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Abstract In this paper we present some heuristic strategies to compute rapid and
reliable approximations to stability factors in nonlinear, inf-sup stable parametrized
PDEs. The efficient evaluation of these quantities is crucial for the rapid construction
of a posteriori error estimates to reduced basis approximations. In this context,
stability factors depend on the problem’s solution, and in particular on its reduced
basis approximation. Their evaluation becomes therefore very expensive and cannot
be performed prior to (and independently of) the construction of the reduced space.
As a remedy, we first propose a linearized, heuristic version of the Successive Con-
straint Method (SCM), providing a suitable estimate – rather than a rigorous lower
bound as in the original SCM – of the stability factor. Moreover, for the sake of com-
putational efficiency, we develop an alternative heuristic strategy, which combines
a radial basis interpolant, suitable criteria to ensure its positiveness, and an adap-
tive choice of interpolation points through a greedy procedure. We provide some
theoretical results to support the proposed strategies, which are then applied to a set
of test cases dealing with parametrized Navier-Stokes equations. Finally, we show
that the interpolation strategy is inexpensive to apply and robust even in the proximity
of bifurcation points, where the estimate of stability factors is particularly critical.
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1 Introduction

Stability factors of differential operators are relevant for the well-posedness analy-
sis of problems governed by PDEs and enter in the (a posteriori) error estimates of
any numerical approximation method. Their rapid and reliable evaluation is thus cru-
cial, especially when dealing with nonlinear parametrized PDEs, i.e. nonlinear PDEs
depending on a vector of p ≥ 1 input parameters μ ∈ D ⊂ R

p, related to either
physical properties or geometrical features.

In this paper we focus on (quadratically) nonlinear parametrized PDEs, which can
be written in the following general form:

E(μ, u) = 0 in V ′, (1)

being V a suitable Hilbert space, V ′ its dual and E : D × V → V ′ a nonlinear,
inf-sup stable, parametrized operator. A meaningful example is represented by the
steady Navier-Stokes equations in a backward facing step domain, parametrized with
respect to the Reynolds number and/or the domain aspect ratio.

Our long-term goal is to compute, in a very efficient way, a numerical approxi-
mation of the solution u(μ) for any μ ∈ D. To this end, we rely on the Reduced
Basis (RB) method, which allows to compute a reduced approximation uN(μ) ∈ VN

of the PDE solution u(μ) ∈ V , for any μ ∈ D, as a linear combination of
snapshots corresponding to a small set of sampled parameter values μ1, . . . , μN .
This can be made through a Galerkin projection in the low-dimensional subspace
VN = span{uh(μ

1), . . . , uh(μ
N)}, being uh(μ

i ) ∈ Vh, i = 1, . . . , N . Here Vh is
a high-fidelity approximation space of dimension Nh � N and uh(μ) ∈ Vh is the
high-fidelity approximation to u(μ), obtained by any kind of numerical discretiza-
tion technique. Moreover, we aim at providing an a posteriori error bound, which
usually takes the form [5, 32]

‖uh(μ) − uN(μ)‖V ≤ 2

βh(uN(μ))
‖E(μ, uN(μ))‖V ′

h
, (2)

at least for N sufficiently large, see Section 3.2. Here βh(uN(μ)) denotes the stabil-
ity factor related with the (discrete, high-fidelity approximation of the) differential
operator. The computation of βh(uN(μ)), for any μ ∈ D, requires the solution of
a generalized eigenproblem of dimension Nh, thus preventing both the Offline and
Online efficiency of the RB approximation.

To overcome this computational bottleneck, the so-called Successive Constraint
Method (SCM) has been first introduced in [18] (see also [7, 8]). A general version
using the so-called natural norm [30] has been analyzed in [16], while a recent
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application to Stokes equations is given in [28]. This method has been developed for
linear parametrized operators and provides a parametric lower bound to their stabil-
ity factor. Since in the linear case the latter is independent of uN(μ), the procedure
admits an Offline-Online computational treatment for which the Online cost is inde-
pendent of Nh, and the Offline computations are performed prior to the RB space
construction.

In the nonlinear case, since the stability factor depends on the RB solution
uN(μ), the construction of suitable lower bounds can not be performed prior to
(and independently of) the construction of the reduced space. To overcome this
bottleneck, we propose to approximate βh(uN(μ)) by βh(uh(μ)), i.e. by the stabil-
ity factor evaluated with respect to the high-fidelity solution uh(μ). Indeed, thanks
to the approximation property of the RB space VN , we can prove that the error
|βh(uN(μ)) − βh(uh(μ))| vanishes as N → Nh. Then, we propose two different
strategies to construct, prior to the generation of the RB space VN , an estimate to the
stability factor βh(uh(μ)).

In particular, we first develop a linearized version of SCM. The proposed algo-
rithm is mechanically similar to the original SCM, but is different in spirit in that it
provides an estimate, rather than a lower bound, of the stability factor. Indeed, we
forgo the rigor of the original SCM to enhance computational efficiency. Neverthe-
less, although this procedure enables a very rapid Online evaluation of the stability
factor, it still entails a quite expensive Offline stage (especially when dealing with
p ≥ 3 parameters), which may jeopardize the efficiency of the whole reduction
process, as shown by the numerical test cases of Section 6.

For this reason, we then propose some inexpensive, heuristic strategies to directly
approximate the stability factor. These strategies combine a radial basis interpolant
to the stability factor, suitable criteria to ensure its positiveness, and an adaptive
choice of interpolation points through a greedy procedure. In this way, it is possible
to obtain a reliable approximation of the stability factor, whose Offline construction
and Online evaluation prove to be much faster than in the case of the linearized SCM
algorithm.

We test the efficacy of these procedures by considering different flow problems
which depend on both physical and geometrical parameters. Moreover, in order to
assess the robustness of the adaptive interpolation, we also consider a numerical test
case whose solution features a bifurcation point – where the estimate of stability
factors is critical. Hence, we also show that our heuristic technique proves to be
effective when aiming at the detection of bifurcation points.

The structure of the paper is as follows. In Section 2 we provide some theore-
tical results dealing with the Lipschitz-continuity of affine, parametrized nonlinear
operators, in order to support the proposed algorithms. Despite some ideas were
anticipated in [22] and, more recently, in [33, 34], in Appendix we provide a detailed
proof. In Section 3 both the high-fidelity and the reduced approximation of this class
of problems are introduced. In Section 4 we present our linearized extension of the
SCM algorithm to the case of nonlinear inf-sup stable operators. Then, in Section 5
we present some heuristic strategies to circumvent the computational burden entailed
by the SCM algorithm. In the end, we show in Section 6 some numerical test cases
dealing with steady parametrized Navier-Stokes equations. Finally, in Section 7 we
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test the robustness of the interpolation procedure in the proximity of a bifurcation
point.

2 Stability factors for nonlinear, inf-sup stable parametrized PDEs

Given a regular spatial domain � ⊂ R
n, let V = V (�) be a Hilbert space with inner

product (·, ·)V and induced norm ‖v‖V = √
(v, v)V . Moreover, let D ⊂ R

p be a
bounded closed parameter domain, whose elements are denoted by μ ∈ D.

Although the techniques proposed in this paper are suitable also for more general
nonlinear problems, here we deepen the analysis in the case of stationary, quadrat-
ically nonlinear parametrized operators, for which our problem of interest can be
expressed as follows: given μ ∈ D, find u = u(μ) ∈ V s.t.

A(u(μ), v; μ) = a(u(μ), v; μ)+ c(u(μ), u(μ), v; μ) = f (v; μ) ∀ v ∈ V. (3)

Here a(·, ·; μ) is a continuous, inf-sup stable bilinear form over V ×V and c(·, ·, ·; μ)

is a continuous trilinear form over V × V × V . Moreover, the right-hand side is a
parametrized linear form f (·; μ) : V → R, given by

f (v; μ) = V ′ 〈F(μ), v〉V ,

being F(μ) ∈ V ′ and V ′ = L(V ;R) the dual space of V . According to the general
Brezzi-Rappaz-Raviart (BRR) theory [3], problem (3) is well posed if and only if the
following continuity and (Babuška) inf-sup conditions hold:

γ (uh(μ)) := sup
v∈V

sup
w∈V

dA(u(μ);μ)(v, w)

‖v‖V ‖w‖V

< +∞, ∀ μ ∈ D, (4)

∃ β0(μ) > 0 : β(uh(μ)) := inf
v∈V

sup
w∈V

dA(u(μ);μ)(v, w)

‖v‖V ‖w‖V

≥ β0(μ), ∀ μ ∈ D.

(5)
In fact, these conditions ensure the existence of a local branch of non-singular solu-
tions [13], see Proposition 1. Here dA(u(μ);μ)(·, ·) denotes the Fréchet derivative
of A(·, ·; μ) with respect to the first variable, which is given, at z ∈ V , by

dA(z; μ)(w, v) = a(w, v; μ) + c(z, w, v; μ) + c(w, z, v; μ) ∀ v,w, z ∈ V ; (6)

from now on, we denote d(z; μ)(w, v) = c(z, w, v; μ)+c(w, z, v; μ). Furthermore,

γ a(μ) = sup
v∈V

sup
w∈V

a(v, w;μ)

‖v‖V ‖w‖V

< +∞, γ c(μ) = sup
u∈V

sup
v∈V

sup
w∈V

c(u, v,w;μ)

‖u‖V ‖v‖V ‖w‖V

< +∞

denote the continuity constants of a(·, ·; μ) and c(·, ·, ·; μ), respectively, while

γ d(μ) = sup
v∈V

sup
w∈V

d(u(μ);μ)(v, w)

‖v‖V ‖w‖V

< +∞

denotes the continuity constant of d(u; μ)(·, ·). The stability factor β(μ) we want to
estimate obviously depends on the nonlinear form on the left-hand side of Eq. 3, and
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thus, through u(μ), on the right-hand side, too. This makes the accurate estimate of
β(μ) much more involved than in the linear case.

