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Data-Driven Combined State and Parameter
Reduction for Extreme-Scale Inverse Problems

Christian Himpe∗ Mario Ohlberger∗

Abstract

In this contribution we present an accelerated optimization-based ap-
proach for combined state and parameter reduction of a parametrized lin-
ear control system which is then used as a surrogate model in a Bayesian
inverse setting. Following the basic ideas presented in [Lieberman, Will-
cox, Ghattas. Parameter and state model reduction for large-scale sta-
tistical inverse settings, SIAM J. Sci. Comput., 32(5):2523-2542, 2010],
our approach is based on a generalized data-driven optimization func-
tional in the construction process of the surrogate model and the usage of
a trust-region-type solution strategy that results in an additional speed-
up of the overall method. In principal, the model reduction procedure
is based on the offline construction of appropriate low-dimensional state
and parameter spaces and an online inversion step based on the result-
ing surrogate model that is obtained through projection of the underlying
control system onto the reduced spaces. The generalization and enhance-
ments presented in this work are shown to decrease overall computational
time and increase accuracy of the reduced order model and thus allow
an application to extreme-scale problems. Numerical experiments for a
generic model and a fMRI connectivity model are presented in order to
compare the computational efficiency of our improved method with the
original approach.

1 Introduction
Many physical, chemical, technical, environmental, or bio-medical applications
require the solution of inverse problems for parameter estimation and identifi-
cation. This is in particular the case for complex dynamical systems where only
experimental functional data is accessible via measurements. In neurosciences,
a particular application is e.g. the extraction of effective connectivity in neural
networks from measured data, such as data from electroencephalography (EEG)
or functional magnetic resonance imaging (fMRI).
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If a network with many states is considered, the corresponding large-scale in-
verse problem is often only accessible in reasonable computational time if model
reduction is applied to the underlying control system. Moreover, the measured
data is subject to statistic errors such that it is reasonable to apply a Bayesian
inference approach which tries to identify a distribution on the underlying pa-
rameters, rather than computing deterministic parameter values. In the context
of connectivity analysis in neurosciences such an inversion approach has been
established by Friston and his collaborators in recent years under the synonym
Dynamic-Causal-Modeling (DCM) [1]. We in particular refer to [2] and the
references therein for further reading.

In this contribution we will consider model reduction for Bayesian inver-
sion of general linear control systems which in particular includes the above
mentioned application scenario in neurosciences, but also other input-output
systems that may be obtained, for example, in a partial differential equations
setting after discretization.

Control systems usually comprise some internal state (x), allow external
input (u), transform the input and state to observed output (y) and provide
different configurations through parameters (θ). Generally, a control system
therefore consists of a dynamical system with vector field f and an output
functional g. In the finite dimensional case (e.g. after discretization) we may
consider x(t) ∈ RN for t ∈ τ := [0, T ], and a control system given by:

ẋ(t) = f(x(t), u(t), θ), ∀t ∈ τ,
y(t) = g(x(t), u(t), θ), ∀t ∈ τ,

with external input u(t) ∈ RJ , output y(t) ∈ RO and parameters θ ∈ RP .
Naturally, the system is equipped with an initial condition for the state, i.e.
x(0) = x0 ∈ RN .

In this contribution, as a general underlying model, linear control systems
of the following form are considered:

ẋ = A(θ)x+Bu, (1)
y = Cx,

where now, we have neglected the dependence on time for the ease of exposition.
Here, A(θ) ∈ RN×N denotes the parametrized system matrix, B ∈ RN×J an
input matrix , and C ∈ RO×N an output matrix. The matrix A(θ) is fully
parametrized, meaning each component is an individual parameter, thus θ ∈
RN

2

is mapped to the system matrix by:

vec−1 : RN
2

→ RN×N ,

θi 7→ A(i/N,i%N).

These N2 parameters are unknown up to their prior distribution at the time of
reduction, and for models with N >> 1 the number of parameters might make
an estimation prohibitively computationally expensive.
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For bounded input, the systems stability is characterized by the eigenvalues
of A(θ). Hence, the parameters composing A need to be estimated in a manner
that the system remains stable, which can be considered an additional prior
information that needs to be taken into account during the (Bayesian) inversion.

Reducing the parameter space, e.g. the number of independent connections
in a brain connectivity model, before the parameter estimation, can lower the
complexity of optimization significantly. Alternatively, reducing the state space,
in our example the number of brain regions or nodes, cuts the computational
cost of the necessary integrations during the optimization. The resulting reduced
order model approximates the original model up to an error introduced by the
reduction procedure. In this contribution, a combined reduction of state and
parameter space is presented, allowing the swift inversion of large-scale and even
extreme-scale parametrized models.

