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Abstract

Let F0 = {fi}i∈In0
be a finite sequence of vectors in Cd and let a = (ai)i∈Ik be a finite

sequence of positive numbers, where In = {1 , . . . , n} for n ∈ N. We consider the completions
of F0 of the form F = (F0,G) obtained by appending a sequence G = {gi}i∈Ik of vectors
in Cd such that ‖gi‖2 = ai for i ∈ Ik, and endow the set of completions with the metric
d(F , F̃) = max{ ‖gi − g̃i‖ : i ∈ Ik} where F̃ = (F0, G̃). In this context we show that local
minimizers on the set of completions of a convex potential Pϕ, induced by a strictly convex
function ϕ, are also global minimizers. In case that ϕ(x) = x2 then Pϕ is the so-called frame
potential introduced by Benedetto and Fickus, and our work generalizes several well known
results for this potential. We show that there is an intimate connection between frame completion
problems with prescribed norms and frame operator distance (FOD) problems. We use this
connection and our results to settle in the affirmative a generalized version of Strawn’s conjecture
on the FOD.
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1 Introduction

A family F = {fi}i∈In ∈ (Cd)n is a frame for Cd if it generates Cd. Equivalently, F is a frame for
Cd if there exist positive constants 0 < A ≤ B such that

A ‖f‖2 ≤
∑
i∈In

|〈f, fi〉|2 ≤ B ‖f‖2 for f ∈ Cd . (1)

As a (possibly redundant) set of generators, a frame F provides linear representations of vectors in
Cd. Indeed, it is well known that in this case

f =
∑
i∈In

〈f, gi〉 fi =
∑
i∈In

〈f, fi〉 gi (2)

for certain frames G = {gi}i∈In , that are the so-called dual frames of F . Thus, a vector (signal)
f ∈ Cd can be encoded in terms of the coefficients (〈f, gi〉)i∈In ; these coefficients can be sent (one
by one) through a transmission channel and the receiver can then reconstruct f , by decoding the
sequence of coefficients using the reconstruction formula in Eq. (2).

Frames are of interest in applied situations, in which their redundancy can be used to deal with real-
life problems, such as noise in the transmission channel (leading to what is known in the literature
as robust frame designs). The stability of the reconstruction algorithm in Eq. (2) also plays a
central role in applications of frame theory. The consideration of these features of frames motivated
the introduction of unit norm tight frames, which are those frames for which we can choose A = B
in Eq. (1) and such that ‖fi‖ = 1 for i ∈ In. It turns out that unit norm tight frames have several
optimality properties related with erasures of the frame coefficients and numerical stability of their
reconstruction formula [10, 22].

In the seminal paper [3] Benedetto and Fickus gave another characterization of unit norm tight
frames, in terms of a convex functional known as the frame potential. Indeed, given a finite sequence
F = {fi}i∈In in Cd then the frame potential of F , denoted FP(F), is given by

FP(F) =
∑
i , j∈In

|〈fi , fj〉|2 . (3)

Benedetto and Fickus showed that if we endow the set of unit norm frames with n elements in Cd
with the metric d(F , G) = max{‖fi − gi‖ : i ∈ In} then unit norm tight frames are characterized
as local minimizers of the frame potential, and that they are actually global minimizers of this
functional (among unit norm frames). This was the first indirect proof of the existence of unit norm
tight frames (for n ≥ d). In applications, it is sometimes useful to consider frames F = {fi}i∈In with
norms prescribed by a sequence a = (ai)i∈In i.e. such that ‖fi‖2 = ai for i ∈ In. The consideration
of these families raised the question of whether there exist tight frames with (arbitrary) prescribed
norms, leading to what is known as frame design problems. It turns out that a complete solution to
the frame design problem can be obtained in terms of the Schur-Horn theorem, which is a central
result in matrix analysis; moreover, this characterization showed that for some sequences a there is
no tight frame with norms given by a (see [2, 5, 7, 12, 15, 16, 17, 25]).

The absence of tight frames in the class FCd(a) of frames with norms prescribed by a fixed sequence a
led to the consideration of substitutes of tight frames within this class i.e., frames in FCd(a) that had
some optimality properties within this class. A complete solution of the optimal design problem with
prescribed norms with respect to the frame potential was given in [8] where the global minimizers of
FP were computed; moreover, the authors obtained a crucial property of these optimal frame designs:
they showed that if we endow FCd(a) with the metric d(F , G) = max{‖fi − gi‖ : i ∈ In} then
local minimizers of FP in FCd(a) are actually optimal designs i.e. that local minimizers are global
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minimizers. This generalization of the results from [3] motivated the study of perturbation problems
related with gradient descent method of the (smooth function) FP in the (smooth) manifold FCd(a).

It turns out that the frame potential can be considered within the general class of convex potentials
introduced in [27] (see Definition 2.5). Moreover, in [27] it was shown that the optimal frame
designs in FCd(a) obtained in [8] were actually global minimizers of every convex potential within
this class. In [30] the authors showed further that local minimizers of any convex potential induced
by a strictly convex function are global minimizers of every convex potential within FCd(a), settling
in the affirmative a conjecture from [27].

In [19], given an initial sequence of vectors F0 in Cd and a sequence of positive numbers a = (ai)i∈Ik ,
the authors posed the problem of computing the completions F = (F0,G) obtained by appending
a sequence G = {gi}i∈Ik in Cd with norms prescribed by a, such that these completions minimize
the so-called mean squared error (MSE). This is known as the optimal completion problem with
prescribed norms for the MSE, and contains the optimal design problem with prescribed norms for
the MSE as a particular case (i.e. if F0 = ∅). It turns out that the MSE is also a convex potential
(see the comments before Definition 2.5). In the series of papers [28, 29, 30] a complete solution to
the optimal completion problem with prescribed norms was obtained with respect to every convex
potential; explicitly, the authors showed that there exists a class of completions with prescribed
norms, determined by certain spectral conditions, such that the members of this class minimize
simultaneously every convex potential among such completions. This fact was independently re-
obtained in [20], in terms of a generalized Schur-Horn theorem. Notice that there is a natural
metric in the set of completions given by d(F , F̃) = max{‖gi − g̃i‖ : i ∈ Ik} for F = (F0,G) and
F̃ = (F0, G̃). Yet, the structure of local minimizers of convex potentials of frame completions with
prescribed norms was not obtained in these works, not even for Benedetto-Fickus’ frame potential.

In (the seemingly unrelated paper) [31], Strawn considered an approximate gradient descent algo-
rithm for the frame operator distance (FOD), in the smooth manifold TCd(a) of sequences with
norms prescribed by a. The algorithm essentially searches for critical points of the FOD. In case
the sequence of iterates constructed with Strawn’s method converges, one expects to reach - at best
- local minimizers of the objective function. It is then relevant to understand the nature of local
minima, as this exhibits some aspects of the numerical performance of the algorithm. Based on
computational evidence, Strawn conjectured that - under some technical assumptions - local mini-
mizers of the FOD are also global minimizers. As a motivation for studying the FOD, the author
observed in [31] that in some cases minimization of the FOD is equivalent to minimization of the
frame potential in TCd(a).

In this paper, given an initial sequence of vectors F0 in Cd and a sequence of positive numbers
a = (ai)i∈Ik , we show that any completion F = (F0,G0) of F0 obtained by appending a sequence
in G0 ∈ TCd(a) (i.e. with norms prescribed by the sequence of positive numbers a) that is a local
minimizer of some (strictly) convex potential, is a global minimizer of every convex potential among
such completions. Thus, our results generalize those of [3, 8, 18, 19] for the frame potential and
MSE, and those from [20, 27, 28, 29, 30] related with optimal designs/completions with prescribed
norms with respect to arbitrary convex potentials. These results suggest the implementation of
(approximate) gradient descent algorithms for computing (optimal) solutions to frame perturbation
problems. As a tool we develop a local version of Lidskii’s additive inequality, that is of independent
interest. We apply these results to settle in the affirmative Strawn’s conjecture on the structure of
local minimizers of the frame operator distance from [31]. We approach this conjecture by means
of a translation between frame completion problems and FOD problems. Moreover, we compute
distances between certain sets of positive semidefinite matrices that generalize the FOD, in terms
of arbitrary unitarily invariant norms.

The paper is organized as follows. In Section 2 we introduce the notation and terminology as well as
some results from matrix analysis and frame theory used throughout the paper. We have included

3



section 2.3 in which we summarize several results from [28, 30] for the benefit of the reader. In
Section 3 we show some features of local minimizers of convex potentials within the set of frame
completions with prescribed norms. Our approach is based on a local Lidskii’s theorem that we
describe in Section 3.1 (we delay its proof to Section 6 - Appendix). We use this result in Sections
3.2 and 3.3 to obtain geometrical and spectral properties of local minimizers. In section 4 we prove
our main result, namely that local minimizers of strictly convex potentials within the set of frame
completions with prescribed norms are also global minimizers. In Section 5 we apply the main
result to prove (a generalized version of) Strawn’s conjecture on local minima of the frame operator
distance. The paper ends with Section 6 (Appendix) in which we show a local version of Lidskii’s
inequality.

Acknowledgments We would like to thank the anonumous reviewers for their useful suggestions
that helped us improve the exposition of the results in the present work.

2 Preliminaries

In this section we introduce the notation, terminology and results from matrix analysis and frame
theory that we will use throughout the paper. General references for these results are the texts [4]
and [6, 11, 13].

2.1 Preliminaries from matrix analysis

In what follows we adopt the following

Notation and terminology. We let Mk,d(C) be the space of complex k × d matrices and write
Md,d(C) =Md(C) for the algebra of d×d complex matrices. We denote by H(d) ⊂Md(C) the real
subspace of selfadjoint matrices and byMd(C)+ ⊂ H(d) the cone of positive semidefinite matrices.
We let U(d) ⊂Md(C) denote the group of unitary matrices. For d ∈ N, let Id = {1, . . . , d}. Given

x = (xi)i∈Id ∈ Rd we denote by x↓ = (x↓i )i∈Id (respectively x↑ = (x↑i )i∈Id) the vector obtained by
rearranging the entries of x in non-increasing (respectively non-decreasing) order. We denote by
(Rd)↓ = {x↓ : x ∈ Rd}, (Rd≥0)↓ = {x↓ : x ∈ Rd≥0} and analogously (Rd)↑ and (Rd≥0)↑. Given a

matrix A ∈ H(d) we denote by λ(A) = λ↓(A) = (λi(A))i∈Id ∈ (Rd)↓ the eigenvalues of A counting
multiplicities and arranged in non-increasing order, and by λ↑(A) the same vector but ordered in
non-decreasing order. For B ∈Md(C) we let s(B) = λ(|B|) denote the singular values of B, i.e. the
eigenvalues of |B| = (B∗B)1/2 ∈ Md(C)+. If x, y ∈ Cd we denote by x⊗ y ∈ Md(C) the rank-one
matrix given by (x⊗ y) z = 〈z , y〉 x, for z ∈ Cd.

Next we recall the notion of majorization between vectors, that will play a central role throughout
our work.

Definition 2.1. Let x ∈ Rk and y ∈ Rd. We say that x is submajorized by y, and write x ≺w y, if

j∑
i=1

x↓i ≤
j∑
i=1

y↓i for every 1 ≤ j ≤ min{k , d} .

If x ≺w y and trx =
∑k

i=1 xi =
∑d

i=1 yi = tr y, then x is majorized by y, and write x ≺ y. 4

Given x, y ∈ Rd we write x6 y if xi ≤ yi for every i ∈ Id . It is a standard exercise to show that
x6 y =⇒ x↓6 y↓ =⇒ x ≺w y.

Although majorization is not a total order in Rd, there are several fundamental inequalities in
matrix theory that can be described in terms of this relation. As an example of this phenomenon
we can consider Lidskii’s (additive) inequality (see [4]). In the following result we also include the
characterization of the case of equality obtained in [29].
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Theorem 2.2 (Lidskii’s inequality). Let A, B ∈ H(d) with eigenvalues λ(A), λ(B) ∈ (Rd)↓ respec-
tively. Then

1. λ↑(A) + λ↓(B) ≺ λ(A+B).

2. If λ(A+B) =
(
λ(A) + λ↑(B)

)↓
then there exists {vi}i∈Id an ONB of Cd such that

A =
∑
i∈Id

λi(A) vi ⊗ vi and B =
∑
i∈Id

λ↑i (B) vi ⊗ vi . �

Recall that a norm ‖| · |‖ in Md(C) is unitarily invariant if

‖| U AV |‖ = ‖| A |‖ for every A ∈Md(C) and U, V ∈ U(d) .

