so that overall the integrand has a gamma-like
tail of order c0 exp[−{1− Re(x+)} t]ta−(c+−b+)−1 when Re(x+) < 1. The subscript +
indicates summation over the relevant index, e.g. x+ =

∑n
i=1 xi. For general guidelines

on computation of special functions, which is relevant in these cases, see Backeljauw et
al. (2014).

3.2 Laplace approximation

If, however, Re(a) < 0, the integral representation in (3) is not valid, so some other
method must be used. Here, we will develop a Laplace approximation and, for simplicity,
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assume that all the parameters are real. This is not a limitation, however, since the
resulting approximation may be used with complex parameters and also may be justified
by using analytic continuation arguments; cf. the discussion in Butler and Wood (2002,
§6). First write d = −a so that d > 0. The integrand in (4) is

h(u) exp{−g(u)} (7)

where

h(u) =
n∏
i=1

u−1
i (1− ui)−1 (8)

g(u) = −
n∑
i=1

{bi log ui + (ci − bi) log(1− ui)} − d log
(
1− uTx

)
. (9)

The first two sets of derivatives are

gi :=
∂g

∂ui
= − bi

ui
+
ci − bi
1− ui

+
dxi

1− uTx
(10)

gij :=
∂2g

∂ui∂uj
= d2iδij +

dxixj

(1− uTx)2 , (11)

for i, j = 1, . . . , n, where δij is the indicator that i = j and

d2i =
bi
u2
i

+
ci − bi

(1− ui)2
.

If D = diag(d2i) is a n×n diagonal matrix in {d2i} and v= x/
(
1− uTx

)
, then the n×n

Hessian matrix is G = D+dvvT . From this form, note that G is positive definite for all
u ∈ [0, 1]n when bi > 0 and ci− bi > 0 for all i, and d > 0. Consequently, g has a unique
minimum on [0, 1]n, making this a promising setting for a Laplace approximation.

To implement Laplace’s approximation we need to find this minimum using (10).
We first of all solve

− bi
ui

+
ci − bi
1− ui

+ λxi = 0 (i = 1, . . . , n), (12)

where λ will be chosen later. After some elementary calculations, and taking care to
choose the root in [0, 1], we find that

ũi(λ) =

{ {
ci + λxi −

√
(ci + λxi)2 − 4λxibi

}
/(2λxi) xi 6= 0

bi/ci xi = 0
(13)

where the solution at xi = 0 follows directly from (12). Note that the possible values
of λ = d/

(
1− uTx

)
satisfy

d

1 + x−
≤ λ ≤ d

1− x+

where x− =
∑
{i:xi<0}|xi| and x+ =

∑
{i:xi>0}xi. To solve for λ, we find the unique

solution d/(1 + x−) ≤ λ̂ ≤ d/(1− x+) to the equation

λ = d/ {1−
∑n

i=1ũi(λ)xi} . (14)
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To show uniqueness, implicitly differentiate (12) to show that sgn(∂ũi/∂λ) = − sgn(xi);
thus the denominator of (14) is increasing in λ which leads to a unique root. Conse-
quently, the exponent g is minimized at û = (û1, ...ûn)T , where ûi = ũi(λ̂).

The notation for the approximation requires evaluating various functions of u at û.
For example, denote λ̂ = d/(1− ûTx) and ĝ, ĥ, and D̂, as g, h, and D, evaluated at û.
The resulting Laplace approximations are given in the following theorem.

Theorem 1 Suppose Re(a) < 0 and Re(bi) > 0 < Re(ci − bi) for i = 1, . . . , n. The
first-order calibrated Laplace approximation to the integral in (4) is

F̂
(n)
A (a,b; c; x) =

{
n∏
i=1

Γ̂(ci)

Γ̂(bi)Γ̂(ci − bi)

}
(2π)n/2|Ĝ|−1/2ĥe−ĝ, (15)

where ĥ = h(û) and ĝ = g(û) are given by the functions in (8) and (9). The determinant

|Ĝ| = {1 + d−1λ̂2xT D̂−1x}|D̂|

and Γ̂(y) =
√

2πyy−1/2e−y is Stirling’s approximation for Γ(y). Two second-order cali-
brated Laplace approximations are

F̂
(n)
A2 = F̂

(n)
A (a,b; c; x)

1 + ÔA,x

1 + ÔA,0

and F̂
(n)
A2e = F̂

(n)
A (a,b; c; x) exp(ÔA,x − ÔA,0), (16)

where correction terms ÔA,x and ÔA,0 are given in (38) of the Appendix §A.1.2.

Note: the expressions in Appendix §A.1.2 for the correction terms ÔA,x and ÔA,0

are of computational order O(n2) and have been reduced from their original order of
O(n6).

Proof. The raw Laplace approximation to F
(n)
A is given by

F̃
(n)
A (a,b; c; x) =

{
n∏
i=1

Γ(ci)

Γ(bi)Γ(ci − bi)

}
(2π)n/2|Ĥ|−1/2ĥe−ĝ.

The calibrated version of the approximation is

F̂
(n)
A (a,b; c; x) = F̃

(n)
A (a,b; c; x)/F̃

(n)
A (a,b; c; 0)

and has been arranged to be exact at x = 0 = (0, . . . , 0)T . After simplification, its value
is given in (15), i.e. we replace Γ(y) by the Stirling approximation Γ̂(y) so that

F̂
(n)
A (a,b; c; 0) = F

(n)
A (a,b; c; 0) = 1.

Second-order correction terms ÔA,x and ÔA,0 are derived in §A.1.

4 Approximation of F
(n)
D

If Re(a) > 0 and Re(c−a) > 0, so that integral representation (5) is valid, then a simple
and direct approach to computation is to use one-dimensional numerical integration to
evaluate (5). If maxi |xi| < 1, then numerical integration is well-behaved with the
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integrand smooth and bounded over u ∈ [0, 1]. A second possibility when Re(a) > 0 is
to use the one-dimensional series expansion given by van Laarhoven and Kalker (1988).
See Backeljauw et al. (2014) for general computational guidance of relevance in the
above case. Here, we focus on the more challenging case in which Re(a) < 0.

