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Abstract In this paper, local cubic quasi-interpolating splines on non-uniform grids
are described. The splines are designed by fast computational algorithms that utilize
the relation between splines and cubic interpolation polynomials. These splines pro-
vide an efficient tool for real-time signal processing. As an input, the splines use eit-
her clean or noised arbitrarily-spaced samples. Formulas for the spline’s extrapolation
beyond the sampling interval are established. Sharp estimations of the approxima-
tion errors are presented. The capability to adapt the grid to the structure of an object
and to have minimal requirements to the operating memory are of great advantages
for offline processing of signals and multidimensional data arrays. The designed
splines serve as a source for generating real-time wavelet transforms to apply to sig-
nals in scenarios where the signal’s samples subsequently arrive one after the other
at random times. The wavelet transforms are executed by six-tap weighted moving
averages of the signal’s samples without delay. On arrival of new samples, only a cou-
ple of adjacent transform coefficients are updated in a way that no boundary effects
arise.
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1 Introduction

Since their introduction in [14], splines have become one of the most powerful tools in
mathematics and computer aided geometric design. In recent decades, splines have
served as a source for the constructions of wavelets, wavelet packets and wavelet
frames. Splines and spline- based wavelets, wavelet packets and frames are extensively
used in signal and image processing applications (see, for example, [3, 4]).

Interpolating splines possess exclusive approximation properties. In particular, an
interpolating spline of order p, which consists of pieces of polynomials of degree
p — 1, restores polynomials of the same degree. Due to this property, these splines
generate biorthogonal wavelets with p and, in some cases, p 4+ 1 vanishing moments
([3, 4]). However a drawback in the design and manipulation of interpolating splines
is that, for their computation, a system of equations that involves all the available grid
samples has to be solved. This fact prevents the usage of these splines for real-time
processing. !

Therefore, the idea to have splines that can be designed and manipulated directly
without resorting to systems of equations, while their approximation accuracy is close
to that of the interpolating splines, is attractive. A method for the design of such
splines on a uniform grid was presented in the pioneering spline paper [14]. When
the grid is non-uniform, the design and estimation of the approximation properties
of such splines is more complicated, especially for higher-order splines. A number
of investigations in this field were carried out in the 70’s (see, for example, [13]).
These splines are called local because the computation of a spline’s value at a fixed
point requires to use only a few adjacent grid samples. Nevertheless, there exist local
splines which provide the same approximation order as the interpolating splines. That
is, there exist local splines of any order p which restore polynomials of degree p — 1.
Such local splines are referred to as quasi-interpolating splines.

In this paper, we describe a procedure to design and analyze local cubic quasi-
interpolating splines on arbitrary grids. Typically, local splines are designed via their
B-spline representation. An alternative approach presented in this paper, which is
based on the relation between quasi-interpolating splines and cubic interpolating
polynomials, results in a “simple” algorithm for spline computation. When samples
are given on a limited interval, which is a typical situation, the spline is extended to
the boundaries of the interval without loss of its approximation accuracy. In addi-
tion, a method for accurate extrapolation of the spline beyond the sampling interval
is presented. Only six adjacent samples are needed to compute the spline’s value at a
certain point. Therefore, the design of the spline can be implemented in a real-time
mode when samples of a signal arrive dynamically and sequentially at random times.
Due to the extension formulas, the design can be carried out without delay up to

1Under the real-time processing we mean a situation when signal’s samples arrive dynamically and
sequentially and the computations are executed with a minimal, if any, delay with respect to the samples
arrival.
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Local splines and wavelet transforms

the latest sample arrival. In addition, the extrapolation algorithm can be applied to a
prediction-correction processing of signals evolving in time.

Similarly to cubic interpolating splines, the described splines restore cubic poly-
nomials at inner parts of the sampling interval and so also near the boundaries and
in the extrapolation process. Moreover, the spline representation via interpolating
polynomials provides sharp estimations for the approximation errors.

The described splines are used for the construction of wavelet transforms of
arbitrarily sampled signals. Most of the existing wavelet transforms operate on uni-
formly sampled signals. A few works that describe wavelets on non-uniform grids
appeared in recent years. Equidistant wavelets, which are utilized for denoising of
non-uniformly sampled signals, appear in [6]. Scaling functions on different levels of
enclosed irregular grids, which appear in [7], are designed as limit functions of subdi-
vision and wavelets are designed as their linear combinations. In [11], a local decom-
position of the space of splines, which are constructed on a fine irregular grid, onto
a coarse-grid spline space and its orthogonal complement was presented. The bases of
these subspaces are formed by quasi-interpolating splines and compactly supported
pre-wavelets. A general method for constructing wavelets on irregular lattices in R?
and a general atomic frame decomposition of the space L?(R?) are described in [2].

In the current paper, the quasi-interpolating splines are utilized as a source of finite
impulse response “filters” to generate wavelet transforms of discrete-time arbitrarily
sampled signals. When sampling is uniform, these are filters in a proper sense of the
word. Neither scaling functions nor continuous wavelets are involved.

A natural way to design and implement wavelet transforms of signals is the Lifting
Scheme introduced in [18], which consists of subsequent applications of prediction
and updating operators to signal’s samples. The scheme was extended in [19] to
non-uniformly sampled signals. The lifting wavelet transform on a non-uniform grid,
where wavelets have two vanishing moments, is applied in [20] to signal denoising.
Our design scheme is based on quasi-interpolating local splines. The idea which, in
the case of uniform sampling, is explored in [4], is to predict odd samples of the sig-
nal to be transformed by values of a spline constructed on the even samples of the
signal. Then, the detail coefficients are derived by subtraction of the predicted odd
samples from the original ones. The next step consists of updating the even samples
by values of the spline designed on the detail coefficients. Since quasi-interpolating
splines restore cubic polynomials, the detail wavelet transform coefficients are zero if
the signal is a sampled cubic polynomial (at least locally). In that sense, we claim that
the arising discrete-time wavelet transforms have four discrete vanishing moments.
Typically, wavelet transforms of signals (images) defined on limited intervals (areas)
require an extension of the object beyond its boundaries ([5]), in order to reduce
boundary effects. However, by using the definition of the splines near the boundaries
of the sampling interval, the wavelet transforms are implemented without this type of
extension. The design of splines make them useful for real-time (with no delay) exe-
cution of wavelet transforms in the situation when samples of a signal subsequently
arrive at random time moments.

A real-time denoising method, which is based on the lifting wavelet transform
of uniformly sampled signals, is presented in [12]. The online wavelet transform is
implemented using a moving window (see also [21]), which produces some delay
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with respect to the sample acquisition and requires an artificial extension of the
data beyond the moving window. Our algorithm produces wavelet coefficients with
no delay. No extension of the data is needed. Arrival of a new sample leads to the
production of a new coefficient and to updating of a couple of already produced
coefficients.