Examples of unitarily invariant norms (u.i.n.) are the spectral norm ‖ · ‖ and the Schatten p-norms
‖ · ‖p, for p ≥ 1. It is well known that majorization is intimately related with tracial inequalities of
convex functions and also with inequalities with respect to u.i.n’s. The following result summarizes
these relations (see for example [4]):

Theorem 2.3. Let x, y ∈ Rd and let A, B ∈Md(C). If ϕ : I → R is a convex function defined on
an interval I ⊆ R such that x, y, s(A), s(B) ∈ Id then:

1. If x ≺ y, then trϕ(x)
def
=

∑
i∈Id

ϕ(xi) ≤
∑
i∈Id

ϕ(yi) = trϕ(y) .

2. If only x ≺w y, but ϕ is an increasing function, then still trϕ(x) ≤ trϕ(y).

3. If x ≺ y and ϕ is a strictly convex function such that tr ϕ(x) = tr ϕ(y) then there exists a
permutation σ of Id such that yi = xσ(i) for i ∈ Id , i.e. x↓ = y↓.

4. If s(A) ≺w s(B) then ‖| A |‖ ≤ ‖| B |‖, for every u.i.n. ‖| · |‖ defined on Md(C).

2.2 Frames and frame completions with prescribed norms

In what follows we adopt the following notation and terminology from frame theory.

Notation and terminology: let F = {fi}i∈Ik be a finite sequence in Cd. Then,

1. TF ∈Md,k(C) denotes the synthesis operator of F given by TF · (αi)i∈Ik =
∑

i∈Ik αi fi.

2. T ∗F ∈Mk,d(C) denotes the analysis operator of F and it is given by T ∗F · f = (〈f, fi〉)i∈Ik .

3. SF ∈ Md(C)+ denotes the frame operator of F and it is given by SF = TF T
∗
F . Hence,

Sf =
∑

i∈Ik〈f, fi〉fi =
∑

i∈Ik fi ⊗ fi(f) for f ∈ Cd.

4. We say that F is a frame for Cd if it spans Cd; equivalently, F is a frame for Cd if SF is a
positive invertible operator acting on Cd.

In several applied situations it is desired to construct a sequence G in Cd, in such a way that the
frame operator of G is given by some positive operator B ∈Md(C)+ and the squared norms of the
frame elements are prescribed by a sequence of positive numbers a = (ai)i∈Ik . This is known as the
classical frame design problem and it has been studied by several research groups (see for example
[2, 5, 7, 12, 15, 16, 17, 25]). The following result characterizes the existence of such frame design in
terms of majorization relations.
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Proposition 2.4 ([2, 26]). Let B ∈ Md(C)+ with eigenvalues λ(B) = (λi)i∈Id ∈ (Rd≥0)↓ and

consider a = (ai)i∈Ik ∈ (Rk>0)
↓. Then there exists a sequence G = {gi}i∈Ik in Cd with frame

operator SG = B such that ‖gi‖2 = ai for i ∈ Ik if and only if a ≺ λ(B) i.e.∑
i∈Ij

ai ≤
∑
i∈Ij

λi , for 1 ≤ j ≤ min{k , d} and
∑
i∈Ik

ai =
∑
i∈Id

λi . �

Recently, researchers have asked about the structure of optimal frame completions with prescribed
norms. Explicitly, let F0 = {fi}i∈In0 be a fixed (finite) sequence of vectors in Cd, consider a sequence

a = (ai)i∈Ik ∈ (Rk>0)
↓ and denote by n = n0 + k. Then, with this fixed data, the problem is to

construct a sequence
G = {gi}ki=1 with ‖gi‖2 = ai for i ∈ Ik ,

such that the resulting completed sequence F = (F0 , G) - obtained by appending the sequence G
to F0 - is such that the eigenvalues of the frame operator of F are as concentrated as possible:
thus, ideally, we would search for completions G such that F = (F0 , G) is a tight frame i.e. such
that SF = c I for some c > 0. Unfortunately, it is well known that there might not exist such
completions (see [17, 18, 19, 26, 28, 29, 30]). We could measure optimality in terms of the frame
potential i.e., we search for a frame F = (F0 , G), with ‖gi‖2 = ai for 1 ≤ i ≤ k, and such that
its frame potential FP (F) = tr S2

F is minimal among all possible such completions; alternatively,
we could measure optimality in terms of the so-called mean squared error (MSE) of the completed
sequence F i.e. MSE(F) = tr(S−1F ) (see [19]). More generally, we can measure stability of the
completed frame F = (F0,G) in terms of general convex potentials. In order to introduce these
potentials we consider the sets

Conv(R≥0) = {ϕ : R≥0 → R≥0 : ϕ is a convex function }

and Convs(R≥0) = {ϕ ∈ Conv(R≥0) : ϕ is strictly convex }.

Definition 2.5. Following [27] we consider the (generalized) convex potential Pϕ associated to
ϕ ∈ Conv(R≥0), given by

Pϕ(F) = tr ϕ(SF ) =
∑

i∈Id ϕ(λi(SF ) ) for F = {fi}i∈In ∈ (Cd)n ,

where the matrix ϕ(SF ) is defined by means of the usual functional calculus. 4

Convex potentials allow us to model several well known measures of stability considered in frame
theory. For example, in case ϕ(x) = x2 for x ∈ R≥0 then Pϕ is the Benedetto-Fickus frame potential;
in case ϕ(x) = x−1 for x ∈ R>0 then Pϕ is known as the mean squared error (MSE).

We can now give a detailed description of the optimal completion problem with prescribed norms
with respect to convex potentials.

Notation 2.6. Let F0 = {fi}i∈In0 ∈ (Cd)n0 and a = (ai)i∈Ik ∈ (Rk>0)
↓.

1. Let TCd(a) =
{
G = {gi}i∈Ik ∈ (Cd)k : ‖gi‖2 = ai for every i ∈ Ik

}
2. We consider the set Ca (F0) of completions of F0 with norms prescribed by the sequence a

given by

Ca (F0) =
{
F = (F0 , G) ∈ (Cd)n0+k : G ∈ TCd(a)

}
.

3. For ϕ ∈ Conv(R≥0) we consider the optimal frame completions Fop = (F0,Gop) ∈ Ca (F0)
with respect to the convex potential Pϕ i.e. such that

Pϕ(Fop) = min{ Pϕ(F) : F ∈ Ca (F0) } . 4
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Consider the Notation 2.6 above. In the series of papers [28, 29, 30] the spectral and geometrical
structure of optimal frame completions Fop = (F0,Gop) ∈ Ca (F0) was completely described, in case
ϕ ∈ Convs(R≥0) (see Theorem 4.8 below); indeed, in this case it was shown that if Fop ∈ Ca (F0) is
optimal with respect to Pϕ in Ca (F0), then Fop is also optimal in Ca (F0) with respect to any other
convex potential.

2.3 Optimal frame completions with prescribed norms: feasible cases

In this subsection we consider several concepts related with the notion of feasible index introduced in
[30]. The feasible indexes (see Definition 4.2) will play a key role in our study of frame completions
that are local minima of strictly convex potentials.

Definition 2.7. Let λ = (λi)i∈Id ∈ (Rd≥0)↑ and fix t ∈ R>0 .

1. Consider the function hλ : [λ1 , ∞)→ [0 , ∞) given by

hλ(x) =
∑
i∈Id

(x− λi)+ , for every x ∈ [λ1 , ∞) ,

where y+ = max{y, 0} stands for the positive part of y ∈ R. It is easy to see that hλ is
continuous, strictly increasing, such that hλ(λ1) = 0 and lim

x→+∞
hλ(x) = +∞.

2. Therefore h−1λ : [0 , ∞)→ [λ1 , ∞) is well defined and bijective; hence, there exists a unique

c = c(t) > λ1 ≥ 0 such that hλ(c(t)) = t > 0 . (4)

3. Let c = c(t) > λ1 ≥ 0 be as in Eq. (4). Then we set

ν(λ , t)
def
=
(

(c− λ1)+ + λ1 , . . . , (c− λd)+ + λd
)
∈ (Rd>0)

↑ . (5)

4. We now consider the vector

µ(λ , t)
def
=
(

(c− λ1)+ , . . . , (c− λd)+
)

= ν(λ , t)− λ ∈ (Rd≥0)↓ . (6)

We note the fact that, since λ ∈ (Rd≥0)↑, then µ(λ , t) ∈ (Rd≥0)↓. 4

Remark 2.8. Let λ = (λi)i∈Id ∈ (Rd≥0)↑, let t > 0 and let c = c(t) > λ1 ≥ 0 be as in Eq. (4).
Notice that by construction, we have that

tr ν(λ , t) =
∑
i∈Id

(c− λi)+ + λi = trλ+ hλ(c) = trλ+ t .

On the other hand, since (c− a)+ + a = max{c, a} we see that:

1. If c < λd then there exists a unique r ∈ Id−1 such that, if we let 1r = (1, . . . , 1) ∈ Rr then

ν(λ , t) = (c1r , λr+1 , . . . , λd) ∈ (Rd>0)
↑ with λr ≤ c < λr+1 . (7)

In this case, trλ+ t = tr ν(λ , t) < dλd and then λd >
trλ+t
d .

2. Otherwise, c ≥ λd and therefore ν(λ , t) = c1d ∈ (Rd>0)
↑. In this case

trλ+ t = tr ν(λ , t) = d c ≥ d λd and then λd ≤
trλ+ t

d
.
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The previous remarks show that if ρ = (e1s , λs+1 , . . . , λd) or ρ = e1d for some e > 0 is such that

ρ ∈ (Rd>0)
↑ , ρ ≥ λ and tr ρ = trλ+ t =⇒ ρ = ν(λ , t) . 4

Next we introduce the notion of a feasible pair. Then, we clarify the relation between this notion
and the frame completion problem.

Definition 2.9. Let λ = (λi)i∈Id ∈ (Rd≥0)↑ and let a = (ai)i∈Ik ∈ (Rk>0)
↓.

1. Let r = min{k, d}, let λ̃ = (λi)i∈Ir and t =
∑

i∈Ik ai > 0. Let ν(λ , a) ∈ Rd>0 be given by:

ν(λ , a) =

{
ν(λ , t) if r = d ≤ k(

ν(λ̃ , t) , λr+1 , . . . , λd
)

if r = k < d .
(8)

Observe that in the second case ν(λ , a) could be a non ordered vector (if c(t) > λr+1).

2. Consider the vector µ(λ , a)
def
= ν(λ , a)− λ ∈ Rd≥0 . By inspection of Definition 2.7 and item

1 above we see that µ(λ , a) = µ(λ , a)↓ and tr µ(λ , a) = tr a = t.

3. We say that the pair (λ , a) is feasible if a ≺ µ(λ , a) that is, if∑
i∈Ij

ai ≤
∑
i∈Ij

µi(λ , a) for j ∈ Ir−1 , (9)

where the equivalence follows from the properties of µ(λ , a) given in item 2. Notice that in
the case that k < d then µk+1(λ , a) = 0. 4

We point out that the computation of ν(λ , a) and µ(λ , a) as in Definition 2.9, as well as the
verification of the inequalities in Eq. (9) above can be implemented by a finite step algorithm.

The following result is taken from [30] (see also [28]) and it describes, in the feasible case, the
spectral structure of global minimizers of the convex potentials Pϕ in Ca (F0), for ϕ ∈ Convs(R≥0).
As already mentioned, this structure does not depend on ϕ.

Theorem 2.10. Let F0 = {fi}i∈In0 ∈ (Cd)n0 and let a = (ai)i∈Ik ∈ (Rk>0)
↓. Let λ = λ(SF0)↑ and

assume that the pair (λ , a) is feasible. Let ν(λ , a) = (νi(λ , a))i∈Id ∈ Rd≥0 be as in Definition 2.9.
Then, for every ϕ ∈ Convs(R≥0) we have that

min{Pϕ(F) : F = (F0 , G) ∈ Ca (F0)} =
∑
i∈Id

ϕ(νi(λ , a) ) .

Moreover, given F = (F0 , G) ∈ Ca (F0) then

Pϕ(F) =
∑
i∈Id

ϕ(νi(λ , a)) ⇐⇒ λ(SF ) = ν(λ , a)↓ . �

3 Local minima of frame completions with prescribed norms

We begin with a brief description of our main problem (for a detailed description see Section 3.2). Let
F0 = {fi}i∈In0 be a fixed family in (Cd)n0 and a = (ai)i∈Ik ∈ (Rk>0)

↓; consider TCd(a) (see Notation

2.6) endowed with the d(G , G̃) = max { ‖gi − g̃i‖ : i ∈ Ik } for G = {gi}i∈Ik , G̃ = {g̃i}i∈Ik ∈ TCd(a).
Our main goal is to study the structure of local minimizers of the map

TCd(a) 3 G 7→ Pϕ(F0 , G) = tr(ϕ(S(F0 ,G))) = tr(ϕ(SF0 + SG)) , (10)

where ϕ ∈ Convs(R≥0) is a strictly convex function and F = (F0 , G) ∈ Ca (F0) is a completion of
F0 with a sequence of vectors in Cd with norms prescribed by the sequence a.