If Re(a) < 0, Re (c− b+) > 0 and also Re(bi) > 0 for i = 1, . . . , n, then for (6) we
may use Laplace’s approximation with h and g in (7) replaced by

h(u) = (1− u+)−1
n∏
i=1

u−1
i (17)

g(u) = −
∑n

i=1bi log ui − (c− b+) log(1− u+)− d log
(
1− uTx

)
(18)

where d = −a so that d > 0. Straightforward calculation yields

gi :=
∂g

∂ui
= − bi

ui
+
c− b+

1− u+

+
dxi

1− uTx
, (19)

gij :=
∂2g

∂ui∂uj
=
bi
u2
i

δij +
c− b+

(1− u+)2
+

dxixj

(1− uTx)2 , (20)

for i, j = 1, . . . , n. If D = diag(bi/u
2
i ) is an n × n diagonal matrix, v1= 1/

(
1− uT1

)
and v2= x/

(
1− uTx

)
, where 1 is a vector of ones, then the n × n Hessian matrix

G(u) = D + (c− b+)v1v
T
1 + dv2v

T
2 so G is positive definite for all u ∈ [0, 1]n.

To minimize g we solve

− bi
ui

+ µ+ λxi = 0

giving ũi(µ, λ) = bi/(µ + λxi) for given µ and λ. The minimum of g at (µ̂, λ̂) must be
unique because the Hessian G is positive definite and so g is convex. The values µ̂ and
λ̂ satisfy

µ =
c− b+

1−
∑n

i=1ũi(µ, λ)
and λ =

d

1−
∑n

i=1ũi(µ, λ)xi
, (21)

and are bounded as follows:

µd

µ(1− xmin) + xmin(c− b+)
≤ λ ≤ µd

µ(1− xmax) + xmax(c− b+)
(22)

c− b+ < µ <∞.

It turns out, however, that µ̂ and λ̂ can be more easily calculated by first determining
ρ̂ = λ̂/µ̂ as the root of a single transcendental equation in ρ = λ/µ. To find this
equation, rewrite the two equations in (21) as

µ =
∑n

i=1bi/(1 + ρxi) + c− b+ and λ = ρ
∑n

i=1bixi/(1 + ρxi) + d. (23)

Now set ρ equal to the ratio of the right summation in (23) divided by the left summa-
tion. After simplification this leads to the single equation

d = ρ

(
n∑
i=1

bi(1− xi)
1 + ρxi

+ c− b+

)
0 < ρ <∞ if mini xi ≥ 0

0 < ρ < −1/minxi if minxi < 0
(24)

with a unique root ρ̂ as explained below. The values for µ̂ and λ̂ are given by replacing
ρ in (23) by ρ̂. The constraints on ρ in the root-finding in (24) are those consistent
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with {ũi(µ, λ) : i = 1, . . . , n} lying in the interior of the simplex in <n. It can be shown
by differentiation with respect to ρ that the RHS of the equation in (24) is monotonic
increasing in each of the regions for ρ given in (24). Moreover, the RHS of the equation
in (24) has range (0,∞) in both cases of relevance. Consequently, the solution for ρ is
unique when ρ lies in the relevant interval given in (24).

In what follows we use a ‘hat’ to indicate evaluation at µ̂ and λ̂, e.g. ûi = ũi(µ̂, λ̂)
for i = 1, . . . , n. The Hessian G evaluated at û may be expressed in terms of (µ̂, λ̂) as

Ĝ = G(û) = D̂ + (c− b+)−1µ̂211T + d−1λ̂2xxT

where D̂ = diag{b1/û
2
1, . . . , bn/û

2
n}. In §A.1.4, it is shown that

|Ĝ| = |D̂| Ξ̂ (25)

where

Ξ̂ =

{
1 + (c− b+)−1µ̂2

n∑
i=1

û2
i

bi

}{
1 + d−1λ̂2

n∑
i=1

û2
ix

2
i

bi

}
−(c−b+)−1d−1µ̂2λ̂2

(
n∑
i=1

û2
ixi
bi

)2

.

The resulting Laplace approximations are given in the following theorem.

Theorem 2 Suppose Re(a) < 0 < Re(c − b+) and Re(bi) > 0 for i = 1, . . . , n. The

first-order calibrated Laplace approximation to F
(n)
D given in (6) is

F̂
(n)
D (a,b; c; x) =

Γ̂(c)

Γ̂(c− b+)
∏n

i=1 Γ̂(bi)
(2π)n/2|Ĝ|−1/2ĥe−ĝ, (26)

where ĥ = h(û) and ĝ = g(û) are given by the functions in (17) and (18). The
determinant |Ĝ| is given in (25) and Γ̂(y) =

√
2πyy−1/2e−y is Stirling’s approximation

for Γ(y). Two second-order calibrated Laplace approximations are

F̂
(n)
D2 = F̂

(n)
D (a,b; c; x)

1 + ÔD,x

1 + ÔD,0

and F̂
(n)
D2e = F̂

(n)
A (a,b; c; x) exp(ÔD,x − ÔD,0),

(27)
where correction terms ÔD,x and ÔD,0 are given in (40) of §A.1.3.

Note: the expressions in Appendix §A.1.3 for the correction terms ÔD,x and ÔD,0

are of computational order O(n2) and have been reduced from their original order of
O(n6).

5 Relative errors of the approximations

In this section we discuss the theoretical accuracy of the Laplace approximations pre-
sented above. The discussion is incomplete because so many different limiting cases
arise and it is difficult to summarise the full diversity of asymptotic regimes concisely.
The relevant measure for assessing theoretical accuracy is the relative error. The rela-
tive error of an approximation F̂ of F is defined by (F̂ −F )/F . We consider two types
of result, those for fixed n and those for n→∞.
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5.1 Fixed n results

Let us first clarify the asymptotic regimes for which the Laplace approximations were
designed.

Case I : F
(n)
A (a,b; c; x). Let the arguments of F

(n)
A be fixed and satisfy

a < 0, bi > 0, ci − bi > 0, i = 1, . . . , n, and
n∑
i=1

|xi| < 1, (28)

so that the integral representation (3) is valid, and let ν denote a large positive quantity.