The paper is organized as follows. Section 2 introduces the necessary notation
and recalls definitions of the divided differences and interpolating polynomials.
Section 3 introduces local cubic quasi-interpolating splines, describes algorithms for
spline computation on unlimited and finite intervals and an extrapolation method.
Approximation properties of the splines are investigated and numerical exam-
ples are provided. The Lifting Scheme of the wavelet transforms is presented in
Section 4.1. In Section 4.2, spline- based prediction and updating operators are
explicitly described. A scheme for the real-time wavelet transforms computation is
outlined in Section 4.3 and numerical examples are provided.

In order for the paper to be self-contained, some results about local quasi-
interpolating splines, which appeared in [17, 23], are included.

2 Preliminaries
The following notations are used throughout the paper:

The grid on the real axis is denoted by t := {¢t[k]}. The steps of the grid are denoted
by hlk] := t[k + 1] — t[k].

If t € [t[k], t[k + 1]] then a local variable is t := (t — ¢[k])/ h[k] € [O, 1].

The n-order divided difference (DD) ([1, 9, 16]) of a sequence f = { f[k]} with
respect to the grid t is

k+1]
flkk+1,k+2,....k+n]:= Za) [;:][(t[k-{-l]) .

where
wplkl(@) =@ —tlk) (t —tlk+1]) ... (t — t[k +m]). 2)

If a function f(7) belongs to C" [t[k], t[k + n]], then the DD of the sequence
={flk+vl=f@lk+vD}, v=0,..,n,is

(n)
f[k,k+1,k—|—2,...,k—|—n]=fn'(e), 0 € (k). tlk +nl). (3

The notation P(t)[k] is used for a cubic polynomial that interpolates a function
f(t) at the grid points {t[k — 1], t[k], t[k + 1], t[k + 2]}. The remainder term of
the interpolation is explicitly expressed by

R@) = f@)— @)= flt,k, k+ 1, ...,k + 3] ws[k](?). 4)

@ Springer



Local splines and wavelet transforms

3 Local cubic splines

The cubic B-spline is

(t — tlk +vD3

— T (&)
wy[k](t[k +v])

4
b(t)[k] = (t[k + 41— t[k]) )
v=0

It is supported on the interval (¢[k], ¢t[k 4 4]). The following observation will be used
for further design.

Proposition 3.1

1. The values of the B-spline b(t)[k —3] at the interval [t[k], t[k+1]] do not depend
on the location of the grid point t[k — 3].

2. The values of the B-spline b(t)[k] at the interval [t[k], t[k + 1]] do not depend
on the location of the grid point t[k + 3].

Cubic splines on the grid t = {¢[k]} are represented via the B-splines ([8, 15]). For
t € [t[k], t[k + 1]], a cubic spline s(¢) is given by

k
sy =Y qlv+21bOI= Y qlv+2]b@®)v], (6)
VEZL v=k—3
where q = {g[v]} is a sequence of real numbers, which determines the spline’s

properties.

Typically, for a spline that approximates a function f(¢), the coefficients g[v] are
derived from the samples { f[k] := f(t[k])} of f(¢) on the grid t. In that case, the
spline is denoted by s[ f]. For interpolating splines, the coefficients g[v] are obtained
by solving a tridiagonal system of equations, which involves all the available sam-
ples and some boundary conditions. An alternative is provided by the so-called local
splines.

Definition 3.2 If the coefficients ¢g[v] in Eq. 6 are finite linear combinations of grid
samples { f[k]}, then the spline s[ f] is referred to as local spline.

Definition 3.3 If for any polynomial f(r) = P"(¢) of degree n, a spline satisfies
s[f1(t) = f(z), then it is said that the spline s[ f] restores polynomials of degree n

and its approximation order is n + 1.

It is well-known that cubic interpolating splines restore cubic polynomials, thus
having the approximation order 4.

Definition 3.4 A local cubic spline, whose approximation order is 4, is referred to
as the quasi-interpolating local spline.

To get the simplest cubic spline on the grid t, which approximates the function
f () from the samples { f[k] := f(¢[k])}, the coefficients in Eq. 6 should be chosen
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to be go[v] := f[v]. Thus, the spline, which is denoted as so[ f], is expressed by
solf1(¢) = Zﬁ:k_3 fIv + 2]1b(¢)[v]. Its approximation order is 2, thus it restores
only first-degree polynomials. For the computation of the spline’s values so[ f](¢) at
the interval [¢[k], t[k + 1]], four grid samples f[k — 1], f[k], f[k+ 1] and f[k + 2]
are needed. The quasi-interpolation can be achieved by adding two more grid samples
into the computational scheme.

Denote by
. —(h[k])? . —(h[k — 1))
Pl = ok =g raky” PN S ik = k)
Bolk] := 1 — B_1[k] — Bilk], @)

where h[k] is the grid step.

Proposition 3.5 ([22]) If the coefficients in Eq. 6 are chosen as
qi1lv] = B_i V] fIv = 11+ Bolv] fIv] + Bi[v] fIv + 11,
then the spline
silA1@ =) qilv +21b@)[v] ®)

VEZ

restores cubic polynomials. For the computation of the spline’s values si[ f1(t), t €
[t[k], tTk + 111, six grid samples [k — 2], ..., flk + 3] are needed.

Proof Proved by direct computation of the spline’s values of the functions f(¢) =1,
f@®:=t",r=1,23. O

Remark 3.6 In the rest of the paper, we deal exclusively with the quasi-interpolating
splines s1[ f]. Therefore, we drop the index -1. Thus, in the sequel s[ ] := s1[f].

3.1 Quasi-interpolating cubic splines
3.1.1 Computation of quasi-interpolating cubic splines

The quasi-interpolating cubic splines s[ f] can be represented in an alternative form,
which is based on a relation between the splines s[f] and cubic interpolation
polynomials. Such form is computationally efficient because it utilizes the well-
established algorithms for the computation of interpolation polynomials, and facil-
itates extension of the spline to the boundaries of the intervals. In addition, that
representation makes it possible to derive sharp estimates of the approximat errors for
the splines s[ f]. Originally, this representation was introduced in [23]. For the paper
to be self-contained, we place the proof of the following statement into Appendix.

Recall that P(¢)[k] denotes the cubic polynomial which interpolates the function
f(¢) at the grid points {t[k — 1], ¢t[k], ..., t[k + 2]}, and f[k] := f(z[k]).
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Local splines and wavelet transforms

Theorem 3.7 For t = t[k] + hlk]lz, t € [0, 1], the cubic spline s[ f1(t), which
restores cubic polynomials, is expressed by

sLA1@) = POk + Flk —11(1 — 1) + Flk] 7%, )]
where the coefficients F[k] are

(h[kD? (hlk + 11)? (t[k + 31—tk — 1])
3(tlk + 2] — t[k]) ’

FIkl :i=—flk — 1, k. k+ 1, k+ 2, k+3]
(10)

Proof In Appendix.