In this section we describe the first structural features of local minimizers of the map in Eq. (10),
for general strictly convex potentials. These results are applied in the next section to prove that
local minima are also global minima.
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3.1 On a local Lisdkii’s theorem

The result in this subsection lies in the context of matrix analysis, and it is of independent interest.
It will be systematically used in the rest of the paper. Since its proof is rather technical, we shall
present it in the Appendix (see Section 6). In order to put our result in perspective, we consider
the following

Remark 3.1 (Lidskii’s (global) inequality). Fix S ∈ Md(C)+ and µ ∈ (Rd≥0)↓. Consider the
unitary orbit

Oµ = {G ∈Md(C)+ : λ(G) = µ} = {U∗Dµ U : U ∈ U(d)} (11)

where Dµ ∈Md(C)+ denotes the diagonal matrix with main diagonal µ.

Given ϕ ∈ Convs(R≥0) we define the map Φ = ΦS, ϕ : Oµ → R≥0 given by

Φ(G) = tr(ϕ(S +G)) =
∑
j∈Id

ϕ(λj(S +G)) for G ∈ Oµ . (12)

(Notice that Eq. (10) motivates the consideration of the map Φ as defined above). Let (λi)i∈Id =
λ(S)↑ ∈ (Rd≥0)↑. Then, Lidskii’s (additive) inequality together with the characterization of the case
of equality given in Theorem 2.2 imply that

min
G∈Oµ

Φ(G) =
∑
i∈Id

ϕ(λi + µi)

and, if G0 ∈ Oµ then G0 is a global minimum of Φ on Oµ if and only if there exists {vi}i∈Id an ONB
of Cd such that

S =
∑
i∈Id

λi vi ⊗ vi and G0 =
∑
i∈Id

µi vi ⊗ vi .

Indeed, Lidskii’s inequality states that λ(S)↑ + λ(G) ≺ λ(S + G) for every G ∈ Oµ; since ϕ ∈
Convs(R≥0), the previous majorization relation implies that

Φ(G) = tr(ϕ(S +G)) ≥
∑
i∈Id

ϕ(λi + µi) .

If we assume that G0 ∈ Oµ is a global minimum then (see Theorem 2.3),

λ(S)↑ + λ(G0) ≺ λ(S +G0) and tr(ϕ(λ(S)↑ + λ(G0))) = tr(ϕ(λ(S +G0)))

=⇒ λ(S +G0) = (λ(S)↑ + λ(G0))
↓ ,

so equality holds in Lidskii’s inequality. Hence we can apply Theorem 2.2. Notice that in particular,
S and G0 commute. 4

Let µ ∈ (Rd≥0)↓ and consider the unitary orbit Oµ from Eq. (11). In what follows we consider
Oµ endowed with the metric induced by the operator norm. The next result states that given
ϕ ∈ Convs(R≥0) then the local minimizers of the map Φ = ΦS, ϕ : Oµ → R≥0 given by Eq. (12) -
in the metric space Oµ - are also global minimizers.

Theorem 3.2 (Local Lidskii’s theorem). Let S ∈ Md(C)+ and µ = (µi)i∈Id ∈ (Rd≥0)↓. Assume
that ϕ ∈ Convs(R≥0) and that G0 ∈ Oµ is a local minimizer of Φ = ΦS , ϕ on Oµ . Then, there exists
{vi}i∈Id an ONB of Cd such that, if we let (λi)i∈Id = λ↑(S) ∈ (Rd≥0)↑ then

S =
∑
i∈Id

λi vi ⊗ vi and G0 =
∑
i∈Id

µi vi ⊗ vi . (13)

In particular, λ(S +G0) = (λ(S)↑ + λ(G0)
↓)↓ so G0 is also a global minimizer of Φ on Oµ .

Proof. See Theorem 6.5 in the Appendix. �
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3.2 Geometrical properties of local minima

In the following two sections we study the relative geometry (of both the frame vectors and the
eigenvectors of their frame operator) of frame completions with prescribed norms that are local
minima of strictly convex potentials. We begin by introducing the basic notation used throughout
these sections.

Notation 3.3.

1. Let F0 = {fi}i∈In0 be a fixed family in (Cd)n0 and a = (ai)i∈Ik ∈ (Rk>0)
↓;

2. Given a subspace V ⊆ Cd we denote by

TV (a) =
{
G = {gi}i∈Ik ∈ V

k : ‖gi‖2 = ai , i ∈ Ik
}

endowed with the product topology - of the usual topology in TV (ai) for i ∈ Ik - i.e. induced
by the metric

d(G , G̃) = max { ‖gi − g̃i‖ : i ∈ Ik } .

3. Given ϕ ∈ Convs(R≥0), let Ψϕ = Ψϕ ,F0 : TCd(a)→ [0,∞) be given by

Ψϕ(G) = Pϕ(F0 , G) = tr
(
ϕ(SF0 + SG)

)
for every G ∈ TCd(a), (14)

the convex potential induced by ϕ of the completed sequence F = (F0 , G) ∈ Ca (F0).

4. We shall fix G0 = {gi}i∈Ik ∈ TCd(a) which is a local minimum of Ψϕ in TCd(a). 4

In the following sections we shall see that G0 is actually a global minimum in TCd(a) for Ψϕ or, in
other words, that F = (F0 , G0) is a global minimum in Ca (F0) for the convex potential Pϕ .

The following result, which is based on the Local Lidskii’s Theorem 3.2, depicts the first structural
properties of local minimizers of strictly convex potentials.

Theorem 3.4. Consider the Notation 3.3 and fix a local minimum G0 = {gi}i∈Ik ∈ TCd(a) of Ψϕ

in TCd(a). Then,

1. For every j ∈ Ik, SF = SF0 + SG0 commutes with gj ⊗ gj or equivalently, gj is an eigenvector
of SF = SF0 + SG0.

2. There exists {vi}i∈Id an ONB of Cd such that

SF0 =
∑
i∈Id

λ↑i (SF0) vi ⊗ vi and SG0 =
∑
i∈Id

λ↓i (SG0) vi ⊗ vi .

In particular, we have that λ(SF0 + SG0) =
[
λ↑(SF0) + λ(SG0)

]↓
.

Proof. For each j ∈ Ik , let Sj = SF0 +
∑

i∈In\{j} gi ⊗ gi ∈ Md(C)+ and µ[j] = aj e1 ∈ Rd≥0 . Notice

that, as in Eq.(11), the orbit Oµ[j] = {g ⊗ g : ‖g‖2 = aj}. By hypothesis, it is clear (comparing the
maps Ψϕ and ΦSj , ϕ) that the matrix Gj = gj ⊗ gj is a local minimum for the map ΦSj , ϕ on Oµ[j] .
Using Theorem 3.2, we conclude that Sj and Gj commute, which implies item 1.

By hypothesis, there exists ε > 0 such that every U ∈ B(I , ε)
def
= {U ∈ U(d) : ‖I −U‖ < ε} satisfies

that U · G0 = {U gi}i∈Ik ∈ TCd(a), SU ·G0 = U SG0 U
∗ and that U · G0 is close enough to G0 so that

ΦSF0 , ϕ
(U SG0 U

∗) = tr
(
ϕ(SF0 + U SG0 U

∗)
)

= Ψϕ(U · G0) ≥ Ψϕ(G0) = ΦSF0 , ϕ
(SG0) .

Let µ = λ(SG0) ∈ (Rd≥0)↓. Notice that the map π : U(d) → Oµ given by π(U) = U SG0 U
∗ is open

(see [1, Thm 4.1]), so that π(B(I , ε)) is an open neighborhood of SG0 in Oµ , and SG0 is a local
minimum for the map ΦSF0 , ϕ

on Oµ . Item 2 now follows from Theorem 3.2.
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Notation 3.5. Consider the Notation 3.3. Then, Theorem 3.4 allows us to introduce the following
notions and notation:

1. We denote by λ = (λi)i∈Id = λ↑i (SF0) ∈ (Rd≥0)↑ and µ = (µi)i∈Id = λ↓i (SG0) ∈ (Rd≥0)↓.

2. We fix B = {vi}i∈Id an ONB of Cd as in Theorem 3.4. Hence,

SF0 =
∑
i∈Id

λi vi ⊗ vi and SG0 =
∑
i∈Id

µi vi ⊗ vi , (15)

3. We denote by ν(G0) = λ + µ ∈ Rd≥0 so that SF =
∑

i∈Id νi(G0) vi ⊗ vi . Notice that ν(G0) is

constructed by pairing the entries of ordered vectors (since λ = λ↑ and µ = µ↓) but ν(G0)
is not necessarily an ordered vector. Nevertheless, we have that λ(SF ) = ν(G0)↓. In what
follows we obtain some properties of (the unordered vector) ν(G0)

4. Let sF = max {i ∈ Id : µi 6= 0} = rkSG0 . Denote by W = R(SG0), which reduces SF .

5. Let S = SF
∣∣
W
∈ L(W ) and σ(S) = {c1 , . . . , cp} (where c1 > c2 > · · · > cp > 0).

6. For each j ∈ Ip , we consider the following sets of indexes:

Kj = {i ∈ IsF : νi(G0) = λi + µi = cj} and Jj = {i ∈ Ik : S gi = cj gi} .

Theorem 3.4 assures that IsF =
⊔
j∈Ip

Kj and Ik =
⊔
j∈Ip

Jj .

7. Since R(SG0) = span{gi : i ∈ Ik} = W =
⊕

i∈Ip ker (S − ci IW ) then, for every j ∈ Ip ,

Wj
def
= span{gi : i ∈ Jj} = ker (S − cj IW ) = span{vi : i ∈ Kj} , (16)

because gi ∈ ker (S − cj IW ) for every i ∈ Jj . Note that, by Theorem 3.4, each Wj reduces
both SF0 and SG0 . 4

The next remark allow us to consider reduction arguments when computing different aspects of the
structure of local minima of the completion problem with prescribed norms.

Remark 3.6 (Two reduction arguments for local minima). Consider the data, assumptions and
terminology fixed in the Notation 3.3 and 3.5.

a) For any j ≤ p− 1 denote by

Ij = Id \
⋃
i≤j

Ki , Lj = Ik \
⋃
i≤j

Ji , λ
Ij = (λi)i∈Ij , G

(j)
0 = {gi}i∈Lj , aLj = (ai)i∈Lj

and take some sequence F (j)
0 in Hj =

[ ⊕
i≤jWi

]⊥
such that SF(j)

0

= SF0 |Hj (notice that, by

construction, Hj reduces SF0). Then, it is straightforward to show that G(j)0 is a local minimizer

of Ψj

ϕ ,F(j)
0

: THj (aLj ) → R≥0 . Indeed, if Mj is any sequence of |Lj | vectors in Hj with norms

prescribed by aLj then M = ({gi}i∈Ik\Lj ,Mj) ∈ TCd(a) (in some order) and

Ψϕ(F0 ,M) =

j∑
i=1

ϕ(ci) dimWi + Ψj
ϕ(Mj) ,

where the last equation is a consequence of the orthogonality relations between the families {gi}i∈In\Lj
and Mj . Also notice that the distance between Mj and G(j)0 is the same as the distance between
M and G0 .
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The importance of the previous remark lies in the fact that it provides a reduction method to

compute the structure of the sets G(i)0 , Ki and Ji for 1 ≤ i ≤ p, as well as the set of constants

c1 > . . . > cp ≥ 0. Indeed, assume that we are able to describe the sets G(1)0 , K1 , J1 and the
constant c1 in some structural sense, using the fact that these sets are extremal (e.g. these sets
are built on c1 > cj for 2 ≤ j ≤ p). Then, we can the apply the same argument to compute, for

example, the sets G(2)0 , K2 , J2 using that these are extremal for the reduced problem described
above for j = 1.

b) Assume that k ∈ Id−1 and let F = (F0,G0) ∈ Ca (F0). Fix a sequence F̃0 = {f̃i}i∈In0 in
W = R(SG0) such that SF̃0

= SF0 |W . Then, for every M∈ TW (a),

Ψϕ ,F0(M) = Pϕ(F0 ,M) = Pϕ(F̃0 ,M) +

d∑
i=k+1

ϕ(λi) = Ψϕ , F̃0
(M) +

d∑
i=k+1

ϕ(λi) ,

even for M = G0 . The identity above shows that G0 is a local minimizer of Ψϕ , F̃0
in TW (a). In

this setting we have that d ′ = dimW = rk(SG0) ≤ k. So that in order to compute the structure of
G0 we can assume, as we sometimes do, that k ≥ d. 4

3.3 Inner structure of local minima

Throughout this section we consider the Notation 3.3 and 3.5. Recall that we have fixed ϕ ∈
Convs(R≥0) and a sequence G0 = {gi}i∈Ik ∈ TCd(a) which is a local minimum of the potential
Ψϕ ,F0 in TCd(a). The following result is inspired by some ideas from [8].