In the following subsections we introduce some definitions and provide some
basic results on the continuity and the regularity of the map μ �→ u(μ) that will be
used in the sequel.

2.1 Supremizer operator, norms and parametric dependence

We introduce the parametrized linear operator T μ : V → V such that, for any μ ∈ D,
v ∈ V ,

(T μv, w)V = dA(u(μ);μ)(v, w) ∀w ∈ V ; (7)

equivalently, by Riesz theorem,

T μv = arg sup
w∈V

dA(u(μ);μ)(v, w)

‖w‖V

, ∀v ∈ V. (8)

Because of Eq. 8, T μ is called supremizer operator. It follows that (4) and (5) can be
equivalently expressed as

γ (μ) = sup
w∈V

‖T μw‖V

‖w‖V

, β(μ) = inf
w∈V

‖T μw‖V

‖w‖V

. (9)

Assuming that 0 < β0(μ) ≤ β(μ) and γ (μ) < ∞ for each μ ∈ D, implies that

|||w|||μ := ‖T μw‖V ∀w ∈ V, (10)

defines a norm, usually referred to [10, 30] as natural norm. Thanks to Eq. 9, this
latter is equivalent to the V-norm,

1

γ (μ)
‖T μw‖V ≤ ‖w‖V ≤ 1

β(μ)
‖T μw‖V , ∀w ∈ V. (11)

In order to develop an Offline/Online strategy, we assume that the forms appearing
in Eq. 3 fulfill the following parameter separability – also called affine parameter
depedence – property: for any u, v, w ∈ V ,

a(u, v; μ) =
Qa∑

q=1

�a
q(μ)aq(u, v), c(u, v, w; μ) =

Qc∑

q=1

�c
q(μ)cq(u, v, w) (12)

for some integers Qa , Qc, where �a
q, �c

q ∈ C1(D) and aq(·, ·), cq(·, ·, ·) are contin-
uous bilinear (trilinear) forms over V × V (V × V × V ), respectively; moreover, we
set QA = Qa + Qc. The requirement that �

q
a , �

q
c are of class C1(D) is essential to

ensure that μ �→ u(μ) is a regular map, as we will see in Section 2.2.
Moreover, we denote the (now μ-independent) continuity constants of aq(·, ·) and

cq(·, ·, ·) by

γ a
q = sup

v∈V

sup
w∈V

aq(v,w)

‖v‖V ‖w‖V

< +∞, γ c
q = sup

u∈V

sup
v∈V

sup
w∈V

cq(u, v,w)

‖u‖V ‖v‖V ‖w‖V

< +∞,

(13)
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respectively. In the same way, we set

d(z; μ)(w, v) =
Qc∑

q=1

�c
q(μ)(cq(z, w, v) + cq(w, z, v)) =

Qc∑

q=1

�c
q(μ)dq(z)(v, w),

and denote by

γ d
q (u) = sup

v∈V

sup
w∈V

dq(u)(v, w)

‖v‖V ‖w‖V

< +∞ (14)

the (u-dependent) continuity constants of dq(u)(·, ·).

2.2 Fréchet derivatives of operators and regularity of solutions

Let us show some theoretical results required to ensure the well-posedness of the
linearized SCM procedure. For the sake of generality, let us cast problem (3) under
the form (1), where the operator E : D × V → V ′ is defined as:

V ′ 〈E(μ, z), w〉V = A(z, w; μ) − f (w; μ). (15)

Let us denote by duE(μ, z) : V → V ′ and dμE(μ, z) : D → V ′ the (partial) Fréchet
derivatives of E at (μ, z) ∈ D × V . Moreover, we denote by Br(μ) ⊂ D the open
ball with radius r > 0 and center μ ∈ D. First of all, we can state a general result
ensuring that μ �→ u(μ) is a regular map:

Proposition 1 For the parametrized operator A(·, ·; μ) : V × V → R defined in
equation (3), suppose that:

1. the continuity and the inf-sup conditions (4)–(5) hold;
2. the parameter separability assumption (12) holds, being �a

q, �c
q ′ : D → R,

q = 1, . . . , Qa , q ′ = 1, . . . , Qc, prescribed C1 functions.

Moreover assume that E(μ0, u0) = 0 for some μ0 ∈ D, u0 ∈ V . Then, there exist
r0, r > 0 and a unique u(μ) ∈ Br(u0) ∩ V such that

E(μ, u(μ)) = 0 ∀μ ∈ Br0(μ0) ∩ D.

Furthermore, the map μ �→ u(μ) is Lipschitz continuous and

u′(μ) = − (duE(μ, u(μ)))−1 dμE(μ, u(μ)).

Proof The proof is a direct consequence of the Implicit Function Theorem: we refer
here to the version stated by Hildebrandt and Graves [15], see also [35]. A very
general version providing further insights on the Lipschitz constant of the map μ �→
u(μ) can be found, e.g., in [5, 19]. Provided that the continuity condition (4) holds,
duE is continuous at each point (μ0, u0) ∈ D × V ; its inverse is a continuous linear
operator thanks to the inf-sup condition (5) – in other words, duE is an isomorphism,
for any (μ0, u0) ∈ D×V . Furthermore, if the parameter separability assumption (12)
holds, for suitable C1 functions �a

q, �c
q ′ : D → R, q = 1, . . . , Qa , q ′ = 1, . . . ,Qc,



Heuristic strategies for the approximation of stability factors 1261

then E is a C1 map. Then, the Implicit Function Theorem ensures the existence of
r0, r > 0 and of a (unique) C1 map μ �→ u(μ) such that, for every μ ∈ Br0(μ0) ∩ D,
E(μ, u(μ)) = 0.

Exploiting the result above, we can show that also the Fréchet derivative of
A(·, ·; μ) defines a regular map, provided that suitable a priori (or energy) estimates
on ‖u(μ)‖V hold. In the same way, also the supremizer operator defines a Lipschitz-
continuous map with respect to parameter variations (see Appendix A.1 for the
proof).

Proposition 2 Under the assumptions of Proposition 1, and by assuming that

∃Ku > 0 s.t. ‖u(μ)‖V ≤ Ku ∀μ ∈ D, (16)

there exists a positive constant C > 0 such that, for any μ, μ∗ ∈ D, v,w ∈ V

∣∣dA(u(μ);μ)(v, w) − dA(u(μ∗);μ∗)(v, w)
∣∣ ≤ C|μ − μ∗|‖v‖V ‖w‖V . (17)

Furthermore, the following estimate holds:

‖T μw − T μ∗
w‖V ≤ C

β(μ∗)
|μ − μ∗| ‖T μ∗

w‖V ∀w ∈ V. (18)

Remark 1 In the Navier-Stokes case, an a priori estimate like (16) follows by the
coercivity of the bilinear form a(·, ·; μ) and the skew-symmetry (with respect to the
last two arguments) of the trilinear form c(·, ·, ·; μ); see e.g. [31], Section 2.1.

3 High-fidelity and reduced approximation

In this section we introduce the high-fidelity approximation of problem (3), based
on a Galerkin-Finite Element (FE) method, and then a lower-fidelity approximation
based on the RB method. Moreover, we discuss some stability issues related with
these two approximation strategies, as well as a general a posteriori error estimate,
where the role of stability factors is highlighted.

3.1 Finite element approximation

Let us denote by Vh ⊂ V a FE approximation space of dimension Nh, with inher-
ited inner product (v, w)Vh

= (v, w)V and norm ‖v‖Vh
= ‖v‖V . The Galerkin-FE

approximation of Eq. 3 reads as follows: given μ ∈ D, find uh(μ) ∈ Vh s.t.

A(uh(μ), vh; μ) = f (vh; μ) ∀vh ∈ Vh. (19)

Problem (19) is equivalent to the following algebraic nonlinear system: given μ ∈
D, find uh(μ) ∈ R

Nh such that
(
K(μ) + C(uh(μ);μ)

)
uh(μ) = f(μ) in R

Nh . (20)
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Here uh(μ) ∈ R
Nh is the vector representation of uh(μ) ∈ Vh over a Lagrangian

basis {ϕh
j }Nh

j=1 of Vh, i.e. given a set of Lagrange nodes {xj }Nh

j=1, v(j)
h = vh(xj ) for

any vh ∈ Vh. Moreover,

(K(μ))ij = a(ϕh
j , ϕh

i ; μ), (C(wh;μ))ij = c(wh, ϕ
h
i , ϕh

j ; μ), f(j)(μ) = f (ϕ
j
h; μ)

are the matrices corresponding to the linear and the nonlinear term, and the vector
corresponding to the source term, respectively (i, j = 1, . . . ,Nh).

Concerning the stability of the approximation (19), we rely on the Brezzi-Rappaz-
Raviart theory [3, 5]. As for the original problem, let us assume that:1

γh(uh(μ)) := sup
vh∈Vh

sup
wh∈Vh

dA(uh(μ);μ)(vh, wh)

‖vh‖V ‖wh‖V

< +∞, ∀ μ ∈ D, (21)

∃ β0
h(μ) > 0 : βh(uh(μ)) := inf

vh∈Vh

sup
wh∈Vh

dA(uh(μ); μ)(vh, wh)

‖vh‖V ‖wh‖V

≥ β0
h(μ), ∀ μ ∈ D.

(22)

Then, if Vh is chosen accordingly to these conditions – which are, in fact, the discrete
version of Eqs. 4–5 – problem (19) admits a unique solution.

Concerning the regularity of the solution with respect to μ, a result similar to that
of Proposition 1 can be proved if we consider a Galerkin approximation, i.e. find
uh ∈ Vh s.t.

V ′ 〈E(μ, uh), wh〉V = 0 ∀wh ∈ Vh, (23)

where Vh is such that (21) and (22) hold (see e.g. [5, Chapter 12 and Remark 13.2]).
For instance, Taylor-Hood elements [13] allow to meet these requirements in the
Navier-Stokes case.

By introducing the discrete supremizer operator2 T μ : Vh → Vh s.t.