When the grid t is uniform and ¢[k] = hk, k € Z, the finite differences are used
instead of the DDs to express the spline s[ f](¢). In this case, whent = h (k+71), T €
[0, 1], the spline is represented explicitly by

AZ[f][k — 1
SU@ = flk— 114 Ak -1 +7) + % d+1)7 (11)
3 B ArEIrn 1123 L A4 _ 33
A [ﬂ[6k U 1oy geny A0l 1T1e +A36[fi|[k 2001-0°

O

For the computation of the spline’s values s[ f](¢) at the interval [¢[k], [k + 1]],
six grid samples f[k—2], f[k—1], f[k]l, flk+1], fl[k+2] and f[k+3], are needed.
Thus, the spline can be computed in real time with a delay of two samples.

3.2 Approximation properties of quasi-interpolating cubic splines

Approximation properties of the spline s[ f](¢) are close to the properties of the
cubic spline s;[ f](¢#) which interpolates the function f(¢) on the grid t such that
si[f1(t[k]) = f(t[k]) = f[k]. Like the interpolating splines, the splines s[ f](¢)
restore cubic polynomials. Denote hlk] := max,—x_» k+2 h[v] and I[k] =
[t[k — 2], tTk + 3]].

.....

Theorem 3.8 Fort € [t[k], t[k + 1], the following error estimation holds
14

35h
D= DI = tk—1kk+1,.. k+2]. (12

If the function f(t) belongs to C*[I[k]], then for t € [t[k], t[k + 11], we have

max 10 = stA10] = 20U ey 10| (13)
relt[k].t[k+1]] T 1152 relk ’
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If the gridt is uniform, at least locally (that means that h[v] = h forv = k-2, ..., k+
2), then

35h° @ 4 @
max  |f(6) = sLFI0)] < o max ‘f (t)‘~00304h max ‘f (r)‘

teltk],t[k+1]] 1152 rerfk]
(14)
35/1152 is the least possible constant in the inequality at Eq. 14.
Proof In Appendix. O

Remark 3.9 The estimates in Eq. 14 is sharp in the sense that it becomes an identity
for the function f(t) = t* whent = h(k + 1/2).

For comparison, a similar sharp estimate for interpolating splines s;[ f] defined on
the interval I := [a, b] is ([10]):

max | /(1) — s F10)] < 53@ max ‘f“)(t)‘ ~ 0.0130 i* max (f<4>(z)} (15)

where / is the maximal grid step at the interval /.

Remark 3.10 Unlike the estimate in Eq. 15, the estimates in Eqs. 12 — 14 are local.
That means that the estimates on a certain interval depend only on the function’s
behavior in a close vicinity of this interval.

Remark 3.11 The sharp estimate in Eq. 14 for the uniform grid was established in
[23] by the technique different from that used in the proof of Theorem 3.8. The
inequality in Eq. 12 makes it possible to establish sharp estimates of the approxima-
tion errors for functions from the classes C™[I[k]], m < 4. In the case when the
available samples f[k] are noisy, the estimation in Eq. 12 enables us to evaluate the
noise contribution into the approximation error.

3.3 Quasi-interpolating cubic splines at finite intervals

Assume that only a finite number of samples f[v] = f(¢[v]), v =0, 1, ..., N, of the
function f () are available. We construct the spline s[ f](#) which quasi-interpolates
the function f(¢) at the interval [¢[0], t[N]]. As before, P(¢)[k] denotes the polyno-
mial which interpolates the function f(¢) at the points {t[k — 1], ..., t[k + 2]}. At the
inner interval [¢[2], t[N — 2]], the representation of the spline s[ f](¢) given in Eq. 9
is valid. We denote

(h[2])? (¢[4] — ¢[0])

Aolf]: 3A[1][3] —¢[1])

_f[09 17 27 35 4]

(16)
(R[N —3])* ¢[N] — 1[N —4])

AN[f]:= —fIN—4,N =3,N =2, N — 1, N] THIN 21 GIN — = 1V =3
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Theorem 3.12 The function

P11+ Aol f1(t — t[1])3,, ast € [t[0], 1[2]];
sLE1@) == § sLf1@), ast € [t[2],t[N —2];
P(O[N =21+ AN[f1 ([N — 11— )3, ast € [t[N — 2], t[N]];

(17
is a cubic spline that quasi-interpolates the function f(t) on the finite grid ty =
{tlv]}, v=0.1,...N.

Proof : If t = t[2] + h[2]7, T € [0.1], then s[f](r) = P®[2] + F[1](1 —
r)3 + F[2] 1'3, where F[k] is given in Eq. 10. However, for the spline extension to
[¢[0], £[2]], we utilize the polynomial P (¢)[1] and represent the spline by

sLA1@) = POI+s[RI®),  R@) = f(@6) — P(OI1]. (18)
O

An additional grid point t[—1] < ¢#[0] is provisionally introduced. Then, the spline
s[Ié](t) = Z%:-l qlv + 2] b(t)[v]. Due to Proposition 3.1, the location of the point
t[—1] does not affect the spline’s values at the interval [¢[2], ¢[3]].

We need to know the behavior of the spline s [R](t) ast — t[2]+0. The reminder
term R(¢) vanishes at the points {¢[0], ..., #[3]}. Therefore, the coefficients are

Gl =g21=0, 431 = B R[4, §l4] = Bol4] R(t[4]) + Bi[4] R(t[5)),

where B;[v] are defined in Eq. 7. When ¢t € [z[2], #[3]], the B-splines b(¢)[1] =
o (t—t[l])3+y (t—1[2])% and b(1)[2] = § (t—1[2]), where «, y and § are constants.
Consequently, at this interval, the spline is structured as s[R](t) = Aol Fl@a—t[1])3+
B (t — t[2])3. When 7 = t[2], we have

s[RI(t[2]) = s[£1(e[2]) — Pe[2D[1] = s[£1¢2]) — f12] = Aol £1 (RI1D)*. (19)
Now, using Egs. 9 and 10, we get

_slfle2h = f121 _ FO1 (h[2])? ([4] — t[0])
AolST= (h[1])3 © (1) f10.1,2,3.4] 3h[1](t[3]_t[1]226)

In addition to Eq. 19, the following relations for the derivatives hold:
s'IRIe[2]) = 3A0lf1(AI1D?,  s"[RI([2]) = 6Aol f1AI1]. 1

We define the function ¢y (¢) := P(¢)[1]4+ Aol f] (¢ —t[l])i. This function consists of
two pieces of cubic polynomials, which are glued at the point #[1] such that gy(z) €
C 2[t[0], t[2]]. On the other hand,

o(t2)) = P(2D[1]+ Aol f1(h[1)* = f[2] + Aol f1 ([1])* = s[f112D),
ootl2D) = P([2) 1]+ 3Aolf1 (1D = sLf1 (r[2D).
AP a12l) = P2D@1] + 6A0Lf1 (M[1D)? = s[F1? (12]).
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Therefore, the function

. _ Jwo(®), aste[t[0],¢[2]];
S0 = {s[f](t), as 1 € [1[2], ([N — 2]]

is a cubic spline.
The design for the extension of the spline to [t[N — 2], {[N]] is similar to the
design at the left hand side of the interval.