The approximation in Theorem 1 was designed to evaluate F
(n)
A (νa, νb; νc; x) as ν →∞.

Case II : F
(n)
D (a,b; c; x). Here, the arguments are fixed and satisfy

a < 0, bi > 0, i = 1, . . . , n, c− b+ > 0, and max
i=1,...,n

|xi| < 1, (29)

so that integral representation (6) holds. The approximation in Theorem 2 was designed

to evaluate F
(n)
D (νa, νb; νc; x) as ν →∞.

For the asymptotic regimes considered in these cases, the main results, which can
be proved using standard theorems on Laplace approximation (e.g. Hsu, 1951), are as
follows.

Theorem 3 As ν →∞, the relative errors in the first-order approximations (15) and
(26) under Cases I and II, respectively, are both O(ν−1); and the relative errors of the
corresponding second-order approximation in (16) and (27) are both O(ν−2).

It is important to recognise, however, that the usefulness of the Laplace approx-
imations in §3 and §4 goes far beyond the asymptotic regimes considered in Cases I
and II. With some further work, which we do not reproduce here, it can be shown that
in many other asymptotic regimes, including the following, the relative error of the
Laplace approximations remains bounded. Below, α, β and γ are binary variables with
possible values 0 or 1 which satisfy β ≤ γ and α + β + γ ≥ 1.

(i) If a, b, c and x satisfy (28), and γ ≥ β, then

lim
ν→∞

F̂
(n)
A (ναa, νβb; νγc; x)

F
(n)
A (ναa, νβb; νγc; x)

∈ (0,∞); (30)

(ii) If a, b, c and x satisfy (29), then

lim
ν→∞

F̂
(n)
D (ναa, νβb; νγc; x)

F
(n)
D (ναa, νβb; νγc; x)

∈ (0,∞). (31)

Our final remarks in this subsection are more speculative. First, although we have
not explored this in the present paper, we believe there are grounds, based on analytic
continuation arguments, for hoping that the Laplace approximations considered in this
paper will do a good job of tracking the function it is approximating outside the domain
of the integral representation and for complex values of the parameters and arguments;
cf. Butler and Wood (2002, §6).
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If this is indeed the case, then on the basis of (30) and (31), and the comments
immediately above, there seem grounds for speculating that the following holds. We just
formulate the conjecture for F

(n)
D ; the corresponding conjecture for F

(n)
A is formulated

in similar fashion. Let Ω denote a subset of C2n+2 where C is the set of complex
numbers and 2n+ 2 is the (complex) dimension of (a,b, c,x) where all these quantities

are allowed to be complex. Suppose that on Ω the Lauricella function F
(n)
D (a,b; c; x) is

jointly analytic in all the variables. Then we conjecture that for any such Ω which is a
closed set,

sup
(a,b,c,x)∈Ω

∣∣∣∣ log

{
F̂

(n)
D (a,b; c; x)

F
(n)
D (a,b; c; x)

}∣∣∣∣ <∞,
where F̂

(n)
D is either the first-order or one of the second-order Laplace approximations

presented in §4.

5.2 Results when n→∞
Here we show that there are interesting asymptotic regimes for F

(n)
A and F

(n)
D in which

n → ∞ and yet the relative error of the Laplace approximation goes to zero. This
provides theoretical support for the excellent results seen in Tables 2 and 4 when n is
relatively large. The key requirements for the results in this subsection to hold are neg-
ligibility conditions similar to those needed for central limit theorems for independent
triangular arrays. Proofs of Theorems 4 and 5 are outlined in the appendix.

For F
(n)
A , a standard sufficient condition for the hypergeometric series expansion to

be absolutely convergent is that
∑n

i=1 |x
(n)
i | < ∞. Theorem 4 is proved under weaker

conditions, but if we were to assume this condition holds then assumptions (ii) and
(iii) in Theorem 4 would not be required. A analogous comment applies to Theorem

5: a standard sufficient condition for the hypergeometric series expansion for F
(n)
D to

be absolutely convergent is that maxi=1,...,n |x(n)
i | < 1. This condition is not assumed in

Theorem 5 below, but if it were to hold then assumptions (ii), (iii) and (iv) of Theorem
5 would be redundant.

Theorem 4 Consider b(n) = (b
(n)
1 , . . . , b

(n)
n )T and c(n) = (c

(n)
1 , . . . , c

(n)
n )T such that,

for each n ≥ 1 and i = 1, . . . , n, 0 < b
(n)
i < c

(n)
i . Define x(n) = (x

(n)
1 , . . . , x

(n)
n )T and

πππ(n) = (π
(n)
1 , . . . , π

(n)
n )T , where π

(n)
i = b

(n)
i /c

(n)
i , and suppose that the following conditions

are satisfied as n→∞:

(i) max1≤i≤n |x(n)
i |/c

(n)
i → 0;

(ii) for all n ≥ 1,
∑n

i=1 max(x
(n)
i , 0) ≤ 1;

(iii) for some A <∞ independent of n,
∑n

i=1 max(−x(n)
i , 0) ≤ A;

(iv) for some ε > 0 independent of n,

lim sup
n→∞

max
1≤i≤n

π
(n)
i ≤ 1− ε and lim inf

n→∞
π

(n)
i ≥ ε;

(v) defining ξn =
∑n

i=1 π
(n)
i x

(n)
i , it is assumed that ξn → ξ0 ∈ (−∞, 1) as n→∞.

9



Then, for fixed a < 0,

lim
n→∞

F̂
(n)
A (a,b(n); c(n); x(n))

F
(n)
A (a,b(n); c(n); x(n))

= 1. (32)

Moreover, the second-order terms satisfy ÔA,x− ÔA,0 → 0, from which we conclude that
both second-order approximations have limiting relative error 0.

Assumption (iv) above is stronger than is needed but is included to avoid uninterest-
ing complications in the proof. A similar type of result with appropriate modifications
holds for the F

(n)
D approximations.