(T μvh, wh)V = dA(uh(μ);μ)(vh, wh) ∀vh, wh ∈ Vh, (24)

we have that

(βh(uh(μ)))2 =
(

inf
v∈Vh

dA(uh(μ);μ)(v, T μv)

‖v‖V ‖T μv‖V

)2

= inf
v∈Vh

‖T μv‖2
V

‖v‖2
V

. (25)

The algebraic counterpart of Eq. 25 can be obtained by introducing the matrix norm

Xij = (ϕh
j , ϕh

i )V , i, j = 1, . . . ,Nh (26)

of Vh, so that ‖vh‖2
V = vT

hXvh for any vh ∈ Vh. Moreover, denoting by th the vector

of components t(i)h = (T μvh)(xi), we have that

wT
hXth = wT

hF(μ)vh, (27)

1In the following we denote βh(uh(μ)) by βh(μ), i.e. we omit the dependence on the solution, wherever
it is clear from the context.
2For the sake of notation, we denote by T μ the discrete supremize operator, too.
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being F(μ) ∈ R
Nh×Nh the matrix corresponding to the FE discretization of the

Fréchet derivative, i.e. (F(μ))ij = dA(uh(μ);μ)(ϕh
i , ϕh

j ), i, j = 1, . . . ,Nh. Then,

βh(uh(μ)) = inf
vh∈RNh

vT
hF

T (μ)X−1
F(μ)vh

vT
hXvh

,

from Eqs. 25 and 27, so that βh(uh(μ)) = (λmin(μ))1/2, where λmin(μ) is the
smallest eigenvalue λ(μ) such that (λ(μ), vh) ∈ R+ × Vh, vh �= 0, satisfy

F
T (μ)X−1

F(μ) vh = λ(μ)X vh. (28)

Thus, the evaluation of the stability factor βh(uh(μ)), for any μ ∈ D, entails the
solution of both (20) and (28).

3.2 Reduced basis approximation

Our final goal is to compute, for any μ ∈ D, a RB approximation uN(μ) ∈ VN to
uh(μ), where

VN = span{uh(μ
1), . . . , uh(μ

N)} ⊂ Vh (29)

is a reduced space, made by N � Nh solutions to problem (19) computed for
properly chosen parameter values μ1, . . . , μN . Then, we perform the Gram-Schmidt
procedure on the snapshots to obtain an orthonormal basis {φ1, . . . , φN }, so that
we have uN(μ) = ∑N

j=1 u
(j)
N (μ)φj , where the components {u(j)

N }Nj=1 are computed

through a Galerkin3 projection of Eq. 3 over VN : find uN(μ) ∈ VN s.t.

A(uN(μ), vN ; μ) = f (vN ; μ) ∀vN ∈ VN. (30)

Proving the stability of Eq. 30 would demand to prove that an inf-sup condition holds.
This however could be challenging (see, e.g., [23]).

Here, we rather look for an estimate of the discrete inf-sup stability factor

βh(uN(μ)) = inf
v∈Vh

sup
w∈Vh

dA(uN(μ);μ)(v, w)

‖v‖V ‖w‖V

∀μ ∈ D, (31)

which enters in the following a posteriori error bound: for any N ≥ N∗(μ),

‖uh(μ) − uN(μ)‖V ≤ 2

βh(uN(μ))
‖r(·; μ)‖V ′

h
∀ μ ∈ D, (32)

where r(w; μ) := A(uN(μ), w; μ) − f (w; μ) ∀w ∈ Vh is the residual, N∗(μ) the
smallest N such that τN(μ) < 1, for all N ≥ N∗(μ), τN(μ) is defined as

τN(μ) = 4γ c
h (μ)‖r(·; μ)‖V ′

h

βh(uN(μ))2
,

3For the sake of simplicity, here we restrict ourselves to the case of Galerkin projection, although some-
times a more general Petrov-Galerkin method is used. See e.g. [25, 29] for a detailed review of RB
methods.
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and γ c
h (μ) is the discrete continuity constant of c(·, ·, ·; μ). See e.g. [10, 23, 32] for

further details and proofs in the Navier-Stokes case, or [6, 27] for recent applications
to nonlinear advection/diffusion problems.

Since βh(uN(μ)) depends on the RB solution, computing a parametric lower
bound for the stability factor before assembling the reduced space is infeasible,
unless these two procedures are run simultaneously, as shown e.g. in [33]. This latter
option however suffers from two crucial limitations: it requires a problem-specific
and intrusive implementation of the two procedures, and worsen the computational
complexity of the construction and evaluation of the lower bound by making it depen-
dent on N (see [33] for further details). We avoid this extra burden by looking for a
convenient approximation of the stability factor βh(uh(μ)) defined in Eq. 22, rather
than seeking a lower bound to the stability factor βh(uN(μ)). In fact, the former
quantity provides an asymptotically good approximation to the latter, thanks to

Proposition 3 The following relation holds:

|βh(uh(μ)) − βh(uN(μ))| ≤ 2γ c
h (μ)‖uh(μ) − uN(μ)‖V ∀μ ∈ D. (33)

Proof By exploiting the trilinearity and the continuity of c(·, ··; μ), we have

βh(u1) = inf
v∈Vh

sup
w∈Vh

(
a(v,w; μ) + c(u2, v, w; μ) + c(v, u2, w; μ)

‖v‖V ‖w‖V

+ c(u1 − u2, v, w; μ) + c(v, u1 − u2, w; μ)

‖v‖V ‖w‖V

)

= inf
v∈Vh

sup
w∈Vh

dA(u2)(v, w; μ) + c(u1 − u2, v, w; μ) + c(v, u1 − u2, w; μ)

‖v‖V ‖w‖V

≤ inf
v∈Vh

sup
w∈Vh

dA(u2)(v, w; μ)

‖v‖V ‖w‖V

+ 2γ c
h (μ)‖u1 − u2‖V (34)

= βh(u2) + 2γ c
h (μ)‖u1 − u2‖V .

By considering in the previous inequality first u1 = uN(μ), u2 = uh(μ), and then
u2 = uN(μ), u1 = uh(μ), Eq. 33 easily follows.

Although (32) cannot be used to estimate ‖uh(μ) − uN(μ)‖V , thanks to the
approximation property of the space VN , Eq. 33 can be regarded as an a priori con-
vergence result. In fact, provided the RB approximation uN(μ) is sufficiently close
to uh(μ) (which is the case for N sufficiently large), the stability factor βh(uN(μ))

related to the former can be properly approximated by the stability factor βh(uh(μ))

related to the latter, making thus possible to estimate the stability factor before
assembling the reduced space.

We also remark that a result like (33) holds in case of a general nonlinear operator
as long as its Fréchet derivative is Lipschitz continuous, i.e. if there exist η(μ) > 0,
LN

h (μ) > 0 such that

‖dA(uN(μ);μ)(·, ·) − dA(v; μ)(·, ·)‖L(Vh,V ′
h) ≤ LN

h (μ)‖uN(μ) − v‖V ,
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holds for all v ∈ Bη(uN(μ)) = {w ∈ Vh : ‖uN(μ) − w‖V ≤ η(μ)}. Then,

|βh(uh(μ)) − βh(uN(μ))| ≤ LN
h (μ)‖uh(μ) − uN(μ)‖V ∀μ ∈ D. (35)

4 A linearized SCM for estimating the stability factor βh(uh(μ))

In this section we provide a linearized version of the Successive Constraint Method
(SCM) [16] to compute an estimate of the stability factor βh(uh(μ)). Following
[16, 30], we adopt a natural norm SCM procedure based on a set of local sta-
bility factors, properly computed for a (possibly small) set of J parameter values
S = {μ1∗, . . . , μJ∗} selected through a greedy procedure. The key observation is
provided by the following relation:

βh(uh(μ)) = inf
v∈Vh

sup
w∈Vh

dA(uh(μ);μ)(v, w)

‖T μ∗
w‖V ‖v‖V

‖T μ∗
w‖V

‖w‖V

≥ inf
v∈Vh

sup
w∈Vh

dA(uh(μ);μ)(v, w)

‖T μ∗
w‖V ‖v‖V

inf
w∈Vh

‖T μ∗
w‖V

‖w‖V

= βμ∗(μ)βh(uh(μ
∗)) ≥ β̃μ∗(μ)βh(uh(μ

∗)),

where

β̃μ∗(μ) := inf
v∈Vh

dA(uh(μ);μ)(v, T μ∗
v)

‖T μ∗
v‖2

V

= inf
v∈Vh

(T μv, T μ∗
v)V

‖T μ∗
v‖2

V

(36)

is a lower bound of βμ∗(μ) s.t.

β̃μ∗(μ) ≤ inf
v∈Vh

‖T μv‖V

‖T μ∗
v‖V

= inf
v∈Vh

sup
w∈Vh

dA(uh(μ);μ)(v, w)

‖T μ∗
v‖V ‖w‖V

=: βμ∗(μ), (37)

thanks to Cauchy-Schwarz inequality and the definition of supremizer operator.
As in the linear case [30], we can show that, for μ near μ∗ ∈ S, β̃μ∗(μ) is a

second-order accurate approximation to βμ∗(μ) (see Appendix A.2 for the proof):

Proposition 4 Under the assumptions of Proposition 2, the following relations hold:

β̃μ∗(μ) − 1 = O(|μ − μ∗|) as μ → μ∗, (38)

βμ∗(μ) − β̃μ∗(μ) = O(|μ − μ∗|2) as μ → μ∗. (39)

In particular, Eq. 38 guarantees that, for μ near μ∗, the bilinear form π : V ×V →
R

π(u, v) = (T μu, T μ∗
v)V

is coercive. Thus, we could compute a lower bound to β̃μ∗(μ) by applying the SCM
algorithm proposed in [18], since this surrogate problem is coercive thanks to Eq. 37.
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However, because of the parameter dependence through the solution uh(μ), β̃μ∗(μ)

cannot be expressed as the solution of a linear program, which is the key ingredient
of SCM in order to provide an efficient offline/online decomposition.