The inversion procedure incorporating model reduction is usually arranged
in two steps. In a first step, called the offline phase, the underlying parametrized
model is reduced; here in states and parameters. Second, in an online phase,
the reduced models parameters are estimated to fit the observed experimental
data.

In Bayesian inverse problems [3, 4] we aim at estimating a probability dis-
tribution of the unknown parameters instead of the parameter values directly.
If we denote the given data by yd, the inverse approach computes the so called
posterior distribution, P (θ|yd), i.e. the probability distribution of the param-
eters under the given data. The basic underlying mathematics to achieve this
goal is Bayes’ rule:

P (θ|yd) =
P (yd|θ)P (θ)

P (yd)
;

with the prior distribution P (θ), reflecting the preliminary knowledge about the
parameter distribution. P (yd|θ) is the likelihood that we observe yd, given a
parameter vector θ. The likelihood is estimated in the online phase and requires
forward integrations of the underlying dynamical system. P (yd) is the model
evidence - the probability of the data.

Up to the normalizing factor P (yd), the posterior distribution is proportional
to P (yd|θ)P (θ), i.e.

P (θ|yd) ∝ P (yd|θ)P (θ).

In our problem setting, the observed data yd is presumed to contain some
additive noise ε, i.e.

y(θ) + ε ≈ yd.

In the scope of this work Gaussian noise ε = N(0, v) is assumed. Thus, in
this fully Gaussian setting, all probability distributions can be specified in
terms of mean and covariance. Therefore, given a prior Gaussian distribu-
tion P (θ) = N(κ,K) and some experimental data yd, a distribution propor-
tional to the posterior distribution can be computed by the Gaussian likelihood
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P (yd|θ) = N(λ,Λ) and prior:

P (θ|yd) ∝ exp(−1

2
‖y(θ)− yd‖2Λ−1 −

1

2
‖θ − κ‖2K−1).

Then, the Maximum-A-Posteriori (MAP) estimator is given by:

θMAP = argmax exp(−1

2
‖f(θ)− yd‖2Λ−1 −

1

2
‖θ − κ‖2K−1)

= argmin

(
1

2
‖f(θ)− yd‖2Λ−1 +

1

2
‖θ + κ‖2K−1

)
which is computed in the online-phase after we have constructed a suitable
reduced order model.

Model reduction of parametrized control systems has been investigated in
recent years through various approaches. Early interpolation ideas were pre-
sented in [5] as well as moment matching techniques e.g. in [6]. Some recent
approaches comprise interpolatory schemes with sparse grids [7], superposition
of locally reduced models [8] or matrix interpolation [9, 10]. Another approach
comes from the reduced basis techniques. Here, in particular the POD-Greedy
algorithm has been established [11, 12] in the context of parametrized partial
differential equations and transfered to dynamical systems in [13]. We also re-
fer to [14] for an application of reduced basis model reduction in an Bayesian
inverse setting.

While all the above mentioned approaches concentrate on state space reduc-
tion only, there are also very recent approaches towards simultaneous reduction
of state and parameter spaces in the context of large-scale inverse problems.
Concerning gramian-based combined parameter and state reduction we in par-
ticular refer to [15] and the references therein. In this contribution, however, we
are concerned with optimization-based combined state and parameter reduction.
Our approach is mainly based on [16] where a procedure to concurrently reduce
state and parameter spaces of linear control systems in a Bayesian inversion
setting has been introduced. The iterative improvement of a projection as used
in [16] is also used in [17] from a gramian-based perspective. This method is
related to the state reduction from [18], the parameter reduction from [19] and
is generally related to the Hessian-based model reduction ansatz as described in
[20]. We also refer to [21] for a corresponding goal-oriented optimization based
approach.

Starting from the ideas in [16, 21] we base our approach in this contribution
on a generalized data-driven optimization functional and present enhancements
of the reduction procedure using ideas from [11, 22].

The article is organized as follows. In section 2, a short review of the model
reduction procedure from [16] is given. In section 3, we first take into ac-
count a data-driven optimization functional, and then present enhancements to
the existing approach that result in a reduction of offline computational time.
Section 4 summarizes the implementation of the presented algorithm and its
extensions. Finally, we evaluate the resulting model reduction approach in nu-
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merical experiments. The methods are tested and compared on a generic model
and an fMRI connectivity model for synthetic neuronal activity in section 5.