Proposition 3.7. Let F = (F0 , G0) ∈ Ca (F0) be as in Notation 3.5 and assume that there exist
j ∈ Ip and c ∈ σ(SF ) such that c < cj . Then, the family {gi}i∈Jj is linearly independent.

Proof. Suppose that for some j ∈ Ip the family {gi}i∈Jj is linearly dependent. Hence there exist
coefficients zl ∈ C, l ∈ Jj (not all zero) such that every |zl| ≤ 1/2 and∑

l∈Jj

zl a
1/2
l gl = 0 . (17)

Let Ij ⊆ Jj be given by Ij = {l ∈ Jj : zl 6= 0}. Assume that there exists c ∈ σ(SF ) such that c < cj
and let h ∈ Cd be such that ‖h‖ = 1 and SFh = c h. For t ∈ (−1/2, 1/2) let F(t) = (F0 , G(t))
where G(t) = {gi(t)}i∈Ik is given by

gl(t) =

{
(1− t2 |zl|2)1/2gl + t zl a

1/2
l h if l ∈ Ij ;

gl if l ∈ K \ Ij .

Notice that G(t) ∈ TCd(a) for t ∈ (−1/2, 1/2). Let Re(A) = A+A∗

2 denote the real part of A ∈
Md(C). For l ∈ Ij then

gl(t)⊗ gl(t) = (1− t2 |zl|2) gl ⊗ gl + t2 |zl|2 al h⊗ h+ 2 (1− t2 |zl|2)1/2 t Re(h⊗ zl a
1/2
l gl)

Let S(t) denote the frame operator of F(t) = (F0 , G(t)) ∈ Ca (F0), so that S(0) = SF . Note that

S(t) = SF + t2
∑
l∈Ij

|zl|2 (−gl ⊗ gl + al h⊗ h) +R(t)

where R(t) = 2
∑
l∈Ij

(1− t2 |zl|2)1/2 t Re(h⊗ a1/2l zl gl). Then R(t) is a smooth function such that

R(0) = 0 , R′(0) =
∑
l∈Ij

Re(h⊗ zl a
1/2
l gl) = Re(h⊗

∑
l∈Ij

zl a
1/2
l gl)

(17)
= 0 ,
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and such that R′′(0) = 0. Therefore lim
t→0

t−2 R(t) = 0. We now consider

V = span
(
{gl : l ∈ Ij} ∪ {h}

)
= span

{
gl : l ∈ Ij

} ⊥
⊕ C · h .

Then dimV = s + 1, for s = dim span{gl : l ∈ Ij} ≥ 1. By construction, the subspace V reduces
SF and S(t) for t ∈ R, in such a way that S(t)|V ⊥ = SF |V ⊥ for t ∈ R. On the other hand

S(t)|V = SF |V + t2
∑
l∈Ij

|zl|2 (−gl ⊗ gl + al h⊗ h) +R(t) = A(t) +R(t) ∈ L(V ) , (18)

where we use the fact that the ranges of the selfadjoint operators in the second and third term in
the formula above clearly lie in V . Then λ

(
SF |V

)
=
(
cj 1s , c

)
∈ (Rs+1

>0 )↓ and

λ
( ∑

l∈Ij |zl|
2gl ⊗ gl

)
= (γ1 , . . . , γs , 0) ∈ (Rs+1

≥0 )↓ with γs > 0 ,

where we have used the definition of s and the fact that |zl| > 0 for l ∈ Ij (and the known fact that
if S , T ∈ Md(C)+ =⇒ R(S + T ) = R(S) + R(T ) ). Hence, for sufficiently small t, the spectrum
of the operator A(t) ∈ L(V ) defined in (18) is

λ
(
A(t)

)
=
(
cj − t2 γs , . . . , cj − t2 γ1 , c+ t2

∑
l∈Ij al |zl|

2
)
∈ (Rs+1

≥0 )↓ ,

where we have used the fact that 〈gl , h〉 = 0 for every l ∈ Ij . Let us now consider

λ
(
R(t)

)
=
(
δ1(t) , . . . , δs+1(t)

)
∈ (Rs+1

≥0 )↓ for t ∈ R .

Recall that in this case lim
t→0

t−2δj(t) = 0 for 1 ≤ j ≤ s+ 1. Using Weyl’s inequality on Eq. (18), we

now see that λ
(
S(t)|V

)
≺ λ

(
A(t)

)
+ λ
(
R(t)

) def
= ρ(t) ∈ (Rs+1

≥0 )↓. We know that

ρ(t) =
(
cj − t2 γs + δ1(t) , . . . , cj − t2 γ1 + δs(t) , c+ t2

∑
l∈Ij al |zl|

2 + δs+1(t)
)

=
(
cj − t2 (γs − δ1(t)

t2
) , . . . , cj − t2 (γ1 − δs(t)

t2
) , c+ t2 (

∑
l∈Ij al |zl|

2 + δs+1(t)
t2

)
)
.

Since by hypothesis cj > c then, the previous remarks show that there exists ε > 0 such that if
t ∈ (0, ε) then, for every i ∈ Is

cj > cj − t2(γs−i+1 −
δi(t)

t2
) > c+ t2 (

∑
l∈Ij

al |zl|2 +
δs+1(t)

t2
) .

The previous facts show that for t ∈ (0, ε) then ρ(t) ≺ λ(SF |V ) =
(
cj 1s , c

)
strictly. Since ϕ is

strictly convex, for every t ∈ (0, ε) we have that

Ψϕ

(
G(t)

)
≤ tr ϕ

(
λ(SF |V ⊥)

)
+ tr ϕ

(
ρ(t)

)
< tr ϕ

(
λ(SF |V ⊥)

)
+ tr ϕ

(
λ(SF |V )

)
= Ψϕ(G0) .

This last fact contradicts the assumption that G0 is a local minimizer of Ψϕ in TCd(a).

Recall that, according to Notation 3.5, c1 > . . . > cp . Thus, the following result is an immediate
consequence of Proposition 3.7 above.

Corollary 3.8. Let F = (F0 , G0) ∈ Ca (F0) be as in Notation 3.5 and assume that p > 1. Then,
the family {gi}i∈Jj is linearly independent for every j ∈ Ip−1. In particular, by Eq. (16),

dim(Wj) = |Kj | = |Jj | for j ∈ Ip−1 . �
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Corollary 3.9. Consider the Notation 3.5 and assume that k ≥ d. Let F = (F0 , G0) ∈ Ca (F0)
and assume that SF |W ∈ L(W ) has one eigenvalue, where W = R(SG0). Then:

1. (λ, a) is feasible;

2. λ↑(SF ) = ν(λ , a) and λ(SG0) = µ(λ , a) (see Definition 2.9);

3. F is a global minimum of Ψϕ in TCd(a).

Proof. Assume first that sF = d, i.e. that W = Cd. In this case SF = SF0 + SG0 = c1 I and F is a
tight frame. Using the comments at the end of Remark 2.8 and Definition 2.9 (notice that in this
case min{d, k} = d) we see that ν(λ , a) = c1 1d . Hence,

µ(λ , a) = c1 1d − λ = λ↓(SG0) .

Since SG0 is the frame operator of G0 ∈ TCd(a), Proposition 2.4 shows that the majorization relation
a ≺ µ(λ , a) holds, so that the pair (λ , a) is feasible. The fact that G0 is a global minimizer of Ψϕ

in TCd(a) now follows from Theorem 2.10 (or directly, being a tight completion).

We now consider the case sF < d. Hence, µi > 0 for 1 ≤ i ≤ sF and

SF =
∑
i∈Id

(λi + µi) vi ⊗ vi =
∑
i∈IsF

c1 vi ⊗ vi +
d∑

i=sF+1

λi vi ⊗ vi .

In particular, c1 = λsF + µsF > λsF . On the other hand, k ≥ d > dimW , and thus {gi}i∈Ik =
{gi}i∈J1 is a linearly dependent family. Hence, Proposition 3.7 implies that c1 ≤ λi for sF+1 ≤ i ≤ d;
in particular, c1 ≤ λsF+1.

The previous facts together with Remark 2.8 show that λ(SF )↑ = (c1 1sF , λsF+1, . . . , λd) = ν(λ , a),
according to Definition 2.9. Moreover, we also get that λ(SG0) = ν(λ , a) − λ = µ(λ , a). Again,
since G0 ∈ TCd(a) we conclude that the majorization relation a ≺ µ(λ , a) holds, and therefore
the pair (λ , a) is feasible. As before, Theorem 2.10 shows that G0 is a global minimizer of Ψϕ in
TCd(a).

The next result is [30, Proposition 4.5]. Although the result is stated for a global minimum in [30],
the inspection of its proof (for ϕ ∈ Convs(R≥0), so that the previous results hold) reveals that it
also holds for a local minimum as well. Recall from Notation 3.5 that, if p > 1 then

Kj = {i ∈ IsF : λi + µi = cj} and Jj = {i ∈ Ik : SF gi = cj gi}

for each j ∈ Ip , where λ = λ↑(SF0) and µ = µ↓ = λ(SG0).

Proposition 3.10. Consider the Notation 3.5 with F = (F0 , G0) ∈ Copa (F0) and assume that k ≥ d
and p > 1. Given i , r ∈ Ip , h ∈ Ji and l ∈ Jr then

i < r =⇒ ah − al ≥ ci − cr > 0 =⇒ h < l .

In particular, there exist s0 = 0 < s1 < . . . < sp−1 < sF ≤ d such that

Jj = {sj−1 + 1 , . . . , sj} , j ∈ Ip−1 and Jp = {sp−1 + 1 , . . . , k} . �

Proposition 3.11. Consider the Notation 3.5 with F = (F0 , G0) ∈ Copa (F0) and assume that k ≥ d
and p > 1. We have that:

i ∈ K1 =⇒ i < j ( =⇒ λi ≤ λj ) for every j ∈
⋃
r>1

Kr = IsF \K1 .

Inductively, by means of Remark 3.6, we deduce that all sets Kj consist of consecutive indexes.

Therefore, if s0 = 0 < s1 < . . . < sp−1 < sp
def
= sF are as in Proposition 3.10 then

Kj = {sj−1 + 1 , . . . , sj} , j ∈ Ip−1 and Kp = {sp−1 + 1, . . . , sp} .
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Proof. Assume that there exist i ∈ K1 and j ∈ Kr for 1 < r such that j < i. In this case,

µi ≤ µj , λj ≤ λi and c1 = λi + µi > cr = λj + µj .

Consider B = {vl}l∈Id as in Notation 3.5. For t ∈ [0, 1) we let

gl(t) = gl +
(

(1− t2)1/2 − 1
)
〈gl, vi〉 vi + t 〈gl, vi〉 vj for l ∈ Ik . (19)

Notice that, if l ∈ J1 , then SF gl = c1 gl =⇒ 〈gl , vj〉 = 0. Similarly, if l ∈ Ik \ J1 then 〈gl , vi〉 = 0
(so that gl(t) = gl). Therefore the sequence G(t) = {gl(t)}l∈Ik ∈ TCd(a) for t ∈ [0, 1). Let Pi = vi⊗vi
and Pji = vj ⊗ vi (so that Pji x = 〈x , vi〉 vj). Then, for every t ∈ [0 , 1),

gl(t) =
(
I + ((1− t2)1/2 − 1) Pi + t Pji

)
gl for every l ∈ Ik .

That is, if V (t) = I + ((1− t2)1/2 − 1) Pi + t Pji ∈Md(C) then gl(t) = V (t) gl for every l ∈ Ik and
t ∈ [0, 1). Therefore, we get that

G(t) = V (t)G = {V (t) gl}l∈In =⇒ SG(t) = V (t)SG V (t)∗ for t ∈ [0, 1) .

Hence, we obtain the representation

SG(t) =
∑

`∈Id\{i, j}

µ` v` ⊗ v` + γ11(t) vj ⊗ vj + γ12(t) vj ⊗ vi + γ21(t) vi ⊗ vj + γ22(t) vi ⊗ vi ,

where the functions γrs(t) are the entries of A(t) =
(
γrs(t)

)2
r , s=1

∈ H(2) defined by

A(t) =

(
1 t

0 (1− t2)1/2
)(

µj 0
0 µi

)(
1 0

t (1− t2)1/2
)

for every t ∈ [0 , 1) .

It is straightforward to check that tr(A(t)) = µi + µj and that det(A(t)) = (1 − t2)µj µi . These
facts imply that if we consider the continuous function L(t) = λmax(A(t)) then L(0) = µj and
L(t) is strictly increasing in [0, 1). More straightforward computations show that we can consider
continuous curves xi(t) : [0, 1)→ C2 which satisfy that {x1(t), x2(t)} is ONB of C2 such that

A(t)x1(t) = L(t)x1(t) for t ∈ [0, 1) and x1(0) = e1 , x2(0) = e2 .

For t ∈ [0, 1) we let X(t) = (ur,s(t))
2
r,s=1 ∈ U(2) with columns x1(t) and x2(t). By construction,

X(t) = [0, 1)→ U(2) is a continuous curve such that X(0) = I2 and such that

X(t)∗A(t)X(t) =

(
L(t) 0

0 µi + µj − L(t)

)
.