Therefore, we propose to approximate β̃μ∗(μ) by the following surrogate:

β̃μ∗(μ) ≈ β̂μ∗(μ) := inf
v∈Vh

dA(uh(μ
∗);μ)(v, T μ∗

v)

‖T μ∗
v‖2

V

. (40)

In fact, by using the same argument of Proposition 2, it is possible to show that4

|β̃μ∗(μ) − β̂μ∗(μ)| ≤ γ c
h (μ)

βh(μ∗)
Lh

u|μ − μ∗|, (41)

so that β̂μ∗(μ) turns out to be a reasonable approximation to β̃μ∗(μ) for μ sufficiently
near to μ∗. The quality of this approximation depends on the ratio γ c

h (μ)/βh(μ
∗),

which for μ = μ∗ is nothing but the condition number of the problem.
Moreover, the approximation β̂μ∗(μ) can be obtained by solving a linear program

amenable to a suitable offline/online decomposition. In fact, given μ∗ ∈ D,

β̂μ∗(μ) = inf
y∈Y∗

J (y; μ), J (y; μ) =
Qa∑

q=1

�a
q(μ)yq +

Qc∑

q ′=1

�c
q ′(μ)yQa+q ′ , (42)

with y = (y1, . . . , yQa , yQa+1, . . . , yQa+Qc). Here Y∗ ⊂ R
QA (with QA = Qa +

Qc) is given by

Y∗ =
{
y ∈ R

QA : ∃ w
y
h ∈ Vh

∣∣∣∣ yq = aq(w
y
h, T

μ∗
w

y
h)

‖T μ∗
w

y
h‖2

V

, 1 ≤ q ≤ Qa,

yQa+q ′ = dq ′(uh(μ
∗))(wy

h, T
μ∗

w
y
h)

‖T μ∗
w

y
h‖2

V

, 1 ≤ q ′ ≤ Qc

}
.

We can now use SCM to build a lower bound of β̂μ∗(μ) through a sequence of
suitable relaxed problems of Eq. 42, by seeking the minimum of J on a descending
sequence of larger sets, built by adding successively linear constraints. We also build
an upper bound to β̂μ∗(μ), which will serve to define a suitable error indicator in the
greedy procedure for the construction of the local lower bound.

We underline that the original SCM would proceed by computing a local lower
bound to β̃μ∗(μ), thus providing a global lower bound to βh(uh(μ)). Our linearized
SCM computes instead a local lower bound to an approximation β̂μ∗(μ) of β̃μ∗(μ),
in order to enable the Offline/Online decomposition of the whole procedure. As a
result, we obtain a global approximation – rather than a lower bound – to βh(uh(μ)).
We report the details of the procedure in the following subsections.

4Here Lh
u denotes the Lipschitz constant of the solution map μ → uh(μ). Thus Lh

u is the discrete
counterpart of the Lipschitz constant Lu defined in Eq. 56.
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4.1 Construction of a local lower bound to β̂μ∗(μ)

We first remark that β̂μ∗(μ) = (λ
μ∗
min(μ))1/2, where λ

μ∗
min(μ) is the smallest

eigenvalue λμ∗
(μ) such that (λμ∗

(μ), v) ∈ R+ × Vh, v �= 0, satisfy

1

2

[
F(μ∗)T X−1

F̂(μ; μ∗) + F̂(μ; μ∗)T X
−1

F(μ∗)
]
v = λμ∗

(μ)F(μ∗)T X−1
F(μ∗)v,

(43)
being F̂(μ; μ∗) the matrix resulting from the discretization of dA(uh(μ

∗);μ)(·; ·).
By extending the procedure presented in [18], we report here the main steps required
to construct a lower and an upper bound to β̂μ∗(μ):

1. Bounding box construction. In order to guarantee that (42) is well-posed, we can
construct a (continuity) bounding box Bμ∗ ⊂ R

QA given by [16]

Bμ∗ =
Qa∏

q=1

[
− γ a

q

βh(uh(μ∗))
,

γ a
q

βh(uh(μ∗))

]
×

Qc∏

q ′=1

[
− γ d

q ′(μ∗)
βh(uh(μ∗))

,
γ d
q ′(μ∗)

βh(uh(μ∗))

]
,

(44)

where βh(uh(μ
∗)) is the solution of Eq. 28 computed for μ = μ∗. Alternatively,

as recently proposed in [33], we can consider the following bounding box,

BY
μ∗ =

Qa∏

q=1

[
inf

v∈Vh

aq(v, T μ∗
v)

‖T μ∗
v‖2

V

, sup
v∈Vh

aq(v, T μ∗
v)

‖T μ∗
v‖2

V

]

×
Qc∏

q ′=1

[
inf

v∈Vh

dq ′(uh(μ
∗))(v, T μ∗

v)

‖T μ∗
v‖2

V

, sup
v∈Vh

dq ′(uh(μ
∗))(v, T μ∗

v)

‖T μ∗
v‖2

V

]
,(45)

which is proved to be tighter than (44), i.e. BY
μ∗ ⊂ Bμ∗ . Let us remark however

that the computation of BY
μ∗ requires additional operations, in particular: (i) for

each μ∗ the bounding box has to be fully recomputed, while for the former we
can compute the γ a

q ’s once and for all, and only update the γ d
q ’s at each iteration;

(ii) for each μ∗, BY
μ∗ requires to compute not only the maximum but also the

minimum eigenvalue of the involved bilinear forms. This is a demanding task,
which can become unaffordable when Qa and Qc become too large. In Section 6
we will show a detailed comparison of these two options.

2. Relaxed LP problem. Given a SCM sample Cμ∗ = {μ∗
1, . . . , μ

∗
k} associated to

μ∗, compute the corresponding lower bounds β̂μ∗(μ′), by solving (43) ∀μ′ ∈
Cμ∗ ; then, define the relaxation set

YLB∗ (Cμ∗) =
{
y ∈ Bμ∗

∣∣ J (y; μ′) ≥ β̂μ∗(μ′), ∀μ′ ∈ Cμ∗
}
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by selecting a set of additional linear constraints associated to Cμ∗ . Let us remark
that the desired local lower bound β̂LB

μ∗ (μ) is provided by the solution of the
following relaxed problem:

β̂LB
μ∗ (μ) ≡ β̂LB

μ∗ (μ; Cμ∗) = inf
y∈YLB∗ (Cμ∗ )

J (y; μ), ∀μ ∈ Dμ∗ , (46)

since β̂μ∗(μ) ≥ β̂LB
μ∗ (μ). In fact, Y∗ ⊂ YLB∗ (Cμ∗) and thus the minimum is taken

over a larger set. Note that (46) has to be solved ∀μ ∈ �train (�train ⊂ D being
a very rich training sample), whereas the definition of Dμ∗ ⊂ D will be made
precise later on. We can also define an upper bound to β̂μ∗(μ) as follows:

β̂UB
μ∗ (μ)≡ β̂UB

μ∗ (μ; C∗
k ) = inf

y∈YUB∗ (Cμ∗ )

J (y; μ), ∀μ ∈ Dμ∗ , (47)

where

YUB∗ (Cμ∗) = {ỹ ∈ R
QA : ỹ = arg min

y∈Y∗
J (y; μ′), ∀μ′ ∈ Cμ∗}.

Since YUB∗ (Cμ∗) ⊂ Y∗ – see e.g. [18] for the proof – (47) is in fact an upper
bound for β̂μ∗(μ).

3. Selection of the successive constraint. The set Cμ∗ is built through a (local)
greedy procedure. Starting from Cμ∗ = {μ∗}, we iteratively enrich the set Cμ∗ by
adding the point μ̂ such that

μ̂ = arg max
μ∈Eμ∗∩�train

ρ(μ; Cμ∗), ρ(μ; Cμ∗) = β̂UB
μ∗ (μ) − β̂LB

μ∗ (μ)

β̂UB
μ∗ (μ)

,

until the largest ratio is ρ(μ; Cμ∗) ≤ ε∗, i.e. under a chosen tolerance ε∗ ∈ (0, 1).
Here we restrict the search for the maximum of ρ(·; ·) to a suitable neighborhood
Eμ∗ of μ∗, which shall represent an empirical approximation of the coerciv-
ity region (see Proposition 4) of β̂μ∗(μ). The choice of Eμ∗ is highly problem
dependent and is usually made a priori, according to physical intuition, or a pos-
teriori once the first iterations of the algorithm have been run. Further details can
be found in Section 6.

Thus, we end up with K = |Cμ∗ | constraints and a local lower bound β̂LB
μ∗ (μ).

4.2 Computation of a global approximation

In order to turn the local lower bound β̂LB
μ∗ (μ), computed upon each selected value

μ∗, into a global approximation for βh(μ), we consider a greedy procedure such as
the one addressed in [16, 18] for the linear case. We remark that the output of the
coverage procedure are the set S = {μ1∗, . . . , μJ∗}, J ≤ Jmax and the associated
samples Cμj∗ , for any j = 1, . . . , J , where K(j) := |Cμj∗ | < Kmax is the number of
constraints points related to each μj∗ ∈ S. Thus, a global approximation for βh(μ) is

βA
h (μ) = βh(μ

σ∗)β̂LB
μσ∗(μ), being σ ≡ σ(μ) = arg max

j∈{1,...,J }
βh(μ

j∗) β̂LB
μj∗(μ),

(48)
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so that the subdomains Dμ∗j are defined as

Dμ∗j = {μ ∈ D : βh(μ
j∗)β̂LB

μj∗(μ) ≥ βh(μ
j ′

)β̂LB
μj ′ (μ), ∀ j ′ = 1, . . . , J }. (49)

As in the original SCM, the global approximation βA
h (μ) interpolates βh(μ) at each

μ∗ ∈ S, being βA
h (μ∗) = βh(μ

∗). The set S = {μ1∗, . . . , μJ∗} is built through a
(global) greedy procedure, which encapsulates the local ones used for building each
sample. The whole procedure is summarized in the following algorithm.