2 Combined State and Parameter Reduction
In this section, the method from [16] is briefly reviewed and annotated. For
large-scale inverse problems, model reduction becomes relevant to ensure rea-
sonable optimization durations. Commonly, Galerkin or Petrov-Galerkin pro-
jections are employed for the low-rank projections of state [20] or parameter [19]
spaces. The simultaneous reduction of state and parameter space is based on
Galerkin projections V , with:

V TV = 1 .

The reduced model is of lower order M � N than the original full-order
model. For the reduced states xr ∈ RM the associated low-rank control system
is derived from the original models components:

ẋr = Ar(θr)xr +Bru,

yr = Crxr,

with a reduced initial condition xr,0 = V Tx0 and the reduced components:

θr = Pθ ∈ RM
2

,

Ar(θr) = V TA(PT θr)V ∈ RM×M ,

Br = V TB ∈ RM×J ,

Cr = CV ∈ RO×M .

The required state projection V ∈ RM×N and parameter projection P ∈ RM
2×N2

are determined iteratively. This iterative assembly of the projection matrices
is based on a greedy algorithm [23, 19], that optimizes the error between the
high-fidelity original and the low-dimensional reduced model. In each iteration
a set of reduced parameters is determined by maximizing the error (see [20]) be-
tween the original and the reduced models output using the following objective
function

J(θ) = α∆(yr(θr))− β‖θr‖2K−1

with suitable weights α, β ∈ [0, 1]. Here ∆(yr(θr)) denotes a measure for
the error in the output between the reduced model evaluated at the reduced
parameter and the full underlying model with the high dimensional param-
eter. In the original approach [16] the output error measure is chosen as
∆(yr(θr)) = ‖yr(θr) − y(θ)‖22. The regularization in the second term utilizes
the prior covariance matrix K ∈ RN

2×N2

. In case the covariance matrix K
is diagonal, the inverse of the covariance matrix, the precision matrix, K−1
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can be computed by inverting each diagonal component of K. Thus, the sec-
ond summand simply regularizes this maximizer in terms of the provided prior
distribution:

‖θr‖2K−1 = (Pθr)
TK−1(Pθr),

which is a weighted 2-norm. This type of regularization makes use of the prior
covariance and thus penalizes parameters of low probability with respect to the
prior information.

The presented model order reduction method relies on optimization to fit
the reduced parameters optimally. As in [16] and [20] a greedy method can
be employed. Yet, one is not restricted to the output error in the 2-norm.
Alternatively, the least-absolute-deviation method (1-norm minimization), or
the least-maximum-deviation (∞-norm minimization) can be used, i.e.

∆(yr(θr)) = ‖yr(θr)− y(θ)‖1 or ∆(yr(θr)) = ‖yr(θr)− y(θ)‖∞.

More generally, each p-norm can be used inside the objective function, which
results in a generalized objective functional with ∆(yr(θr)) = ‖yr(θr) − y(θ)‖pp
for some p ∈ [1,∞]. The regularization term remains unchanged, since it is
solely based on the prior distribution. However, since the evaluation of the
output error in the p-norm requires high dimensional solves in each step of the
optimization loop, it is in general advisable to replace the true output error by
some a posteriori error estimator, as e.g. derived and suggested in [11, 24]. Such
an a-posteriori error estimator can be computed more efficiently since it does
not require full-order time integrations.

Each iteration requires computing the reduced model, based on the last
iterations’ projection matrices {V, P}, as well as the greedy optimization of J
based on the integration of the full and the reduced model:

θI = argmax J(θ)

= argmax ∆(yr(θr))− β‖θr‖2K−1

= argmin −∆(yr(θr)) + β‖θr‖2K−1 .

The resulting reduced parameters constitute the next basis vector being orthog-
onalized1 into the parameter projection P :(

PI , θI
)

= QR

⇒ PI+1 = Q.

As the dynamic system is linear and time-invariant, a simulation of such
1The orthogonalization of state and parameter projection can be accomplished by various

algorithms for example Gram-Schmidt, Householder-Reflections, Givens-Rotation or Singular
Value Decomposition
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system is equivalent to solving a system of linear equations [20]:
1

A(θ) 1
. . . . . .

A(θ) 1



x0

x1

...
xT

 =


Bu(0)
Bu(1)

...
Bu(T )

 . (2)

Some selection x(θI) of the solution time series x(θI) is then incorporated into
the state projection by orthogonalization:(

VI , x(θI)
)

= QR

⇒ VI+1 = Q.

