
Analysis of the grad-div stabilization for the
time-dependent Navier–Stokes equations with inf-sup

stable finite elements

Javier de Frutos∗ Bosco Garćıa-Archilla† Volker John‡
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Abstract

This paper studies inf-sup stable finite element discretizations of the evolutionary
Navier–Stokes equations with a grad-div type stabilization. The analysis covers both
the case in which the solution is assumed to be smooth and consequently has to
satisfy nonlocal compatibility conditions as well as the practically relevant situation
in which the nonlocal compatibility conditions are not satisfied. The constants in the
error bounds obtained do not depend on negative powers of the viscosity. Taking
into account the loss of regularity suffered by the solution of the Navier–Stokes
equations at the initial time in the absence of nonlocal compatibility conditions of
the data, error bounds of order O(h2) in space are proved. The analysis is optimal
for quadratic/linear inf-sup stable pairs of finite elements. Both the continuous-in-
time case and the fully discrete scheme with the backward Euler method as time
integrator are analyzed.

Keywords Incompressible Navier–Stokes equations; inf-sup stable finite element
methods; grad-div stabilization; error bounds independent of the viscosity; nonlocal
compatibility condition; backward Euler method
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1 Introduction

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain with polyhedral and Lipschitz
boundary ∂Ω. The incompressible Navier–Stokes equations model the conservation
of linear momentum and the conservation of mass (continuity equation) by

∂tu− ν∆u+ (u · ∇)u+∇p = f in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω, (1)

u(0, ·) = u0(·) in Ω,

where u is the velocity field, p the pressure, ν > 0 the viscosity coefficient, u0

a given initial velocity, and f represents external forces acting on the fluid. The
Navier–Stokes equations (1) are equipped with homogeneous Dirichlet boundary
conditions u = 0 on ∂Ω.

The interest of this paper is the case of small viscosity or, equivalently, high
Reynolds number. To this end, a Galerkin finite element method augmented with
a grad-div stabilization term for (1) is considered. Grad-div stabilization adds a
penalty term with respect to the continuity equation to the momentum equation. It
was originally proposed in [16] to improve the conservation of mass in finite element
methods. There are a number of papers analyzing the grad-div stabilization for
steady-state problems, e.g., [21, 27, 28]. On the one hand, it is known that while
grad-div stabilization improves mass conservation, the computed finite element ve-
locities are by far not divergence-free [24]. On the other hand, it was observed in the
simulation of turbulent flows that using exclusively grad-div stabilization resulted
in stable simulations, compare [23, Fig. 3] and [29, Fig. 7]. This observation is one
of the motivations for the present paper: to derive error bounds for the Galerkin
finite element method with grad-div stabilization whose constants do not depend on
inverse powers of ν. The analysis will be performed for pairs of finite element spaces
that satisfy a discrete inf-sup condition. Error bounds with constants independent
of ν were previously obtained in [15] for the evolutionary Oseen equations. Con-
trary to the present paper, the wind velocity in the convective term of the Oseen
equations is divergence-free and this property considerably simplifies the analysis.
Besides extending the analysis from [15], more realistic conditions on the initial data
are assumed in the present paper, conditions which affect the regularity near the
initial time.

An analysis of inf-sup stable elements with divergence-free approximations of the
Navier–Stokes equations is presented in [30]. There, error bounds independent of
negative powers of ν were proved for the Galerkin method without any stabilization,
utilizing ideas, e.g., from [15]. Adding a grad-div stabilization term as in the present
paper allows the use of more general, not necessarily divergence-free, finite elements.

Some related works analyzing stabilized finite element approximations to the
Navier–Stokes equations include [8], where the continuous interior penalty method
is studied and [4, 12], where the local projection stabilization (LPS) method is
studied. It is discussed in [26] that the case of the Navier–Stokes equations with
grad-div stabilization but without LPS method can be considered as a special case
of the analysis presented in [4]. Notice however that the error bounds in [4] depend
explicitly on inverse powers of the viscosity parameter ν, unless grids are taken
sufficiently fine (h .

