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Explicit constructions and properties of generalized
shift-invariant systems in L?*(R)

Ole Christensen? Marzieh Hasannasab*, Jakob Lemvig*

October 19, 2016

Abstract: Generalized shift-invariant (GSI) systems, originally introduced by
Hernéndez, Labate & Weiss and Ron & Shen, provide a common frame work
for analysis of Gabor systems, wavelet systems, wave packet systems, and other
types of structured function systems. In this paper we analyze three impor-
tant aspects of such systems. First, in contrast to the known cases of Gabor
frames and wavelet frames, we show that for a GSI system forming a frame,
the Calderon sum is not necessarily bounded by the lower frame bound. We
identify a technical condition implying that the Calderén sum is bounded by
the lower frame bound and show that under a weak assumption the condition is
equivalent with the local integrability condition introduced by Hernandez et al.
Second, we provide explicit and general constructions of frames and dual pairs
of frames having the GSI-structure. In particular, the setup applies to wave
packet systems and in contrast to the constructions in the literature, these
constructions are not based on characteristic functions in the Fourier domain.
Third, our results provide insight into the local integrability condition (LIC).

1 Introduction

Generalized shift-invariant systems provide a common framework for analysis of a large class of
function systems in L?(R). Defining the translation operators T.,c € R, by T.f(z) = f(x —¢),
a generalized shift-invariant (GSI) system has the form {T¢;kg;}rez,jes, where {c;},c; is a
countable set in Ry and g; € L*(R). GSI systems were introduced by Hernandez, Labate &
Weiss [14], and Ron & Shen [21].

In the analysis of a GSI system, the function >, ; cj_llgj(-)\z, which we will call the
Calder6n sum in analogue with the standard terminology used in the special case of a wavelet
system, plays an important role. Intuitively, the Calderén sum measures the total energy
concentration of the generators g; in the frequency domain. Hence, whenever a GSI system
has the frame property, one would expect the Calderén sum to be bounded from below since
the GSI frame can reproduce all frequencies in a stable way. Indeed, whenever a Gabor frame
or a wavelet frame is considered as a GSI system in the natural way (see the details below), it
is known that the Calderén sum is bounded above and below by the upper and lower frame
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Christensen, Hasannasab, Lemvig Introduction

bounds, respectively. In the general case of a GSI system the Calderén sum is known to be
bounded above by the upper frame bound. In this paper we prove by an example that the
Calder6n sum is not always bounded below by the lower frame bound. On the other hand, we
identify a technical condition implying that the Calder6n sum is bounded by the lower frame
bound. Under a weak assumption, this condition is proved to be equivalent with the local
integrability condition introduced by Hernandez et. al. [14].

Our second main contribution is to provide constructions of pairs of dual frames having the
GSI structure. The construction procedure allows for smooth and well-localized generators,
and it unifies several known constructions of dual frames with Gabor, wavelet, and so-called
Fourier-like structure [6},7,9,19,20]. Due to its generality the setup is technical, but nevertheless
it is possible to extract attractive new constructions, as we will explain below.

We will apply our results for GSI systems on the important special case of wave packet
systems. We consider necessary and sufficient conditions for frame properties of wave packet
systems. In particular, by the just mentioned construction procedure, we obtain dual pairs
of wave packet frames that are not based on characteristic functions in the Fourier domain.
Recall that a wave packet system is a the collection of functions that arises by letting a class of
translation, modulation, and scaling operators act on a fixed function 1 € L?(R). The precise
setup is as follows. Given a € R, we define the modulation operator (E,f)(z) = e*™* f(x),
and (for a > 0) the scaling operator (Do f)(z) = a~Y2f(x/a); these operators are unitary on
L%(R). Let b > 0 and {(a;j,d;)}jes be a countable set in “scale/frequency” space R x R.
The wave packet system generated by a function 1 € L2(R) is the collection of functions
{Do; TokEa; v Y ke, je-

The key feature of wave packet system is that it allows us to combine the Gabor structure
and the wavelet structure into one system that yields a very flexible analysis of signals. For the
particular parameter choice (a;,d;) := (a’,1) for j € J = Z and some a # 0, the wave packet
system { Do, Top Ea; v }rez,jes simply becomes the wavelet system {D,; Tipt)} j kez generated by
the function ¢ € L?(R). On the other hand, for the choice (a;,d;) := (1,aj) for j € J = Z and
some a > 0, we recover the system {TbkEajw}j’ wez Which is unitarily equivalent with the Gabor
system {Eaijkw}j,keZ' Hence, we can consider both wavelet and Gabor systems as special
cases of wave packet systems. Furthermore, other choices of the parameters {(a;,d;)};c,
which intuitively control how the scale/frequency information of a signal is analyzed, combine
Gabor and wavelet structure. Finally, the translations by bZ allow for time localization of the
wave packet atom.

The generality of GSI systems is known to lead to some technical issues. Indeed, local
integrability conditions play an important role in the theory of GSI systems as a mean to control
the interplay between the translation lattices ¢;Z and the generators g;, j € J. Our third main
contribution is new insight into the role of local integrability conditions. In particular, we will
see that local integrability conditions also play an important role for wave packet systems, and
that it is important to distinguish between the so-called local integrability condition (LIC)
and the weaker a-LIC. This is in sharp contrast to the case of Gabor and wavelet systems in
L?(R), where one largely can ignore local integrability conditions.

The paper is organized as follows. In Section 2, we introduce the theory of GSI systems and
extend the well-known duality conditions to certain subspaces of L?(R). In Sectionwe discuss
various technical conditions under which the Calder6n sum for a GSI frame is bounded below
by the lower frame bound; applications to wavelet systems and Gabor systems are considered
in Section [4l In Section [5] we provide explicit constructions of dual GSI frames for certain
subspaces of L?(R). The general version of the result is technical, but we are nevertheless able
to provide concrete realizations of the results. Finally, Section [6] applies the key results of
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Christensen, Hasannasab, Lemvig Preliminary results on GSI systems

the paper to wave packet systems. In particular we show that a successful analysis of such
systems must be based on the a-LIC rather than the LIC. Furthermore, we provide explicit
constructions of dual pairs of wave packet frames.

We end this introduction by putting our work in a perspective with other known results.
Cordoba and Fefferman [11] considered continuous wave packet transforms in L?(R") gener-
ated by the gaussian which is well localized in time and frequency. The results in [11] yield
approzimate reproducing formulas. In [15,/18] the authors constructs frequency localized wave
packet systems associated with exact reproducing formulas in terms of Parseval frames. How-
ever, these generators are poorly localized in time as the generators are characteristic functions
in the frequency space. In this work we construct wave packet dual frames well localized in
time and frequency.

For an introduction to frame theory we refer to the books |4/12}/13].

2 Preliminary results on GSI systems

To set the stage, we will recall and extend some of the most important results on GSI systems.
Let J be a finite or a countable index set. As already mentioned in the introduction, analysis
of GSI systems {ch k9j tkez,jes cover several of the cases considered in the literature. In case
cj = c¢ > 0 for all j € J, the system {T,19;j}rez jes is a shift invariant (SI) system; if one
further takes g; = Fqjg,7 € J := Z for some a > 0 and g € L*(R), we recover the Gabor case.
The wavelet system {D; Ty} kez With a > 0 and b > 0 can naturally be represented as a
GSI system via

{DaJTbkw}j,kGZ = {chkgj}kez’jeJ With Cj = ajb, gj = Dajl/}, fOl“ j S J = Z. (2.1)

Note that this representation is non-unique, hence unless it is clear from the context, we will
always specify the choice of ¢; and g;, j € J.