Remark 3.13 Five grid samples are needed for the computation of the spline 5[ f](¢)
at the interval [¢[1], #[2]] and only four samples for the interval [#[0], [1]]. A similar
situation takes place at the intervals [t[N — 2], {[N — 1]] and [¢[N — 1], ¢t[N]].

Remark 3.14 The spline s[ f](¢) defined by Eq. 17 interpolates the function f(¢)
at the points ¢[0], ¢[1] and ¢{[N — 1], t[N]. At the intervals [#[0], ¢[1]] and [¢[N —
1], ¢[N1]], the spline 5[ f](¢) coincides with the interpolating polynomials P (¢)[1]
and P(¢)[N — 2], respectively.

Theorem 3.15 The following error estimate is true for t € [t[1], ¢t[2]]:

: h*(16 — 3v2)
te[}ﬁﬁ‘,’?m] L f () —sLf1D)] < TV tglla[g] [f10,1,2,3,¢]], (22)

where h := max,—o,1.2.3 h[v]. If a function f(t) € C*I[O]], then for t € [¢t[1], t[2]]
we have
, h*(16 — 34/2) 4
max ) —s[fI@ f—max‘()t‘. 23
o o | f(2) alo) WAt ) (23)
If the grid t is uniform, at least locally (it means that h[v] = h forv = 0, 1, 2, 3),
then

: h*(16 — 3/2)
max t)—s§ t < —
relt[11,7[2]] @) = S0 < 2882
@) ~ 0.0497 h* @) 24
trgla[g]lf ®)1 g]a[g]lf ®)1 (24)

The constant (16 — 3+/2)/288+/2 ~ 0.0289 is the least possible in the inequality at
Eq. 24.
Fort € [t[0], t[1]], the following error estimate is true:

7
3 < — @ @). 25
te[tf{(l)éfti[l]]lf(t) SLAO] = 24 max VAO] (25)

The estimate is sharp even for the uniform grid. It becomes an identity for the function
f@ = 1%, Similar estimates hold at the interval [t[N — 2], t[N]].

Proof In Appendix. O
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3.4 Extrapolation of signals using cubic splines

Assume that a continuous function f(¢) is supported on the interval [¢[0], {[N +
1]] but only the samples { f[v] = f(¢[v]}, v = 0, ..., N, are available. In order to
approximate the function f(¢) on the interval I, := [t[N], t[N+1]] and, in particular,
to “predict” the sample f[N + 1], we extend the quasi-interpolating spline s[ f](¢)
constructed in Theorem 3.12 to the interval 7.

Define the extended spline s, [ f](¢) by

sLFI@), ast € [7[0], ¢[N]];

””M”:{Pawv_m+Adﬂa—ﬂNN,mreb 20

and choose the constant A,[f] such that, under some conditions, the difference
D[ f] := fQ@IN + 1]) — s [f1([N 4+ 1]) is minimal. The function s,[ f](¢) is a
cubic spline because it is piece-wise cubic polynomial and continuous together with
its first and second derivatives at the point t[N].
The difference D,[f] is

D/[f1 = fGIN + 1) = P(t[N + IDIN — 2] — A, [f] (h[N])?

= CIf1fIN—=3,N—2,N—1,N,N+ 11— A [f]1 (hIN])°,
Crlf] :== ([N 4+ 1] —¢t[N=3D([N + 1] —¢t[N — 2D)(t[N + 1]— t[N—1])h[N].
We choose A,[f]:=C/[f] fIN —4,N—-3,N—-2,N — 1, N]/(h[N])3. Then, the
difference becomes
Dr[f] = Cr[f]

(fIN-3,N-2,N—1,N, N+1]-f[N —4,N -3, N—-2, N —1,N))
=CIlf1fIN-4, N-3,N—=2,N—1,N,N + 1] (¢[N + 1] — ¢[N — 4]).

Denote h, := max,—y—3...n h[v].

Proposition 3.16 If the fifth-order DD satisfies |f[N — 4, N —3,N — 2, N —
1, N, N + 1]| < F, then the extrapolation error at the point t|N + 1] is estimated by

|fIN +11) — s:LF1¢[N + 1])| < 120F b}
If the function f(t) has a continuous fifth-order derivative at the interval [t[N —
4], t[N + 11]], then the estimation

|f(IN 4+ 1]) — s, [F1¢IN + 1])] < max IfOwie @
te[t[N—4],t[N+1]]

is true. In particular, if f (t) coincides with a fourth-degree polynomial on the interval
[t[N — 4], t[N + 111, then s, [ f1(/[N + 1]) = f ([N + 1.

A similar design is carried out at the left hand side of the sampling interval. In
order to extrapolate the spline 5[ f](¢) defined on the grid ¢[0], ..., f[N] to a point
t[—1] < ¢[0], we define the new spline as follows:

sLI@), ast € [1[0], 1[N]];

PO+ AlLF] (t — t[O])3, ast € I, (28)

siLf1() 2={
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where the interval I; := [¢t[—1], t[0]] and

Allf1==f10.1,2,3,4] (¢[1]—t[—1]) (¢[2]—t[—1]) (¢[3]—t[—1])/ R[—11*. (29)
3.5 Remarks on the real-time spline computation

Due to the fact that no more than 6 adjacent grid samples are needed for the compu-
tation of the spline s[ f] at a point ¢, the spline can be computed in real time. It means
that the spline follows the samples that arrive one after another at random times.

Assume that the samples of a function f(¢), {f[k]}, k& = O, ..., N, are avail-
able, where f[k] = f(¢[k]). Then, the spline s[ f] can be designed on the interval
[#[0], [ N]] in line with the scheme described in Sections 3.2 and 3.3 in the following
way:

e At the inner subinterval [¢[2], [N — 2]], the spline is constructed by a regular 6-
samples algorithm from Section 3.2, while at the intervals [¢[0], #[2]] and [¢[N —
2], t[N]] the 5- and 4-samples extension formulas from Section 3.3 are utilized.

e  When the sample f[N + 1] = f(¢[N + 1]) arrives, the spline at the interval
[t[N — 2], t[N — 1]] is recomputed by utilizing 6 samples { f[k]}, k = N —
4, ..., N + 1. The spline at the interval [t[N — 1], t[N]], which was constructed
by using 4 samples { f[k]}, k = N — 3, ..., N, is recomputed with the new set
of samples { f[k]}, k = N — 3, ..., N + 1. The spline is extended to the interval
[¢[N], t[N + 1]] by using the samples { f[k]}, k = N —2, ..., N + 1. The spline
remains unchanged at the interval [¢[0], [N — 2]].

e  When the sample f[N + 2] = f(t[N + 2]) arrives, the spline at the interval
[t[N—1], t[N]] is recomputed by utilizing 6 samples { f[k]}, k = N3, ..., N+
2. The spline at the interval [¢[N], t[N + 1]], which was constructed by using
4 samples {f[k]}, k = N —2,..., N + 1, is recomputed with the new set of
samples {f[k]}, k = N — 2, ..., N + 2. The spline is extended to the interval
[#[N + 1], t[N +2]] by using samples { f[k]} , k = N —1, ..., N +2. The spline
remains unchanged at the interval [¢[0], [N — 1]].