Theorem 5 Consider b(n) = (b
(n)
1 , . . . , b

(n)
n )T and c(n) such that, for each n ≥ 1 and

i = 1, . . . , n, b
(n)
i > 0 and b

(n)
+ =

∑n
i=1 b

(n)
i < c(n). Define x(n) = (x

(n)
1 , . . . , x

(n)
n )T and

πππ(n) = (π
(n)
1 , . . . , π

(n)
n )T , where π

(n)
i = b

(n)
i /c(n), and suppose that the following conditions

are satisfied as n→∞:

(i) b
(n)
+ →∞ and, for some ε > 0 independent of n, c(n) − b(n)

+ ≥ ε;

(ii) max1≤i≤n |x(n)
i | = o(c(n));

(iii) lim supn→∞max1≤i≤n x
(n)
i < 1;

(iv) for some A <∞ independent of n, min1≤i≤n x
(n)
i ≥ −A;

(v) defining ξn =
∑n

i=1 π
(n)
i x

(n)
i , it is assumed that ξn → ξ0 ∈ (−∞, 1) as n→∞.

Then, for fixed a < 0,

lim
n→∞

F̂
(n)
D (a,b(n); c(n); x(n))

F
(n)
D (a,b(n); c(n); x(n))

= 1.

Moreover, the second-order terms satisfy ÔD,x−ÔD,0 → 0, from which we conclude that
both second-order approximations have limiting relative error 0.

6 Numerical accuracy

6.1 Accuracy of approximations of F
(n)
A

For a limited number of examples, it is possible to compute F
(n)
A (a,b; c; x) using exact

arithmetic for the integration in Maple. Table 1 shows such computations. Also shown
are the various first- and second-order Laplace approximations with their percentage
relative errors computed using Maple carrying 100 digits in the computations. Apart
from the third example, which has n = 2 and fractional entries for b and c, the two
second-order approximations achieve smaller relative errors. Large values for d and
the entries of b and c replicate the asymptotics for the Laplace expansion where accu-
racy is expected so these values have been purposefully kept small in Table 1 to show
more challenging examples for the approximations. Both second-order approximations
achieve remarkable accuracy for these examples.
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Table 2 examines accuracy when exact computation of F
(n)
A is not possible. Monte

Carlo simulation of these values was performed using programs written in R and working
with double precision arithmetic. The integral representation in (4) characterizes F

(n)
A

as the expected value of (1−
∑n

i=1 Uixi)
−a

when {Ui} are independent Beta (bi, ci− bi)
random variables. The cell entries labelled F̆

(n)
A ±1.96SE provide 95% confidence inter-

vals for F
(n)
A based on averaging 107 values of the random quantity (1−

∑n
i=1 Uixi)

−a
.

All approximations in Table 2 were computed using both the Matlab and R routines
available at faculty.smu.edu/rbutler/. The Matlab and R computations agreed to 8−10
digits in all instances. We suspect that this limitation in agreement is due more to
inherent inaccuracy in the underlying programing for the R language.
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Table 1. Exact value F
(n)
A is compared to first-order F̂

(n)
A and second-order F̂

(n)
A2 and

F̂
(n)
A2e Laplace approximations for the listed values of n, d,b, c, and x. Percentage relative

errors 100(F̂
(n)
A2 /F

(n)
A2 − 1) are given in the last three columns and the most accurate

approximation in each row is emboldened. The notation used for b, c, and x is as
follows: 5(1) = 1, 1, 1, 1, 1; 1(1)5 = 1, 2, 3, 4, 5; 5(1), 2(1)6 = 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, etc.

n d b c x % Relative Error

F
(n)
A F̂

(n)
A F̂

(n)
A2 F̂

(n)
A2e F̂

(n)
A F̂

(n)
A2 F̂

(n)
A2e

2 2 2, 3 3, 4 0.1, 0.2

0.6157 0.6146 0.6158 0.6160 −0.178 0.0160 0.0480

2 1 1, 1 2, 2 0.45, 0.55

0.5000 0.4952 0.4973 0.4978 −0.960 −0.540 −0.440

2 1 1/2, 1/2 1, 1 0.7, 0.25

0.5250 0.5193 0.4973 0.4978 −1.08 −5.28 −5.18

2 3 4, 6 6, 8 0.85, 0.15

0.05718 0.05802 0.05718 0.05711 1.463 −0.0018 −0.126

2 1 1, 1 2, 2 −1, −3

3.000 2.966 2.982 2.987 −1.13 −0.600 −0.433

5 1 5(1) 5(2) 2(0.1), 0.2, 2(0.3)

0.5000 0.4927 0.4977 0.5010 −1.46 −0.46 0.200

5 2 1(1)5 2(2)10 2(0.1), 0.2, 2(0.3)

0.2573 0.2561 0.2572 0.2576 −0.466 −0.0389 0.117

5 2 5(1/2) 5(1) 2(0.1), 0.2, 2(0.3)

0.2800 0.2606 0.2654 0.2716 −6.93 −5.21 −3.00

5 2 1(1)5 2(2)10 2(−2), 2(−4), −6

102.37 101.88 102.35 102.48 −0.479 −0.020 0.110

12



Table 2. Simulated 95% confidence interval F̆
(n)
A ± 1.96SE for F

(n)
A is compared to

first-order F̂
(n)
A and second-order F̂

(n)
A2 and F̂

(n)
A2e Laplace approximations for the listed

values of n, d,b, c, and x. Percentage relative errors 100(F̂
(n)
A2 /F̆

(n)
A2 − 1) are given in the

last three columns and the most accurate approximation in each row is emboldened.
See Table 1 for an explanation of the notation for b, c, and x.

n d b c x

F̆
(n)
A ± 1.96SE F̂

(n)
A F̂

(n)
A2 F̂

(n)
A2e

% Rel. Err. % Rel. Err. % Rel. Err.