The upper bound of the Calderéon sum for GSI systems obtained by Hernéndez, Labate,
and Weiss [14] only relies on the Bessel property. The precise statement is as follows.

Theorem 2.1 (|14]). Suppose the GSI system {T¢;xgj}rez jes is a Bessel sequence with bound
B. Then 1
Z ;\gj(fy)\Q <B for a.e. v € R. (2.2)
jeJ

Here, for f € L'(R), the Fourier transform is defined as
fo) = [ 1@ e as

with the usual extension to L(R).

In the special cases where {7, ¢ kgj}kez,je 7 is a Gabor frame or a wavelet frame with lower
frame bound A, it is known that A is also a lower bound on the sum in (2.2)). For instance, for
a wavelet frame {D; Ty} jrez = {TuiokDait}j ez with bounds A and B, Chui and Shi [10]
proved that .

AL Zh(aly)]> < B for a.e. v € R. 2.3
<3 jléi < y (23)
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Christensen, Hasannasab, Lemvig Frame theory for GSI systems

2.1 Frame theory for GSI systems

We will consider GSI frames {7¢;xg;}rez,jes for certain closed subspaces of L?(R). To this
end, for a measurable subset S of R we define

L*(S) := {f € L*(R) :supp f C S}.

The set S is usually some collection of frequency bands that are of interest. In case one is not
interested in subspaces of L?(R), simply set S = R. If S is chosen to be a finite, symmetric
interval around the origin, we obtain the important special case of Paley-Wiener spaces. We
will always assume that the generators g; satisfy that supp g; C S for every j € J. Note that
this guarantees that the GSI system {7 xg;}kez, jes belongs to L%(S).

In order to check that a GSI system is a frame for L?(S) it is enough to check the frame
condition on a dense set in ﬁQ(S ). Depending on the given GSI system, we will fix a measurable
set £ C S whose closure has measure zero and define the subspace Dg by

Dg = {f € L*(R) : supp f C S\ E is compact and f € LOO(R)}.

For example, for a Gabor system {E;,5T09}m nez we can take E to be the empty set, and for
a wavelet system {D,; Ty} ez we take E = {0}.

In order to consider frame properties for GSI systems we will need a local integrability
condition, introduced in [14] and generalized in [16].

Definition 2.2. Consider a GSI system {T¢;xg;}rez jes and let E € £, where £ denotes the
set of measurable subsets of S C R whose closure has measure zero.

(i) If
=)D = / ; f(r + ¢t m)g; (1) dy < oo (2.4)

j€J meZL €

for all f € Dg, we say that {T¢;kg;}rez, jes satisfies the local integrability condition
(LIC) with respect to the set E.

(ii) {chkgj}kez,jej and {chkhj}kez’jej satisfy the dual a-LIC with respect to F if

L(f) = /‘f F(r+ cm)a (s + G im) dy < oo (2.5)
jEJ meZ €

for all f € Dg. We say that {T;,xg; }rez jes satisfies the a-LIC with respect to E, if (2.5
holds with g; = hj, j € J.

By an application of the Cauchy-Schwarz inequality, we see that if the local integrabil-
ity condition holds, then the a-local integrability condition also holds. Clearly, if a local
integrability condition holds with respect to E = (), it holds with respect to any E € &.

In [14] it is shown that any Gabor system satisfies the LIC for E = (). To arrive at the
same conclusion for SI systems, it suffices to assume that the system is a Bessel sequence,
see |16]. In fact, it is not difficult to show the following more general result.

Lemma 2.3. Consider the SI system {T.rg;}trez,jcs, and let E € €. Then {Ter9;}rez jer
satisfies the LIC with respect to E if and only if the Calderon sum for {Torg;trez, jes is locally
integrable on R\ E, i.e.,

S L100P € Lho(R\ B). 26)

jedJ
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Of course, one can leave out the factor % in the Calderén sum in (2.6). Note that if
{Tergj}rez, jes is a Bessel sequence, then, by Theorem the Calderéon sum satisfies
for any £ € £. Similarly, it was shown in [2] that a wavelet system {D,; Tyt }; rez satisfies
the LIC with respect to E' = {0} if and only if

D 1907 )]? € Lig(R\ {0}).
JET
Hernéndez, Labate and Weiss [14] characterized duality for two GSI systems satisfying the
LIC. In |16] Jakobsen and Lemvig generalized this to not necessarily discrete GSI systems
defined on a locally compact abelian group and satisfying the weaker a-LIC. The following
generalization to discrete GSI system in f/Q(S ) follows the original proofs closely, so we only
sketch the proof.

Theorem 2.4. Let S C R. Suppose that {T;xgj}rezjes and {Te;khj}rez jes are Bessel
sequences in L*(S) satisfying the dual a-LIC for some E € £. Then {1195 kez jes and
{Te;khj}kez jes are dual frames for L*(S) if and only if

1 - .
. —uMhilv+a)=dapxs(y)  aevER (2.7)
jEJ:aecglz 7

foralla e | c;
jeJ

Proof. For simplicity assume that E = (J; the case of general E only requires few modifications
of the following proof. For f € Dg define the function wy : R — C by

=SS AT . T rgs) (T, To f). (2.8)

jeJ kez

By [14, Proposition 9.4] (the given proof also hold with the a-LIC replacing the LIC) we know
that wy is a continuous, almost periodic function that coincides pointwise with its absolutely
convergent Fourier series

wy(x) = Z da i (2.9)

ac U cf
JjeJ

where

do — / FOFOr+ ) ta(m)dry. (2.10)

and to(7) denotes the left hand side of (2.7).
Assume that (2.7) holds. Inserting () = dqa,0 xs(7) into (2.9) for z = 0 yields

SOS T T ngs) (T £) = w5 (0) / Fn) Py = 17112
jeJ keZ

By a standard density argument, this completes the proof of the “if”’-direction.
Assume now that {T¢;xg;trez jes and {Te;khj}rez jes are dual frames for L?(S). Then

we(r) = ||f |? for all f € D and all z € R. By uniqueness of Fourier coefficients of almost

periodic functions, this only happens if, for a € | ¢ -1z,
jeJ

do = || f|I? and do, =0 for a #0. (2.11)
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Since D is dense in EQ(S) it follows from do = || f||* that to(y) = 1 for a.e. v € S.
Assume that a = ¢ ' for some j € J and k € Z \ {0}. For each ¢ € Z, take

1 for v € clﬁc (E—i—l)}ﬂS
fly) = ta(y) for~ e cjlf—ozc (E—{—l)—a}ﬂs,
0 otherwise.

Then f € Dg and

o—/f For+a)t ()dvz/ o ()2 .
[c; s e+ )]s

Since ¢ € Z was arbitrarily chosen, we deduce that ¢, () vanishes almost everywhere for v € S.
For a.e. v ¢ S the assumption supp g; C S implies that t,(v) = 0 for any o. Summarizing,
we have shown that t,(y) = dq,0 x5(7) for a.e. v € R. O

In the characterization of tight frames, we can leave out the Bessel condition.

Theorem 2.5. Let S CR and A > 0. Suppose that the GSI system {T¢,19;}rez,jes satisfies
the a-LIC condition for some E € €. Then {T,19;}kez jes is a tight frame for L%(S) with
frame bound A if and only if

1 - .
Z — ;) gj(v +a) = Ada,o xs(v) a.e.yeER

foralla e | c;
jeJ

For tight frames, Theorem gives information about the Calder6n sum. Indeed, it
follows immediately from Theorem that if {T..19;}kez jes is a tight frame with constant
A satisfying the a-local integrability condition, then

Z 195 (v )| =A a.e. 7y € S.
jeJ €

Finally, the following result allows us to construct frames without worrying about technical
local integrability conditions. In fact, the condition ([2.12)) below implies that the a-LIC with
respect to any set F € £ is satisfied.