Finally, consider the continuous curve U(t) : [0, 1)→ U(d) given by

U(t) = u11(t) vj ⊗ vj + u12(t) vj ⊗ vi + u21(t) vi ⊗ vj + u22(t) vi ⊗ vi +
∑

`∈Id\{i, j}

vl ⊗ vl .

Notice that U(0) = I; also, let G̃(t) = U(t)∗ G(t) ∈ TCd(a) for t ∈ [0, 1), which is a continuous curve
such that G̃(0) = G0 . In this case, for t ∈ [0, 1) we have that

SG̃(t) = U(t)∗ SG(t) U(t) = L(t) vj ⊗ vj + (µi + µj − L(t)) vi ⊗ vi +
∑

`∈Id\{i, j}

µ` v` ⊗ v` .
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In other words, U(t) is constructed in such a way that B = {vl}i∈Id consists of eigenvectors of SG̃(t)
for every t ∈ [0, 1). Hence, if F̃(t) = (F0 , G̃(t)) and E(t) = L(t)−µj ≥ 0 for t ∈ [0 , 1), we get that

SF̃(t) = (cr + E(t) ) vj ⊗ vj + (c1 − E(t) ) vi ⊗ vi +
∑

`∈Id\{i, j}

(λ` + µ`) v` ⊗ v` .

Let ε > 0 be such that E(t) = L(t) − µj ≤ c1−cr
2 for t ∈ [0, ε]. (recall that L(0) = µj and that

c1 > cr). Since L(t) (and hence E(t)) is strictly increasing in [0, 1), we see that

(c1 − E(t) , cr + E(t)) ≺ (c1 , cr) =⇒ λ(SF̃(t)) ≺ λ(SF ) for t ∈ (0 , ε] ,

where the majorization relations above are strict. Hence, since ϕ ∈ Convs(R≥0) then

Ψϕ(G̃(t)) = tr(ϕ(λ(SF̃(t)))) < tr(ϕ(λ(SF ))) = Ψϕ(G0) for t ∈ (0 , ε] .

This last fact contradicts the local minimality of G0 and the result follows. The description of the
sets Ki’s now follows from Corollary 3.8.

4 Local minima are global minima

Throughout this section we adopt Notation 3.3 and 3.5. Recall that we have fixed a map ϕ ∈
Convs(R≥0) and a sequence G0 = {gi}i∈Ik ∈ TCd(a) which is a local minimum of the potential Ψϕ

in TCd(a), among several other specific notation.

In what follows, we show that local minimizers (as G0) of Ψϕ in TCd(a) are global minimizers (see
Theorem 4.10 below). In order to do this, we develop a detailed study of the inner structure of local
minimizers, based on the results from Section 3.

Remark 4.1 (Case k ≥ d). Consider the Notation 3.3 and 3.5 and assume that k ≥ d. Then,
according to Propositions 3.10 and 3.11, there exist p ∈ Id and s0 = 0 < s1 < . . . < sp−1 < sp =
sF ≤ d, where sF = rk(SG0), such that

Kj = Jj = {sj−1 + 1 , . . . , sj} , for j ∈ Ip−1 ,

Kp = {sp−1 + 1 , . . . , sp} , Jp = {sp−1 + 1 , . . . , k} .
(20)

In terms of these indexes we also get that:

λ(SF ) =
(
c1 1s1 , . . . , cp 1sp−sp−1 , λsp+1 , . . . , λd

)↓ ∈ (Rd>0)
↓ if sp < d (21)

or
λ(SF ) =

(
c1 1s1 , . . . , cp 1sp−sp−1

)↓ ∈ (Rd>0)
↓ if sp = d (22)

In what follows, we describe an algorithm that computes both the constants c1 > . . . > cp as well
as the indexes s1 < . . . < sp in terms of the index sp−1. 4

In order to show the role of the index sp−1 as described in Remark 4.1 above, we consider the
following

Definition 4.2. Let λ = (λi)i∈Id ∈ (Rd≥0)↑ and a = (ai)i∈Ik ∈ (Rk>0)
↓, with k ≥ d.

1. Given 0 ≤ s ≤ d− 1 denote by

λs = (λs+1 , . . . , λd) ∈ Rd−s and as = (as+1 , . . . , ak) ∈ Rk−s ,

the truncations of the vectors λ and a.
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2. We say that the index s is feasible (for the pair (λ , a)) if (λs , as) is a feasible pair (see
Definition 2.9) i.e. if as ≺ ν(λs , as)− λs. 4

Notice that, with the notation and terminology from Definition 4.2 above, the pair (λ , a) is feasible
(according to Definition 2.9) if and only if the index s = 0 is feasible (according to Definition 4.2).

In the following statements we shall use the Notation 3.3 and 3.5. Recall that we have fixed a map
ϕ ∈ Convs(R≥0) and a sequence G0 = {gi}i∈Ik ∈ TCd(a) which is a local minimum of the potential
Ψϕ in TCd(a), among several other specific notation.

Proposition 4.3. Consider the Notation 3.3 and 3.5 and assume that k ≥ d. Let s0 = 0 < s1 <
. . . < sp−1 < sp ≤ d be as in Remark 4.1. Then:

1. The index sp−1 ≥ 0 is feasible;

2. The constant cp and the index sp are determined by:

cp = (d−sp−1)−1 (trλsp−1+tr asp−1) and sp = d if (d−sp−1)−1 (trλsp−1+tr asp−1) ≥ λd

or otherwise, if (d− sp−1)−1 (trλsp−1 + tr asp−1) < λd by the identity

ν(λsp−1 , asp−1) =
(
cp 1sp−sp−1 , λsp+1 , . . . , λd

)
and sp < d . (23)

3. If we let G(p−1)0 = {gi}ki=sp−1+1 then λ(SG(p−1)
0

) = ((µi)
sp
i=sp−1+1, 0d−(sp−sp−1

)) ∈ (Rd≥0)↓; hence

(ai)
k
i=sp−1+1 ≺ (µi)

sp
i=sp−1+1 .

Proof. By Remark 3.6 (item a) with j = p−1) the family G(p−1)0 = {gi}ki=sp−1+1 is a local minimum

of the map (set k′ = k − sp−1 ≥ 1)

{K = {ki}i∈Ik′ ∈ (Hp−1)k
′
, ‖ki‖2 = asp−1+i , i ∈ Ik′} 3 K 7→ Pϕ(F (p−1)

0 ,K)

where, using the notation from Remark 3.6, Hp−1 =
[ ⊕

i≤p−1Wi

]⊥
and F (p−1)

0 is a sequence in
Hp−1 such that SFp−1

0
= SF0 |Hp−1 . Moreover, by construction of the subspace Hp−1 we see that if

we let F (p−1) = (F (p−1)
0 ,G(p−1)0 ) ∈ Casp−1 (F (p−1)

0 ) then Wp = R(SG(p−1)
0

) and

SF(p−1) PWp = cp PWp .

Therefore, by Corollary 3.9, we see that the pair (λs , as) is feasible. The other claims follow from
Remark 2.8, Corollary 3.9 and Proposition 2.4.

Remark 4.4. Observe that, under the assumptions of Proposition 4.3 then item 2 implies that

sp = max{j ∈ Id : λj < cp} ∈ Id . 4

Notation 4.5. Consider the Notation 3.3 and 3.5, and assume that k ≥ d.

1. We let hi := λi + ai for every i ∈ Id.

2. Given j ≤ r ≤ d, let

Pj , r =
1

r − j + 1

r∑
i=j

hi =
1

r − j + 1

r∑
i=j

λi + ai .

We abbreviate P1 , r = Pr for the initial averages. 4
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The following result will allow us to obtain several relations between the indexes and constants
describing λ(SF ) as in Remark 4.1. We point out that the ideas behind its proof are derived from
[30].

Lemma 4.6. Consider the Notation 3.3 and 3.5 and assume that k ≥ d, p > 1. With the notation
of Remark 4.1 we have that

1. If 1 ≤ r ≤ d then

(aj)j∈Ir ≺ (Pr − λj)j∈Ir ⇐⇒ Pr ≥ Pi , i ∈ Ir ⇐⇒ Pr = max{Pi : i ∈ Ir} .

2. c1 = Ps1 = max{Pj : j ≤ sp−1}. Moreover, if s1 < t ≤ sp−1 =⇒ Pt < c1 .

Proof. 1. Since λ = λ↑ and a = a↓ then (Pr − λj)j∈Ir = (Pr − λj)↓j∈Ir and (aj)j∈Ir = (aj)
↓
j∈Ir . On

the other hand,
∑

j∈Ir aj =
∑

r∈Ir Pr − λj by definition of Pr. Therefore, (aj)j∈Ir ≺ (Pr − λj)j∈Ir if
and only if for k ∈ Ir ∑

j∈Ik

aj ≤
∑
j∈Ik

(Pr − λj) ⇐⇒ Pk =
1

k

∑
j∈Ik

aj + λj ≤ Pr .

2. By Propositions 3.10 and 3.11 we see that the sequence {gj}j∈Is1 is such that its frame operator

has eigenvalues given by (µ1, . . . , µs1 , 0, . . . , 0) ∈ (Rd≥0)↓ and their norms are given by ‖gj‖2 = aj
for j ∈ Is1 . By Proposition 2.4 we get that (aj)j∈Is1 ≺ (µj)j∈Is1 . On the other hand, Proposition
3.11 implies that λj + µj = c1 for j ∈ Is1 . Then

s1 c1 =
∑
j∈Is1

λj + µj =
∑
j∈Is1

λj + aj =⇒ c1 =
1

s1

∑
j∈Is1

λj + aj = Ps1 .

Hence (aj)j∈Is1 ≺ (c1 − λj)j∈Is1 = (Ps1 − λj)j∈Is1 =⇒ Ps1 = max{Pj : j ∈ Is1}. Consider now
s1 < t ≤ sp−1 and let 2 ≤ r ≤ p− 1 be such that sr−1 < t ≤ sr. Then

Pt =
s1
t

 1

s1

∑
j∈Is1

hj

+
t− s1
t

 1

t− s1

t∑
j=s1+1

hj


=

s1
t
c1 +

t− s1
t

 1

t− s1
(
r−1∑
`=2

c` (s` − s`−1) +
t∑

`=sr−1+1

λ` + a` )

 ,

that represents Pt as a convex combination, where we have used the identities

s∑̀
i=s`−1+1

hi =

s∑̀
i=s`−1+1

λi + µi = (s` − s`−1) c`

that follow from the majorization relation (ai)
s`
i=s`−1+1 ≺ (µi)

s`
i=s`−1+1 for 2 ≤ ` ≤ p − 1, which are

a consequence of Propositions 3.10, 3.11 and 2.4; using the relation (ai)
sr
i=sr−1+1 ≺ (µi)

sr
i=sr−1+1,

together with the fact that the entries of these two vectors are downwards ordered, we conclude
that

1

t− s1
(
r−1∑
`=2

c` (s` − s`−1) +
t∑

`=sr−1+1

λ` + a` ) ≤ 1

t− s1
(
r−1∑
`=2

c` (s` − s`−1) + cr (t− sr−1) ) < c1

since the expression to the left is a convex combination of c2, . . . , cr < c1. Finally, we can deduce
that Pt <

s1
t c1 + t−s1

t c1 = c1 .
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Proposition 4.7. Consider the Notation 3.3 and 3.5, and assume that k ≥ d. Let p, s0 = 0 <
s1 < . . . < sp−1 < sp ≤ d and c1 > . . . > cp be as in Remark 4.1, and assume that p > 1. If we let
F = (F0, G0) then, we have the following relations between these indexes and constants:

1. The index s1 = max
{
j ≤ sp−1 : P1 , j = max

i≤sp−1

P1 , i

}
, and c1 = P1 , s1 .

2. If sj < sp−1 , then

sj+1 = max
{
sj < r ≤ sp−1 : Psj+1 , j = max

sj<i≤sp−1

Psj+1 , i

}
and cj+1 = Psj+1 , sj+1 .

3. sp−1 is a feasible index and cp and sp are determined by (Definition 4.2)

cp = (d−sp−1)−1 (trλsp−1+tr asp−1) and sp = d if (d−sp−1)−1 (trλsp−1+tr asp−1) ≥ λd

or otherwise, if (d− sp−1)−1 (trλsp−1 + tr asp−1) < λd by the identity

ν(λsp−1 ,asp−1) =
(
cp 1sp−sp−1 , λsp+1 , . . . , λd

)
and sp < d . (24)

Moreover, the following inequalities hold:

cp ≥
1

`− sp−1

∑̀
i=sp−1+1

hi for sp−1 + 1 ≤ ` ≤ sp . (25)

Proof. Item 1 is contained in Lemma 4.6. Item 2 above also follows from Lemma 4.6 applied to the

reduced families G(j)0 as defined in Remark 3.6. Notice that, as a consequence of Propositions 3.10
and 3.11 then - using the notation from Remark 3.6 - we have that, for 1 ≤ j ≤ sp−1, then

Ij = {i : sj + 1 ≤ i ≤ d} and Lj = {i : sj + 1 ≤ i ≤ k} ,

which imply that λIj = (λi)
d
i=sj+1 ∈ (Rd−sj≥0 )↑, G(j)0 = {gi}ki=sj+1 and aLj = (ai)

k
i=sj+1 ∈ (Rk−sj≥0 )↓.