10 5 1(1)10 2(3/2)31/2 2(1/20), 6(1/10), 2(3/20)

0.009199± 3.88× 10−6 0.009099 0.009182 0.009219

−1.09 −0.186 0.220

10 10 1(1)10 6(3/2)41/2 2(1/20), 6(1/10), 2(3/20)

0.004854± 2.28× 10−6 0.004842 0.004852 0.004855

−0.234 −0.03621 0.0212

20 5 1(1/2)21/2 2(2/3)44/3 4(1/40), 12(1/20), 4(3/40)

0.003656± 1.27× 10−6 0.003626 0.003645 0.003663

−0.824 −0.295 0.203

40 10 10(1), 20(3), 10(5) 10(2), 20(6), 10(10) 8(1/80), 24(1/40), 8(3/80)

0.001151± 4.5× 10−7 0.001133 0.001140 0.001156

−1.49 −0.897 0.496

60 10 20(1), 20(4), 20(6) 20(2), 20(7), 20(10) 15(1/90), 30(1/60), 15(1/45)

0.0002780± 1.0× 10−7 0.0002722 0.0002739 0.0002803

−2.09 −1.48 0.830

120 10 40(1), 40(4), 40(6) 40(2), 40(7), 40(10) 30(.005), 60(.009), 30(.01)

0.0002941± 7.4× 10−8 0.0002909 0.0002915 0.0002954

−1.06 −0.883 0.468

6.2 Accuracy of approximations of F
(n)
D

Table 3 shows computations for values of F
(n)
D (a,b; c; x), the various first- and second-

order Laplace approximations, and percentage relative error when it is possible to do
exact arithmetic for the integration in Maple. Our comments on Table 3 are similar to
those given in §6.1 for Table 1.
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Table 3. Exact value F
(n)
D is compared to first-order F̂

(n)
D and second-order F̂

(n)
D2 and

F̂
(n)
D2e Laplace approximations for the listed values of n, d, b, c, and x. Percentage relative

errors 100(F̂
(n)
D2 /F

(n)
D2 − 1) are given in the last three columns and the most accurate

approximation in each row is emboldened. See Table 1 for an explanation of the notation
for b, c, and x. Also, 2{0.1(.1)0.5} = 0.1(.1)0.5, 0.1(.1)0.5.

n d b c x % Relative Error

F
(n)
D F̂

(n)
D F̂

(n)
D2 F̂

(n)
D2e F̂

(n)
D F̂

(n)
D2 F̂

(n)
D2e

2 2 1, 1 3 0.45, 0.55

2/3 0.66178 0.66671 0.66783 −0.733 0.00665 0.174

2 1 1/2, 1/2 2 0.7, 0.25

0.76250 0.75913 0.76099 0.76170 −0.442 −0.198 −0.105

2 3 4, 6 12 0.85, 0.15

0.28221 0.28221 0.28220 0.28220 0.00106 −0.00474 −0.00515

2 3 4, 6 12 0.8, 0.9

0.030231 0.02997 0.030102 0.030112 −0.878 −0.425 −0.392

2 1 1, 1 3 −3, −4

10/3 3.3259 3.3297 3.3305 −0.222 −0.109 −0.0840

2 3 1, 1 4 −1, −2

61/10 5.99828 6.07679 6.09224 −1.67 −0.380 −0.127

5 2 5(1) 6 2(0.1), 0.2, 2(0.3)

0.69619 0.69581 0.69611 0.69625 −0.0546 −0.0116 −0.00855

5 2 5(1) 6 2(0.8), 3(0.9)

0.095238 0.093526 0.093593 0.093626 −1.80 −1.73 −1.69

5 4 1(1)5 16 2(0.1), 0.2, 2(0.3)

0.36276 0.36269 0.36275 0.36276 −0.0179 −0.00254 0.00155

5 4 1(1)5 16 0.5(0.1)0.9

.0078256 .0076330 .0078127 .0078643 −2.46 −0.165 0.494

10 2 10(1) 11 2(.05), 6(.1), 2(.15)

0.82659 0.82657 0.82658 0.82659 −0.00197 −0.000836 0.000197

10 2 10(1) 11 2{0.1(.1)0.5}
0.53106 0.53085 0.53097 0.53086 −0.0405 −0.0174 −0.0384

Table 4. Simulated 95% confidence interval F̆
(n)
D ± 1.96SE for F

(n)
D is compared to

first-order F̂
(n)
D and second-order F̂

(n)
D2 and F̂

(n)
D2e Laplace approximations for the listed

values of n, d,b,c, and x. Percentage relative errors 100(F̂
(n)
D2 /F̆

(n)
D2 − 1) are given in the

last three columns and the most accurate approximation in each row is emboldened.
See Table 1 for an explanation of the notation for b, c, and x.
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n d b c x

F̆
(n)
D ± 1.96SE F̂

(n)
D F̂

(n)
D2 F̂

(n)
D2e

% Rel. Err. % Rel. Err. % Rel. Err.

10 5 1(1)10 60 1/10, 1/10(1/10)9/10

0.019333± 5.0× 10−6 0.019328 0.019332 0.019333

−0.0269 −0.00642 −0.00110

10 5 3(1), 4(5), 3(9) 65 5(1/2), 5(3/4)

0.0252249± 6.4× 10−6 0.025214 0.025220 0.025222

−0.0433 −0.0205 −0.0125

20 5 1(1/2)21/2 130 5(1/4), 1(1/2), 5(3/4)

0.0274947± 3.7× 10−6 0.0274904 0.0274913 0.0274917

−0.0155 −0.0122 −0.0108

40 10 10(1), 20(3), 10(5) 130 10(1/4), 20(1/2), 10(3/4)

0.00047302± 1.3× 10−7 0.00047297 0.00047299 0.00047302

−0.0108 −0.00677 −0.000404

60 10 20(1), 20(4), 20(6) 230 15(1/4), 30(1/2), 15(3/4)

0.000283352± 5.1× 10−8 0.000283346 0.000283348 0.000283353

−0.00229 −0.00151 0.000332

120 10 40(1), 40(4), 40(6) 450 30(1/4), 60(1/2), 30(3/4)

0.000208523± 2.5× 10−8 0.000208515 0.000208515 0.000208516

−0.00380 −0.00371 −0.00329

Table 4 examines accuracy when exact computation of F
(n)
D is not possible. All

computations were performed using both Matlab and R routines as described in Ta-
ble 2. The integral representation in (6) characterizes F