In [20] POD-modes are selected as x(θI) to be included into the projection. A
more simple but numerically very efficient approach would be the mean of the
time series, as used in [25] and [26]:

x =
1

T

∫ T

0

x(t)dt,

and in the discrete case:

x =
∆t

T

T∑
i=1

xi.

In this contribution, we suggest to select x(θI) from a truncated POD of the
orthogonal projection error in the time series x(θI) with respect to the reduced
state space of the preceding iteration. This approach follows the idea of the
POD-Greedy procedure proposed in [11].

Using the projections P and V , the next iteration is performed.
The parameter projection P can be initialized with a constant vector as

described in [16], yet a more natural choice is the prior mean, assuming it is
not identical to zero, θprior 6≡ 0. A prior information that is usually implicitly
assumed is the underlying systems stability. Hence, without any other prior
information one could at least choose θprior = N(−1N ,1N×N ) as uninformative
priors, suggesting stability:

P0 = θ0 = vec(−1N×N ).

From this initial choice for the parameters the full order system is sampled and
the state projection V is initialized, for example, by the mean over time of the
states:

V0 = x(θprior).

In summary, the complete reduction algorithm is given by the pseudo-code
listing of algorithm 1.
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Algorithm 1 Original Combined State and Parameter Reduction
θ0 ← θprior
P0 ← θ0

V0 ← x(θ0)
for I=1:R do

Ar(θr)← VIA(PIθr)VI
Br ← VIB
Cr ← CVI
θI ← argmax J(θI−1)
PI+1 ← orth(PI , θI)
VI+1 ← orth(VI , x(θI))

end for

In algorithm 1, x(θI) describes a snapshot of the states for parameters θI .
x(θI) corresponds to the selection from the states over time and the orthmethod
orthogonalizes a given matrix. The argmax method represents an optimization
procedure, which in the scope of this work is given by, but is not restricted to,
an unconstrained optimization.

A reconstruction, after the inference, of the parameters, using the above
described reduction procedure of states and parameters, is also accomplished by
the computed projections V and P . Due to the use of Galerkin projections, the
inverse projection of P and V is given by their transpose P−1 = PT , V −1 = V T ,
thus:

θr,prior = Pθprior ≈ PT θprior,

Sr,prior = V TSpriorV ≈ V SpriorV
T .

With this combined reduction of parameter and state space, using the
parameter projection P and the state projection V , improves the inversion
procedure not only by shortening the integration durations due to the state
reduction, but also by decreasing the number of optimizable parameters.

3 Incorporating Data-Misfit and Trust-Region
Methods

In this section we first include experimental data into the model reduction proce-
dure. Second, a trust-region like approach is presented to shorten the duration
of the reduced order model construction. These are aimed to accelerate the
assembly of the model reducing projections P , V and thus shorten the overall
offline phase.

3.1 Incorporating Data-Misfit
Inverse problems require some experimental data yd to which a models param-
eters are fit during the inversion in the online phase. We thus incorporate the
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data-misfit ‖yr−yd‖ into the objective functional in the combined reduction pro-
cedure during the offline phase. This is motivated by two arguments. While in
the original approach, the surrogate model is constructed to be accurate within
the whole parameter space, it can now be tailored towards the parameter ranges
that are related to the solution of the inverse problem, which might result in
lower dimensional surrogate models that lead to more accurate results in the
inversion. If only data-misfit is considered, the objective functional would read
(cf. [21])

Jd(θ) = −‖yr(θr)− yd‖,

where ‖ · ‖ denotes a suitably chosen norm. Note, that the usage of the data-
misfit will save computational time during the offline phase, as no full order
integrations of the model is needed to evaluate the objective functional.

The resulting optimization problem will most likely be ill-posed. Therefore,
we will keep the regularization from eq. 2. Furthermore, for the solution of the
inverse problem it is advisable to prepare the reduced model in the offline phase
in such a way that also parameter ranges in the neighborhood of the optimal
parameters associated with the measured data are taken into account. Our
suggested generalized objective functional Ĵp is a combination of Jp with the
data-misfit Jd. Using weighting parameters α, β, γ; we thus obtain

Ĵp(θ) = α∆p(yr(θr))− β‖θr‖2K−1 − γ‖yr(θr)− yd‖pp.

A possible choice that equilibrates the influence of all three terms would be
α = β = γ = 1/3. As a result, the reduced models parameters are determined
to encourage matching the reduced model to the provided experimental data
instead to a general reduced model with the given priors. To further enforce the
fitting of the reduced model to the measured output, we could choose β = γ =
1− α with α very small or even α = 0 which results in an objective functional
without the main maximization term of eq. 2, i.e.