Proposition 4.3 shows that sp−1 is a feasible index and that the constant cp and the index sp are
determined as described above. Finally, notice that Proposition 4.3 shows the majorization relation
(ai)

k
i=sp−1+1 ≺ (µi)

sp
i=sp−1+1, where 1 ≤ sp ≤ d ≤ k. Hence,

∑̀
i=sp−1+1

ai ≤
∑̀

i=sp−1+1

µi for every ` such that sp−1 + 1 ≤ ` ≤ sp .

Using this inequality and the fact that λi + µi = cp for sp−1 + 1 ≤ i ≤ sp we get (25).

The following are the two main results of [30]. We will need the detailed structure of global minima
described in both results in order to prove Theorem 4.10 below.

Theorem 4.8 ([30]). Let F0 = {fi}i∈In0 ∈ (Cd)n0 , let λ = λ(SF0)↑ ∈ (Rd≥0)↑ and let a = (ai)i∈Ik ∈
(Rk>0)

↓. In order to construct the optimal spectra of frame completions we consider the following
two cases:

C.1. In case k ≥ d, define

s∗ = min { 0 ≤ s ≤ d− 1 : s is a feasible index for the pair (λ , a) }

and let q ∈ Id, s∗0 = 0 < s∗1 < . . . < s∗q−1 = s∗ < sq ≤ d and c∗1 < . . . < c∗q−1 < c∗q be computed
according to the following recursive algorithm:
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1. The index s∗1 = max
{
j ≤ s∗ : P1 , j = max

i≤s∗
P1 , i

}
, and c∗1 = P1 , s∗1

.

2. If the index s∗j is already computed and s∗j < s∗ , then

s∗j+1 = max
{
s∗j < r ≤ s∗ : Ps∗j+1 , j = max

s∗j<i≤s∗
Ps∗j+1 , i

}
and c∗j+1 = Ps∗j+1 , s∗j+1

.

3. Set s∗q−1 = s∗, and let c∗q and s∗q−1 < s∗q ≤ d be such that (see Definition 4.2)

(c∗q 1s∗q−s∗q−1
, λs∗q+1 , . . . , λd) = ν(λs

∗
, as

∗
) ∈ (Rd−s

∗

>0 )↑ .

Finally, set

νop(λ , a) := (c∗1 1s∗1 , c
∗
2 1s∗2−s∗1 , . . . , c

∗
q−1 1s∗q−1−s∗q−2

, ν(λs
∗
, as

∗
)) ∈ Rd>0 ,

C.2. In case k < d, define

λ̃ = (λi)i∈Ik ∈ (Rk≥0)↑ and ν̃ = νop(λ̃ , a) ∈ (Rk>0)
↓ ,

where the second vector is constructed according case C.1. above, and set

νop(λ , a) := (ν̃ , λk+1 , . . . , λd) ∈ Rd≥0 .

Then, in any case, there exists Fop = (F0, Gop) ∈ Ca (F0) with λ(SFop) = νop(λ , a)↓ and such that
for every ϕ ∈ Convs(R≥0)

Pϕ(F0, G) ≥ Pϕ(Fop) for every (F0, G) ∈ Ca (F0) . (26)

Moreover, given (F0, G) ∈ Ca (F0), equality holds in Eq. (26) ⇐⇒ λ(S(F0,G)) = νop(λ , a)↓. �

Consider the notation and terminology from Theorem 4.8 above, and let Fop = (F0, Gop) ∈ Ca (F0)
be such that λ(SFop) = νop(λ , a)↓. If ϕ ∈ Convs(R≥0) then it follows that Gop is a global minimum
of Ψϕ so, in particular, Gop is a local minimum. Hence, we can apply Proposition 4.7 to Gop
and deduce some of the information contained in the case C.1. of Theorem 4.8 with one notable
exception, namely that sq−1 = s∗ is the minimal feasible index of the pair (λ , a).

Remark 4.9. Let F0 = {fi}i∈In0 ∈ (Cd)n0 , let λ = λ(SF0)↑ ∈ (Rd≥0)↑ and let a = (ai)i∈Ik ∈ (Rk>0)
↓.

Let νop(λ , a) be constructed according to Theorems 4.8. The fact that νop(λ , a) is the optimal
spectrum for every convex potential ϕ ∈ Convs(R≥0) is equivalent to the assertion that

νop(λ , a) ≺ λ(S(F0,G)) for every (F0, G) ∈ Ca (F0) . (27)

See [30] or [20] for an independent proof of this fact. 4

The following is our main result:

Theorem 4.10. Consider the Notation 3.3 and 3.5. Then the local minimizer G0 ∈ TCd(a) is also
a global minimizer of Ψϕ in TCd(a).

Proof. We adopt the terminology of Notation 3.3 and 3.5. We first assume that k ≥ d and argue
by induction on p ≥ 1 i.e. the number of constants c1 > . . . > cp > 0.

Indeed, if p = 1 then Corollary 3.9 shows that G0 is a global minimum of Ψϕ in TCd(a) and we are
done. Hence, assume that p > 1 and that the inductive hypothesis holds for p− 1. By Proposition
4.3 the index sp−1 is feasible and then,

sp−1 ≥ s∗ = min{ 0 ≤ s ≤ d− 1 : s is a feasible index of the pair (λ , a) } .
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Consider now the notation and terminology from the case C.1. of Theorem 4.8, describing the
optimal spectra νop(λ , a) (notice that q ≥ 1).

Assume first that q = 1. In this case ν = νop(λ , a) = (c∗1 1s∗1 , λs∗1+1 , . . . , λd) ∈ (Rd≥0)↑. In
particular the majorization relation λ(SF ) ≺ ν in Eq. (27) shows that

c∗1 = min{νj : j ∈ Id} ≥ min{λj(SF ) : j ∈ Id} = cp .

Hence, by Remark 4.4 and the fact that λ6 ν ∈ (Rd≥0)↑ , we deduce that

s∗1 = max{j ∈ Id : λj < c∗1} ≥ max{j ∈ Id : λj < cp} = sp > s1 .

Hence, by Theorem 4.8, c∗1 ≥ P1 , j for 1 ≤ j ≤ s∗1 =⇒ c∗1 ≥ P1 , s1
4.7
= c1 . Using these facts it is easy

to check that tr(ν) > tr(λ(SF )), which contradicts the majorization relation in Eq. (27).

We now assume that q > 1. In this case, we have that

s1 = max{1 ≤ j ≤ sp−1 : P1,j = max
1≤i≤sp−1

P1,i} and c1 = P1,s1 (28)

and
s∗1 = max{1 ≤ j ≤ s∗q−1 = s∗ : P1,j = max

1≤i≤s∗q−1

P1,i} and c∗1 = P1,s∗1
(29)

Assume that s∗1 6= s1. Using that s∗ ≤ sp−1 we see that s∗ = s∗q−1 < s1. Since νop(λ , a) corresponds
to the spectra of a global minimum which, in particular is a local minimum, we can apply item 3
in Proposition 4.7 (see Eq. (25)) and get:

c∗q ≥
1

`− s∗q−1

∑̀
i=s∗q−1+1

hi for s∗q−1 + 1 ≤ ` ≤ s∗q . (30)

We consider the following two sub-cases:

Sub-case a: s∗q ≥ s1. In this case, since s∗ = s∗q−1 < s1 we get that

c1 =
1

s1

s1∑
i=1

hi =
s∗

s1

(
1

s∗

s∗∑
i=1

hi

)
+

(s1 − s∗)
s1

(
1

(s1 − s∗)

s1∑
i=s∗+1

hi

)
(31)

that represents c1 as a convex combination of averages. The first average satisfies (by construction
of c1 and s∗ ≤ sp−1)

1

s∗

s∗∑
i=1

hi ≤ c1 =⇒ 1

(s1 − s∗)

s1∑
i=s∗+1

hi ≥ c1

since otherwise, Eq. (31) can not hold. Using the hypothesis s∗q ≥ s1 > s∗ = s∗q−1, Eq. (30) and the
previous inequality

c∗q ≥
1

s1 − s∗q−1

s1∑
i=s∗q−1+1

hi ≥ c1 ≥ c∗1 ,

where we have used Eqs. (28) and (29) and the fact that s∗q−1 ≤ sp−1. Hence q = 1 contradicting
our assumption q > 1. Therefore, Sub-case a is not possible.

Sub-case b: s∗q < s1. Recall that sp−1 ≥ s∗ = s∗q−1 which, by Eqs. (28) and (29), implies that
c1 ≥ c∗1. Thus, c∗1 s

∗
q ≤ c1 s∗q < c1 s1 and hence,

tr(νop(λ , a) ) =
∑
i∈Iq

c∗i (s∗i − s∗i−1) +
d∑

i=s∗q+1

λi ≤ c1 s∗q +
d∑

i=s∗q+1

λi

<
∑
i∈Ip

ci (si − si−1) +
d∑

i=sp+1

λi = tr(SF ) .
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This last fact contradicts the majorization relation in Eq. (27). We conclude that Sub-case b is not
possible.

Therefore, we should have that s∗1 = s1 and hence c1 = c∗1. We prove that F = (F0, G0) is a
global minimum by showing that λ(SF ) = νop(λ , a). Indeed, by applying the reduction argument

described in Remark 3.6 we deduce, setting k′ = k− s1, that G(1)0 = {gi+s1}i∈Ik′ is a local minimum
of the map

{K = (ki)i∈Ik′ ∈ (H1)
k′ , ‖gi‖2 = as1+i , i ∈ Ik′} 3 K 7→ Pϕ(F (1)

0 ,K) (32)

where H1 = W⊥1 for W1 = span{gi}i∈Is1 and F (1)
0 is a sequence in H1 such that SF(1)

0

= SF0 |H1 . In

this case, by Corollary 3.8 and the fact that p > 1, d′ = dimH1 = d− s1 ≤ k − s1 = k′. Moreover,

by construction of H1, if we let F̃ = (F (1)
0 , G(1)0 ) then

λ(SF(1)
0

) = (λs1+i)
↓
i∈Id′

and λ(SF̃ ) = (c2 1s2−s1 , . . . , cp 1sp−sp−1 , λsp+1, . . . , λd)
↓ .

Hence, the induction hypothesis applies to G(1)0 and we conclude that G(1)0 is a global minimizer of
the map in Eq. (32). Therefore, with the notation of Definition 4.2 and case C.1. of Theorem 4.8,

λ(SF̃ ) = νop(λs1 , as1) .

Now, an inspection of the construction in case C.1. of Theorem 4.8 reveals that

νop(λ , a) = (c∗1 1s∗1 , ν
op(λs1 , as1)) ∈ Rd≥0 . (33)

Indeed, since the notion of feasible index depends on the tail of the sequences of eigenvalues and
norms we see that

s∗ = s∗1 + min{0 ≤ s ≤ d′ − 1 : s is a feasible index for the pair (λs1 , as1)} .

Eq. (33) now follows using that s1 = s∗1, the identity above and the formulas for the indexes s∗i
both for νop(λ , a) and νop(λs1 , as1) from case C.1. of Theorem 4.8. Now, we see that

λ(SF ) = (c1 1s1 , λ(SF̃ )) = (c∗1 1s∗1 , ν
op(λs1 , as1)) = νop(λ , a) . (34)

Eq. (34) together with Theorem 4.8 show that F = (F0 , G0) is a global minimizer in this case.

