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An integral equation technique for scattering problems with mixed boundary conditions
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Abstract: This paper presents an integral formulation for Helmholtz problems with mixed bound-
ary conditions. Unlike most integral equation techniques for mixed boundary value problems, the
proposed method uses a global boundary charge density. As a result, Calderón identities can be
utilized to avoid the use of hypersingular integral operators. More importantly, the formulation
avoids spurious resonances. Numerical results illustrate the performance of the proposed solution
technique.

1. Introduction

This manuscript describes an integral equation technique for solving Helmholtz mixed boundary
value problems for a scattering body Ω with boundary Γ = ∂Ω. Specifically, we consider the
following boundary value problem

(1)



































∆u+ ω2u = 0 in Ωc,

u = g on ΓD,

∂u

∂ν
= f on ΓN ,

∂u

∂r
− iωu = O

(

1

r

)

as r → ∞,

where ΓD denotes the portion of Γ with Dirichlet boundary condition, ΓN denotes the portion of
Γ with Neumann boundary condition and Γ = ΓD ∪ ΓN . The last equation in (1) is the outgoing
Sommerfeld radiation condition which specifies a decay condition on the solution.

1.1. Prior work. Several integral equation based solution techniques have previously been used
for solving mixed boundary value problems.

In [4, 12], Laplace mixed boundary value problems are considered. Both papers represent the
solution as a linear combination of a double layer integral operator defined on ΓD with a single
layer integral operator defined on ΓN . The integral equation that results from enforcing boundary
conditions involves evaluating a hypersingular integral operator which has a norm that can grow
without bound even when considered on neighboring segments of Γ. By utilizing a near evaluation
technique designed for the hypersingular operator and local compression, there does not appear
to be a loss of accuracy associated with this solution technique.

The reformulation of Helmholtz boundary value problems as boundary integral equations needs
to be done with some care to avoid introducing spurious resonances. A spurious resonance is a
wavenumber ω for which a näıve integral equation formulation would result in a non-trivial null
space even when the original boundary value problem is well-posed.

[10] considers (1) where Ω consists of a collection of scattering bodies and each body has a
single type of boundary condition. To avoid spurious resonances, [10] uses a linear combination
of combined field representations (one for ΓD and another for ΓN ). Roughly speaking, a block
preconditioner involving two inverses is utilized to achieve a second kind integral equation for (1).
Unfortunately, this technique does not extend directly to single body mixed boundary condition
problems. [8] presents a similar approach for solving (1) on a single scattering body which utilizes
a preconditioner that is equivalent to squaring the inverse of a first kind integral equation.
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At this point, there does not appear to exist a uniquely solvable pure second kind integral
equation for (1).

1.2. Outline. This paper presents an integral formulation for solving (1) which uses a single
regularized combined field integral representation for the solution. Utilizing a Calderón identity
leads to a simple block first kind integral equation system.

The manuscript begins by reviewing robust integral formulations for Dirichlet and Neumann
boundary value problems in section 2. Then the proposed integral formulation is presented. Next,
section 3 presents a technique for discretizing the resulting integral equation system. Finally,
section 4 illustrates the performance of the proposed solution technique.

Remark 1.1. While this paper focuses on Helmholtz problems with mixed Dirichlet and Neumann
boundary data, the solution technique can easily be extended to case of additional Robin boundary
conditions. Also, Laplace boundary value problems can be handled by setting ω = 0 and using
the appropriate Green’s function.

2. Integral equation techniques

The reformulation of (1) as a block integral equation system involves the classical single, hyper-
singular and double layer kernels

Sωf(x) =

∫

Γ

Gω(x, y)f(y)ds(y),

Tωf(x) = ηx · ∇x

∫

Γ

ηy · ∇yGω(x, y)f(y)ds(y),

Dωf(x) =

∫

Γ

ηy · ∇yGω(x, y)f(y)ds(y) and

D∗
ωf(x) =

∫

Γ

ηx · ∇xGω(x, y)f(y)ds(y)

(2)

where Gω(x, y) is the free space Green’s function

Gω(x, y) =
i

4
H0(ω|x− y|)

of the two dimensional Helmholtz problem with wavenumber ω and ηp denotes the outward facing
normal vector at the point p ∈ Γ.