(n)
D as the expected value of

(1−
∑n

i=1 Uixi)
d

when (U1, . . . Un) is a Dirichlet (b, c− b+) random vector. Cell entries

labelled F̆
(n)
D ±1.96SE provide 95% confidence intervals for F

(n)
D based on averaging 107

values of the random quantity (1−
∑n

i=1 Uixi)
d
. In these higher dimensions, second-

order approximation F̂
(n)
D2e consistently demonstrates greater accuracy than F̂

(n)
D2 if the

true value of F
(n)
D is taken to be the center of the confidence interval. However, the

inherent randomness connected with the simulation limits the accuracy for the confi-
dence interval centers so as to prevent any firm conclusions. In simulations with n ≤ 40,
confidence intervals capture 3− 4 significant digits of the true values which is also the
degree to which all three approximations agree. For n = 60 and 120, the simulations
capture 4 significant digits but the three approximations agree to 5 significant digits.
The agreement between simulated estimates and first-order approximations is reflected
in the p-values of one-sample two-tailed z-tests for the hypotheses that the first-order
approximation F̂

(n)
D is the exact value of F

(n)
D , i.e. H0 : F

(n)
D = F̂

(n)
D . For the six examples

in Table 4, these p-values in percentages are 32, 8.9, 25, 70, 91, and 75% respectively
from n = 10 to 120. Such increasing accuracy in n demonstrates the asymptotic regime
as n → ∞ of Theorem 5 in which all three approximations become asymptotically
correct.
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A Derivations and proofs

A.1 Derivation of Laplace approximations

A.1.1 Second-order Laplace approximation

A second-order Laplace approximation is shown for the integral∫
u∈<p

h(u) exp{−νg(u)}du = (2π)p/2|Ĝ|−1/2ĥe−ĝ{1 + ÔCor +O(ν−2)}. (33)

The correction term ÔCor has order O(ν−1) and is computed below so the overall ap-
proximation achieves the indicated O(ν−2) relative error. Our integral expressions,
however, will assume ν = 1. The correction term ÔCor can be derived by using Taylor
expansions of h and g about û to give

ĥÔCor = 1
2
ĥijµ

ij − 1
6
ĥiĝjklµ

ijkl − 1
24
ĥĝijklµ

ijkl + 1
72
ĥĝijkĝuvwµ

ijkuvw. (34)

Einstein summation notation has been employed in this expression and the subscripted
notation is, for example, ĥij = ∂2g/∂ui∂uj|u=û, with µαβ··· given by

µαβ··· = (2π)−p/2|Ĝ|1/2
∫

u∈<p

exp{−1
2
uiuj ĝij}(uαuβ · · · )du.

Properties of higher-order multinormal moments µαβ··· allow (34) to be rewritten as

ĥÔCor = 1
2

tr ĤĜ
−1−1

2
ĥiĝjklĝ

ij ĝkl−1
8
ĥĝijklĝ

ij ĝkl+1
8
ĥĝijkĝuvwĝ

ij ĝuvĝkw+ 1
12
ĥĝijkĝuvwĝ

iuĝjvĝkw

(35)
where Ĥ = (ĥij) and Ĝ−1 = (ĝij) are n× n matrices. Defining

ς̂i = ĝijkĝ
jk and t̂ij = ĝijklĝ

kl

and n-vector ς̂ςς = (ς̂i), n× n matrix T̂ = (t̂ij), and n-vector ĥ = (ĥi), then (35) is

ĥÔCor = 1
2

tr ĤĜ
−1− 1

2
ĥT Ĝ−1ς̂ςς− 1

8
ĥ tr T̂Ĝ

−1
+ 1

8
ĥς̂ςςT Ĝ−1ς̂ςς+ 1

12
ĥĝijkĝuvwĝ

iuĝjvĝkw. (36)

A.1.2 Expression for ÔA,x in Theorem 1

The components of the correction term ÔCor = ÔA,x in (36) are easily evaluated by
using simple calculus. However, it is of prime importance to find simple expressions
to ease the amount of computation. The first two derivatives of h evaluated at û are
specified in terms of the n-vectors â1 = (â1i) and â2 = (â2i) with

â1i = −1/ûi + 1/(1− ûi) and â2i = 1/û2
i + 1/(1− ûi)2.

The first derivative is n-vector ĥ = â1ĥ and the Hessian is Ĥ = (ĥij) = {â1â
T
1 +

diag(â2)}ĥ. Third- and fourth-order derivatives for g at û are specified in terms of the
n-vectors â3 = (â3i) and â4 = (â4i) with

â3i = −2bi/û
3
i + 2(ci − bi)/(1− ûi)3 and â4i = 6bi/û

4
i + 6(ci − bi)/(1− ûi)4,

so that

ĝijk = 2dxixjxk/(1− ûTx)3 + â3iδijk and ĝijkl = 6dxixjxkxl/(1− ûTx)4 + â4iδijkl,
(37)
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where δijk is the indicator that i = j = k, etc. Then

ς̂i = ĝijkĝ
jk = 2d(xT Ĝ−1x)xi/(1− ûTx)3 + â5i

t̂ij = ĝijklĝ
kl = 6d(xT Ĝ−1x)xixj/(1− ûTx)4 + â6iδij

where n-vectors â5 = diag(Ĝ−1)â3 and â6 = diag(Ĝ−1)â4. This yields

ς̂ςς = 2d−2λ̂3(xT Ĝ−1x)x + â5 and T̂ = 6d−3λ̂4(xT Ĝ−1x)xxT + diag(â6).

Using (37), the final term in (36) is

1
12
ĥĝijkĝuvwĝ

iuĝjvĝkw = ĥ{1
3
d−4λ̂6(xT Ĝ−1x)3 + 1

12
âT3 Γ̂â3 + 1

3
âT3 â7},

where n× n matrix Γ̂ = {(ĝij)3} and n-vector â7 = (a7i) with a7i = d−2λ̂3{(Ĝ−1x)i}3.
After including all these reduced summations, OA,x in (36) is

ÔA,x = 1
2
âT1 Ĝ−1(â1 − ς̂ςς) + (â2/2− â6/8)T diag(Ĝ−1)1−3

4
d−3λ̂4(xT Ĝ−1x)2

+ 1
8
ς̂ςςT Ĝ−1ς̂ςς+1

3
d−4λ̂6(xT Ĝ−1x)3 + 1

12
âT3 Γ̂â3 + 1

3
âT3 â7 (38)

where 1 is an n-vector of ones. The value of (38) when x = 0 determines the second-
order correction term ÔA,0 computed with n-vector û0 = (bi/ci).