Finally, in case k < d we argue as in the second part of Remark 3.6. Using Notation 3.5 and the
fact that rk(SG0) ≤ k, we see that µi = 0 for k + 1 ≤ i ≤ d and therefore

SG0 =
∑
i∈Ik

µi vi ⊗ vi =⇒ λ(SF ) = (λ1 + µ1, . . . , λk + µk, λk+1, . . . , λd)
↓ (35)

and W := R(SG0) ⊂ H = span{vi : i ∈ Ik}. Notice that H reduces SF0 ; then, we can consider a
sequence F̃0 in H such that SF̃0

= SF0 |H. In this case G0 is a local minimizer of the map

TH(a) = {G = {gi}i∈Ik ∈ H
k : ‖gi‖2 = ai , i ∈ Ik } 3 G 7→ Pϕ(F̃0,G) . (36)

Since dimH = k then, by the first part of this proof, we conclude that G0 is a global minimizer of
the map in Eq. (36) and that, by Theorem 4.8,

(λ1 + µ1, . . . , λk + µk)
↓ = λ(S(F̃0 ,G0)) = νop(λ̃ , a) , (37)

where λ̃ = λ(SF̃0
)↑ = (λi)i∈Ik . Finally, notice that by the case C.2. of Theorem 4.8 and Eqs. (35),

(37) we now conclude that

νop(λ , a) = (νop(λ̃ , a), λk+1, . . . , λd)
↓ = λ(SF ) . (38)

Eq. (38) together with Theorem 4.8 show that F = (F0 , G0) is a global minimizer in this case.
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5 An application: generalized frame operator distances in TCd(a)

We begin with a brief description of Strawn’s work [31] on the frame operator distance. Thus, we
consider a positive semidefinite d × d complex matrix S0 ∈ Md(C)+ and a = (ai)i∈Ik ∈ (Rk>0)

↓

such that a ≺ λ(S0). The frame operator distance (FOD) is defined as the function Θ2 = Θ2 , S0 ,a :
TCd(a)→ R≥0 given by

Θ2(G) = ‖S0 − SG‖2 for G ∈ TCd(a) ,

where ‖A‖22 = tr(A∗A) for A ∈Md(C) denotes the Frobenius norm inMd(C). By Proposition 2.4,
the relation a ≺ λ(S0) implies that there exists Gop ∈ TCd(a) such that SGop = S0. In this case,

min {Θ2(G) : G ∈ TCd(a) } = 0 .

In [31], after noticing the minimum value of Θ2 above, an algorithm based on approximate gradient
descent is presented. This algorithm exploits some geometrical aspects of the differential geometry
of the manifold TCd(a) obtained by Strawn in [32] (some of which are of a similar nature to those
considered in [27]). Based on numerical evidence, the author then poses the following:

Conjecture (Strawn [31]): Let S0 ∈ Md(C)+, a = (ai)i∈Ik ∈ (Rk>0)
↓ with k ≥ d and assume that

a ≺ λ(S0). Then local minimizers of Θ2 in TCd(a) are also global minimizers. 4

As remarked in [31], proving this conjecture would provide a beneficial theoretical guarantee for
the performance of the frame operator distance algorithm based on approximate gradient descent
presented in that paper, from a numerical perspective.

In what follows we consider a generalized version of the frame operator distance, in terms of unitarily
invariant norms (u.i.n) in Md(C) (see Section 2.1). Moreover, we consider the general case of
S0 ∈Md(C)+ and a ∈ (Rk≥0)↓, without assuming that k ≥ d nor a ≺ λ(S0).

Definition 5.1. Let S0 ∈ Md(C)+ and let a = (ai)i∈Ik ∈ (Rk>0)
↓. Given a u.i.n. ‖| · |‖ in Md(C) we

consider the generalized frame operator distance (G-FOD) function

Θ(S0 ,a , ‖| · |‖ ) = Θ : TCd(a)→ R≥0 given by Θ(G) = ‖| S0 − SG |‖ ,

where SG ∈Md(C)+ denotes the frame operator of G ∈ TCd(a). 4

In case S0 ∈ Md(C)+ and a = (ai)i∈Ik ∈ (Rk>0)
↓ are arbitrary then it seems that the minimum

value of Θ in TCd(a) has not been computed in the literature, not even for ‖ · ‖2. The following
result states that there are structural solution to the G-FOD optimization problem in the sense that
there are families Gop ∈ TCd(a) such that for every u.i.n. ‖| · |‖ the minimum value of Θ in TCd(a) is
Θ(Gop). In particular, this allows us to compute the minimum value of Θ in TCd(a) for an arbitrary
u.i.n. ‖| · |‖ in the general case.

In what follows, given λ̃ ∈ (Rd≥0)↑ and a = (ai)i∈Ik ∈ (Rk>0)
↓ we consider νop(λ̃ , a) constructed as

in Theorem 4.8, according to the case k ≥ d or k < d.

Theorem 5.2. Let S0 ∈Md(C)+ and let a = (ai)i∈Ik ∈ (Rk>0)
↓. Let λ̃ = (λ̃i)i∈Id ∈ (Rd≥0)↑ be given

by λ̃ = ‖S0‖1d−λ(S0) and let δ = δ(λ(S0) , a) ∈ Rd be given by δ = (δi)i∈Id = ‖S0‖1d− νop(λ̃ , a).

1. For every u.i.n. ‖| · |‖ in Md(C) we have that

min{ Θ(G) = ‖| S0 − SG |‖ : G ∈ TCd(a) } = ‖| Dδ |‖ .

2. If ‖| · |‖ is strictly convex and G ∈ TCd(a) then

‖| S0 − SG |‖ = ‖| Dδ |‖ if and only if λ(S0 − SG) = δ↓ .
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In this case, there exists {vi}i∈Id an ONB for Cd such that

S0 =
∑
i∈Id

λi(S0) vi ⊗ vi and SG =
∑
i∈Id

(λi(S0)− δi) vi ⊗ vi . (39)

We prove Theorem 5.2 below, by means of a translation between the optimization problem for the
frame operator distance and the optimization problem for convex potentials of frame completions
with prescribed norms. It is worth pointing out that a relation between frame operator distances
(for the Frobenius norm) and minimization of the frame potential of sequences with prescribed
norms was already noticed in [31].

We will use the following result for the uniqueness of item 2 in Theorem 5.2 above.

Lemma 5.3. Let a, b ∈ Rd be such that a � b and |a|↓ = |b|↓. Then a↓ = b↓.

Proof. We can assume that a = a↓ and b = b↓. Also that a 6= λ1 (the case a = λ1 is trivial). We
argue by induction on the dimension d. If d = 1 the result is clear.

Assume that the result holds for d− 1 ≥ 1 and let a, b ∈ Rd be such that a � b and |a|↓ = |b|↓. By
replacing a by −a↓ and b by −b↓ if necessary, we can assume that

|a1| ≥ |ad| =⇒ max
i∈Id
|ai| = |a1| = a1 > 0 ,

where the fact that a1 > 0 (in this case) follows easily using that a↓ = a 6= λ1.

Note that b ≺ a =⇒ a1 ≥ b1. Assume that a1 > b1. Then ad = bd = −a1 . Indeed, bd must
achieve the maximal modulus (since b1 doesn’t), and ad ≤ bd by majorization. Let ã = (ai)i∈Id−1

and b̃ = (bi)i∈Id−1
. It is easy to see that ã↓ = ã ≺ b̃ = b̃↓ and |ã|↓ = |b̃|↓. Hence, by inductive

hypothesis ã = b̃ =⇒ a1 = b1 , a contradiction.

So we can assume that a1 = b1 . As before, we can apply the inductive hypothesis and conclude
that (ai+1)i∈Id−1

= (bi+1)i∈Id−1
and hence a = b.

Proof of Theorem 5.2. Consider S̃0 = ‖S0‖ I − S0 ∈ Md(C)+ and let F0 = {fi}i∈Id be a sequence
in Cd such that SF0 = S̃0. Notice that if we let λ(S0) = (λi(S0))i∈Id ∈ (Rd≥0)↓ then λ(SF0)↑ =

(‖S0‖ − λi(S0))i∈Id = λ̃. If G ∈ TCd(a) then

S0 − SG = ‖S0‖ I + (S0 − ‖S0‖ I)− SG = ‖S0‖ I − (S̃0 + SG) . (40)

In particular, we get that

λ(S0 − SG)↑ = ‖S0‖1d − λ(S̃0 + SG) ∈ (Rd)↑ . (41)

But notice that, since G ∈ TCd(a) then

S̃0 + SG = SF0 + SG = SF for F = (F0, G) ∈ Ca (F0) .

Then, by Theorem 4.8 (according to the case k ≥ d or k < d)

νop(λ̃ , a) ≺ λ(S̃0 + SG) =⇒ δ
def
= ‖S0‖1d − νop(λ̃ , a) ≺ ‖S0‖1d − λ(S̃0 + SG) . (42)

Using Eq. (41) and that the function R 3 x 7→ |x| ∈ R≥0 is convex we conclude that

|δ| = (|δi|)i∈Id ≺w | ‖S0‖1d − λ(S̃0 + SG) | = s(S0 − SG)↑ (43)
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where s(S0 − SG) = |λ(S0 − SG)|↓ ∈ (Rd≥0)↓ denotes the vector of singular values of S0 − SG . By
Theorem 2.3, the previous sub-majorization relation implies that for every uin ‖| · |‖

‖| S0 − SG |‖ ≥ ‖| Dδ |‖ for every G ∈ TCd(a) .

In order to show that this lower bound is attained, consider Gop ∈ TCd(a) an optimal frame com-
pletion in TCd(a) of F0 i.e. such that λ(S̃0 + SGop) = λ(SF0 + SGop) = νop(λ̃ , a)↓. Hence, by Eq.
(43) we see that

s(S0 − SGop)↑ = |‖S0‖1d − νop(λ̃ , a)↓| =⇒ |δ|↑ = s(S0 − SGop)↑ and ‖| S0 − SGop |‖ = ‖| Dδ |‖ .

This last fact shows that the lower bound is attained at Gop and proves item 1.

Assume further that ‖| · |‖ is strictly convex and let G ∈ TCd(a) be such that ‖| S0 − SG |‖ = ‖| Dδ |‖ .
The sub-majorization relation in Eq. (43) together with the previous hypothesis imply that

|δ|↑ = | ‖S0‖1d − λ(S̃0 + SG) | = s(S0 − SG)↑ .

The identity above together with the majorization relation in Eq. (42) and Lemma 5.3 imply that

δ↓ = (‖S0‖1d − νop(λ̃ , a))↓ = (‖S0‖1d − λ(S̃0 + SG))↓

from which it follows that λ(SF0 + SG) = λ(S̃0 + SG) = νop(λ̃ , a)↓. Therefore, G ∈ TCd(a) is a
global minimizer of Ψϕ(G) = tr(ϕ(SF0 + SG)) for every ϕ ∈ Convs(R≥0). By Theorem 3.4 there
exists {vi}i∈Id an ONB of Cd such that

S̃0 =
∑
i∈Id

λ̃i vi ⊗ vi and SG =
∑
i∈Id

(νop(λ̃ , a)− λ̃)i vi ⊗ vi . (44)

Using that S0 = S̃0 +‖S0‖ I so that λ̃ = ‖S0‖1d−λ(S0) we see that Eq. (39) holds for {vi}i∈Id .

The following result settles in the affirmative a generalized version of Strawn’s conjecture on local
minimizers of the FOD for the Frobenius norm in Md(C), since we do not assume that k ≥ d nor
the majorization relation a ≺ λ(S0) (see the comments at the beginning of this section).

Theorem 5.4. Let S0 ∈Md(C)+ and let a = (ai)i∈Ik ∈ (Rk>0)
↓ and consider the FOD given by

Θ2 : TCd(a)→ R≥0 given by Θ2(G) = ‖S0 − SG‖2 .

Then, the local minimizers of Θ2 in TCd(a) are also global minimizers.

Proof. Consider S̃0 = ‖S0‖ I − S0 ∈ Md(C)+ and let F0 = {fi}i∈Id be a sequence in Cd such that
SF0 = S̃0. Hence λ(SF0)↑ = (‖S0‖−λi(S0))i∈Id = λ̃. Let ϕ ∈ Convs(R≥0) be given by ϕ(x) = x2 for
x ∈ R≥0 and consider Ψϕ : TCd(a) → R≥0 be given by Ψϕ(G) = tr(ϕ(S(F0 ,G))) = tr((SF0 + SG)2).
If G ∈ TCd(a) then, using Eq. (40)

Θ2(G)2 = ‖S0 − SG‖22 = tr((‖S0‖ I − [SF0 + SG ])2)

= ‖S0‖2 d− 2 ‖S0‖ tr(SF0 + SG) + tr((SF0 + SG)2) = c+ Ψϕ(G)

where
c = ‖S0‖2 d− 2 ‖S0‖ tr(SF0 + SG) = ‖S0‖2 d− 2 ‖S0‖ (tr S̃0 + tr a)

is a constant (since G ∈ TCd(a)). Hence Θ2(G)2 = Ψϕ(G) + c for every G ∈ TCd(a). In particular,
local minimizers of Θ2 and Ψϕ coincide. The result now follows from these remarks and Theorem
4.10.
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6 Appendix: on a local Lidskii’s theorem

Let S ∈Md(C)+, let µ ∈ (Rd≥0)↓ and consider Oµ given by

Oµ = {G ∈Md(C)+ : λ(G) = µ} = {U∗Dµ U : U ∈ U(d)} (45)

We consider the usual metric in Oµ induced by the operator norm; hence Oµ is a metric space.

For ϕ ∈ Convs(R≥0), let Φ = ΦS, ϕ : Oµ → R≥0 be given by

Φ(G) = tr(ϕ(S +G)) =
∑
j∈Id

ϕ(λj(S +G)) for G ∈ Oµ . (46)

In what follows, we prove what we call a local Lidskii’s theorem (Theorem 3.2) namely that local
minimizers of Φ in Oµ are also global minimizers.