Remark 3.17 Note that the arrival of two additional samples f[N + 1] and f[N +
2] leads to the re-computation at the interval [t[N — 2], t{[N]] of the initial spline,
which was defined at [¢[0], [ V]], while the spline remains unchanged at the interval
[#[0], [N — 2]]. This fact substantiates our claim that the spline follows the arriving
samples.

The above scheme is illustrated in Example 2 in Section 3.6.
3.6 Examples
Example 1: Restoration of the sine function from randomly located samples:
Figure 1 illustrates results from the restoration and extrapolation experiments of the

function sin(¢) + sin 2t from 30 randomly spaced samples (top plot) and from uni-
formly spaced samples (bottom plot). In both cases, the first and the last samples
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Ql spline, Grid number3o
T T

T T T T

0.5

-0.5+

2 4 6 8 10 12 14 16 18

Ql spline, uniform grid
T T T T T T

0.5~

Fig. 1 Top: restoration of the function f () = sint + sin2¢ from 30 randomly spaced samples by the
quasi-interpolating s[ f](¢). Bottom: restoration by s[ f](¢) from 30 equally spaced samples. Dash-dot
lines denote the original function and bars denote the available samples. The splines s[ f](¢) are displayed
by solid lines

1

were taken at r[0] = 0.67 and ¢[N] = 19.23 and the splines were extrapolated to
t[-1] =03 and ¢t[N + 1] = 19.7.

We observe that the splines at either grid restore the function near perfectly. However,
the extrapolated samples differ from the original ones. It happens due to the fact that
in both cases the discrepancy of the differences f[N —3,N -2, N —1,N, N +
11— f[N —4,N —3,N —2, N — 1, N] is essential. A similar situation exists at
the left hand side of the grid. However, when the function f(¢) is a fourth-degree
polynomial, the extrapolation is exact. It is displayed in Fig. 2. The function f(¢) is
a fourth-degree polynomial. The spline is construcred using 6 randomly spaced grid
points. The first and last samples were taken at t[0] = 0.35 and t[N] = 9.9 and the
spline was extrapolated to t[—1] = —3 and [N + 1] = 13.

Example 2: Illustration of the real-time spline computation: Figure 3 illustrates
the scheme for the real-time spline computation when samples of a function to be
approximated by the spline arrive sequentially at random times. The scheme was
described in Section 3.5. Initially, the spline was designed on the interval [¢[0], t[N]]
where in this example N = 9. In the figure, it is shown by the dashed curve. On the
arrival of the sample f[N + 1], the spline is extended to the interval [¢[N], 1[N + 1]].
In the process, the spline is recomputed at the interval [t[ N — 2], t[ N]]. The extended
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Ql spline, Grid numbers
T T

———
L 1 | L 1 1
-3 0.35 29 41 49 7 9.9 13

Fig. 2 Extrapolation of the spline s[ f](¢) from six grid points denoted by bars. Dashed line denotes the
original function and solid line denotes the spline s[ f]()

spline is denoted by a dash-dot curve. On the arrival of the sample f[N + 2], the
spline is extended to the interval [t[N + 1], [N + 2]]. In the process, the spline is
updated at the interval [¢[N — 1], [N 4 1]]. The extended spline is denoted by a solid
line.

4 Spline-based wavelet transform
The Lifting Scheme, introduced in [18, 19], is a method that constructs bi-orthogonal

wavelet transforms and provides their efficient implementation. The main feature
of the lifting scheme is that all the constructions are derived directly in the spatial

#
- S

01 2 N-2 N-1 N N+ Ne2

Fig. 3 Dashed line: spline s[ f](t) computed on the interval [¢[0], t[N]]. Dash-dot line: the spline is
extended to the interval [t[N], /[ N+1]]. Solid line: the spline is extended to the interval [f[N+1], /[N +2]]

@ Springer



Local splines and wavelet transforms

domain and therefore can be custom designed to more general, irregular settings such
as non-uniformly spaced data samples and bounded intervals. In addition, the lifting
scheme fits well to the real-time execution of the wavelet transforms. In this section,
we outline the lifting scheme and describe how to use the local quasi-interpolating
cubic splines, designed in Section 3, for the construction of wavelet transforms of
non-equally sampled discrete-time signals and in the situation when signal’s samples
arrive subsequently at random time moments.

4.1 Discrete lifting wavelet transform

The lifting wavelet transform of a discrete-time signal can be implemented either in
a primal or in a dual mode. We outline only the primal mode.

4.1.1 Primal decomposition

The lifting wavelet decomposition of a signal from the space /| consists of four steps:

1. Split: The signal f = {f[k] = f[¢[k]]} is split into the even and the odd sub-
arrays such that f = e Jo where e := {e[k] = f[2k]} and 0 := {o[k] =
f[2k+1]}.

2. Predict: The even array e is used to approximate (predict) the odd array o. Then,
the array o is replaced by the array d = o — P e where P is a linear [y — 1 pre-
diction operator. If the predictor is correctly chosen, then this step decorrelates
the signal and reveals its high-frequency components.

3. Update(Lifting): The even array e is updated by using the new odd array d. For
this, we use a linear /1 — [; updating operator U, which is assumed to commute
with P, to get a = e + U d. Provided that the updating operator is properly
chosen, the even array e is transformed into a downsampled and smoothed replica
of f.

4. Normalization: Finally, the smoothed y” and the details y! transform coefficient
arrays, are obtained by the normalization y° = V2a, yl=d/ V2.

4.1.2 Primal reconstruction

Reconstruction of the signal f from the arrays y* and y' is implemented in a reverse order:

Undo Normalization: a = y°/+/2, d = /2y!.

Undo Lifting: The even array is restored by e = a — U/ d.

Undo Predict: The odd array component is restored by o = d + Pee.

Undo Split: Restoration of the signal from its even and odd arrays by f =
Mergefe, o}.

b

The lifting transform is perfectly invertible with any choice of the operators P and /.
The direct and inverse transforms can be symbolically represented in a matrix form:

()= (5" 4%) (65) (5 0) (2) =2 (5),
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where I is the identical operator and the analysis “polyphase matrix” M of the first
decomposition level is

- (V2A-UP) V2U
M'_( ~P/V2 I/ﬁ)'

The inverse transform is represented by

()= ) (57 0) ()= ().

where the synthesis “polyphase matrix” M of the first decomposition level is

_ (V2 —Vau
M= <P/ﬁﬁ(1—Pu)>'

It is readily seen that, once the operators P and I/ commute with each other, we have
MM = 1. Therefore, subsequent applications of the operators M and M to the vector
(e, 0)7 restores this vector.