J̃p(θ) = −β‖θr‖2K−1 − γ‖yr(θr)− yd‖pp.

Apart from an expected higher accuracy in matching the experimental data,
which is the ultimate goal in a later online phase of the inversion procedure,
this massively lowers the computational load, since no sampling of the full order
model is required. Yet, due to the usage of specific experimental data in the
reduction procedure, the resulting reduced model is only valid for fitting this
particular data.

3.2 Trust-Region Strategy
The original model reduction algorithm keeps the dimension of the reduced pa-
rameter vector fixed and iterates until convergence or predetermined reduced
order. Yet the dimension of the to-be-estimated parameter vector largely deter-
mines the offline duration, due to the required integrations during optimization
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in each iteration. This can be counteracted by a trust-region like strategy,
which is loosely related to [22] and [27], where trust-region methods are applied
to POD based model reduction. In this contribution the basic trust-region al-
gorithm ([28, Ch. 6]) is simplified to allow a swift computation by removing the
acceptance step. Due to the optimization during each iteration of the reduction
process, which itself iterates until some acceptable bound is reached, an extra
acceptance step is not required. Since the dimension of the parameter vector θ̃
varies over iterations, so for the Ith iteration:

dim(θ̃I) = I,

and an additional mapping from the trust-region parameter vector θ̃I to the full-
order parameter vector θI is required. This mapping enables the orthogonaliza-
tion of the current iterations parameter vector into the parameter projection.
A simple mapping is given by:

ϕ : RI → RN
2

,

θ̃I 7→


θ̃I
0
...
0

 = θI .

For the next iteration I + 1, the parameter vector is extended by:

θ̃I+1 =

(
θ̃I
0

)
∈ Rdim(θ̃I)+1 .

The trust-region radius is initially set to dimension one, thus instead of initial-
izing the parameter vector with a constant vector or the prior means, it is set
to (scalar) one:

θ̃0 = 1 ∈ R .

Yet, the first column of the parameter projection is still initially set to the prior
means:

P0 = (x(θprior))
T ∈ RN

2

.

Then, in the first iteration of the reduction the (scalar) parameter θ0 is computed
which approximates the full system A(θ) best,

θ̃1 = argmax(J(θ)) ∈ R

⇒ P1 = orth
(
P0, ϕ(θ̃1)

)
.

In each subsequent iteration an additional dimension of the parameter space is
added to the trust-region radius. For example, the second iteration optimizes
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two parameters, the third optimizes three, etc until the given reduced parameter
space dimension is reached.

At each instance the full parameter vector is required, it is projected by the
inverse (which equates to the transposed, due to the orthogonalization) of the
parameter projection P :

θ ≈ P−1ϕ(θ̃r) = PTϕ(θ̃r).

Hence, starting with a single scalar parameter, that is initialized with 1, the re-
duced parameter vector is assembled by iteratively incrementing the dimension.

With this enhancement, in each iteration an optimization problem of lesser
or (once only) equal dimension than the original algorithm. Due to the smaller
size of the optimization problem the offline time is massively lowered.

4 Implementation
The trust-region enhancement, together with the data-misfit enhancement from
section 3.1 are modularly included into the algorithm; listing 2 showcases the
new algorithm.

The algorithm from code listing 2 is implemented under the name optmor -
optimization-based model order reduction. The source code is available from:
http://j.mp/optmor under an open-source license and is compatible with OC-
TAVE and MATLAB. For compatibility reasons the estimation algorithm em-
ployed during the reduction is an unconstrained optimization, but can easily be
replaced with a constrained optimization function ([19], [16]). To remain con-
figurable the here described enhancements can each be used optionally; either
individually or in combination. Additionally, the usage of a source term F and
a feed-forward matrix D is implemented as well, allowing models of the form:

ẋ = A(θ)x+Bu+ F,

y = Cx+Du,

to be reduced.
The interface of the optmor program is given by:

{P,V} = optmor(p,A,B,C,D,F,T,R,X,U,S,q,y);

with p being a vector containing the parameter prior mean. The argument
A is a function handle to a mapping from a given parameter vector to a system
matrix using the signature: A = @(p). If A = 1 the inverse mathematical
vectorization map, vec−1, will be assumed as parameter mapping. B is the
input matrix, C is the output matrix, D is the feed-forward matrix and F is the
source term. The vector T is a three component vector holding the start time,
time step and end time, while the scalar R holds the targeted reduced dimension.
Furthermore, the vectorX represents the initial value and the matrix U provides
the input or control, for each time step. The argument S holds the associated