√
ν, where h is the mesh width), whereas this is not the case in
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the present paper. In [7], error bounds for stabilized finite element approximations
to the Navier–Stokes equations are obtained depending on an exponential factor
proportional to the L∞(Ω) norm of the gradient of the large eddies instead of the
gradient of the full velocity u in the case that Ω is the unit square and the boundary
conditions are periodic. An analysis of a fully discrete method based on LPS in space
and the Euler method in time is carried out in [3]. The error bounds in [3] are not
independent of negative powers of ν. In all these papers, some stabilization terms
are added to the Galerkin formulation. In particular, all these methods, save the
method studied in [26], include a stabilization for the convective term. The aim of
the present paper consists in deriving error bounds that are independent of inverse
powers of the viscosity parameter for finite element approximations that do not
include a stabilization of the convective term.

In the present paper, optimal error bounds with constants that do not depend
explicitly on inverse powers of the viscosity parameter will be obtained for the
L2(Ω) norm of the divergence of the velocity, which measures the closeness of the
velocity approximation of being divergence-free, and the L2(Ω) norm of the pressure,
assuming that the solution is sufficiently smooth. In addition, an error bound for
ν1/2 times the gradient of the velocity is proved. This error bound is optimal in the
viscosity-dominated regime, although it is a weak term in the convection-dominated
regime. Note that all error bounds might depend implicitly on the viscosity through
the dependency on higher order Sobolev norms of the solution of the continuous
problem.

In Section 3, it will be assumed that the solution satisfies nonlocal compatibility
conditions. The analysis is valid for pairs of inf-sup stable mixed finite elements of
any degree. In the case of first order mixed finite elements, the error bound for the
pressure can be proved only in two spatial dimensions.

Due to the increasing use of higher order methods in computational fluid dy-
namics, the question of optimal approximation of the Navier–Stokes equations under
realistic assumptions of the data has become important. The regularity customar-
ily hypothesized in the error analysis for parabolic problems generally cannot be
expected for the Navier–Stokes equations. No matter how regular the initial data
are, solutions of the Navier–Stokes equations cannot be assumed to have more than
second order spatial derivatives bounded in L2(Ω) up to the initial time t = 0.
Higher regularity requires the solution to satisfy some nonlocal compatibility con-
ditions that are unlikely to be fulfilled in practical situations [18, 19]. Taking into
account this loss of regularity at t = 0 locally in time, the optimal rate of con-
vergence of the grad-div mixed finite element method is studied in Section 4. The
analysis of [3, 4, 8, 7, 30] assumes that the solution satisfies nonlocal compatibility
conditions. To the best of our knowledge, the present paper is the first one where
error bounds independent of the viscosity parameter are proved without those as-
sumptions, and the best bounds that we obtain are not better than O(h2). In the
literature, [13, 14, 18, 19], error bounds up to O(h5| log(h)|) have been obtained for
both standard and two-grid mixed finite element methods without assuming non-
local compatibility conditions. But contrary to the O(h2) bounds in the present
paper, the error constants in those O(h5| log(h)|) bounds depend on ν−1.

In Section 5, the analysis of the fully discrete case is presented. For the time
integration, the implicit Euler method is considered. Again, both the regular case
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and the case in which nonlocal compatibility conditions are not assumed are an-
alyzed. In this last case, the errors are shown to be O(h2| log(∆t)|1/2 + (∆t)1/2),
where ∆t is the size of the time step.

Section 6 provides numerical studies supporting the analytical results and a
summary finishes the paper.

2 Preliminaries and notation

Throughout the paper, W s,p(D) will denote the Sobolev space of real-valued func-
tions defined on the domain D ⊂ Rd with distributional derivatives of order up to
s in Lp(D). These spaces are endowed with the usual norm denoted by ‖ · ‖W s,p(D).
If s is not a positive integer, W s,p(D) is defined by interpolation [1]. In the case
s = 0, it is W 0,p(D) = Lp(D). As it is standard, W s,p(D)d will be endowed with
the product norm and, since no confusion can arise, it will be denoted again by
‖ · ‖W s,p(D). The case p = 2 will be distinguished by using Hs(D) to denote the
space W s,2(D). The space H1

0 (D) is the closure in H1(D) of the set of infinitely
differentiable functions with compact support in D. For simplicity, ‖ ·‖s (resp. | · |s)
is used to denote the norm (resp. seminorm) both in Hs(Ω) or Hs(Ω)d. The exact
meaning will be clear by the context. The inner product of L2(Ω) or L2(Ω)d will
be denoted by (·, ·) and the corresponding norm by ‖ · ‖0. The norm of the space of
essentially bounded functions L∞(Ω) will be denoted by ‖ · ‖∞. For vector-valued
functions, the same conventions will be used as before. The norm of the dual space
H−1(Ω) of H1