A.1.3 Expression for ÔD,x in Theorem 2

The computation of this correction term follows the same pattern of computation as
for F

(n)
A so only the main expressions are given. To express the derivatives of h and g

at û, the following n-vectors d̂1 = (d̂1i), etc. are needed with components

d̂1i = −1/ûi + 1/(1− û+), d̂2i = 1/û2
i , d̂3i = −2bi/û

3
i , d̂4i = 6bi/û

4
i . (39)

For expansion (36), the Hessian of h is

Ĥ = (ĥij) = {d̂1d̂
T
1 + (c− b+)−2µ̂211T + diag(d̂2)}ĥ.

Also

ς̂ςς = 2(c− b+)−2µ̂3(1T Ĝ−11)1+2d−2λ̂3(xT Ĝ−1x)x + d̂5

T̂ = 6(c− b+)−3µ̂4(1T Ĝ−11)11T + 6d−3λ̂4(xT Ĝ−1x)xxT + diag(d6)

where n-vectors d̂5 = diag(Ĝ−1)d̂3 and d̂6 = diag(Ĝ−1)d̂4. The final term in (36) is

1
12
ĥĝijkĝuvwĝ

iuĝjvĝkw = ĥ
{

1
3
(c− b+)−4µ̂6(1T Ĝ−11)3 + 1

3
d−4λ̂6(xT Ĝ−1x)3+

2
3
(c− b+)−2d−2µ̂3λ̂3(xT Ĝ−11)3 + 1

12
d̂T3 Γ̂d̂3 + 1

3
d̂T3 d̂7

}
,

where n× n matrix Γ̂ = {(ĝij)3} and n-vector d̂7 = (d̂7i) has

d̂7i = (c− b+)−2µ̂3{(Ĝ−11)i}
3 + d−2λ̂3{(Ĝ−1x)i}

3.
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The final (36) expression reduces to

ÔD,x = 1
2
d̂T1 Ĝ−1(d̂1 − ς̂ςς)+1

2
(c− b+)−2µ̂2(1T Ĝ−11) + (d̂2/2− d̂6/8)T diag(Ĝ−1)1

−3
4
(c− b+)−3µ̂4(1T Ĝ−11)2−3

4
d−3λ̂4(xT Ĝ−1x)2 + 1

8
ς̂ςςT Ĝ−1ς̂ςς+1

3
(c− b+)−4µ̂6(1T Ĝ−11)3

+1
3
d−4λ̂6(xT Ĝ−1x)3+2

3
(c− b+)−2d−2µ̂3λ̂3(xT Ĝ−11)3 + 1

12
d̂T3 Γ̂d̂3 + 1

3
d̂T3 d̂7.

(40)

The value of (40) when x = 0 determines the second-order correction term ÔD,0. In this

case, the solution to (21) is µ̂0 = c and λ̂0 = d which leads to n-vector û0 = b/c.

A.1.4 Determinant of Hessian in (25)

If
A = In + yyT + zzT

where In is the n× n identity matrix and y and z are n× 1 vectors, then

A = (In + yyT )1/2{In + (In + yyT )−1/2zzT (In + yyT )−1/2}(In + yyT )1/2.

Using the standard results

|In + yyT | = 1 + yTy and (In + yyT )−1 = In − (1 + yTy)−1yyT ,

it follows that

|A|= (1 + yTy){1 + zT (In + yyT )−1z} = (1 + yTy)[1 + zT{In − (1 + yTy)−1yyT}z]

= (1 + yTy)(1 + zTz)− (yTz)2. (41)

The first term in (25) is |D̂| and the second term Ξ̂ is the computation of (41) with

y = (c− b+)−1/2µ̂D̂−1/21 z = d−1/2λ̂D̂−1/2x.

A.2 Proof of Theorem 4

Conditions (ii) and (iii) of Theorem 4 imply that, for a < 0 and n ≥ 1,

0 ≤

(
1−

n∑
i=1

V
(n)
i x

(n)
i

)−a
≤ (1 + A)−a,

where V
(n)
i ∼ Beta(b

(n)
i , c

(n)
i − b

(n)
i ) and V

(n)
1 , . . . , V

(n)
n are independent for n ≥ 1.

Therefore the family of random variables {Wn = (1 −
∑n

i=1 V
(n)
i x

(n)
i )−a : n ≥ 1}

is uniformly integrable; see e.g. Rogers and Williams (1994, p. 115). Note that

F
(n)
A (a,b(n); c(n); x(n)) = E(Wn) for n ≥ 1.

As n→∞, condition (v) of the theorem implies that

E

(
n∑
i=1

V
(n)
i x

(n)
i

)
=

n∑
i=1

π
(n)
i x

(n)
i = ξn → ξ0;
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and, using conditions (i)-(iii) and standard formulae for the mean and variance of the
beta distribution,

Var

(
n∑
i=1

V
(n)
i x

(n)
i

)
=

n∑
i=1

π
(n)
i (1− π(n)

i )(x
(n)
i )2/(c

(n)
i + 1)

≤ max
1≤i≤n

|x(n)
i |
c

(n)
i

(1 + A)→ 0.

Consequently, since L2 convergence implies convergence in probability,
∑n

i=1 V
(n)
i x

(n)
i →

ξ0 in probability. Therefore, since {Wn}n≥1 is uniformly integrable, it follows from
Rogers and Williams (1994, Theorem 21.2) that

lim
n→∞

F
(n)
A (a,b(n); c(n); x(n)) = (1− ξ0)−a.