11
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if trust-region then
θ0 ← 1

else
θ0 ← θprior

end if

x(θ0)←


pod(x(θ0))

mean(x(θ0))

pod-greedy(x(θ0))
P0 ← θprior

V0 ← x(θ0)
for I=1:R do

Ar(θr)← VIA(PIθr)VI
Br ← VIB
Cr ← CVI

J ←


Joriginal(α, β; θ)

Jdata-driven(α, β, γ; θ)

Jdata-only(β, γ; θ)

θI ← argmax J(θI−1)
if trust-region then

θI ← ϕ(θI)
end if

x(θI)←


pod(x(θI))

mean(x(θI))

pod-greedy(x(θI))

PI+1 ← orth(PI , θI)
VI+1 ← orth(VI , x(θI))

end for

12
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prior covariance matrix; for S = 1 a unit covariance matrix is assumed. q is a
six component vector holding the configurable options. Optionally, y may hold
experimental output time series, required for the data-misfit enhancements. The
algorithm returns two projection matrices, P and V , for parameter and state
projections respectively.

For selecting x(θ) from a snapshot also the POD-Greedy method [11] using
the error system is implemented. As described above, in [20] a system of linear
equations is solved to simulate the forward model. Alternatively, a single-step
solver, like a Runge-Kutta, or multi-step solver, like Adams-Bashforth, can be
utilized to solve the system. An advantage of using such solvers is the lesser
memory requirements opposed to solving a linear system with dimension being
the product of states and time-steps.

5 Numerical Results
To demonstrate the capabilities of this approach in combined state and param-
eter reduction, two types of models are tested. First, a generic control system
as described in eq. 1 is tested. Second, the combined reduction is applied to a
linearized system for the inversion of fMRI data to deduce connectivity between
brain regions [29, 2]. Lastly, an extreme-scale problem is tested as well as an
evaluation of the effectivity of the reduction method for different configurations.

5.1 Online Phase
In the online phase, the estimation of the parameter (distribution) is accom-
plished by a least-squares minimization of the residual between reduced order
model output and experimental data. The objective function employed in the
optimization of the full-order model is given by:

Jonline(θ) = ‖y(θ)− yd‖22 + ‖θ‖2K−1 ,

whereas for the reduced models an adapted objective function of the following
form is utilized:

J̃online(θr) = ‖yr(θr)− yd‖22 + ‖PT θr‖2K−1 .

Here, the parameter estimation is performed with an unconstrained (least-
squares) optimization with regularization for the full-order and reduced order
models.

5.2 Generic Linear Control System
The optmor implementation is tested with a generic linear control system. As
mentioned above, we will assume A(θ) is fully parametrized, hence θ ∈ RN

2

.
The number of states is varied with N = {9, 16, 25, 36}, and thus P = N2;
while the number of inputs and outputs is fixed to I = O =

√
N . Systems

13
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with these dimensions are generated randomly, but with ensured stability2 for
each set of experiments. Input u(t) will be given by a simple delta impulse,
while the source term F and the feed-forward matrix D are set to zero. The
prior mean of the parameters is set to −1 on the diagonal, 0 off the diagonal
of A(θ) ⇒ θprior = vec(−1), thus ensuring initial stability of the system; while
the prior covariance is set to the unit matrix S = 1. For all the reductions the
number of iterations is fixed to the number of outputs, which allows comparison
of the different combined reduction variants of the same reduced order. For
the online phase and the data-driven extensions, simulations using the original
parameters with added Gaussian noise are used. The source code, used to
conduct the experiments below, can be found at http://j.mp/optmor.

As a baseline, the full-order model is estimated without employing any re-
duction. Since in this case the full-order models (high-dimensional) parameters
are approximated, there is only an online phase.

Next, the presented data-driven (section 3.1) and trust-region (section 3.2)
extensions are tested and compared individually and in combination for this
parametrized linear control system. In figure 1 the offline and online durations as
well as the relative error in outputs is shown for the enhancements in comparison
to the full-order optimization and the original reduction method.
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Figure 1: Offline time, online time and relative error for the original, data-
driven, trust-region and combined data-driven/trust-region reductions.