This section begins by presenting robust integral formulations for Dirichlet and Neumann bound-
ary value problems. Then we propose a block integral equation system to solve (1).

2.1. The Dirichlet boundary value problem. Consider the Dirichlet boundary value problem

(3)



















∆u+ ω2u = 0 in Ωc,

u = g on Γ,

∂u

∂r
− iωu = O

(

1

r

)

as r → ∞,

where ω denotes the constant wavenumber.
The solution can be represented as a combined field

(4) u(x) = Dωσ(x)− i|ω|Sωσ(x),

where σ(x) is an unknown boundary charge density.



3

It is well-known [11, 2] that a uniquely solvable boundary integral equation

(5)
1

2
σ(x) +Dωσ(x) − i|ω|Sωσ(x) = g(x)

for σ(x) results from enforcing the boundary condition. The integral equation (5) is second kind
on smooth Γ and is sometimes referred to as the Combined Field Integral Equation.

2.2. The Neumann boundary value problem. Consider the Neumann boundary value prob-
lem

(6)



























∆u+ ω2u = 0 in Ωc,

∂u

∂ν
= f on Γ,

∂u

∂r
− iωu = O

(

1

r

)

as r → ∞,

where ω denotes the constant wavenumber, and ν denotes the outward facing normal vector for
x ∈ Γ.

Using the combined field representation (4) for the solution of (6) results in the integral equation

(7) − i|ω|

(

−
1

2
σ(x) +D∗

ωσ(x)

)

+ Tωσ(x) = f(x)

which is not a second kind integral equation for smooth Γ since the hypersingular integral
operator Tω is not compact. The Tω operator is troublesome for two reasons. First, Tω is an
unbounded operator from L2(Γ) to L2(Γ). As a direct consequence, the linear system resulting from
discretization of the integral equation (7) is ill-conditioned. Second, standard singular quadrature
such as [9] are not sufficient to discretize the operator. While it is possible to overcome both
these difficulties by developing analytical and quadrature techniques which view Tω as an operator
between two Sobolev spaces, there are highly accessible alternatives.

The most common approach to avoid these problems is to utilized a so-called regularized com-
bined field representation

(8) u(x) = DωSωσ(x)− i|ω|Sωσ(x)

where σ(x) still represents an unknown boundary charge distribution. Enforcing the Neumann
boundary condition results in a regularized boundary integral equation

(9) − i|ω|

(

−
1

2
σ(x) +D∗

ωσ(x)

)

+ TωSωσ(x) = f(x).

This integral equation is called regularized because upon utilizing Calderón identities [11] we can
rewrite (9) as

(10)

(

1

4
+ i|ω|

1

2

)

σ(x)− i|ω|D∗
ωσ(x) + (D∗

ω)
2σ(x) = f(x).

which does not involve hypersingular integral operators.
On smooth geometries, equation (10) is a second kind integral equation.

2.3. The mixed boundary value problem. For the mixed boundary value problem (1), we
choose to use the regularized combined field representation (8) for the solution. With this choice,
we are able to utilize to two very appealing properties: (i) it avoids spurious resonances and (ii)
special quadrature for hypersingular integral operators is not needed. The compromise is that the
resulting integral equation has a first kind block.