Under the conditions of the theorem, F̂
(n)
A has the same limit. A key step in proving

this is to establish that

û
(n)
i = ũi(λ̂

(n))

= π
(n)
i

[
1− (λ̂(n)x

(n)
i /c

(n)
i )(1− π(n)

i ) +O

{(
x

(n)
i /c

(n)
i

)2
}]

= π
(n)
i

[
1 + aφ

(n)
i θ(n)x

(n)
i (1− π(n)

i )/{c(n)
i (1− ξ0)}+O{(x(n)

i /c
(n)
i )2}

]
, (42)

where λ̂(n) = −aθ(n)/(1− ξ0),

max
1≤i≤n

|φ(n)
i − 1| → 0 and θ(n) → 1. (43)

In (42), ũi(λ) is defined in (13), and (43) follows from conditions (i), (iv) and (v); details
of the proof are straightforward but laborious and are omitted. Further calculations of
a similar nature, using (42) and (43), show that

|Ĝ(n)| ∼ |D̂(n)| ∼
n∏
i=1

1/{π(n)
i (1− π(n)

i )},

and then, after substitution into the RHS of (15) and cancellation, (32) follows. The
final part of the theorem is a consequence of the fact that all terms in ÔD,x involving

x have factor x>Ĝ−1x which converges to 0 as a consequence of condition (i), (42) and
(43), while the sum of terms not involving x converges to ÔD,0.

A.3 Proof of Theorem 5

The structure of the proof of Theorem 5 is similar to that of Theorem 4 although
some of the details are more complex. We shall only give selected details. Suppose
(U

(n)
1 , . . . , U

(n)
n+1)> has a Dirichlet(b

(n)
1 , . . . , b

(n)
n , c(n) − b(n)

+ ) distribution. Then

F
(n)
D (a,b(n); c(n); x(n)) = E(Wn)

where now Wn = (1−
∑n

i=1 U
(n)
i x

(n)
i )−a. Then E(

∑n
i=1 U

(n)
i x

(n)
i ) = ξn → ξ0 by condition

(iv) and, using the well-known expressions for the second moments of the Dirichlet
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distribution plus conditions (i)-(iii),

Var

(
n∑
i=1

U
(n)
i x

(n)
i

)
=

(
n∑
i=1

π
(n)
i (x

(n)
i − ξn)2

c(n) + 1

)
+

(1− π(n)
+ )ξ2

n

c(n) + 1

≤
n∑
i=1

π
(n)
i {x

(n)
i }2

c(n) + 1

≤ max1≤i≤n |x(n)
i |

c(n)
(1 + A)→ 0,

where π
(n)
+ =

∑
π

(n)
i . Using reasoning the same as that in the proof of Theorem 4, it is

seen that limn→∞ F
(n)
D (a,b(n); c(n); x(n)) = (1− ξ0)−a.

To show that F̂
(n)
D (a,b(n); c(n); x(N)) has the same limit we first derive an expansion

for ρ = λ/µ. From (24) it is seen that

ρ

(
1− π(n)

+ +
n∑
i=1

π
(n)
i

1 + ρx
(n)
i

)
= ρ

n∑
i=1

π
(n)
i x

(n)
i

1 + ρx
(n)
i

+
d

c(n)
. (44)

As d is fixed and c(n) →∞ as n→∞ by condition (i) of the theorem, the second term
on the RHS of (44) converges to 0, and it is appropriate to expand both sides of (44)
about ρ = 0, from which we obtain ρ = [d/{c(n)(1− ξn)}]{1 + o(1)}, and consequently,
using (23), we obtain

µ̂ =

(
c(n) − dξn

1− ξn

)
{1 + o(1)} and λ̂ =

dξn
1− ξn

{1 + o(1)}.

Therefore

û
(n)
i = ũi(µ̂, λ̂) =

b
(n)
i

µ̂+ λ̂x
(n)
i

= π
(n)
i

(
1 +

dξn(1− x(n)
i )

c(n)(1− ξn)
+O{(c(n))−2}

)
,

and some further calculations show that

1− û(n)
+ = 1−

n∑
i=1

û
(n)
i

= 1−
n∑
i=1

π
(n)
i

(
1 +

dξn
c(n)(1− ξn)

+O{(c(n))−2}
)

= (1− π(n)
+ )

(
1− dξn(π

(n)
+ − ξn)

c(n)(1− ξn)(1− π(n)
+ )

+O{(c(n))−2}

)
.

Consequently,(
n∑
i=1

b
(n)
i log û

(n)
i

)
− (c(n) − b(n)

+ ) log(1− û(n)
+ )

=

(
n∑
i=1

b
(n)
i log π

(n)
i

)
− (c(n) − b(n)

i ) log(1− π(n)
+ ) + o(1).

The remaining steps in the proof closely follow those of Theorem 4; the details are
omitted.
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A.4 Outline of proofs of (30) and (31)

Full details of the proof of (30) and (31) in all cases is very lengthy but at the same
time fairly elementary. We outline the steps we have followed in proving these results.

1. In all cases of (30) and (31) considered, the point at which the integrand in (4) or
(6) is maximized converges, as ν → ∞, to a point in [0, 1]n, u† = (u†1, . . . , u

†
n)>, say.

To evaluate an asymptotic value of the denominator, proceed as follows: (i) for those
i such that u†i = 0, we use the transformation ui = si/ν; (ii) for those i such that
u†i = 1, we use the transformation ui = 1 − si/ν; and (iii) for the remaining ui we use
a suitable form of Laplace’s approximation, with g and h in (33) chosen appropriately.
It turns out the leading-order term of the denominator on the LHS of (30) and (31) is
straightforward to determine in each case, using a suitable combination of (i), (ii) and
(iii).

2. We now consider the numerator on the LHS of (30) and (31). It can be shown that,
in all cases under consideration, û = (û1, . . . , ûn)>, defined to be ũ(λ̂) in §3 in the case

of F̂
(n)
A and ũ(λ̂, µ̂) in §4 in the case of F̂

(n)
D , converges to u† as ν → ∞. Moreover,

further calculations show that, for each i, u†i = ûi+ δi/ν+O(ν−2) for some real number
δi.

3. With further calculations, and using point 2 above, it can be shown in each case that
the LHS of (30) and (31) remains bounded away from 0 and∞ as ν →∞. However, in
most cases the limit is not equal to 1, in which case the relative error does not go to 0.
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