Linearized SCM algorithm
Input: train sample �train, Jmax, Kmax, SCM tolerance ε∗, starting point μ1∗.
set J = 1, Cμ1∗ = {μ1∗}, RJ = ∅
compute βh(μ

1∗) by Eq. 28 and the bounding box Bμ1∗
while J < Jmax, �train �= ∅ and ρ(μ) > ε∗ do

compute β̂LB
μJ∗(μ), β̂UB

μJ∗(μ)

construct R∗
J = {μ ∈ �train | β̂LB

μJ∗(μ) > 0 and ρ(μ; CμJ∗) ≤ ε∗}
compute βA

h (μ) as in Eq. 48
if R∗

J \ RJ = ∅ or |CμJ∗ | = Kmax do
update �train = �train \ RJ

set J = J + 1 and select a new μJ∗
compute βh(μ

J∗) by Eq. 28 and the bounding box BμJ∗

set CμJ∗ = {μJ∗}
construct RJ = {μ ∈ �train | β̂LB

μJ∗(μ) > 0 and ρ(μ; CμJ∗) ≤ ε∗}
else do

μ̂ = arg maxμ∈E
μJ∗ ρ(μ; CμJ∗)

set CμJ∗ = CμJ∗ ∪ {μ̂}
compute β̂μ∗(μ̂) by solving (43)
set RJ = R∗

J

end if
end while

Let us highlight which are the main computational costs of this problem. We
denote by ntrain = |�train| and we define

nβ =
J∑

j=1

|Cμj∗ |, nC = max
j=1,...,J

|Cμj∗ |.

In the offline stage we have to: (i) solve J times problem (20) in order to compute
uh(μ) and assemble nβ times the Fréchet derivative; (ii) solve n

(1)
eig = nβ +Qa +JQc

(respectively n
(2)
eig = nβ + 2JQa + 2JQc) eigenproblems when using the bound-

ing box (44) (respectively (45)), (iii) solve ntrainnβ linear programs to compute the
current global lower bounds (48) at each iteration of the algorithm.
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In the online stage, each evaluation μ → βh(uh(μ)) only requires to solve J

linear programs in QA= Qa + Qc variables with at most nC + 2QA constraints
(independently of the employed bounding box).

Remark 2 As in the linear case, the computational complexity of the offline stage
of the SCM depends inherently on QAN α

h , where the dependence on the dimension
Nh is due to eigenvalues calculation (with α ∈ [1, 3]). Thus, already for rather small
problems, the size QA of the affine expansion may cause the Offline stage to become
potentially very expensive. A two-level affine decomposition strategy was recently
proposed in [20] to tackle the case of large affine operators (e.g. recovered through
the empirical interpolation method).

5 A new heuristic strategy based on adaptive interpolation

Our direct experience indicates a rather slow convergence of the linearized SCM pro-
cedure when dealing with many (p ≥ 3) parameters (see also the numerical results
of Section 6). This prompts us to device alternative strategies when dealing with
nonlinear operators depending on many parameters.

A first, very simple approach would be to approximate the (μ-dependent) stability
factor βh(μ) by the constant

βLB = min
μ∈D

βh(μ). (50)

Since βh(μ) might be a non-convex function of μ, finding its global minimum on
D requires (i) to combine a local optimization solver with a suitable globalization
strategy [14] and possibly (ii) to provide an explicit expression for the sensitivity of
βh(μ) with respect to the parameters. This approach is indeed effective when the
stability factor changes mildly with respect to parameters. However, as soon as the
dimension of D increases, finding a global minimum becomes extremely expensive,
not to mention that this strategy is over-conservative (thus inappropriate) when βh(μ)

varies significantly over D.
For these reasons, we propose a heuristic strategy devised to meet an efficiency

requisite (at both the offline and the online stages), which returns reliable and
sufficiently tight approximations to parametrized stability factors.

5.1 Interpolant of the stability factor

Let us denote by �fine ⊂ D a sample set whose dimension nfine = |�fine| is
sufficiently large. We (arbitrarily and a priori) select a (possibly small) set of interpo-
lation points �I= {μj }nI

j=1 ⊂ �fine and compute the stability factor βh(μ) for each
μ ∈ �I . Then, we compute a suitable interpolant βI (μ) such that

βI (μ) = βh(μ) ∀μ ∈ �I and βI (μ) > 0 ∀μ ∈ �fine.
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For any fixed μ ∈ D, the computation of βh(μ) requires to solve the following
eigenvalue problem: find (λ(μ), v) ∈ R+ × Vh, v �= 0, such that

F(μ)T X−1
F(μ)v = λ(μ)Xv, (51)

where X is the matrix defined by Eq. 26, while βh(μ) = √
λmin(μ).

Depending on the number of parameters and their range of variation, different
interpolation methods might be employed. In the two-dimensional case considered
in [24] we used a simple linear interpolant and an equally spaced grid of interpo-
lation points. When the parameter space has higher dimension, using uniform grids
would demand for βh(μ) to be computed in a huge number of interpolation points.
Following [22], we then replace Lagrange interpolation by radial basis function
(RBF) interpolation. The latter is especially suited to interpolate scattered data in
high-dimensional spaces (for a general introduction to RBF methods see, e.g., [4]).
We define the RBF interpolant as

βI (μ) = ω0 + ωT μ +
nI∑

j=1

γj φ(|μ − μj |),

where φ is a radial basis function,5 while the 1+p+nI interpolation weights {ωi}pi=0,
{γj }nI

j=1 are determined by requiring the following conditions to hold:

βI (μ
j ) = βh(μ

j ) j = 1, . . . , nI , (52a)
nI∑

j=1

γj = 0,

nI∑

j=1

γjμ
j
i = 0 i = 1, . . . , p. (52b)

Equations 52a–52b lead to a symmetric linear system of dimension 1 + p + nI .
In order to avoid negative values of the interpolant βI (μ), we first perform the

interpolation on a starting grid �I of n
(0)
I interpolation points and then evaluate the

resulting interpolant on the fine grid. Note that the first step of the algorithm can be
performed in parallel. Next, we enrich the interpolation grid �I by adding further
interpolation points in those regions where the interpolant is negative. This yields a
positive (provided that nmax is sufficiently large) interpolant βI (μ). If nneg denotes
the number of points selected by the second step of the algorithm, we must in the
offline stage (i) solve at most n

(0)
I + nneg eigenvalue problems; (ii) build 1 + nneg

times the RBF interpolant, involving O(n3
I +n2

I ) operations (being nI the dimension

of the adaptively enriched set �I ); (iii) evaluate n
(0)
I +nneg times the RBF interpolant,

requiring O(nInfine) operations.
This strategy yields a good approximation of the stability factor, with a remarkably

smaller computational effort with respect to the linearized SCM algorithm. However,
as the dimension (and extent) of D increases, the efficacy of this procedure highly
depends on the full factorial grid �I adopted at the first step. Indeed, if �I is too
coarse, most of the time is spent in the second step of the algorithm trying to ensure

5In the numerical results of Section 6 we employ thin plate splines RBF, i.e. φ(r) = r2 log(r).
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the positivity of the interpolant, and eventually resulting in a poor approximation.
On the other hand, if �I is too fine, the additional computational effort can be often
unnecessary, since too many points are added in regions where βh(μ) changes mildly.
We overcome these inconveniences by further improving this method in the following
section.

5.2 RBF interpolant with adaptive sampling

In order to achieve a compromise between (i) adding new points in locations with a
highly varying response, (ii) adding points in unsampled regions of the domain and
(iii) ensuring the positivity of the interpolant, we propose an adaptive strategy based
on a four-component criterion C(μ):

C(μ) = (‖∇βI (μ)‖ + ε
)(|�βI (μ)| + ε

)( h(μ)

max h(μ)

)2

g(βI (μ)), (53)

similarly to what proposed in [21]. Let us describe the role of each factor:

– the first two terms account for local changes of the interpolant;6 an offset
parameter ε ensures that C(μ) > 0 when ‖∇βI (μ)‖ = 0 or |�βI (μ)| = 0;

– the third and the fourth terms promote the selection of space-filling points and
penalize negative values of the interpolant, respectively, where

h(μ) = min
μj ∈�I

‖μ − μj‖2, g(s) =
{

1 s > 0
αe−s s ≤ 0

and α > 0 is a tuning parameter to be prescribed.

In this adaptive algorithm, the new sample locations are then selected as the ones
which maximize C over �f ine. This optimization problem is solved by enumeration,
i.e. by evaluating C on the fine grid �f ine and extracting the maximum, rather than
using a global optimization algorithm. Indeed, evaluating C over �f ine is a very fast
operation (with complexity O(n2

I nf ine)) which can be easily performed in parallel.
The loop stops when either a predetermined number of interpolation points have been
added, or a desired accuracy is reached. The complete algorithm reads as follows:7

Several techniques can be employed to assess the interpolation accuracy and pos-
sibly estimate the interpolation error, see [21] and references therein for further
details. Here we simply require the L∞(�f ine)-norm of two consecutive iterates
to be under a prescribed tolerance tol. Let us remark that the offline costs are just
slightly increased with respect to the interpolation technique of Section 5.1, since
the number of operations required to evaluate C(μ) only depends on nI and nfine,
and is independent of Nh. Finally, we remark that the condition number of the RBF

6Note that the derivatives of the interpolant are available analytically and, therefore, both ∇βI (μ) and
�βI (μ) can be computed exactly, rather than approximated numerically.
7The parameters domain D is normalized to the unit hypercube [0, 1]p for the sake of interpolation; in this
way, the results of the interpolation are not affected by possible different scales and range of variations of
the parameters.