From section 2.2, we know the block row integral equation for x ∈ ΓN is given by equation (9).
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Applying (8) to ΓD results in a first kind integral equation given by

(11)
1

2
Sωσ(x) +DωSωσ(x)− i|ω|Sωσ(x) = f(x).

Rewriting the integral equation in block form, we get

(12)

[

SD
ω + (DωSω)

D − i|ω|SD
ω

(1
4
+ i|ω|1

2
)IN − i|ω|D∗,N

ω + (D∗
ω)

2,N

]

σ =

[

g
f

]

where

SD
ω σ(x) =

∫

Γ

Gω(x, y)σ(y)ds(y) for x ∈ ΓD,

D∗,N
ω σ(x) =

∫

Γ

Gω(x, y)σ(y)ds(y) for x ∈ ΓN ,

(DωSω)
Dσ(x) =

∫

Γ

ηy · ∇yGω(x, y)

(
∫

Γ

Gω(y,w)σ(w)ds(w)

)

ds(y) x ∈ ΓD

etc.
Let Aσ = b denote the condensed form of (12).

3. Discretization

Some care needs to be taken when discretizing the block integral equation (12) since the bound-
ary charge distribution σ is likely to not be smooth at the Dirichlet-Neumann junctions. Figure
1 illustrates the behavior of the boundary charge distribution σ when ω = 1 and half a smooth
star geometry (see Figure 3(a)) has zero Neumann boundary condition while the remainder has a
Dirichlet boundary condition generated by a solution a free space Helmholtz problem. We follow
the approach of [1, 6, 7, 5, 3] which describe techniques for dealing with the singularities that occur
when solving scattering problems on Lipschitz geometries. Thus a standard panel based quadra-
ture rule is used for the Nyström discretization of (12). Near the Dirichlet-Neumann junctions the
mesh is refined until the contribution from the panels closest to the junctions is small.
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Figure 1. Illustration of |σ| on ΓD (solid line) and ΓN (dashed line) vs the dis-
tance r from the Dirichlet-Neumann Junction on the left-hand side (a) and right-
hand side (b) of the star geometry (see Figure 3)(a) when ω = 1 and the solution is
unknown (see section 4.1 for problem specifications). Four levels of dyadic refine-
ment are utilized making the closest points to the junctions r = 10−8 away.
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For simplicity of presentation, consider a geometry where ΓD is comprised solely of one section
of Γ and (by default) ΓN is also one portion of Γ as in Figure 3. First the geometry is partitioned
into the six pieces such that Γ1 ∪ Γ2 ∪ Γ3 = ΓD and Γ4 ∪ Γ5 ∪ Γ6 = ΓN . Γ2 and Γ5 are the parts
of Γ not directly touching the boundary condition junctions, while the pairs {Γ1,Γ6} and {Γ3,Γ4}
join at boundary condition junctions. Hence Γs = Γ2 ∪Γ5 is the portion of Γ where the solution σ
is smooth and Γr = Γ1 ∪ Γ3 ∪ Γ4 ∪ Γ6 is the portion of Γ where local refinement is likely needed.
Figure 2(a) illustrates the partitioning of Γ for the smooth star geometry where the upper half of
Γ has Neumann boundary conditions while the lower half of Γ has Dirichlet boundary conditions.
Since σ is smooth on Γs, this region can be discretized coarsely. For the portions of the boundary
near the boundary condition junctions Γr, the panels nearest to the junctions are recursively cut
in half until the contribution from the panel nearest the junction is so small that it can be ignored.
For many problems on smooth geometries, it is sufficient to stop 10−8 away from the junction
point to obtain eight digits of accuracy. Referencing the third column of table 1, we note that
using four levels of refinement corresponding to being approximately 10−8 away from the junctions
does result in eight digits of accuracy.

Figure 2(b) illustrates the discretization with three levels of refinement into the junctions. Figure
2(c) is a zoomed in view of the left-hand side of the same figure. Note that this refinement procedure
introduces a superfluous amount of points near the junctions. The extra points can be eliminated
via compression techniques presented in [1, 6, 7, 5, 3]. Since the focus of this paper is on the
performance of the integral formulation, no compression techniques are utilized in the numerical
experiments in section 4.