The multilevel wavelet transform is achieved by the iterated application of the
lifting operations to the smoothed coefficient arrays. The prediction and updating
operators can be different for different decomposition levels. Reconstruction of the
signal f from the coefficient array {y([)m] U y%m] U---y'} is implemented in a reverse
order.

4.2 Spline-based prediction and updating operators

Wavelet transforms generated by the lifting scheme are determined by the choice of
the prediction P and the updating U operators. Splines provide flexible tools for the
design of such operators. The idea is to construct a spline on the even sub-grid {¢[2k]},
which either interpolates or quasi-interpolates the samples of the signal e. The values
of this spline at the odd grid points {#[2k + 1]} are used for the prediction of the
odd samples 0. The next step is to construct a spline on the odd grid points, which
(quasi-)interpolates the samples of the prediction-error signal d. Then, the values of
this splines at the even grid points are computed. These values are used for updating
the even samples e.

In the case of equally spaced samples, calculations are reduced to low-pass fil-
tering of the corresponding arrays [4]. Application of wavelet transforms to signals
sampled on finite grids and, in particular, to images, requires to extend the sig-
nals beyond their boundaries, otherwise distortion appears near the boundaries [5].
Various extension schemes have been developed to deal with the boundary effects
of finite-length signals: zero padding, periodic extension and symmetric extension
are basic extension methods. However, quasi-interpolating splines on finite intervals
designed in Section 3.3, make it possible to implement wavelet transforms of signals
sampled on bounded intervals without extending the signals beyond their boundaries.

The prediction and updating operations are reduced to the design of the splines
s[ f1 on different grids and computation of their values at intermediate points.
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4.2.1 Prediction and updating operators on unlimited grids

To highlight the structure of the operators, we use a standard representation of the
quasi-interpolating spline via the B-splines given in Eq. 8:

sLA@® =) qilv +21b@)[v]

VEZ

= (Boilv+2] fIv+11+Bolv+2] flv+214A1[v+2] flv+3]) b(D)[v]
VEZ

=3 flv+21BO)], (30)
veZ

where the coefficients B;[k] are defined by Eq. 7 and the cubic spline B(¢)[k] is
B(0)[k] := B-1lk +3]1b@)[k + 11+ Polk + 21 b(®)[k] + Bilk + 1] b(#)[k — 1]. (31)

The spline B(¢)[k] is supported on the interval (¢[k — 1], t[k + 5]). Therefore, if
t € [t[k], t[k + 1]], then the sum in Eq. 30 comprises only 6 terms:

k41

sLFI = Y flv+21 Bl (32)

v=k—4

As before, e = {e[k] = f[2k]} and 0 = {o[k] = f[2k + 1]}. Denote by b, () and
B.(t) the B-spline b(¢) and the spline B(t), respectively, defined on the even sub-
grid t, := {t[2k]} and by b,(t) and B,(t) the splines defined on the odd sub-grid
t, := {f[2k + 1]}. Equation 32 implies that the values at the odd grid points of the
spline s[e](#), which is constructed on the even sub-grid, are

k+1 k+1

slel(2k+1D) = ) fRO+D]B2k+1D2v] = ) Pglv]e[v].(33)
v=k—4 v=k—4
) Be([2k +1D[2v], forv =k —4, .., k+1;
Pralvl = {O otherwise.

The coefficients {P[k] [U]} form a six-diagonal matrix P, which is a Toeplitz matrix in
the case of uniform grid. Consequently, the prediction operation can be represented
as the matrix multiplication by Pe = Pe.

Similarly, the updating operation can be represented as the matrix multiplication:
U{d} = Ud, where the six-diagonal matrix U = {Uyg[v]}

k
s[d](t[2k]) = Z (f2v+2)+1]=s[e]t[2(v+2) + 1])) B, (t[2kD[2v + 1](34)
v=k—5
k By (t[2k)[2v + 1], forv =
= > Unvld], Ugl]:= k=5, .. k;
v=k—5 0, otherwise.
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Remark 4.1 When processing a single signal and, especially, in the real-time mode,
the computations by fast algorithms described in Section 3 are preferable. However,
in a case when either multiple signals defined on the same grid or an array of row
signals are processed, the necessary values of the splines B(¢) can be pre-computed.
Then, according to Eqs. 33 and 34, the computations of the splines’ values s[e](+[2k+
1]) and s[d](¢[2k]) can be implemented by the six-tap weighted moving averages of
the signal’s samples with weights consisting of values of the splines B(¢) given in
Eq. 31. Thus, computations are significantly accelerated.

4.2.2 Prediction and updating operators on limited grids

Assume that the function f is sampled on a bounded interval, thus f[k] =
f(@[k]), k=0, ..., N are available.
Assume that N is an odd integer (Fig. 4):

Prediction: The odd samples f[2k + 1], k = 2, ..., (N — 1)/2 — 3, are predicted
using the formulas in Eq. 33. The samples f[1] and f[3] as well as f[N — 4]
and f[N — 2] are predicted by the values of the spline s[e](¢) at the respective
grid points ¢[1] and #[3] as well as [N — 4] and ¢[N — 2]. These values are
computed using the formulas in Eq. 17. The remaining sample f[N] is predicted
by the extrapolation of the spline s[e](¢) to the grid point [ N] using the algorithm
described in Section 3.4. Thus, we derive the differences d[k] = f[2k + 1] —
sle]¢2(k+2)+ 1D, k=0, ..., (N — 1)/2.

Update: The even samples f[2k], k = 3, ..., (N — 1)/2 — 2, are updated by the
values of the spline s[d](#[2k]) using the formulas in Eq. 34. To update the sam-
ples f[2], f[4], fIN — 3], f[N — 1], the values of s[d](¢) are computed using
the formulas in Eq. 17. The remaining sample f[0] is predicted by the extrapo-
lation of the spline s[d](¢) to the grid point #[0] using the algorithm described in
Section 3.4.

A similar design is performed when N is an even integer.

I I

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 4 Random samples, N odd: green — even samples, blue — odd samples
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To implement the next step of the wavelet transform, the above operations are
applied to the smooth array y°. As a result, the arrays y([)z] and y%z] are produced. This
process repeats itself.

The spline- based wavelet transform possesses the local “discrete vanishing
moments” property, which is formulated next.

Proposition 4.2 Assume that { f[v]}, v = 2k—4, ..., 2k+6, are samples of the cubic
polynomial f[v] = P3(t[v]). Then, the wavelet transform coefficient yl[k] =0.