Heuristic strategies for the approximation of stability factors 1273

Adaptive RBF interpolant
Input: the evaluation grid �fine, a set of n

(0)
I starting samples �I , nmax

(i) Build initial coarse interpolation
for j = 1 : n

(0)
I

set μj = �I (j) and assemble F(μj )

compute βh(μ
j ) by solving the eigenvalue problem (51)

end for
build the RBF interpolant βI (μ)

(ii) Enrich interpolation with adaptive sampling
evaluate βI (μ) on �f ine

while j < nmax and Ej > tol do
compute criterion C(μ) as defined in Eq. 53
set μj = arg maxμ∈�f ine

C(μ) and assemble F(μj )

compute βh(μ
j ) by solving the eigenvalue problem (51)

build the RBF interpolant βI∪μj (μ)

evaluate Ej = maxμ∈�f ine
|βI (μ) − βI∪μj (μ)|/|βI (μ)|

update the set �I = �I ∪ {μj }
end while

matrix arising from Eqs. 52a–52b rapidly increases as the number of interpolation
points increase, although our greedy sampling helps in delaying this behavior. How-
ever, when a large number of interpolation points is needed, ad hoc preconditioning
strategies [1] or suitable choices of RBF shape parameters can be put in place [12].

6 Numerical results: application to a backward facing step channel

In this section we illustrate the properties and the performances of the proposed tech-
niques. As a test case, we consider a fluid flow over a backward facing step channel
[2], described by the steady Navier-Stokes equations:

−ν�u + (u · ∇)u + ∇p = 0 in �o(μ)

divu = 0 in �o(μ)

u = g on �o
d

u = 0 on �o
w(μ)

−pn + ν(∇u)n = 0 on �o
n(μ),

(54)

where (v, p) are the velocity and pressure defined over a parametrized domain
�o(μ) = �o1 ∪ �o2(μ) ∪ �o3(μ) (see Fig. 1). We denote by �o

D = �o
d ∪ �o

w(μ) the
Dirichlet portion of ∂�o, while �o

n(μ) denotes the outflow boundary. We define the
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y

x

Fig. 1 Sketch of the channel geometry with boundaries and partition in affine subdomains. The first
subdomain is μ-independent, while �o2 = �o2(μ3) and �o3 = �o3(μ2, μ3). Coloring is given by the
velocity field magnitude obtained for Re = 250

Reynolds number as Re = Dub/ν, where ν is the kinematic viscosity, D = 2h being
h = 1 the height of the channel at the inflow, while ub = 2/3 max g = 1, being
g = [6y(1 − y), 0]T the inflow profile. We consider p = 3 parameters: the Reynolds
number μ1 = Re (so that ν = 2/μ1), the step height μ2 and the channel length μ3
(downstream of the step).

Problem (54) can be rewritten in an affinely parametrized weak form. To do that,
we first introduce a decomposition of �o(μ) into three subdomains (see Fig. 1) and
a suitable affine geometrical transformation, then we map the problem onto a fixed,
reference domain �; further details can be found, e.g., in [10, 22, 32].

Once the problem has been formulated as in Eq. 3, we introduce its FE discretiza-
tion. We use a (inf-sup stable) P 1

b -P 1 approximation for the velocity and pressure
variables, i.e. continuous linear FE enriched by bubble functions for the velocity and
continuous linear FE for the pressure, see e.g. [26]. The total number of degrees
of freedom is Nh = 40 064, obtained using a mesh of 11 485 triangular elements.
For the solution of Eq. 54, we employ a few Picard iterations followed by some
Newton iterations, to reach a relative tolerance of 10−8 on the norm of the incre-
ment. To facilitate the computation of extreme eigenvalues, we consider a weighted
norm on V : for any v = (v, q) ∈ V , ‖v‖2

V := ã(v, v; μ̂) + λ‖v‖2
L2 + λ‖q‖2

L2 ,
where μ̂ is a reference parameter value (for instance the centroid of the parame-
ter space), ã(·, ·, μ) corresponds to the diffusion term in the momentum equation,
while

λ = inf
w∈[H 1(�)]2

ã(w,w; μ̂)

‖w‖2
L2

> 0.

The research code we use in this work has been developed in the Matlab envi-
ronment; all the linear systems are solved by the sparse direct solver provided by
Matlab, whereas the eigenproblems are solved using Matlab eigs solver. We also
take advantage of the existing SCM algorithm already developed (for linear prob-
lems) in the rbMIT library [17]. Parallelism is exploited to speed up the matrix
assembly in the Navier-Stokes solver as well as to speed up some embarrassingly
parallel portions of the algorithms we propose. The reported computational times
will mainly serve to compare the different strategies.
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6.1 Backward-facing step channel with a physical parameter

In this first test case we only consider the Reynolds number μ1 ∈ [20, 250] as varying
parameter, while the geometrical parameters are frozen to μ2 = 1 and μ3 = 10. The
affine decomposition (12) is recovered for Qa = 3, Qc = 1 and Qf = 3.

First, we numerically verify the inequality (33) proved in Proposition 3. We build
the RB space following the procedure described in [23]: we select N = 11 basis
functions to obtain a maximum error ‖uh(μ) − uN(μ)‖V below 10−3 on the whole
parameter space. In Fig. 2 we report the graphs of the left- and right-hand sides of
Eq. 33 with respect to N (computed on a test sample of 20 parameter values and then
averaged).

Then, we numerically verify the coercivity property of the local lower bounds
β̃μ∗(μ), i.e. that

β̃μ∗ = 1 + O(|μ − μ∗|) as μ → μ∗

as shown in Proposition 4. For the sake of verification, we select “by hand” J = 9
parameter points μj∗, 1 ≤ j ≤ J , and compute the corresponding β̃μj∗(μ), which

are reported in Fig. 3. As expected, for each μj∗, β̃μj∗(μ) decreases linearly from

1 (see Table 1). In Fig. 3 we also report the approximation β̂μ∗(μ) to β̃μ∗(μ); as
expected from estimate (40), the quality of the approximation deteriorates as the
Reynolds number – and thus the condition number of the problem – increases. Note
that for μ sufficiently far from μ∗, β̃μ∗(μ) and its approximation β̂μ∗(μ) become
negative, and are therefore useless in order to build a positive global approximation
to βh(μ). For this reason, we restrict the search for successive constraints Cμ∗ to the
interval Eμ∗ = [μ∗ − 20,μ∗ + 20].

Let us now apply the linearized SCM algorithm with a tolerance ε∗ = 0.7, ntrain =
1000 and using the original bounding box (44). The greedy procedure selects J = 6
anchor points μ∗ and |Cμj∗ |6j=1 = [3, 3, 6, 2, 2, 1] constraints, thus requiring to solve

Fig. 2 Test 1. Numerical verification of Proposition 3
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Fig. 3 Test 1. β̃μj∗ (μ) and its approximation β̂μj∗ (μ), computed in the proximity of J = 9 (artificially
imposed) parameter points μj∗, 1 ≤ j ≤ J

n1
eig = 26 eigenproblems. In Fig. 4 we report the resulting global approximation

βA
h (μ) and the subdomains partition Dμ∗j induced by the algorithm.

Then, in the same setting, we apply the linearized SCM using the tighter bound-
ing box (44): we obtain J = 4, |Cμj∗ |4j=1 = [3, 3, 2, 1] and n

(2)
eig = 41. Regarding the

computational performances, the two options require roughly the same time (about 20
minutes) to be performed. The (tighter) bounding box (45) lead to a sharper approx-
imation (see Fig. 4), yet selecting a smaller number of anchor points μ∗. However, it
globally requires to solve a higher number of eigenvalue problems. In particular, its
computational complexity depends on the number of terms Qa and Qc in the affine
decomposition (see Table 1).

Let us now move to the other heuristic strategies. We first compute the minimum
stability factor by performing a multi-start optimization with three different initial
points: we find a minimum stability factor βLB = 0.1025 (attained for μ1 = 250),
which turns out to be the global minimum of βh(μ) (see Fig. 5). In this case, the
algorithm requires to solve 45 eigenproblems. We highlight the importance of the
multi-start strategy; indeed, if we start the optimization from μ1 < 40, the algorithm

Table 1 Test 1. Comparison of the computational cost of the linearized SCM algorithm when using the
bounding box (44) and (45)

Bounding box (44) Bounding box (45)

J (number of selected μ∗) 6 4

|Cμj∗ | j = 1, . . . , J [3; 3; 6; 2; 2; 1] [3; 3; 2; 1]
Number of eigenproblems 26 41

SCM tolerance ε∗ 0.7 0.7

Total time (s) 1088 1191
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Fig. 4 Test 1. Comparison between the approximation of the stability factor obtained using the linearized
SCM algorithm with different bounding box: βA

SCM1 refers to Eq. 44, while βA
SCM2 is obtained using (45).

We also report the subdomains (49) induced by the algorithm, with different colors (top: βA
SCM1, bottom:

βA
SCM2). The corresponding μj∗, 1 ≤ j ≤ J are represented by black crosses

converges to the local minimum attained for μ1 = 20, thus largely overestimating
the global one.

Then, we compute the adaptive RBF interpolant βI (μ): starting from an initial
coarse grid of 4 (uniformly distributed) interpolation points, the adaptive procedure
selects 10 additional interpolation points so that Ej < 10−3 (see Fig. 6). The effec-
tiveness of the adaptivity criterion is demonstrated by the evidence that most of the
interpolation points are added in the region with the highest variation of βh(μ), as
it can be seen in Fig. 5. In this case the construction of the interpolant only requires
to solve 14 eigenproblems, taking about 8 minutes (see Table 2). Let us remark that,
while the final interpolant is almost coincident with the exact stability factor, already
the initial one (computed on the coarse grid) can be considered as a satisfactory
approximation for our purposes (see Table 2).