Theorem 2.6. Consider the generalized shift invariant system {chkgj}kezjg.
(1) If
—esssupzz }gj v)9; v—i—c )| < 00, (2.12)

j€J meZL €

then {T¢,19;tkez jes is a Bessel sequence in L2(S) with bound B.
(i) Furthermore, if also
Ar:esseigf(z G NE=>0 > )gg Mg (v + ¢t )()>0,
K jet it 02mez,
then {T.19;tkez jes s a frame for L*(S) with bounds A and B.

The proof of Theorem [2.6/is a straightforward modification of the standard proof for L?(IR)
(see, e.g., [5,8,16]).
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3 A lower bound of the Calder6n sum for GSI systems

Following a construction by Bownik and Rzeszotnik |3] and Kutyniok and Labate [17], we first
show that the Calderén sum for arbitrary GSI frames is not necessarily bounded from below
by the lower frame bound.

Example 1. Consider the orthonormal basis { ExTinX[0,1[}k,mez, an integer N > 3, and the
lattices I'j = N7Z, j € N. There exists a sequence {t;}3°, such that

o0
Uti+T) =2, (t+T)n(t;+T;) =0 fori#j,
i=1
i.e., Z can be decomposed into translates of the sparser lattices I';. It follows that
{]:_lEkTmX[O,l[}k,meZ = {TkEm]:_IX[O,l[}k,mEZ = {TNjthjEm]:_IX[O,l[}k,mEZ,jEN-
Hence, the GSI system defined by
Cljm) = N7 and 9(Gm) = thEm}“*lx[O’l[, for (j,m) e J=NxZ,

is an orthonormal basis and therefore, in particular, a Parseval frame. Since

>y

. 2 = 1 _
g(j,m)(’Y)‘ = Z Z ﬁ\}—thEm}— 1X[0,1[(7)’2

j=1mez “Gm) o e
> o
1 2 1 2 1
- Z Z ﬁ‘Eth[m,m-‘rl)(V)‘ = E W‘XR(’Yﬂ = ﬁ’
Jj=1meZ =

we conclude that the Calderon sum (2.2)) is not bounded below by the lower frame bound
A =1 whenever N > 3. On the other hand, we see that the Calderén sum is indeed bounded
from above by the (upper) frame bound 1 as guaranteed by Theorem . |

We will now provide a technical condition on a frame {7, ¢ kYjtkez jes that implies that
the Calderén sum in ([2.2)) is bounded by the lower frame bound. The proof generalizes the
argument in [10].

Theorem 3.1. Assume that
D 13O € Ligo(R\ B). (3.1)
jedJ

If the GSI system {Tc;k9;}kez.jes is a frame for L2(R) with lower bound A, then

I
Agzg\gj('y)\z a.e.y € R. (3.2)
jes

Proof. The assumption that the function >, ;| G;()|? is locally integrable in R \ E implies,

by the Lebesgue differentiation theorem, that the set of its Lebesgue point is dense in R\ E.
Let wyp € R\ E be a Lebesgue point. Choose &’ > 0 such that [wg — &’,wp +¢'] CR\ E. By

assumption, we have
wo+e’
[ Yol <.

wo—e' ey

7 of [26]



Christensen, Hasannasab, Lemvig A lower bound of Calderén sum for GSI systems

This means that for every n > 0, there exists a finite set .J' C .J such that

wo+-¢’

> / 195 (7)[* dy <. (3.3)

jeJ\J v ¢

Now define M := max;c ¢j. Let 0 < ¢ < min{e’, MT_I} It is clear that (3.3]) also holds for
every € > 0 with ¢ < &’.
Using Lemma 20.2.3 of |4, we have, for f € Dg,

AP <SS / FOFO + ¢ )5 (135 (y + ¢ k) dy. (3.4)

jeJ keZ €

Consider f = \/%XIO where K = [wg — €, wp + €]. Since f € Dg, by inequality (3.4), we have

A<Zzej/m ! GG+ k) dy

jeJ kEZ
= 95 (M3 (v+ ¢; k) dy
;% 2ec) /Im —c; k) it
+ > Z / o (g5 (v + ¢; k) dy
jeJ\J’keZ KN(K—c; k)
=: 51+ 52

For j € J', we have 2¢ < M1 < c;1|k:] for all k € Z \ {0}. Hence
Kn(K—c'k)=0, keZ\{0},jeJ.

Therefore

2
=Y g [ ke (35)
JjeJ’

In particular, S is a non-negative number. For j € J\ J', KN (K — cj_lk) = 0 if |k| > 2ec;.

Therefore,
S m o B0 Ry
KN(K 7k

jeJ\J’ |k|§2z—:cj

Now by the Cauchy-Schwarz inequality, we have

<Y X (ke ([ aeRs)

JGJ\J’M4<25%

1 .
< Y e+ g [P
J

N

FEI\J’
—22/193 Pyt Y /|gj )2 dy
jeJJ\J’ eJ\J’
<umt Y / 15,002 . (3.6)
jGJ\J’
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Since A < S + Sy, it follows from (3.5 and . that

1
A< )2 dy + 2 — [ a:()Pd
Z2ec / G (NPdy+2m+ > gcj/me)' y

jeJr JENT’
1 .
=Y o [P+ 2
jeJ 7 JK
1 wo+€ 2
=5 Z 1G5 (7)I? dy + 2n.

wWo—E jeJg €

Letting € — 0, we arrive at

A<Z |9 WO)’ +2n.
JjeJ J

Since 1 > 0 is arbitrary, the proof is complete. O

In order to check the condition (3.1)), it is enough to consider the partial sum over the
j € J for which ¢; > M for some M > 0:

Proposition 3.2. Suppose that {chk;gj}kezd'ej is a Bessel sequence with bound B. Then (3.1))
holds if and only if there exist some M > 0 such that

S 150 € Lho R\ E). (3.7)

{j:Cj>M}

Proof. To see this, consider any M > 0. Then

S 1GMP Y 1GP = D laP+ DD la()P

{jie;>M} jeJ {j:e; <M} {j:c;>M}

<M ) Ligity + > gl

{jic; <M} € {j:c;>M}

<MB+ > |gG(mP

{j:e;>M}
L]

Let us take a closer look at the essential condition . First we note that in Example
this condition is indeed violated: in fact, a slight modification of the calculation in Example
shows that the infinite series in is divergent for all v € R. The next result shows that
under mild regularity conditions on ¢; and g;, condition is equivalent to the LIC. However,
in practice, condition , or rather condition , is often much easier to work with than
the LIC.

Proposition 3.3. Let E € £. Suppose that the Calderdn sum for {T..19;}kez jes is locally
integrable on R\ E, i.e.,

Z ‘g]()’ GLlloc(R\E>v

Jj€J €

Then the GSI system {chkgj}kez,jej satisfies the LIC with respect to the set E if and only

if (3.1) holds.
9 of
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Proof. Assume that

=Y [l g mi Py <o 55)
supp

je€J meZ €

for every f € Dgp. Let K be a compact set in R\ E, i.e., K C [c,d] \ E, and let f=xk
n (3.8)). Then for each j € J, the set KN (K—cjflm) can only be nonempty if [m| < ¢;(d—c).
Hence for the inner sum in (3.8)), we have

>/ 9, P dy = o S O
J JEN(K—c; Lm) |m|<c (d—c) KN(K

> leel [ !@j(v)Pdv
—C/\gj de—/gj )1 dv,

where we for the first inequality use that the union of the sets KN(K —c; 'm “tm), Im| < [¢j(d—c)],
contains [¢;(d — ¢)] copies of K. Hence,

/|gJ )2 dy < L(f
]EJ

Thus ) holds. Conversely, assume that ( . ) holds. For f € Dg, let R > 0 such that
supp f C {7 |v| < R}. Therefore the inner sum in . has at most 4Rc; + 1 terms. By
splitting the sum into two terms, we have

NS Y /f () dy
supp

meZ

/|9] |d'y<oo

eJJ

e Im|<2Re; ©
<4R|fI% Z/ Py +IFIR Y - / 2dy < oc.
jed supp f ies ©i suppf

Using Proposition the following result is now just a reformulation of Theorem

Corollary 3.4. Assume that the LIC with respect to some set E € € holds for the GSI system
{Te;k9i kezjes- If {Te;k9i kez jes s a frame for L?(R) with lower bound A, then (3.2) holds.