Proof The first-level transform coefficients are y![k] = (f[2k + 1] — s[e](t[2k +
11))/ /2. Theorem 3.8 implies that this difference is zero. O]

Remark 4.3 Theorem 3.15 and Proposition 3.16 imply that the “discrete vanishing
moments” property remains valid near the boundaries of the interval.

Figure 5 displays a randomly sampled signal and coefficients from its four-level
wavelet transform. Note that the inverse wavelet transform from these coefficients
provides a restoration of the signal where its maximal deviation from the original,
which is displayed in Fig. 6, is 1.5 10712,

4.3 Real-time execution of the wavelet transform

The transform scheme described in Section 4.2.2 makes it possible to execute the
wavelet transform of a signal in real time. It means that the samples f[v] of a signal

T T T T T T T T T T
100 -
I CEEEL oo w0 s

50 100 150 200 250 300 350 400 450 500

0 I T T I . = | I I T = =

. v T - Y T T
220

-40 &= 1 L 1 1 1 1 L 1 1 | l
50 100 150 200 250 300 350 400 450 500

40F T T T T T T T T T
2 L . i | .
:42;8 C 1 1 1 1 1 1 1 1 I 1 I i
50 100 150 200 250 300 350 400 450 500
50 £ i T T T T T T T T T | 3

0 '} ! |
e I | I I I | I I 1 I I ]
13 61 111 146 189 226 268 304 356 391 433 464
10 E. T T T T T 3
:%gg 1 I 1 1 1 I |
23 137 209 283 377 447

300 T T T T T —
8 :
i | | | O - ]

4 94 168 252 329 410 489

Fig. 5 Wavelet transform of a randomly sampled signal. Top: the source signal. Bottom: smooth coeffi-
cients from the fourth decomposition level. The other 4 plots: the detail coefficients from first to fourth
decomposition levels
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x1073

'T

I |” |

50 100 150 200 250 300 350 400 450 500

Fig. 6 Discrepancy between the original signal and its restoration from the wavelet coefficients shown in
Fig. 5. Maximal discrepancy is 1.5 10712

arrive sequentially at random time moments ¢[v], v = 0, 1, ..., while the arrival of a
new sample requires recomputing of only a few adjacent transform coefficients.

e Assume that at the time ¢[N] the samples f[v], v = 0, ..., N, arrived already
and N is an odd number. Then, the one-level decomposition is implemented as
was described in Section 4.2.2. Recall that the initial coefficients y°[0], y°[1],
y°[2] and y'[0], y'[1] are produced by using the formulas in Eq. 17 and the
extrapolation algorithm. The coefficients yo[v], v=3,...,(N—-1)/2 -2, and
yl[v], v=2,.. (N —1)/2 -3, are computed by using the regular formulas in
Eq.33. The coefficients y’[(N —1)/2—1], y'[(N —1)/2], and y' [(N —1)/2—1],
y[(N — 1)/2 —2] are produced by using the formulas in Eq. 17. The coefficient
y'[(N — 1)/2] is derived by the extrapolation algorithm. The number (N + 1)/2
of smooth coefficients yo[v] is the same as the number of the detail coefficients
yvl.

e  When the sample f[N + 1] arrives, the new smooth coefficient yo[(N + 1)/2]
is derived by updating the even sample f[N + 1] using the extrapolation of
the spline s[d](¢) to the grid point [N + 1]. In addition, the detail coefficient
y'[(N — 1)/2 — 2] is recomputed in a regular way by prediction from 6 even
samples f[2v], v= (N —1)/2 — 4, ...(N + 1)/2. The rest of the detail and the
smooth coefficients remain unchanged. The number of the smooth coefficients
yO[v]is (N +3)/2 while the number of the detail coefficients y'[v]is (N +1)/2.

e  When the sample f[N + 2] arrives, the new detail coefficient y![(N + 1)/2]
is derived by predicting the odd sample f[N + 2] using the extrapolation of
the spline s[e](¢) to the grid point 1[N + 2]. In addition, the smooth coefficient
yO[(N — 1)/2 — 1] is recomputed in a regular way by updating from 6 numbers
dv]l, v = (N —1)/2 —4,..(N + 1)/2. The rest of the detail and smooth
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coefficients remain unchanged. The number (N + 3)/2 of smooth coefficients
yo[v] is the same as the number of the detail coefficients y![v].

At the same time, the above procedures are applied to the smooth coefficient array

{yO[v]}, v =0,..., (N —1)/2, to obtain the arrays {y&][v]} and {y[lz][v]}, and
SO on.

CPU example An irregular grid was defined as t{r[k] = k +€[k]}, k=1, ..., N,
where N = 20000 and €[k] are Gaussian random variables, whose STD=0.2. The
initial 10 grid points are

k 1 2 3 4 5 6 7 8 9 10

t/k]  0.8608  1.8889  3.1780 39217 50921 57455 6.5421 8.1339  9.0181  10.2559

The transforms were applied to two signals x; and x, such that :

t[k] 50

0
x1[k] := sin N [x2[k] := sin +e€lk], ,k=1,...,N.

Figure 7 displays the signals x; and x;.

The 10-level lifting wavelet transform was applied to the signals x; and x», then
signals were restored from the transform coefficients by the inverse wavelet trans-
form. The transforms were executed by non-optimized Matlab codes on the PC with
the Intel(R) Core(TM) 17-3770 CPU@3.40 GHz processor. Herewith, the CPU time
was 3.357637 seconds for the direct transform and 3.374883 seconds for the inverse
transform.

The differences between the original x; and x; signals and the restored X; and X
ones are displayed in Fig. 8. In both cases the differences do not exceed 1.5 - 10713,
We emphasize that no boundary effects arrived in process of the signals’ restoration

L L L L 1 | |
0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Fig. 7 Top: signal x;. Bottom: signal x»
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x10*

Fig. 8 Differences between original and restored signals. Top: signal x; — X. Bottom: x, — X5

from wavelet transforms even for highly irregular signal x, displayed in the bottom
frame in Fig. 7.

5 Conclusion

The local cubic splines, which were designed in Section 3 and supplied with a simple
fast computational algorithms, can serve as an efficient tool for the real-time sig-
nal processing. As an input, the splines use either clean or noisy arbitrarily-spaced
samples. Sharp estimates of the approximation error were established. An important
application of the designed splines is the real-time wavelet analysis of non-uniformly
sampled signals.

Summary of the paper’s contributions

e Simple algorithm for the real-time computation of the local cubic quasi-
interpolating splines including a smooth extension of the splines to the bound-
aries of the sampling interval.

e Formulas for the extrapolation of the splines beyond the sampling interval,
while retaining the approximation accuracy. The formulas can be used for the
prediction-correction signal processing.

e Sharp estimates of the approximation errors for the local cubic quasi-
interpolating splines.

e Design of wavelet transforms of the arbitrarily sampled signals based on the
local cubic quasi-interpolating splines. The wavelet transforms have four local
“discrete vanishing moments” in the sense of Proposition 4.2.
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e Real-time scheme of the execution of the wavelet transforms of signals whose
samples arrive dynamically and sequentially at random times.