Fig. 5 Test 1. Comparison of the heuristic strategies. The value of the minimum stability factor and the
RBF interpolant with respect to the true stability factor βh(μ) (black line) are reported. For the latter, both
the initial interpolation on a coarse grid of 4 points (blue dashed line) and the result of the adaptive strategy
(red line) are shown
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Fig. 6 Test 1. On the left: indicator Ej (used in the adaptive algorithm to monitor the accuracy of the
interpolation) versus the number of iterations j . On the right: convergence of the L∞(�test) relative error
between βh(μ) and βI (μ) with respect to the number of interpolation points (in the case of adaptive
refinement, we stop the algorithm when a maximum budget of nmax = 75 points has been reached)

In Fig. 6 we also report a convergence analysis of the RBF interpolation comparing
the adaptive versus the uniform refinement of the interpolation grid; in particular, we
show the convergence of the L∞(�test ) relative error between the stability factor and
its interpolant, where �test ⊂ D is a uniform grid of 1 000 points. We remark that
the adaptive strategy allows to achieve the same accuracy with a considerably smaller
number of interpolation points.

6.2 Backward-facing step channel with both physical and geometrical
parameters

In the second test case, we consider as parameters both the Reynolds number μ1
and the height of the channel step μ2; the parameter space is now given by D =
[20, 200] × [0.5, 1.5]. We have slightly restricted the range of the parameter μ1 to
avoid numerical instabilities (due to the poor convergence of the nonlinear solver)
occurring for high values of μ1 and μ2. The affine decomposition (12) now holds
with Qa = 5 ad Qc = 2.

We first run the linearized SCM algorithm with a tolerance ε∗ = 0.85, ntrain = 104

and using the original bounding box (44). The algorithm shows an extremely low
convergence: J = 195 parameter values μ1∗, . . . , μJ∗ and about 750 constraints
are selected, requiring to solve O(103) eigenproblems. Its poor convergence rate is
mainly due to the geometrical variation induced by the parameter μ2. Indeed, by
running the SCM with the first parameter frozen to μ1 = 100, the computation of

Table 2 Test 1. Comparison of the computational costs. Computations have been performed using 4 cores
on a desktop computer

# eigenproblems Time (s)

Linearized SCM with (44) 26 1088

Linearized SCM with (45) 41 1191

Minimum 45 1320

Adaptive RBF interpolant 14 470



Heuristic strategies for the approximation of stability factors 1279

Fig. 7 Test 2. Approximation of the stability factor βA
h (μ) as function of (μ1, μ2); black cross correspond

to the parameter values μj∗, 1 ≤ j ≤ J = 195, selected by the linearized SCM algorithm

βA
h (μ) (shown in Fig. 8) required J = 17 parameter values μj∗, a rather large number

compared to the results of the previous section.
Then, we build the adaptive RBF interpolant, starting from a coarse grid of uni-

formly distributed 4 × 3 interpolation points. The algorithm stops after selecting 23
further samples, corresponding to a maximum budget of 35 interpolation points and
Ej ≈ 2 ·10−2. Note that this latter underestimates the interpolation error of one order
of magnitude; in fact, as shown in Fig. 9 we are approximating βh(μ) with a relative
L∞(�fine) error of about 10−1. Nevertheless, the qualitative behavior of the stability
factor is well captured.

Moreover, the construction of the interpolant βI (μ) takes less than 20 minutes,
while the linearized SCM algorithm requires many hours to build βA

h (μ) (in both
cases computations have been performed using 12 cores).

In Fig. 10 we also report a convergence analysis of the RBF interpolation compar-
ing the adaptive versus the uniform refinement of the interpolation grid; in this case
�test ⊂ D is a factorial grid of 129 × 65 points.

6.3 Backward-facing step channel with three parameters

In the third test case we let all the three parameters vary; in particular the parameter
domain is now given by D = [20, 200] × [0.5, 1.5] × [9, 12], while Qa = 9 and
Qc = 4.

If follows from our previous discussion that both the linearized SCM and the min-
imum stability factor strategies are no longer viable in this case. The adaptive RBF

Fig. 8 Test 2. Approximation of the stability factor βA
h (μ) as function of μ2, obtained running the lin-

earized SCM algorithm with μ1 = 100 fixed. Despite the low variation of βh(μ), SCM requires many
iterations to converge (indeed J = 17)
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Fig. 9 Test 2. Top: RBF interpolant βI (μ), initial coarse grid (magenta) and interpolation points (black)
selected by the adaptive procedure. Bottom: relative error between the stability factor βh(μ) and its RBF
interpolant

interpolant represents the only chance to obtain, with a reasonable (and somehow
predictable) computational effort, a satisfactory approximation of the stability factor.

We start with a coarse grid of 3 × 3 × 3 uniformly distributed interpolation points,
and then we let the adaptive procedure select additional 18 samples. We report in
Fig. 11 the resulting approximation of the stability factor; once again, the adaptive
criterion promotes the selection of interpolation points in the regions featuring the
highest variations of βh(μ). In Fig. 12 we compare the stability factor and the inter-
polant βI (μ) in the setting of the first test case, i.e. as functions of μ1, with μ2 = 1

Fig. 10 Test 2. Convergence of the L∞(�test) relative error between βh(μ) and βI (μ) with respect to the
number of interpolation points
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Fig. 11 Test 3. Slices of the adaptive RBF interpolant βI (μ) for different values of μ3; we report the
initial full factorial grid (magenta) of 3 × 3 × 3 points and the 18 interpolation points (black) selected by
the adaptive procedure

and μ3 = 10 fixed; in the same figure we also report the interpolant obtained using
20 more points adaptively selected.

Once again, the adaptive procedure correctly selects the interpolation points in
the most varying regions, so that a tight approximation can be easily obtained with
a moderate computational effort. As a matter of fact, we experienced that the lin-
earized SCM algorithm tends to select control points μ∗ from subregions of D where
the PDE solution (as well as the corresponding eigenpair) – rather than the stability
factor – is more sensitive to changes in the parameters. On the other hand, the adap-
tive interpolation is only affected by the parametric response of the stability factor,
enhancing the computational efficiency of this latter.

Fig. 12 Test 3. RBF interpolant βI (μ) as a function of μ1, with μ2 = 1 and μ3 = 10 fixed (as in the
setting of the first numerical test). We compare the adaptive RBF interpolants obtained using 45 (dashed
blue line) and 65 (red line) interpolations points (in the whole parameter space) w.r.t the true stability
factor βh(μ). Note that none of the interpolation points lies along the (μ1, 1, 10) line
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Fig. 13 Sketch of the expanding channel geometry: here we fix l1 = 1, l2 = 30, h1 = 0.5, h2 = 2
(yielding an expansion ratio h2/h1 = 4). Coloring is given by the velocity field magnitude obtained for
Re = 60

7 Approaching a singular point: the channel expansion case

In order to show the robustness of the adaptive interpolation strategy, we tackle
a limit-case problem where multiple steady state solutions coexist as the result
of a symmetry-breaking pitchfork bifurcation. In particular, we consider a two-
dimensional laminar flow through a channel featuring a sudden expansion, whose
geometry and boundaries are reported in Fig. 13. We define the Reynolds number
as Re = Uh1/ν, where h1 is the inlet height, while the characteristic velocity is
U = 2/3 max g, being g = [4h−2

1 (h1/2 − y)(h1/2 + y), 0]T the inflow profile. We
consider as parameter the Reynolds number μ1= Re, so that ν = 2h1/(3μ1).

At very low Reynolds numbers the flow remains symmetric with separation
regions of equal length on both channel walls. Increasing the Reynolds number the
separation length increases too, and at a critical value μ1 = μ∗

1 one recirculation
region grows while the other shrinks. This symmetry breaking occurs as the result of
a pitchfork bifurcation in the solution of the Navier-Stokes equations [9, 11], i.e., for
μ1 > μ∗

1 two stable (asymmetric) solutions and one unstable (symmetric) solution
coexist (see Fig. 14). In correspondence of μ1 = μ∗

1 the problem becomes ill-posed,
the tangent matrix is singular and therefore the stability factor vanishes.8

We initialize the interpolation procedure on a coarse grid of 4 uniformly dis-
tributed interpolation points, yielding a very rough approximation of the true stability
factor (that is, unaware of the bifurcation, see Fig. 14). Then, our adaptive algo-
rithm, selects 16 additional interpolation points in order to reach a maximum budget
of 20 points. Among them, the one corresponding to μ∗

1 ≈ 36.25 is discarded since
the solver does not reach convergence (thus indicating proximity to the bifurcation
point). Moreover, since we use as initial guess for the Navier-Stokes solver the solu-
tion of the corresponding Stokes equations, we obtain convergence to the symmetric
solution for the entire range of Reynolds numbers considered. Thus, for μ1 > μ∗

1, the
computed stability factor is the one corresponding to the unstable branch of solutions.

Once again, we highlight the efficacy of the adaptive criterion in selecting the
interpolation points in the most varying region of the parameter space - that is, in the
proximity of the bifurcation point. Thus, we obtain a reliable approximation of the

8From the computational standpoint, since the behavior of the unstable flow may be sensitive to the dis-
cretization error, we have employed a fine mesh made of 39 222 triangular elements, obtained as the
outcome of a suitable mesh convergence study.
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Fig. 14 Channel expansion case: initial interpolation on a coarse grid of 4 points (blue dashed line) and
results obtained with the adaptive RBF strategy (red line)

stability factor even in this limit-case scenario, still entailing a moderate computa-
tional effort. Therefore, this heuristic strategy proves also to be viable when aiming
at the detection of bifurcations points.

8 Furher remarks and conclusions

In this paper we have developed some heuristic strategies for the rapid and reli-
able approximation of stability factors related to parametrized, inf-sup stable,
(quadratically) nonlinear operators. These strategies feature a relevant novelty, being
completely uncoupled to the generation of the reduced approximation space. After
providing a suitable theoretical framework, we have developed a linearized version
of the Successive Constraint Method. However, the rather expensive offline stage
of this procedure might compromise the efficiency of the whole reduction process.
Not only, its convergence shows to be rather slow already when dealing with few
(p = 2, 3) parameters, as shown by the numerical results presented in this work. For
these reasons, we have proposed some alternative heuristic strategies to approximate
parametrized stability factors in a more efficient way. They are based on the con-
struction of suitable radial basis interpolants, where the choice of the interpolation
points is performed according to a greedy algorithm.