Remark 1. Corollary also holds for GSI frames for L?(S) in which case the Calderén sum
is bounded from below by A on S and zero otherwise.

The next example shows that the Calder6n sum might be bounded from below by the lower
frame bound, even if neither the technical condition (3.1)) nor the LIC is satisfied.

Example 2. Consider the GSI system {78 p.¢}r ez jeNpep;, Where
Pi=A{L,...,N/ =1}, gjpe= (N = 1)"’Tixpn pe1y, jpe = N
NJ’ NI

This system satisfies the a-LIC. To see this, fix f € Dy. We then have

S ID I BE N OV ORI IR

JEN peP; LeZ mEZ
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CERIEESIDIDIPIE - [ R S L

Ve J 77 J
JEN peP; (€L mGZ 7N NIN

(N DIFRY Y Y / RERCENLE
supp

7 J
JEN peP; (€L EEAEY

SIOERITIES D

jeN supp f

— A2 / yr(y)dy < o
supp f

The considered GSI system is also a Parseval frame. To see this, using Proposition [2.5] it is
sufficient to show that

1 - R
Z Z Z ~ Gip (V) Gjpe(y + @) = a0 a.e.y € R. (3.9)

j€Ja pEP; LEL

Let A={N7/n : j€ Jne€Z};and, for a €A, let
Jo={j€J : In€Zsuch that « = Nn}.

Assume that 0 # a = 77 and n < N7, Then J, C {j : j > jo}. But for each j > jo and

v € R we have

n
X[]\Jjﬂ7 1;1](’7 E)X[ P P+1]('7 l— NjO) = 0.

Hence, (3.9) is satisfied for o # 0. Now, consider with a = 0:

ZZZ 9jpe(VI” = (N =1) ZZZNJX[IJ pi1y(y = 0)

jEN peP; LeZ jEN peP; (e A
1
=N - 1)2@)@&(7) =1
jeN
One can easily show that this Parseval frame does not satisfies condition ({3.1]), and conse-

quently by Proposition it cannot satisfy the LIC for any F € &, while the inequality ((3.2])
holds with A = 1. [ |

4 Special cases of GSI systems

We will now show that Theorem indeed generalizes the known results for wavelet and
Gabor systems. First, for regular wavelet systems the condition (3.7)) is always satisfied for
E={0}:

Lemma 4.1. Let p € L?(R) and a > 1,b > 0. Consider the wavelet system {D,;Tyx)},
written on the form (2.1). Then there exists M € R such that (3.7)) holds for E = {0}, i.e.,

Y 160 € Lie(R\ {0}). (4.1)

{j:e;>M}

Proof. Assume that K is a compact subset of R\ {0}. Let M = ab; then a’b > M if and only
if 7 > 0. Now,

> [laePa =3 [ 1DdmPa =3 [ dib@nta =Y [

7>0 3>0 7>0 3>0
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Since K is a compact subset of R\ {0}, one can find L, R > 0 such that K C {y: % < |7| < R}
and a® > R2. Hence if j — jo > L, then ¢/ K Na/ K = (. Thus the family of subsets {a’ K }j~o
can be considered as a finite union of mutually disjoint sets,

{d'K}jso = U{aHkLK}k 0

Therefore,
> [lamka =3 [ iera < | imke <.
7>0 7>0 al K
which implies that (4.1)) holds. O

From Theorem 3.1 - we can now recover the lower bound in for wavelet frames. As-
sume that {Dy;Thkt)}; pey 18 @ frame for L?(R) with bounds A and B. By Lemma and
Proposition m 3.2 the wavelet system satisfies (3.1] . thus (| . ) holds by Theorem [3.1} .

To establish the lower bound of the Calderén sum for irregular wavelet systems { D, . i bk} G kEZs
first obtained by Yang and Zhou [22|, we have to work a little harder. We mention that the
result by Yang and Zhou covers the more general setting of irregular dilations and translations.
Recall that a sequence {a;};ez of positive numbers is said to be logarithmically separated by
)\>Oifafl—j12)\foreachj€Z.

Lemma 4.2. If a sequence {a;};cz of positive numbers is logarithmically separated by A > 0,
then for each ¢ € L*(R) and every compact subset K C R\ {0}, we have

Z/ d7<oo

JEZL

Proof. Without loss of generality, assume that {a;};ez is an increasing sequence and K C
Ry \ {0}. There exist positive number ¢,d such that K C [¢,d]. Take r € N such that
AT > %; then

Ajtr _ Gjtr Gjpr—1 G541 > -1

d
> —.
a; Ajtr—1 Gjtr—2 a;j ¢

Hence ajyrc > ajd. This shows that a; K Naj, K =0 for all j € Z. By a similar argument,
a;jK Na;j_, K = (. Therefore

Z/ P [ [90)Pdy <oe.
JEZ

O

We will now show that any wavelet system (with regular translates) that form a Bessel
sequence automatically satisfies the LIC:

Proposition 4.3. Let ¢ € L*(R) and {a;}jez be a sequence in Ry. If {Dy, Topt)}jrez is a
Bessel sequence, then it satisfies the LIC with respect to E = {0}.

Proof. Define I,, = (2~2,2"%2], for n € Z. By Lemma 1 in [22], there exists M > 0 such that
for each n € Z, the number of j which a; belongs to I, is less than M. On the other hand, each
point of Is, is logarithmically separated with points from the interval Io,, for m,n € Z and
m # n. Similarly a point of Is,11 is logarithmically separated with points from the interval
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Iom+1 for m,n € Z and m # n. Hence we can consider {a;},cz as a disjoint union of finitely
many logarithmically separated subsets {a;};cs,, i =1,---,N. Let K C R\ {0} be a compact
set. By Lemma we know that ZjeJi fa]-K [¥(7)]? < oo for each i = 1,--- , N; it follows
that

Z/!} (a;7)Pdy = Z/ y)[Pdy = ZZ/ 7I*dy < o0,

JEZ N/ i=1 jeJ;
as desired. ]

Corollary 4.4. Suppose that {Do;,Tyx}jrez is a frame with lower bounds A > 0. Then
{Dq, Tort0} jrez satisfies the LIC with respect to £ = {0} and

1 ~
A< Z EWJ(%V)F for a.e. v € R.
JEZL

For other variants of GSI systems, covering the Gabor case, we also have the desired bounds
of the Calderén sum immediately from the frame property.