The additional data-misfit term, of the data-driven enhancement, increases
the offline phase duration, but reduces the relative error and online time. The
newly introduced trust-region enhancement greatly reduces offline phase dura-
tion as predicted and also to a lesser degree the online time compared to the

2For the real part of the eigenvalues of the system matrix holds: Re(λ(A(θ))) < 0
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State Dimension Speed Up (vs. Full-Order) Speed Up (vs. Original)
9 19.71 8.33
16 43.31 4.09
25 195.17 54.04
36 156.22 127.00

Table 1: Effectivity of the exclusive combined data-driven and trust-region
method for the generic model.

original and data-misfit method. Compared to the original methods’ [16] rela-
tive error, the relative error behaves slightly better. Combining the data-driven
and trust-region approach significantly shortens the offline phase, yielding a
slightly higher relative error compared to the data-driven method but below the
original algorithms error. Lastly, excluding the minimization term from the ob-
jective function (α = 0), again reduces the offline time while not affecting online
time and relative error. Thus, especially the combination of the data-driven and
trust-region enhancements massively accelerates the reduction process.

Assessing the effectivity of the reduction, using the combined data-driven
and trust-region approach, in terms of total (offline and online) time compared
to the full-order solution and the original algorithm results in speed-ups of up
to two orders of magnitude as listed in table 1.

5.3 fMRI Connectivity Model
A method to infer connectivity for different regions of the brain based on exper-
imental data recorded by fMRI or fNIRS is known as Effective Connectivity [2].
There are two sub-models composing the underlying model of Effective Connec-
tivity which is a concept that is closely related to Dynamic-Causal-Modeling [1].
The dynamic sub-model represents the network of the observed brain regions
by a controlled linear system:

ẋ = A(θdyn)dynx+Bdynu

The forward sub-model converts each state xi of the dynamic sub-model
to the observed measurements. In the case of fMRI observation the forward-
submodel is given by the nonlinear hemodynamic model [1]:

ṡi = xi −
1

τs
s− 1

τf
(fi − 1),

ḟi = si,

q̇i =
1

τ0
(
fi(1− (1− E0)

1
fi )

E0
− qi

v1− 1
α

),

v̇i =
1

τ0
(fi − v

1
α
i ),

yi = V0(a1(1− qi)− a2(1− vi)),
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with the parameters {τs, τf , τ0, E0, α, V0, a1, a2}. As the parameters {V0, a1, a2}
are not part of the dynamic system they will be excluded from the reduction
and estimation and remain fixed at their prior value.

In the scope of this work a linearized fMRI forward sub-model from [29] is
utilized to be applicable in a fully linear setting:

Afor,i =


− 1
τs

1
τf

0 0

1 0 0 0
0 1

τ0E0
(1− (1− E0)(1− ln(1− E0))) − 1

τ0
1−α
τ0α

0 1
τ0

0 − 1
τ0α

 ,

Bfor,i =
(
1 0 0 0

)T
,

Cfor,i =
(
0 0 −a1V0 a2V0

)
,

ẏi = Afor,i +Bfor,ixi,

zi = Cfor,iyi.

Thus, each state of the common dynamic sub-model, given by a linear control
system, has an individual SISO control system attached of which the output
reflects fMRI measurements.

The dynamic and the linearized forward sub-models need to be rearranged
to fit the linear control system framework:

Ẋ =


Adyn 0 0 . . . 0
δ1,1 Afor,1 0
δ1,2 0 Afor,2
...

. . .
δ1,n Afor,n




x
y1

y2

...
yn

+


Bdyn

0
0
...
0

u,

Z =

0

Cfor,1
. . .

Cfor,n




x
y1

...
yn

 ,

with δij being the Kronecker matrix, whose only nonzero element is at i, j.
For the following experiments the dynamic sub-model’s control system is

embedded into the fMRI connectivity model. Since the inference targets the
connectivity parameters, each region is assumed to have the same hemody-
namic parameters [1]. The number of regions is varied with n = {9, 16, 25, 36},
which leads to N = 5n. Thus, P = n2 +5; and as each region is potentially able
to receive external input the number of inputs equals the number of regions.
A connectivity matrix Adyn is generated randomly, but stable and input u(t)
will be given by an initial delta impulse. The prior mean of the parameters
is set to −1 on the diagonal, 0 off the diagonal, thus ensuring initial stability
of the system (θprior = −1); while the prior covariance is set to the unit ma-
trix S = 1n2 . For the hemodynamic parameters, the prior values assumed for
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Parameter Mean Covariance
τs 0.65 0.001
τf 0.41 0.001
τ0 0.98 0.001
E0 0.34 0.001
α 0.32 0.001
V0 1.00 0
a1 1.00 0
a2 1.00 0

Table 2: Prior values for hemodynamic parameters, taken from [1].

{τs, τf , τ0, E0, α, V0, a1, a2} are listed in table 2. In the following applied reduc-
tion methods the POD-Greedy state selection will be used, since it seems the
most robust for this model.