(a) (b) (c)

Figure 2. Illustration of the discretization for a smooth star geometry with ΓN

corresponding to the upper half of Γ and ΓD corresponding to the lower half of Γ
where • are nodes in Γs and + are nodes in Γr. (a) A 10 point composite Gaussian
grid with no refinement. (b) The three level locally refined grid. (c) A closer view
of the locally refined grid.

4. Numerical examples

This section reports on the performance of the purposed solution technique for solving boundary
value problems with mixed boundary data. Section 4.1 considers the Helmholtz problem with
mixed boundary conditions for three geometries, a smooth star, a pacman and a tear geometry.
These geometries represent the three most common boundary phenomena: smooth boundary, a
re-entrant corner, and a corner with the possibility of confined oscillations. Performance of the
solution technique for the boundary conditions corresponding to a smooth known solution and an
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unknown solution are presented. Section 4.2 considers a Laplace problem with mixed boundary
conditions on a smooth geometry. A comparison of the performance of the proposed method versus
the integral formulation proposed in [4] is reported.

All integral equations are discretized using a Nyström technique based on a 16-point composite
Gaussian quadrature [9]. Panels are placed on the geometries via the method described in section
3. The number of discretization points is N = 16(Npan+4(2l)) where Npan is the number of panels

on Γs and 2l is the number of refinement panels utilized.
The experiments were run on a Lenovo laptop computer with 16GB of RAM and a 2.4GHz Intel

i7-4700M procesor in Matlab.

4.1. Helmholtz problems. This section considers the mixed boundary value problem (1) with
three different wave numbers (ω = 1, 10, and 100) on three geometries:

smooth star: Illustrated in see Figure 3 (a), the smooth star geometry is given by the parameter-
ization (x(t), y(t)) = (1 + 0.3 cos(5t)) cos(t), sin(t)(1 + 0.3 cos(5 ∗ t)) where −π < t < π.

tear: Illustrated in see Figure 3 (b), the tear geometry is given by the parameterization (x(t), y(t)) =
(2sign(t) sin(t),− tan(π/4) sin(2t)) where −π < t < π.

pacman: Illustrated in see Figure 3 (c), the pacman geometry is given by the parameterization
(x(t), y(t)) = (sign(t) sin(1.5t), tan(3π/2) sin(t)) where −π < t < π.

The Dirichlet-Neumann junctions occur at t = 0 and t = −π in parameter space so that half
the boundary has Dirichlet boundary conditions while the other half has Neumann boundary con-
ditions. For each wavenumber/geometry combination, two types of boundary data are considered:

known solution: Both the Dirichlet and Neumann boundary are generated by a known solution
to the Helmholtz problem corresponding to a collection of ten point charges inside of the
geometry.

unknown solution: The Dirichlet boundary data is generated by the same ten point charges but
the Neumann data is set to zero. Hence, the solution is not known a priori.

For each wavenumber/geometry combination, tables 1-3 report

l: The number of levels of refinement into the Dirichlet-Neumann junctions.
N: The total number of discretization points.

Erel: The relative error Erel =
‖ul−uex‖
‖uex‖

for the known solution problem where ul is the approx-

imate solution, with l levels of refinement, at twenty locations outside the geometry and
uex is the exact solution at the twenty locations outside the geometry generated by the ten
interior point charges.

Econv: The relative convergence error Econv =
‖ul−ul−1‖

‖ul‖
where ul is the approximate solution,

with l levels of refinement, at twenty locations outside the geometry.
κ(A): The condition number κ(A) of linear system resulting from the discretization of (12).

For the smooth star geometry (table 1), the proposed method is able to capture the smooth
known solution without refinement independent of wavenumber. The tear and pacman geometries
have corners that require refinement into the corners in order to capture the known solution
since the boundary charge distribution σ is not smooth in the corner. Since σ is smooth at the
Dirichlet-Neumann junction away from the corner, the same performance would be observed if the
refinement was only in the corner.