Corollary 4.5. Assume that {Tc;kg;j}tkez,jes s a frame with lower bound A > 0. If the
sequence {c;j}jez is bounded above, then

A<Z 1G5 (v )|? for a.e.v € R.
jeJ €

Proof. Assume that there exists M > 0 such that 0 < ¢; < M, for all j € Z. Using the proof
of Theorem we have I} = Z and Iy = (). Hence by letting ¢ — 0 in (3.5, we have the
result. O

5 Constructing dual GSI frames

We now turn to the question of how to obtain dual pairs of frames. Indeed, we present a flexible
construction procedure that yields dual GSI frames for L?(S), where S C R is any countable
collection of frequency bands. The precise choice of S depends on the application; we refer
to |1] for an implementation and applications of GSI systems within audio signal processing.
Our construction relies on a certain partition of unity, closely related to the Calderén sum,
and unifies similar constructions of dual frames with Gabor, wavelet, and Fourier-like structure
in [6,[7,19,/19,120]. Due to its generality the method will be technically involved; however, we
will show that we nevertheless are able to extract the interesting cases from the general setup.

Methods in wavelet theory and Gabor analysis, respectively, share many common features.
However, the decomposition into frequency bands is very different for the two approaches. To
handle these differences in one unified construction procedure, we need a very flexible setup.
In order to motivate the setup, we first consider the Gabor case and the wavelet case more
closely in the following example.

Example 3. For a GSI system {T¢,xg; }rez jes to be a frame for L?(S) it is necessary that the
union of the sets supp g;, j € J, covers the frequency domain S. This is an easy consequence
of Remark |1 and the fact that the Fourier transform of {1t 19;}kez jes 18 {Ee;k9j ez, jes-
For simplicity we here consider only S = R.
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As we later want to apply the construction procedure for wave packet systems, it is
necessary that the setup covers as well constructions of bandlimited dual wavelet as dual
Gabor frames. For wavelet systems take the dyadic Shannon wavelet for L?(R) as an ex-
ample. In this case, we split the frequency domain S = R in two sets Sy = (—o0,0] and
S1 = (0,00). The support of the dilates of the Shannon wavelet is supp §; = supp DQ_ﬂﬁ =
[—2‘j, —2_j_1} U [2_j_1, 2_j]. To control the support of g; we will define certain knots at
the dyadic fractions {:I:Qj }j ez Observe that {suppg; : j € J} covers the frequency line R.
However, in addition, we also need to control in which order this covering is done. On Sy the
support of g; is moved to the left with increasing j € Z, while supp g; on Sp is moved to the
right. To handle Sy and Sy in the same setup, we introduce auxiliary functions ;, ¢ = 0,1,
to allow for a change of how we cover the frequency set S; with supp g;. If we consider knots

fj(o) = —277 and ,f](.l) = 27! for j € Z and define two bijective functions on Z, ¢y = id and
p1 = —id, then we have
A 0)  +(0) M D
PP 35 C |00 Eomtiren| U (€00 Eory+1 (5-1)

The key point is that, for both ¢ = 0 and ¢ = 1, the contribution of supp g; in S; can be written
uniformly as [5&3(].),553(].) +1].

For Gabor systems the situation is simpler. Consider the Gabor-like orthonormal basis
{Tx9;}jkez, where g; = E;g, j € Z, with g € L*(R) defined by § = X[0,1]- Hence, we only
need one set So = R with knots Z. Here, ¢q is the identity on Z.

We remark that, in most applications, each ; will be an affine map of the form z — az+b,

a,b € Z. The choice of the knots f,gi) is usually not unique, but is simply chosen to match the
support of g;. ]

Motivated by the concrete cases in Example 3] we now formulate the general setup as
follows:

I) Let S C R be an at most countable collection of disjoint intervals
s=Js,
iel

where I C Z. We write S; = («a;, 8;] with the convention that a; = —o0 if S; = (—o0, 4],
Bi = o0 if S; = (e, 00], and a; = —oo and f; = oo if S; = R. We assume an ordering of
{Si}ier so that B; < a; whenever i < j. For each i € I we consider a sequence of knots

such that @ @ Q) Q)
. ) _ . Y_ 3. o< eV .
Jm &7 =ee I 67 =R 7S bhn kel

IT) Let ¢; > 0. For each j € J we take g; € L*(R) such that g; is a bounded, real function

with compact support in a finite union of the sets S;, ¢ € I. We further assume that
—1/24 formlv bounded. i ~1/2.
{c; /"gj}jes are uniformly bounded, i.e., sup;|lc; /" gjlloc < o0
IIT) For each j € J, define the index set I; by

Ij:{iEIZf]j#OODSi}.
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On the other hand, for each ¢ € I, we fix an index set J; C J such that
{jGJ:gj#OOHSZ‘}CJi.

Note that 7 € I; implies that j € J;. Assume further that there is a bijective mapping
; + J; = Z such that, for each j € J,

supp g; C U [fso ) E(% N (5.3)

1€

for some N € N. Often, we take J; to be equal to the index set of the “active” generators
gj on the interval S;, that is, J; = {j € J : §; # 0 on S;}, but this need not be the case,
eg.,if {j€J:g; #0on S} is a finite set.

In the final step of our setup we have only left to define the dual generators.
IV) Let h; € L?(S) be given by
N-1 (4) . . .
i(7) = {z"=N+1 i Io7 (it 4m) (V) fory € 8,0 €l

(5.4)
0 for v € S;,i ¢ I;

where {az(f)n}iel,keZ,ne{—N+1,...,N—1} will be specified later.

Example 3 (continuation). For a rigorous introduction of ¢; in Example 3| above, we need to
specify the sets J;. In the wavelet case, as all dilates D2_j1[1 have support intersecting both Sy
and 57, the active sets J;, ¢ = 0, 1, correspond to all dilations, that is, Z. In the Gabor case,
one easily also verifies that the active set Jy is Z. ]

We are now ready to present the construction of dual GSI frames. Recall from (j5.2)) that
the superscript (i) on the points {,(;) refer to the set S;.

Theorem 5.1. Assume the general setup [[HIV] Suppose that

¢; 3500 = xs()  forae. yER, (5.5)
JjeJ

Suppose further that c; < 1/M;, where
o (maxlI;) (minIy) (maxI;) (minlj)
M‘j = max {gﬂomaxl ( )+2N g‘ﬂmm[ ’Esomax[ (.7 +N gﬂamml (]) N} ’ (56)
and that {a](:al}keZ,ne{—N—l—l,...,N—l},ie] is a bounded sequence satisfying

) Cor1 (o () /2 ) 1/2 )
“gi)(j),o =1 and <W(W(])+)> “fo:)(j),n T (CJ> “fo?(j)m,w =2, (5.7)
€ Corl(wilj)+n)

form e {l,...,N — 1},vj € Ji, and i € I. Then {T,19;}trezjez and {Te;xhj}rez,jez are a
pair of dual frames for L*(S).
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Proof. First, note that for each j € J, we have j € Jmaxr; N Jminr; and therefore that M; in

(5.6) is well-defined.
Now, note that by assumption (5.3) and the definition in (5.4)),

. (minlj) (maxI;)
supp gj c |:§4Pmin1j (4)’ (Pmaxfj ('])+N:|

and
~ (minl}) (maxI;)
Supp h] - |:€<Pminljv (]) N> é-()amaxl (])+2N:|

WhereA the constant N is given by assumption [T} Thus, if j € J and 0 # m € Z, then
Gj(7)h; (7+cj_1m) = 0 for a.e. v € R since cj_1 > Mj for each j € J. Therefore, by Theorem

we only need to show that {T¢ kg }kez jes and {Te;khj}rez, jes are Bessel sequences, satisfy
the dual o-LIC and that

> e gi(hi(y) =xs(7)  forae y€ER. (5.8)
JjeJ
holds.
Choose K > 0 so that \F 1gj(7)] < K for all j € J and a.e. v € S. For a.e. v € S we have
3 Clasistrt et m| = 3 Sl < K3 5 (] < VK
jeJ mez € jeJ € jed G

where the last inequality follows from the fact that at most N functions from {g; : j € J} can be
nonzero on a given interval [£ l(:), £ ](CZJ)FI] It now follows from Theorem (1) that {T¢;k9) ez jes
is a Bessel sequence in L?(S) with bound NK?2.