We have tested the proposed strategies on some numerical cases related to the
approximation of 2D Navier-Stokes flows that depend on both physical and geo-
metrical parameters. Our results are quite promising, in terms of both computational
efficiency and reliability of the approximated lower bounds. Not only, we have
assessed the behavior of the interpolation-based strategy also in the proximity of a
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bifurcation point. Since the proposed heuristic strategies are valid also in the case
of more general nonlinear (i.e., other than quadratic) operators, we expect to exploit
them in order to obtain more efficient error estimates for a wider range of problems
in the near future.
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Appendix: Proofs of theoretical results

A.1 Proof of Proposition 2

From the definition (6) of dA(·; μ)(·, ·) and the affine decomposition (12), we have
that

dA(u(μ); μ)(v,w) − dA(u(μ∗); μ∗)(v,w)

=
Qa∑

q=1

[�a
q(μ) − �a

q(μ∗)]aq(v,w)

︸ ︷︷ ︸
(I)

+
Qc∑

q=1

�c
q(μ)dq(u(μ), v,w) −

Qc∑

q=1

�c
q(μ∗)dq(u(μ∗), v,w)

︸ ︷︷ ︸
(II)

.

The first term can be easily bounded as

|(I)| ≤ QaLa|μ − μ∗| γ̄a‖v‖V ‖w‖V , (55)

where La = maxq=1,...,Qa L
q
a , being the L

q
a ’s the Lipschitz constants of the functions

�a
q(·), while γ̄a = maxq=1,...,Qa γ

q
a , being the γ

q
a ’s the continuity constants of the

bilinear forms aq(·, ·). Let us now rewrite the second term as

(II) =
Qc∑

q=1

[
�c

q(μ)−�c
q(μ∗)

]
dq(u(μ), v, w)+

Qc∑

q=1

�c
q(μ∗)dq(u(μ)−u(μ∗), v, w),

which can be bounded as

|(II)| ≤ Qc Lc |μ − μ∗| γ̄d ‖v‖V ‖w‖V ‖u(μ)‖V + Qc Mc
� γ̄d ‖v‖V ‖w‖V ‖u(μ) − u(μ∗)‖V .

Here Lc = maxq=1,...,Qc L
q
c , being the L

q
c ’s the Lipschitz constants of the functions

�c
q(·), γ̄d is the larger among the continuity constants of the trilinear forms dq(·, ·, ·),

and
Mc

� = max
μ∈D

max
q=1,...,Qc

�c
q(μ).
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Since the solution u(μ) of problem (3) is bounded for every μ ∈ D – thanks to Eq. 16
– and Lipschitz continuous with respect to μ (see Proposition 1), there exist positive
constants Ku and Lu such that

‖u(μ)‖V ≤ Ku, ‖u(μ) − u(μ∗)‖V ≤ Lu|μ − μ∗|, (56)

uniformly in D. Therefore,

|(II)| ≤
(
LcKu + Mc

�Lu

)
Qc γ̄d |μ − μ∗|‖v‖V ‖w‖V . (57)

Combining (55) and (57), in the end we obtain (17) with constant

C = QaLaγ̄a + Qcγ̄d (LcKu + Mc
�Lu).

Furthermore, we have

‖T μw − T μ∗
w‖2

V = (T μw − T μ∗
w, T μw − T μ∗

w)V

= dA(u(μ); μ)(w, T μw − T μ∗
w) − dA(u(μ∗); μ∗)(w, T μw − T μ∗

w)

≤ C|μ − μ∗| ‖w‖V ‖T μw − T μ∗
w‖V ≤ C

β(μ∗)
|μ − μ∗| ‖T μ∗

w‖V ‖T μw − T μ∗
w‖V

by exploiting (17) and (11), from which we obtain,

‖T μw − T μ∗
w‖V ≤ C

β(μ∗)
|μ − μ∗| ‖T μ∗

w‖V ∀w ∈ V.

A.2 Proof of Proposition 4

In order to show (38), we start by observing that

(T μv, T μ∗
v)V = (T μv − T μ∗

v + T μ∗
v, T μ∗

v)V = ‖T μ∗
v‖2

V + (T μv − T μ∗
v, T μ∗

v)V

= ‖T μ∗
v‖2

V + dA(uh(μ);μ)(v, T μ∗
v) − dA(uh(μ

∗);μ∗)(v, T μ∗
v)

so that

β̃μ∗(μ) ≤ 1 + inf
v∈Vh

|dA(uh(μ);μ)(v, T μ∗
v) − dA(uh(μ

∗);μ∗)(v, T μ∗
v)|

‖T μ∗
v‖2

V

.

In order to bound this quantity, we exploit the result (17) of Proposition 2, which is
valid for any v,w ∈ Vh, too (see e.g. [5, Remark 13.2]). Thus, for any v ∈ Vh,

|dA(v(μ); μ)(v, T μ∗
v) − dA(v(μ∗);μ∗)(v, T μ∗

v)|
≤ C|μ − μ∗|‖v‖V ‖T μ∗

v‖V ≤ C

β(μ∗)
|μ − μ∗|‖T μ∗

v‖2
V ,

so that

β̃μ∗(μ) ≤ 1 + C

β(μ∗)
|μ − μ∗|
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or, equivalently, β̃μ∗(μ) − 1 = O(|μ − μ∗|) as μ → μ∗. In order to show (39), we
first expand

β2
μ∗(μ) = inf

v∈Vh

‖T μv‖2
V

‖T μ∗
v‖2

V

= inf
v∈Vh

(T μ∗
v + (T μv − T μ∗

v), T μ∗
v + (T μv − T μ∗

v))V

‖T μ∗
v‖2

V

= 1 + inf
v∈Vh

(
2
(T μv − T μ∗

v, T μ∗
v)V

‖T μ∗
v‖2

V

+ ‖T μv − T μ∗
v‖2

V

‖T μ∗
v‖2

V

)
.

Thanks to Eq. 18, we have

‖T μv − T μ∗
v‖2

V

‖T μ∗
v‖2

V

≤ C2

β2(μ∗)
|μ − μ∗|2, ∀v ∈ Vh

and by recognizing that

inf
v∈Vh

(T μv − T μ∗
v, T μ∗

v)V

‖T μ∗
v‖2

V

= β̃μ∗(μ) − 1,

we end up with β2
μ∗(μ) = 1 + 2(β̃μ∗(μ) − 1)+O(|μ−μ∗|2) as μ → μ∗. By taking

the square root, using a Taylor series expansion and the fact that O(β̃μ∗(μ) − 1) =
O(|μ − μ∗|) thanks to Eq. 38, we obtain:

√
−1 + 2β̃μ∗ (μ) + O(|μ − μ∗|2) =

= 1 + 1

2

(
2β̃μ∗ (μ) − 2 + O(|μ − μ∗|2)) − 1

8

(
2β̃μ∗ (μ) − 2 + O(|μ − μ∗|2))2 + O(|μ − μ∗|3)

= 1 + (β̃μ∗ (μ) − 1) − 1

2
(β̃μ∗ (μ) − 1)2 + O(|μ − μ∗|2),

so that

βμ∗(μ) = β̃μ∗(μ) + O(β̃μ∗(μ) − 1)2 + O(|μ − μ∗|2), as μ → μ∗.
Finally, by exploiting again (38), we end up with (39).

References

1. Beatson, R., Cherrie, J., Mouat, C.: Fast fitting of radial basis functions: Methods based on
preconditioned GMRES iteration. Adv. Comput. Math. 11(2–3), 253–270 (1999)

2. Biswas, G., Breuer, M., Durst, F.: Backward-facing step flows for various expansion ratios at low and
moderate reynolds numbers. J. Fluids Eng 126(3), 362–374 (2004)

3. Brezzi, F., Rappaz, J., Raviart, P.: Finite dimensional approximation of nonlinear problems. Part I:
Branches of nonsingular solutions. Numer. Math 36, 1–25 (1980)

4. Buhmann, M.: Radial Basis Functions: Theory and Implementations, Cambridge Monographs on
Applied and Computational Mathematics, vol. 12. Cambridge University Press, UK (2003)

5. Caloz, G., Rappaz, J.: Numerical analysis for nonlinear and bifurcation problems. In: Ciarlet, P.,
Lions, J. (eds.) Handbook of Numerical Analysis, Vol. V, Techniques of Scientific Computing (Part
2), pp. 487–637. Elsevier Science B.V (1997)

6. Canuto, C., Tonn, T., Urban, K.: A posteriori error analysis of the reduced basis method for non-affine
parameterized nonlinear PDEs. SIAM J. Numer. Anal 47(3), 2001–2022 (2009)



Heuristic strategies for the approximation of stability factors 1287

7. Chen, Y., Hesthaven, J., Maday, Y., Rodriguez, J.: A monotonic evaluation of lower bounds for inf-
sup stability constants in the frame of reduced basis approximations. C. R. Acad. Sci. Paris, Ser. I 346,
1295–1300 (2008)

8. Chen, Y., Hesthaven, J., Maday, Y., Rodriguez, J.: Improved successive constraint method based a
posteriori error estimate for reduced basis approximation of 2D Maxwell’s problem. ESAIM. Math.
Modelling Numer. Anal 43, 1099–1116 (2009)

9. Cliffe, K., Spence, A., Tavener, S.: The numerical analysis of bifurcation problems with application
to fluid mechanics. Acta Numerica 9(00), 39–131 (2000)

10. Deparis, S.: Reduced basis error bound computation of parameter-dependent Navier-Stokes equations
by the natural norm approach. SIAM J. Num. Anal 46(4), 2039–2067 (2008)

11. Drikakis, D.: Bifurcation phenomena in incompressible sudden expansion flows. Phys. Fluids 9(1),
76–87 (1997)

12. Fornberg, B., Zuev, J.: The runge phenomenon and spatially variable shape parameters in RBF
interpolation. Comput. Math. Appl 54(3), 379–398 (2007)

13. Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations: Theory and algorithms.
Springer-Verlag, Berlin and New York (1986)
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