For the unknown solution experiments, the boundary charge distribution is not smooth for
any of the geometries. Thus refinement into the Dirichlet-Neumann junctions is required to get
high accuracy for all the experiments. The performance of the proposed method is similar to its
performance on the experiments with known solution on a geometry with a corner.

The condition number of the linear system grows with the increased refinement into the Dirichlet-
Neumann junctions. This behavior is expected given the first kind nature of the integral equation.
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(a) (b) (c)

Figure 3. The contours Γ used in the numerical experiments in Section 4. (a)
Smooth star. (b) Tear. (c) Pacman. The portion of the boundary with the dashed
line has Neumann boundary conditions while the portion of the boundary with solid
line has Dirichlet boundary conditions.

ω = 1 ω = 10
l N Erel Econv κ(A) N Erel Econv κ(A)
0 416 7.05e-10 1.00e-04 3.06e03 576 3.91e-10 1.21e-04 4.35e03
1 480 7.05e-10 7.55e-05 8.35e03 640 3.91e-10 9.04e-04 1.13e04
2 608 7.05e-10 2.36e-05 4.30e04 768 3.91e-10 2.82e-05 5.18e04
3 864 7.05e-10 1.57e-06 7.05e05 1024 3.91e-10 1.88e-06 8.38e05
4 1376 7.05e-10 6.13e-09 1.80e08 1536 3.91e-10 7.36e-09 2.14e08
5 2400 7.05e-10 - 1.18e13 2560 3.91e-10 - 1.40e13

ω = 100
l N Erel Econv κ(A)
0 2656 3.93e-10 9.68e-05 4.95e04
1 2720 3.93e-10 7.25e-05 1.01e05
2 2848 3.93e-10 2.27e-05 4.06e05
3 3104 3.93e-10 1.51e-06 6.49e06
4 3616 3.93e-10 5.91e-09 1.66e09
5 4640 3.93e-10 - 1.08e14

Table 1. The number of the levels of refinement l into Dirichlet-Neumann junc-
tions, the number of discretization points N , the relative error Erel for the bound-
ary value problem with known solution, the relative convergence error Econv for the
boundary value problem with unknown solution and the condition number κ(A) of
the linear system resulting from the discretization of the integral equation (12) on
the smooth star geometry for three wave numbers ω = 1, 10, and 100.

4.2. Laplace boundary value problem. This section reports on the performance of the pro-
posed method and the integral formulation proposed in [4] for Laplace problems on the smooth
star geometry with boundary data as specified by the known solution and unknown solution prob-
lems in the previous section. It should be noted that [4] uses a special quadrature to handle
the hypersingular integral operator. The results reported in this section use the same Nyström
discretization with 16-point composite Gaussian quadrature [9] for both integral equations. The
results using the integral formulation from [4] have an H superscript.

As with the Helmholtz boundary value problem, the proposed method does not require refine-
ment when the boundary charge distribution is smooth. When the boundary charge distribution
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ω = 1 ω = 10
l N Erel Econv κ(A) N Erel Econv κ(A)
1 320 4.48e-06 2.93e-04 3.17e03 320 1.89e-07 1.59e-03 2.19e03
2 448 1.89e-06 1.79e-04 1.26e04 488 4.37e-08 8.82e-04 8.70e03
3 704 8.73e-08 3.91e-05 2.01e05 704 2.58e-09 1.62e-04 1.39e05
4 1216 5.22e-10 1.34e-06 5.14e07 1216 1.19e-11 4.52e-06 3.56e07
5 2240 4.13e-11 3.04e-08 3.37e12 2240 7.37e-12 7.027e-08 2.34e12

ω = 100
l N Erel Econv κ(A)
1 2080 1.43e-09 1.11e-03 3.35e04
2 2208 8.26e-10 6.21e-04 1.34e05
3 2464 7.67e-10 1.13e-04 2.15e06
4 2976 7.67e-10 2.89e-06 5.49e08
5 4000 7.67e-10 2.74e-07 3.55e13

Table 2. The number of the levels of refinement l into Dirichlet-Neumann junc-
tions, the number of discretization points N , the relative error Erel for the bound-
ary value problem with known solution, the relative convergence error Econv for the
boundary value problem with unknown solution and the condition number κ(A) of
the linear system resulting from the discretization of the integral equation (12) on
the tear geometry for three wave numbers ω = 1, 10, and 100.