A simple argument shows that if {al(ci)n}keZ,ne{—NJrl,...,N—1},z‘€I is a bounded sequence, then
each term on the left-hand side of must be bounded with respect to¢ € I,5 € J; and
n=-N+1,---,N—1. Let M > 0 be such a bound. Then, for each ¢« € I and v € S;, we
have

N-1
-1/23 ~1/2,(0) g
c; lhi(m] < Z 15 i yn T (@i 4m) (V)]
= N+1
“o; Hpili)+n) +n) o _.
<K Z 0\l < KM@2N = 1) =: L.
—N+1 €

Hence, the sequence of functions {c 2} j}jes is uniformly bounded by L.
For the remainder of the proof we let ¢ € I and j € J; be fixed, but arbitrary. Note that

the functions ¢ o (pi()4m)y V= 0,1,...,N — 1, are the only nonzero generators {gi},c; on

[5(’)( N 1,5% +N] Hence, for h o i)+ only ] = —-N+1,--- ,2N — 2 can be nonzero

on [5(2) Thus, for v € [5( )( N 1,5 +N] we have

i(§)+N-1 g@z J)+N]

S s+ = X3 6 s+ )

jeJ meZ jeJ m=—1

<3LY e P hy()

jedJ
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IN—2 /
B —1/2 -
3L Z o pilh)+0) h,

< 3L2(3N —2).

Sero )|

It follows from Theorem (1) that {1, 1h;j}kez, jes is also a Bessel sequence. Similar compu-
tations show that the a-LIC holds:

S b+ et \—Z 3Nk ()]
jeJ meZ € jeJ €
1/2 1/2
1, 1,-
<\ X a0’ X el
jeJ J jeJ

where B is a Bessel bound for {chkhj}kez,jeJ-
Finally, we need to show that holds. Set g = 0;1/2gk, ke J,and £, = o; ' (pi(4)+n).
Then, for a.e. ’ye[ﬁ ,§ ]

(z il ) (Nz %(’Y))z

'7) |:g£0( ) + 2951( ) + 2.662 (’7) +oot 2.6@1\!71 (7):|

o | () +2060) e+ 2, ()]
+ .é@N—1 (7) [ §ZN—1 (7)] .

Clearly, each mixed term in this sum has coefficient 2, e.g., 2g¢, (7)de,, (7) whenever n # m.

Replacmg gg with cé 124 2 1/ 9e,(V)3e,,(7)- By

, we have

Jr,, yields a mixed term with coefficient 2015

o —1_(3) -1 (z) o =172 —1/2
ap,(j)0 = 1 and % %) + Cgo;l(gol( )+n) Qi (G)+n,—n = 2Cj C(p;l(gpi(j)+n)’
for{=1,...,N — 1,5 € J. Hence, we can factor the sum in the following way:

1= ¢ 90, (7) (00,0 G0 (V) + @01 ey (V) + -+ + @go,n—1 ey, (7)]
+ ¢ 90, () [aey,—1 960 (V) + @00 96, (V) + -+ + agy N—2 Gex_, ()]

s (1) [Gey 1 N1 306 (V) + a0 ey, ()]
N-1
— -1 . .
B Z o (ei)+m) i (i) ) (7)}1 L(pi(4) +n ch ar(Y)he(7)
"= keJ
for a.e. v € [f 5321] Since ¢ € I and j € J; were arbitrary, the proof is complete. O
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Remark 2. A few comments on the definition of M; are in place. Firstly, the only feature of
M; is to guarantee that §; and h;(- + cj_lk) has non-overlapping supports for all k € Z \ {0}.
Secondly, it is possible to make a sharper choice of M; in Theorem Indeed, let nj max =

max/; . minl/;
max{n : ac(pmszjzj)yn # 0} and let njymin = min{n : afpminlj)(j)»n # 0}. We then take:
o (maxI;) (minlj) (maxI;) _ ¢(minlj)
MJ — max {gsomaxlj(j)'f‘nj,max'i‘N é'ﬁﬂmml ’Esomaxl (.7 5Sominljv (])"FTL],mm} ’ (59)

For wavelet systems Theorem reduces to the construction from [19,20] of dual wavelet
frames in L?(R).

Corollary 5.2. Let a > 1 and ¢ € L*(R). Suppose that 1& 1s real-valued, that Suppl; -
[—aM, —aM_N] U [aM_N,aM] for some M € Z, N € N and that

Zi[)(aj'y) =1 for a.e. v €R. (5.10)

JEZ
Take b, € C,n=—-N+1,...,N — 1, satisfying
bo=1, bop+tb,=2n=12...N—1,

and set ¢ := max{n:b, #0}. Let b € (0,a™™(1+a’)"']. Then the function ¢ and the
function ¢ € L2(R) defined by

@Z =b Z bnd) Ty for a.e. vy €R (5.11)

—N+1

generate dual frames { Dy Tyxt)}; ez and { Do Topth} jnez for L*(R).

Proof. Let ¢ = V/Inp. We consider the wavelet system {D,;Tyr¢}jrez as a GSI system with
¢j = a’b and g; = D,;¢ for j € J = Z. We apply Theorem with Sy = (—o00,0] and
S1 = (0,400), 6(0) —aM=J and Ej(l) = a™~N*J for j € 7Z. The assumption (5.5)) corresponds
to

Zg?)(aj’y)Z\/l; for vy € R

JEZ

which is satisfied by - Let a(o) = a~"/2b,, and agl) =a"?b_, forn=—-N+1,...,N—1
and j € Z and define ¢g, 1 : Z —> Z with ¢o(j) = j and ¢1(j) = —j. The definition of h; in
(5.4) reads

Zsz:_—IN-ﬁ-l aé?r)L (J+n /2¢( (G+n) ) for v € Sp,

Zivz__l]vﬂ a(_li_n a(j+")/2gz§(a(j+”)7) for v € 5.

Setting ¢ = D,—;h;j yields

N-1 )
= Y budlay) ~ER

=—N+1

For all j € Z, we have I; = {0,1} and thus min/; = 0 and max/; = 1. Note also that
{ = Njmax = —Njmin for all j € Z. Hence, condition (5.9)) reads

B (1) 0) (0)
Mj = max {ffjJrnjymaerN 5 €7]+N §j+nj,min}
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= max {aij‘Fnj,max + 011\47.747 aij + aijfnj,min}
= a7 (a4 1).
From Theorem we have that {Dg; Thr¢};kez and {D,;iTor.¢} jkez are dual frames for
b e (0,aM(1 +ab)~ |. By setting ¢ = Vb, we therefore have that {Dy;Tykt)};kez and
{D,; Tbk;l;}j,kez are dual frames; it is clear that ¢ is given by the formula in (5.11)). O
Using the Fourier transform we can move the construction in Theorem [5.1] to the time
domain. In this setting we obtain dual frames {Ebpmgp}mez,pez and {Ebpmhp}meZpeZ with

compactly supported generators g, and h,. A simplified version of this result, useful for
application in Gabor analysis, is as follows.