In future work, the approach will be extended to the higher-order splines. The
designed splines and spline- based wavelet transforms will be applied to online
denoising and compression of practical signals such as, for example, ECG signals.
Another potential field of application of the developed techniques is the real-time
process control including detection of specific transient events.

Appendix

We recall the elementary Intermediate Value Theorem (IVT): If a function f(t) is
continuous on the interval [a, b] and o and B are real numbers with the same sign,
then there exists a point ¢ € [a, b] such that af (a) + Bf (D) = (a + B) f(c).

Proof of Theorem 3.7 Due to Eq. 4, the reminder term of the interpolation is
R(@)=f@t)—PWIkl= flt,k— 1,k k+1,k+2]
(t —tlk — 1] (¢ — t[k]) (¢ — t[k + 1) (r — t[k + 2]).

Grid samples are R(¢[v]) =0forv =k — 1, k,k+ 1,k +2. Forv=k —2,k+3,
we have

R(tlk —2]) = hlk — 2] T[k] (t[k] — t[k — 2]) (¢[k + 1] — t[k — 2]),
R(t[k +3]) = hlk+2]T[k + 1] (tc[k + 3] — t[k]) (¢[k + 3] —t[k + 1]),
Tkl .= flk—=2,k—1,k, k+1,k+2] (¢t[k + 2] — t[k — 2]). (35)
The spline s[ f](¢) restores the polynomial P(¢)[k], therefore,

s[f1(@) = s[P](@) + s[R](1) = P(1)[k] + s[R](z)

k
= POIkI+ ) Qlv+21b@0)W],
v=k-3
Olv+2] = Boilv+ 11R(t[v + 1])
+Bolv + 21 R(t[v +2]) + Bilv + 31 R(¢e[v + 3)).

Keeping in mind that R(¢[v]) =0forv =k — 1, k, k+ 1, k + 2, we get

sLAI0) = P@)[k] + B-1lk — 1] R(t[k — 2]) b(1)[k — 3] (36)
+B1lk + 2] R(t[k + 3]) b(1)[K].

Equation 5 implies that for ¢t = ¢[k] + h[k] 7, T € [0, 1],

- (1) (h1k)? 73
POUT = (T4 =D ety = Gtk 21— otk ik + 31 — ey
201 N3
btk (hkD? (1 = 7) )

T Gk + 10—tk — 2D Gk + 1 — 1k — 1]
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The explicit expression in Eq. 9 for the spline s[ f](¢) is obtained by substitution of
the B-spline samples from Eqgs. 37 and 38, the coefficients 8; from Eq. 7 and the
samples of R(¢) from Eq. 35 into Eq. 36. O

Proof of Theorem 3.8 Asbefore, 1 = (t—t[k])/hl[k] € [0, 1]. By using Egs. 9 and 4,
we can represent the remainder term of the approximation as follows:
p(1) = f() = s[f10) = f(1) — POk + Flk — 11(1 — 7)° + F[k] ©°
=« flt,k—1,kk+1,.. k+21+B8 flk—1,kk+1,k+2,k+3]
+y flk—2,k— 1,k k+1,k+2],

where the coefficients are

a = w3k — 11(t) = (¢t — t[k — 1]) (t — t[k]) (t — t[k + 1]) (¢ — t[k +2]) > 0,
2 2 _ _
g — (h[KD? (hk + 1D? (t[k + 3] — t[k — 1]) N
3 (tlk + 2] — t[k])
(h[kD? (hlk — 1D)? (t[k + 2] — t[k — 2])
3(tlk + 1] —t[k — 1])

The IVT implies that

1-1)>0.

y:

o) = flk—1,kk+1,...k+2](c+B+7y),
where ¥ € (¢t[k — 2], t[k + 3]). Denote H(t) := o + B + y. Then, we have

H(r) = (h[k])2<(h[k + 1]+ hlk](1 — 0))(hlk — 1]+ h[k]T) T (1 — 1)

(h[k+1])2(z[k+3]——z[k—1])T3
3 (hlk + 1]+ hlk])
(h[k — 12 (t[k + 2] — t[k — 2])
3 (h[k] + hlk — 1])
It is readily verified that

(1 —-r)3>.

H(r) < i ((2 S g o %(# +— 1)3)) < %}4,

where i := max,—x_» x+2 h[v]. Consequently, for ¢ € [t[k], t[k + 1] we have the

estimation

.....

35h*

o) = K ﬂe(f[krfngﬁ[kJrﬂ)
Equation 13 follows from Eq. 3. If A[v] = h forv =k — 2, ..., k + 2 then
35
48

|fI0.k— 1k k+1,...k+2].

Iﬂﬂ=h402—ﬂﬂ+tﬁﬂ—t%+§03+ﬂ—rf)5 h*,

which implies (14). In this case, when 7 = 1/2, the function H(1/2) = 35/48 h*.
Therefore, 35/1152 is the least possible constant in Eq. 14. O
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Proof of Theorem 3.15 When t € [t[1], t[2]], t = t[1] 4+ h[1]z, T € [0, 1], the
remainder term 1is
p(t) = @) —5F1() = f(©) — P[] — Aol f1(t — t[1])°
= f[0,1,2,3,¢](z — [0 (r — ¢[1D (& — t[2D( — ¢[3]D
(h[2])* (1[4] — £[0]) 3
+110,1,2,3,4] AT 3] — D) (t —t[1])°.

On the interval [¢[1], #[2]], both coefficients of the differences are positive and
from the IVT we have

p) = fI0,1,2,3,§]H(z), & €I[0]
H(t) := (h[1])*t

((h[O] + h[1]7)(1—1) (h[2] + A[1](1 — 7)) +

16 — 32

122
where h := maxk=o,1,2,3 h[k]. Hence, the estimation in Eq. 22 follows. Equation 23
follows from Eq. 3.

If h[0] = A[1] = h[2] = h[3] = h then we have the sharp estimation in Eq. 24,
which becomes an identity for the function f(¢) = r*.

When t € [¢[0], #[1]], t = t[0] + R[O]z, T € [O, 1], the remainder term is

po(t) := f(t) —5[f1(t) = f(t) — PP(0)[1]
= —f10,1,2,3, /1(h[0D*T (1 — ) (A[O](1 — T) + A[1])
X (h[O](1 — T) + A[1] + A[2]).

(h[2])? (t[4] — t[0]) tz)
3 (h[2] + h[1])

< Wt (313—412—3t —I—6) 554

As above, h = maxk—o,1,2 h[k]. Then, the estimation holds

h* h*
P < 57 max IfP@lt |03 —6t* + 11t — 6| < >3 max LD @)].

The estimation is sharp even for the uniform grid. It becomes an identity for the
function f (1) = t*. ]
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