ω = 1 ω = 10
l N Erel Econv κ(A) N Erel Econv κ(A)
1 384 2.23e-04 2.93e-04 4.93e03 384 4.59e-04 3.61e-04 4.13e03
2 512 9.65e-05 1.79e-04 2.02e04 512 1.95e-04 1.79e-04 1.69e04
3 768 1.74e-05 3.91e-05 3.23e05 768 3.55e-05 3.42e-05 2.71e05
4 1280 5.82e-07 1.34e-06 8.28e07 1280 1.17e-06 1.14e-06 6.94e07
5 2304 1.39e-08 3.04e-08 5.43e12 2304 1.34e-09 1.11e-07 4.56e12

ω = 100
l N Erel Econv κ(A)
1 2080 5.71e-06 8.59e-05 5.91e04
2 2208 2.40e-06 2.67e-05 2.36e05
3 2464 4.38e-07 1.79e-06 3.79e06
4 2976 1.62e-08 1.89e-08 9.69e08
5 4000 7.06e-09 1.96e-08 6.26e13

Table 3. The number of the levels of refinement l into Dirichlet-Neumann junc-
tions, the number of discretization points N , the relative error Erel for the bound-
ary value problem with known solution, the relative convergence error Econv for the
boundary value problem with unknown solution and the condition number κ(A) of
the linear system resulting from the discretization of the integral equation (12) on
the pacman geometry for three wave numbers ω = 1, 10, and 100.

is not smooth, refinement allows for technique to capture the solution to high accuracy. This is
contrast to the integral formulation from [4] which requires refinement to achieve high accuracy
independent on whether or not the solution is smooth. Note that while the integral formulation
from [4] is block second kind, since the hypersingular term has not been dealt with specially, the
condition number for the discretized linear system is nearly squared that of the first kind system.



9

l N Erel κ(A) EH
rel κ(AH) Econv EH

conv

0 352 3.33e-10 9.21e02 8.07e-05 6.78e04 1.49e-06 4.18e-03
1 416 3.33e-10 2.81e03 4.04e-05 2.71e05 1.12e-06 1.62e-04
2 544 3.33e-10 1.28e04 1.01e-05 4.33e06 3.49e-07 5.07e-05
3 800 3.33e-10 2.12e05 6.31e-07 1.11e09 2.32e-08 3.37e-06
4 1312 3.33e-10 5.44e07 2.45e-09 7.27e13 1.16e-11 1.33e-08
5 2336 3.33e-10 3.57e12 1.69e-11 3.12e23 - -

Table 4. The number of the levels of refinement l into Dirichlet-Neumann junc-
tions, the number of discretization points N , the relative error Erel for the Laplace
boundary value problem with known solution, the relative convergence error Econv

for the Laplace boundary value problem with unknown solution and the condition
number κ(A) of the linear system resulting from the discretization of the integral
equation (12) on the star geometry. The values with the superscript H correspond
to the results from using the integral formulation from [4].

5. Concluding remarks

This paper presented a robust integral equation formulation for solving mixed boundary value
problems of the form of (1). The formulation is a direct extension of the integral equation tech-
niques for single boundary condition scattering problems. Numerical results show that high accu-
racy can be obtained by utilizing local refinement near boundary condition junctions even if the
junction is at a corner.

If one does not have access to discretization techniques for hypersingular kernels, the proposed
solution technique is a high accuracy option for Laplace problems with mixed boundary value
problems.
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