Theorem 5.3. Let {x), : p € Z} C R be a sequence such that

pgrfoo xp = *o0, xp_1 < xp, and rpion_1 —xp <M, pEL,

for some constants N € N and M > 0. Let g, € L*(R), p € Z, be real-valued functions with
such that {b;l/Qgp}pez are uniformly bounded functions with supp g, C [2p, Tptn]|. Assume
that 3,z b;lﬂgp(x) =1 for a.e. z € R. Let

N-1

hp() = Y apn Gpin(w), foraz €R,
n=—N+1

where {ap,n}peZ,ne{—NH,...,N—l} is a bounded sequence in C. Suppose that 0 < b, < 1/M and

that
b 1/2 b\ 1/2
apo=1 and < 1;:") apn + (b d ) Apin,—n = 2, (5.12)
P p+n

forpeZ andn=1,...,N —1. Then {Ebpmgp}mez,p62 and {Ebpmhp}meZ,peZ are a pair of
dual frames for L*(R).

Theorem generalizes results on SI systems by Christensen and Sun [|9] and Christensen
and Kim [6] in the following way: Taking b, = b for all p € Z, Theorem reduces to |7,

Theorem 2.2] and to [9, Theorem 2.5] when further choosing ap, =0 forn =1,..., N —1 and
p € Z and to Theorem 3.1 in [6] when choosing g, = Tpg for some g € L*(R).

6 Wave packet systems

Let b > 1, and let {(aj,d;)}jes be a countable set in R x R. The wave packet system
{DaijkEdj¢}k€Z,j€J is a GSI system with

gj = Do;Eq;¢p and ¢; = ajb, j € J.

It is of course possible to apply the dilation, modulation and translation operator in a different
order than in {Da]. TbkEdj¢}keZ,je 7. Indeed, we will also consider the collection of functions
{Tor Do, Ea;v }rez,jes, which is a shift-invariant version of the wave packet system. It takes
the form of a GSI system with

gj = Da;Eq;¢p and ¢; = b, j € J,
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and it contains the Gabor-like system {7y Eqj1}
case.

There are four more ordering of the dilation, modulation and translation operators; how-
ever, the study of these systems reduces to either the study of {Dg;ThxEa;v}rez jes or
{TokDa; Eaq;v b kez, jes- This is clear from the commutator relations:

ke but not the wavelet system, as a special

—2mid bk —2mid bk
Daj TbkEdj = % Daj Edj Ty, =e T Eafldj Daj Ty
J

and )
—2mia; ~d;bk
Tbk?DajEdj = TbkEaj—ldeaj =e i Eaj—1dijkDaj~

The following result is a special case of Theorem [2.6] for the case of wave packet systems
of the form {Dq;Tyx Ea,; ¢} kez,jes; a direct proof was given in [8].

Theorem 6.1. Let b > 1, and let {(aj,d;)}jes be a countable set in R\ {0} x R. Assume that

*SUPZZW)@JV dj)(azy — dj — k/b)| < oo, (6.1)

7ER]GJ keZ

Then {Daijk-Edjw}kezyje‘] is a Bessel sequence with bound B. Further, if also

A=y int (Sl =) = Y Wilagy ~ d)dtagy—d; ~ /o)) >

jeJ JeJ 0£keZ
then {Do;Tox Ea; v trez,jes is a frame for L?(R) with bounds A and B.
A similar result holds for the shift-invariant wave packet system {Tkaaj Edj@b}keZ,je J-

6.1 Local integrability conditions and a lower bound for the Calder6n sum

Theorem [6.1]allows us to construct frames, even tight frames, without worrying about technical
local integrability conditions; in fact, the condition (6.1)) implies that the a-LIC is satisfied.

Lemma 6.2 (|16]). If (6.]] . holds, then the a-LIC for wave packet systems holds with respect
to some set E € £, i.e.,

=S5 [ 1700 = ket - dy)iagy - dy = kjB) dy < o0

jeJ kEeZ
for all f € Dg.

On the other hand, as we will see in Example |4 condition does not imply the LIC.
Indeed, for wave packet system, if possible, one should work with o-LIC instead of the LIC. We
will see further results supporting this claim in the following. We continue our study of local
integrability conditions with a special case of the wave packet system {Dg,ToxEa;%}rez jer
that is highly redundant. Given a > 1 and a sequence {d,, }mez in R, we consider the collection
of functions

{DyiTorEq,, Y} jm ke (6.2)

which can be considered as GSI systems with c(; ) = a’b and 9im = DyiEg, Y. For wave
packet systems of this form the point set {(a;,d;)}je; C RT x R is a separable set of the form
{(aj,dm)}j,mez. For each fixed m € Z in the system {D,;TypEq,, 1} jrez is a wavelet
system (with generator Eg, ).
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The first obvious constraint is that if the system {D,;TyrEq,, ¢} jcsm ez is a frame, then
the sequence {d, }mez cannot be bounded. In fact, in that case the sequence {d,,}mez has
an accumulation point and thus {D,; Ty Eq,, ¥} jeJm,kez cannot be a Bessel sequence, see 8.,
Lemma 2.3]. We will now show that a wave packet system on the form cannot satisfy
condition (3.1)).

Lemma 6.3. Assume that {dp, }mez is unbounded and 1) # 0. Then

S S et —d)l? ¢ Lo (R \ E), (6.3)
{j:aib>M} meZ

forall M >0 and all E € £.

Proof. Let M > 0 and let E € £. Assume that {d,}mez is not bounded below. Note that
{j:alb>M}={j:j> MY} where M’ = [mM=Inb] 4 | Taking K = [1,a] \ E, we have

Ina

IM_ZZ/QJW)QWM |d7_ZZ/M (v + d) P dry

mGZ] M’ meZ j=
/ O(y + d)2dy > Z/ O(y + dp)|Pdry. (6.4)
mEZ] a’[1.a] meZ

Since {dm}mez is not bounded below, there exists a subsequence {dp,, };°; of {dm}mez such
that d,, — —oo. Hence, for each N € R there exists L € N such that d,,, < N — a™’ for

{ > L. Thus - -
Lo B0P> [ iR,
aM +dm, N

for all [ > L. But in this case, using inequality (6.4) and choosing N small enough, we have

IM>Z/ d'y 0.

I>L

A similar argument shows that if {d,}mez is not bounded above, then Ip; = co. Therefore

(6.3) holds. O

Thus, for the case where {d,,}mez is unbounded, it is impossible for a wave packet sys-
tem {D i TorEq,, YV} jcsmkez to satisfy the LIC-condition. On the other hand, if {dy, }mez is
bounded, we know that it is impossible for such a system to form a Bessel sequence. Hence,
the wave packet system {D,; Tk Eq,, %'} jesm kez cannot simultaneously be a Bessel sequence
and satisfy the LIC.

Corollary 6.4. If the system {D,i Ty Eq,, v} jcsm kez is a Bessel sequence, then this system
does not satisfies the LIC.

The following example introduces a family of wave packet tight frames of the form {D,; Ty Eq,, ¥} jez kez,mes
that satisfies (6.1) and thus the a-LIC by Lemma [6.2] but not the LIC.

Example 4. Let ¢ € L?>(R) be a Shannon-type scaling function defined by ) = X[—1/4,1/4]-
Let a = 2, b =1, and define d,,, = sgn(m)(2™! — 3) for m € Z \ {0}. We will first argue that
the wave packet system {D;Tyx Ea,, Y} jez,kez,mez\ {0} 18 a tight frame for L?(R) with bound
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1. To see this, we will simply verify the conditions in Theorem [6.1] All we need to do is to
prove that

Z Z V(2y —dpy))? =1 forae yeR. (6.5)

JEZ meZ\{0}

With our definition of 1, this amounts to verifying that the sets
Ipj =277 [~ +dp,t+dn), j€ZmeZ\{0}, (6.6)
form a disjoint covering of R. To see this, let m € N and k € Z, then
L = 27" <1427, =L 2m) =25 (14277 [1,-1)).