Definition 6.1. Let A, B ∈Md(C)+. We consider

1. The product manifold U(d)× U(d) endowed with the metric

d((U1, V1), (U2, V2)) = max{‖I − U∗1U2‖, ‖I − V ∗1 V2‖} .

2. Γ = Γ(A,B) : U(d)× U(d)→Md(C)+τ
def
= {M ∈Md(C)+ : tr(M) = τ} for τ = tr(A) + tr(B),

given by
Γ(U, V ) = U∗AU + V ∗B V for U, V ∈ U(d) .

3. For a given ϕ ∈ Conv(R≥0) we consider ∆ϕ
(A,B) = ∆ : U(d)× U(d)→ R≥0 given by

∆(U, V ) = tr(ϕ(Γ(U, V ))) for U, V ∈ U(d) .

4

Our motivation for considering the previous notions comes from the following:

Lemma 6.2. Let A = S ∈ Md(C)+ let µ ∈ (Rd≥0)↓, B = G0 ∈ Oµ and consider the notation from
Definition 6.1. Given ϕ ∈ Conv(R≥0) then the following conditions are equivalent:

1. G0 is a local minimizer of Φϕ in Oµ;

2. (I, I) is a local minimizer of ∆ϕ
(S,G0)

= ∆ on U(d)× U(d).

Proof. 1. =⇒ 2. Consider (U,W ) ∈ U(d)× U(d) such that

d((U,W ), (I, I)) = max{ ‖I − U∗‖ , ‖I −W ∗‖ } := ε .

Hence,
U∗S U +W ∗G0W = U∗(S + Z∗G0 Z)U with Z = WU∗ ∈ U(d) .

Notice that
‖Z − I‖ = ‖W (U∗ −W ∗)‖ ≤ ‖U∗ − I‖+ ‖I −W ∗‖ ≤ 2 ε .

Hence,

∆(U,W ) = tr(ϕ(U∗(S + Z∗G0 Z)U)) = Φ(Z∗G0Z) with ‖Z∗G0Z −G0‖ ≤ 4 ε‖G0‖ .

2. =⇒ 1. This is a consequence of the fact that the map U(d) 3 Z 7→ Z∗GZ ∈ Oµ is open (see, for
example, [1, Thm. 4.1] or [14]).
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In what follows, given S ⊂Md(C)+ we consider the commutant of S, denoted S′, that is the unital
∗-subalgebra of Md(C) given by

S ′ = { C ∈Md(C) : [C,D] = 0 for every D ∈ S } ⊂Md(C) ,

where [C,D] = CD −DC denotes the commutator of C and D.

The following result is standard.

Lemma 6.3. Consider the notation from Definition 6.1. Then

Γ is a submersion at (I, I) ⇐⇒ {A, B}′ = C · I .

Proof. The (exponential) map H(d) 3 X 7→ exp(X) allows us to identify the tangent space TIU(d)
with i·H(d). Since we consider the product structure on U(d)×U(d) we conclude that the differential
of Γ satisfies

D(I,I)Γ(X, 0) = [A,X] and D(I,I)Γ(0, X) = [B,X] for X ∈ i · H(d) .

Therefore Γ is not a submersion at (I, I) if and only if there exists 0 6= Y ∈ TMd(C)+τ (i.e. Y ∈ H(d)
such that tr Y = 0) such that

tr(Y [A,Z]) = tr(Y [B,Z]) = 0 for every Z ∈ i · H(d) . (47)

Since tr(Y [A,Z]) = tr([Y,A]Z) and similarly tr(Y [B,Z]) = tr([Y,B]Z), we see that in this case

[Y,A] = 0 = [Y,B] ∈ i · H(d) .

Moreover, since Y 6= 0 and tr Y = 0, then Y has some non-trivial spectral projection P which
also satisfies that [P,A] = [P,B] = 0. Conversely, in case there exists a non-trivial projection
P such that [P,A] = [P,B] = 0, we can construct Y = P

tr P −
I−P

tr (I−P ) so that tr Y = 0. Then

0 6= Y ∈ TMd(C)+τ and it satisfies Eq. (47), so that this matrix Y is orthogonal to the range of
the operator D(I,I)Γ.

Proposition 6.4. Consider the notation from Definition 6.1 and assume that ϕ ∈ Convs(R≥0). If
(I, I) is a local minimizer of ∆ in U(d)× U(d) then [A,B] = 0.

Proof. Assume that [A,B] 6= 0. Then there exists a minimal projection P of the unital ∗-subalgebra
C = {A, B}′ ⊆Md(C) such that [PA,PB] 6= 0. Indeed, I ∈ C is a projection such that [IA, IB] 6=
0. If I is not a minimal projection in C then there exists P1, P2 ∈ C non-zero projections such
that I = P1 + P2; hence [PiA,PiB] 6= 0 for i = 1 or i = 2. If the corresponding Pi is not
minimal in C we can repeat the previous argument (halving) applied to Pi. Since we deal with
finite dimensional algebras, the previous procedure finds a minimal projection P ∈ C as above. By
applying a convenient change of orthonormal basis we can assume that R(P ) = span{ei : i ∈ Ir},
where r = rk(P ) > 1. Since P reduces both A and B we can consider A1 = A|R(P ) ∈ Mr(C)+ and
B1 = B|R(P ) ∈Mr(C)+. Then, we have that {A1, B1}′ = C · Ir: indeed, using the well known fact
that {QA , QB}′ = Q CQ ⊆ L(R(Q)) that is valid for every projection Q ∈ C (see [24, Section 5.5])
and the minimality of P in C we see that

{A1, B1}′ = P C P = C · P |R(P ) = C · Ir .

Using the case of equality of Lidskii’s inequality (see Theorem 2.2), we conclude that

b := (λ(A1)
↓ + λ(B1)

↑)↓ ≺ a := λ(A1 +B1) and a 6= b .
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If we let σ = tr(A1 +B1) then, by Lemma 6.3 the map

U(r)× U(r) 3 (U, V ) 7→ U∗A1 U + V ∗B1 V ∈Mr(C)+σ

is a submersion at (Ir, Ir). In particular, for every open neighborhood N of (Ir, Ir) in U(r)× U(r)
the set

M := {U∗A1 U + V ∗B1 V : (U, V ) ∈ N}

contains an open neighborhood of A1 + B1 in Mr(C)+σ . Consider ρ : [0, 1] → (Rr≥0)↓ given by
ρ(t) = (1 − t) a + t b for t ∈ [0, 1]. Notice that ρ(t) ≺ a and ρ(t) 6= a for t ∈ (0, 1]. If we let
A1 + B1 = W ∗DaW for W ∈ U(r) then the continuous curve S(·) : [0, 1] → Mr(C)+σ given by
S(t) = W ∗Dρ(t)W for t ∈ [0, 1] satisfies that S(0) = A1 + B1, λ(S(t)) ≺ a and λ(S(t)) 6= a for
t ∈ (0, 1]. Therefore, there exists t0 ∈ (0, 1] such that S(t) ∈M for t ∈ [0, t0] so, in particular, there
exists (U, V ) ∈ N such that

S(t0) = U∗A1 U + V ∗B1 V =⇒ ∆(U ⊕ P⊥, V ⊕ P⊥) < ∆(Id, Id) ,

because ϕ ∈ Convs(R≥0), where U ⊕P⊥, V ⊕P⊥ ∈ U(d) act as the identity on R(P )⊥ ⊂ Cd. Since
N was an arbitrary neighborhood of (Ir, Ir) we conclude that (Id, Id) is not a local minimizer of ∆
in U(d)× U(d).

Theorem 6.5 (Local Lidskii’s theorem). Let S ∈ Md(C)+ and µ = (µi)i∈Id ∈ (Rd≥0)↓. Assume
that ϕ ∈ Convs(R≥0) and that G0 ∈ Oµ is a local minimizer of ΦS , ϕ on Oµ . Then, there exists
{vi}i∈Id an ONB of Cd such that, if we let (λi)i∈Id = λ↑(S) ∈ (Rd≥0)↑ then

S =
∑
i∈Id

λi vi ⊗ vi and G0 =
∑
i∈Id

µi vi ⊗ vi . (48)

In particular, λ(S +G0) = (λ(S)↑ + λ(G0)
↓)↓ so G0 is also a global minimizer of Φ on Oµ .

Proof. By Lemma 6.2 and Proposition 6.4 we conclude that [S,G0] = 0. Notice that in this case
there exists B = {vi}i∈Id an ONB of Cd such that

S =
∑
i∈Id

λi vi ⊗ vi , G0 =
∑
i∈Id

νi vi ⊗ vi with λ = (λi)i∈Id ∈ (Rd≥0)↑ ,

for some ν1, . . . , νd ≥ 0. We now show that under suitable permutations of the elements of B
we can obtain a representation as in Eq. (48) above. Indeed, assume that j ∈ Id−1 is such that
νj < νj+1. If we assume that λj < λj+1 then consider the continuous curve of unitary operators
U(t) : [0, π/2)→ U(d) given by

U(t) =
∑

i∈Id\{j, j+1}

vi⊗vi+cos(t) (vj⊗vj+vj+1⊗vj+1)+sin(t) (vj⊗vj+1−vj+1⊗vj) , t ∈ [0, π/2) .

Notice that U(0) = Id. We now define the continuous curve G(t) = U(t)G0 U(t)∗ ∈ Oµ, for
t ∈ [0, π/2). Then G(0) = G0 and we have that

S +G(t) =
∑

i∈Id\{j, j+1}

(λi + νi) vi ⊗ vi +

2∑
r,s=1

γr,s(t) vj+r ⊗ vj+s , (49)

where M(t) = (γr,s)
2
r,s=1 is determined by

M(t) =

(
λj 0
0 λj+1

)
+ V (t)

(
νj 0
0 νj+1

)
V (t)∗ and V (t) =

(
cos(t) sin(t)
− sin(t) cos(t)

)
, t ∈ [0, π/2) .
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Let us consider

R(t) = V ∗(t)

(
λj − λj+1 0

0 0

)
V (t) +

(
νj 0
0 νj+1

)
=⇒ M(t) = V (t)R(t)V ∗(t) + λj+1 I2 . (50)

We claim that λ(R(t)) ≺ λ(R(0)) and λ(R(t)) 6= λ(R(0)) for t ∈ (0, π/2) (i.e., the majorization
relation is strict). Indeed, since R(t) is a curve in M2(C)+ such that tr(R(t)) is constant, it is
enough to show that the function [0, π/2) 3 t 7→ tr(R(t)2) is strictly decreasing in [0, π/2). Indeed,
since λj − λj+1 > 0 then

V ∗(t)

(
λj − λj+1 0

0 0

)
V (t) = g(t)⊗g(t) where g(t) = (λj−λj+1)

1/2(cos(t), sin(t)) , t ∈ [0, π/2) .

If D ∈M2(C) is the diagonal matrix with main diagonal (νj , νj+1) then R(t) = g(t)⊗ g(t) +D so

tr(R(t)2) = tr((g(t)⊗ g(t))2) + tr(D2) + 2 tr(g(t)⊗ g(t) D) = c+ 〈Dg(t), g(t)〉

where c = ‖g(t)‖4 + ν2j + ν2j+1 = (λj − λj+1)
2 + ν2j + ν2j+1 ∈ R is a constant and

〈Dg(t), g(t)〉 = (λj − λj+1) (cos2(t) νj + sin2(t) νj+1)

is strictly decreasing in [0, π/2), since νj > νj+1. Thus, λ(R(t)) ≺ λ(R(0)) and λ(R(t)) 6= λ(R(0))
for t ∈ (0, π/2). Hence, by Eq. (50), we see that

λ(M(t)) = λ(R(t)) + λj+1 12 =⇒ λ(M(t)) ≺ λ(M(0)) , λ(M(t)) 6= λ(M(0)) , t ∈ (0, π/2) .

Using Eq. (49) and that ϕ ∈ Convs(R≥0), we see that for t ∈ (0, π/2)

Φ(G(t)) =
∑

i∈Id\{j, j+1}

ϕ(λi + νi) + tr(ϕ(M(t))) <
∑

i∈Id\{j, j+1}

ϕ(λi + νi) + tr(ϕ(M(0))) = Φ(G(0))

This last inequality, which is a consequence of the assumption λj < λj+1, contradicts the local
minimality of G0 in Oµ. Hence, since λj ≤ λj+1 we see that λj = λj+1; in this case, we can consider
the basis B′ = {v′i}i∈Id obtained by transposing the vectors vj and vj+1 in the basis B. In this case
S v′i = λi v

′
i for i ∈ Id, G0 vi = νi v

′
i for i ∈ Id \ {j, j + 1} and G0 v

′
j = νj+1 v

′
j , G0v

′
j+1 = νj v

′
j+1.

After performing this argument at most d times we get the desired ONB.
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