For all the reductions the number of iterations is fixed to the number of
regions, which allows comparison of the different combined reduction variants
of the same reduced order. Figure 2 depicts the results using the same setup as
for the previous comparison.
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Figure 2: Offline time, online time and relative error for the original, data-
driven, trust-region and combined data-driven/trust-region reduction for the
fMRI connectivity inference.

In the offline phase the performance is similar to the generic network, again
the original reduction method and data-misfit enhancement visibly consume
more time due the relatively higher state dimension. Here, the data-driven
method provides a low relative error, while the original algorithm may produce
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State Dimension Speed-Up (vs. Full-Order) Speed-Up (vs. Original)
45 7.42 3.23
80 107.50 10.16
125 119.43 33.06
180 151.81 122.90

Table 3: Effectivity of the exclusive combined data-driven and trust-region
method for the connectivity model.

Method Offline Time [s] Online Time [s] Relative Output Error
Full Order - - -
Original - - -

Data-Driven - - -
Trust+Data 1143.51 20.00 0.0151

Trust+Data-Only 276.74 22.31 0.0151

Table 4: Offline time, online time and relative error of reduced output using
optimized reduced parameters.

outliers with high errors. For these larger models the combination of trust-region
and data-driven enhancements results in shorter offline and online phases, yet
with higher relative errors. Again, the exclusive use of data-driven and trust-
region (α = 0) extensions further reduces the offline time without increasing
online time or relative error.

Inspecting the total time for solving the inverse problem compared to the
full-order and original algorithms’ durations is summarized in table 3. Again a
speed-up of up to two orders of magnitude is obtained.

5.4 Extreme-Scale Experiment
The very short offline phase of the trust-region based reduction process allows
a combined reduction of extreme-scale problems [30]. As a demonstration of
the efficiency under such conditions, we finally look at the generic model with
N = 256 states which implies a parameter space dimension of P = 65536. The
optimization of the full-order model utilizing an unconstrained optimization, for
example a trust-region newton approach3, is not feasible without providing a
gradient and Hessian.

In cases with more complicated parametrization, however, gradients (and
Hessians) might not be available or complicated to obtain. Then, the trust-
region-based method presented in this work allows a swift model reduction.
Table 4 shows the offline time, online time and relative error in outputs of the
reduced order system after inference to the original system.

The full order optimization as well as original optimization-based reduction
method and the data-driven approach were not able to complete the optimiza-

3as MATLAB’s fminunc
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tion. This is due to the memory requirements of the unconstrained optimization;
since no gradient or Hessian is provided a finite difference scheme is employed
to approximate the derivatives. The required matrices of size P × P exceeded
the test systems memory by far, for the finite difference scheme employed to
approximate the derivatives.

As depicted in table 4, the combined trust-region/data-driven and trust-
region/data-only methods, however, were able to compute a result with 1, 5%
relative output error, as never an optimization of the full parameter space
had to be performed. Both methods resulted in a comparable online time,
while the trust-region/data-driven-only approach has an additional speed-up
in the offline-phase, since never a full-order system had to be solved during
the Greedy optimizations. We expect a comparable offline performance for the
trust-region/data-driven approach, if an efficient to evaluate error estimator
would be used as an output error measure instead of the true reduction error
that was employed in these numerical experiments.

6 Conclusion and Outlook
In this contribution we proposed a new data-driven and trust-region approach
for projection based model reduction in Bayesian inverse problems. Both new
ingredients improve the performance of the proposed combined state and pa-
rameter model reduction algorithm. While the data-driven extension is able
to reduce relative output errors, the trust-region enhancement massively low-
ers offline duration in the greedy optimization, yet only slightly increases the
relative error. The combination of both results in a shortened offline duration
undercutting all previous, but the relative output error corresponds to that of
the original reduction algorithm introduced in [16]. Due to the very short offline
durations, our new approach allows an efficient inversion of large-scale and even
extreme-scale problems as demonstrated in the numerical experiments.

In our numerical experiments, the optimization method inside the reduc-
tion algorithms was restricted to an unconstrained optimization due to ensure
compatibility for different platforms. A constrained optimization with provided
gradient and Hessian as well as sparse large-scale facilities can additionally im-
prove the optimization during reduction and the actual parameter distribution
estimation.

More custom parametrizations than the basic full parametrization can be in-
troduced and thus enable the reduction of more complex models as demonstrated
by the fMRI example. Further research will encompass the generalization of this
approach to certain classes of nonlinear models [31], for example bilinear systems
could be reduced with this method requiring only minor adaption.
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