The sets 1 427 [—1 ) m € N, form a disjoint covering of [
27m[-1,-3)), k € Z,m € N, form a disjoint covering of (0, cc).
A similar argument for m < 0 shows that {1, j}jczme—n is a disjoint covering of (—o0,0).
We conclude that holds. Thus, the system {Dy; Ty Eq,, Y} jez,kez,mez\ {0} 1S a tight frame.
Since { Dy Tk Ea,, '} jez, kez,mez)\ {0} Satisfies , it satisfies the a-LIC by Lemma On
the other hand, by Corollary the wave packet system does not satisfy the LIC. [ |

1,1). Hence the sets 2%(1 +

We finally consider lower bounds of the Calderén sum for wave packet systems. From
Corollary we know that any GSI frame that satisfies the LIC will have a lower bounded
Calderén sum. A first result utilizing this observation is the following result for the shift-
invariant version of the wave packet systems.

Theorem 6.5. Let ¢ € L*(R). If {TokDa; Ea; v Yken jes s a frame with lower bound A, then

A<Z ]1/1 a;y — d;)? a.e.y € R. (6.7)
JjeJ

Proof. Any SI system satisfies the LIC. Hence, in particular, the system {7, Dq; Edjw}kezyjej
satisfies the LIC. The result is now immediate from Corollary [3.4] O

On the other hand, Example [ shows that, in general, we cannot expect wave packet frames
{Da].TbkEdj@/)}kezJeJ, even tight frames, to satisfy the LIC. Hence, in general, we can only
say that if the wave packet system { Dy, Ty, Fq, % }kez, jes is a frame with lower bound A and
if it satisfies the LIC, then

1 -
A< Z g]w(aj’y —dj)[? a.e.y € R. (6.8)
jeJ

6.2 Constructing dual wave packet frames

We now want to apply the general construction of dual GSI frames in Theorem to the case
of wave packet systems. We first consider how to construct suitable partitions of the unity.

Example 5. Let f : [a/°,a/°T1] — R be a continuous function such that f(a’) = 0, f(a’o*!) =
1 and f(—v + a/*t! +a0) + f(v) = 1. Define

fAD) a.e. |y| € [al, afot],
h(y) =41~ f(%) a.e. |y| € [afot1, aiot?],
0 otherwise.
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For almost every v € [—a/*! ao*!] there is exactly one j € J such that a’|y| € [a/0, a/0T1].
~ . . ~ . j+1
Hence ¥(a?y) = f(Jaiy), ¥(ai*1y) = 1 = f(““11). Then for J = NU {0}, we have

1 a.e. y € [—alotl glotl]
> Uam) =1 () ae pl € lah o,
jes 0 otherwise.

By shifting this function along dZ, where d = a’°*!(a + 1), we have

Z Z@@(aj(fy— dm)) = Z Zz/?(ajfy— a?dm) =1 a.e. v€ER.

meZ jeJ meZ jeJ
]

In the remainder of this section we let 1) be defined as in Example [5l Note that depending
on the choice of f, we can make 1[1 as smooth as we like. Hence, we can construct generators
1) that are band-limited functions with arbitrarily fast decay in time domain and that have a
partition of unity property.

Note that if f(y) € [0,1] for all v € [a®,a?*™!], the function v is non-negative. In this
case we can use the partition of unity to construct tight frames. Indeed, for the parameter
choice b < 2a7°*2 the sums over k € Z in Theorem only have non-zero terms for £ = 0.

Define ¢ = 1)!/2. Since
53 [b(aly — aldm)[2 = 1,

meZ jeJ

it follows from Theorem that {D i Tox Eyigm®} k,mez,jes is a 1-tight wave packet frame for
L2(R).

However, taking the square root of 1& might destroy desirable properties of the generator,
e.g., if f is a polynomial, then 121 is piecewise polynomial, but this property is not necessarily
inherited by ¢ = 1&1/ 2. By constructing dual frames from Theorem |5.1, we can circumvent
this issue.

Example 6. In order to apply Theorem ~We need to setup notation. Let 1/; = /by and con-
sider the wave packet system {D,; Tor Eyi gm¥ }k,mez, jen, as a GSI-system {TC(j’m)k’g(j,m) }ieNo,m,kez

where g(j m) = Dqi Ejam® and Cljm) = a’b for all j € Ny and m € Z.

j7m)
For i € I, define S; = (di, d(i + 1)]. Since g(jm) = D~ T,igmt, we have

I(],m):{m7m_1}7 JZ:{(]7Z)7(,771+1)]€N0}

Define the knots {f}ii)}k,iez by

5(Z-) B —aT37F 4 d(i + 1) k>0,
P a4 di k<O0.
Then the sequence {{,(:)}Mez fulfills the properties in |I|in the setup from Section |5 For each
i € Z, we define the bijective mapping ¢; : J; — Z by ¢;(j,i) = —j and ¢;(j,i+1) = 14 5 for
all 7 € Ng. Then
- (4) (4)
iEI(j,m)
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for j e Nand m € Z, is

The definition of h; )
A 2711:71 aTj,ng(j—n,m) (7) aS Sma
0 ’YER\(SmUSm_l),
and, for j = 0, we have
N agjj_lg(lvm) (7) + g(ovm) (fy) + ag?lg(o,’mrFl) (f)/) 7 e Sma
hom) = % a7t 0m—1) (V) + G0m) (V) + a7 1,m) (7) v € Sm-1,
0 v E€RN\ (Sp U Sm—1).

Hence, if we define qu =T iamDai iz(j’m) and qgo = T—dmil(o,m)- Take any two numbers by, b_;
in R with by +0-1 =2 and set ai' ; _, =a™ = a™?b,, for all k € N and m € Z. We then
have

S1(7) = borp(ay) +v(y) +biv(aly) v ER (6.9)

For j = 0, based on Theorem we should set ag’_; = ai’y = a~12p_1, also weset c_q = ar’_y
and ¢ = ag?l for all m € Z, where c_1,¢1 € R and c_1 4+ ¢; = 2. In this case, we have
do =b1P(a)) + () + (v —d) + cab(y+d)  yER. (6.10)

By Theorem we conclude that the systems

{TokEgiam¥ }emez UA{D oi Tok Egi am¥ Y r,mez.jen

and
{02 Ty Bamo Y emez U {62 Do Tok E i am®1 Y hmez, jen

are dual wave packet frames for L?(R). Note that in the definitions of ¢9 and ¢; in (6.10))
and , respectively, we are free to choose any set of coefficients satisfying b1 +b_1 = 2 and
c_14+c1=2. [ |

In Example[6] we constructed dual wave packet frames with two generators, akin to the case
of scaling and wavelet functions for non-homogeneous wavelet systems. By a special choice of
the coefficients b1,b_1,c_1, c1, we can reduce the number of generators to one.

Example 7. Take by =b_1 =c_1 =c; =1 1in and (6.10). Note that zﬁ(aflfy) is equal
to 9(y — d) + (v +d) on the support of 1. Thus, ¢o and ¢; agree on supp ). Hence if we set

o(7) = bib(ay) + b (y) + bib(y — d) + bi(y +d), 7ER,

then the wave packet systems {DainkEajdm¢}k,m€Z,j€J and {DaijkEajdm¢}k,m€Z,j€J are
dual frames for L?(R) for b < a=7°(2a® 4+ a — 1)~!. Alternatively, we can take

6(7) = bib(a) + bd(7) +bid(aty), v ER,
in which case we need to take b < a=~2(a + 1)~! to obtain dual frames. |
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