0 (Ω) is denoted by ‖ · ‖−1. As usual, L2(Ω) is always identified with
its dual, so one has H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω) with compact injection.
Using the function spaces V = H1

0 (Ω)d, and

Q = L2
0(Ω) =

{
q ∈ L2(Ω) : (q, 1) = 0

}
,

the weak formulation of problem (1) is as follows: Find (u, p) ∈ V × Q such that
for all (v, q) ∈ V ×Q,

(∂tu,v) + ν(∇u,∇v) + ((u · ∇)u,v)− (∇ · v, p) + (∇ · u, q) = (f ,v). (2)

The Hilbert space

Hdiv = {u ∈ L2(Ω)d | ∇ · u = 0, u · n|∂Ω = 0}

will be endowed with the inner product of L2(Ω)d and the space

V div = {u ∈ V | ∇ · u = 0}

with the inner product of V .
Let Π : L2(Ω)d → Hdiv be the Leray projector that maps each function in

L2(Ω)d onto its divergence-free part (see e.g. [11, Chapter IV]. The Stokes operator
in Ω is given by

A : D(A) ⊂ Hdiv → Hdiv, A = −Π∆, D(A) = H2(Ω)d ∩ V div.

The following Sobolev’s embedding [1] will be used in the analysis: For 1 ≤ p < d/s
let q be such that 1

q = 1
p −

s
d . There exists a positive constant C, independent of s,

such that

‖v‖Lq′ (Ω) ≤ C‖v‖W s,p(Ω),
1

q′
≥ 1

q
, v ∈W s,p(Ω). (3)
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If p > d/s the above relation is valid for q′ = ∞. A similar embedding inequality
holds for vector-valued functions.

Let Vh ⊂ V and Qh ⊂ Q be two families of finite element spaces composed of
piecewise polynomials of degrees at most k and l, respectively, that correspond to a
family of partitions Th of Ω into mesh cells with maximal diameter h. In this paper,
we will only consider pairs of finite element spaces satisfying the discrete inf-sup
condition,

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)

‖∇vh‖0‖qh‖0
≥ β0, (4)

with β0 > 0, a constant independent of the mesh size h. For example, for the MINI
element it is k = l = 1 and for the Hood–Taylor element one has l = k−1. Since the
error bounds for the pressure depend both on the mixed finite element used and on
the regularity of the solution, and in general it will be assumed that p ∈ Q∩Hk(Ω)
with l ≥ k − 1, in the sequel the error bounds will be written depending only on k.

It will be assumed that the family of meshes is quasi-uniform and that the
following inverse inequality holds for each vh ∈ Vh, see e.g., [10, Theorem 3.2.6],

‖vh‖Wm,p(K) ≤ Cinvh
n−m−d

(
1
q
− 1

p

)
K ‖vh‖Wn,q(K), (5)

where 0 ≤ n ≤ m ≤ 1, 1 ≤ q ≤ p ≤ ∞, and hK is the size (diameter) of the mesh
cell K ∈ Th.

The space of discrete divergence-free functions is denoted by

V div
h = {vh ∈ Vh | (∇ · vh, qh) = 0 ∀qh ∈ Qh} ,

and by Ah : V div
h → V div

h is denoted the following linear operator

(Ahvh,wh) = (∇vh,∇wh) ∀vh,wh ∈ V div
h . (6)

Note that from this definition, it follows for vh ∈ V div
h that

‖A1/2
h vh‖0 = ‖∇vh‖0, ‖∇A−1/2

h vh‖0 = ‖vh‖0.

Additionally, two linear operators Ch : V div
h → V div

h and Dh : L2(Ω) → V div
h are

defined by

(Chvh,wh) = (∇ · vh,∇ ·wh) ∀vh,wh ∈ V div
h , (7)

(Dhp,vh) = −(p,∇ · vh) ∀vh ∈ V div
h . (8)

In what follows, Πdiv
h : L2(Ω)d → V div

h will denote the so-called discrete Leray
projection, which is the orthogonal projection of L2(Ω)d onto V div

h(
Πdiv

h v,wh

)
= (v,wh) ∀wh ∈ V div

h . (9)

By definition, it is clear that the projection is stable in the L2(Ω)d norm: ‖Πdiv
h v‖0 ≤

‖v‖0 for all v ∈ L2(Ω)d. The following well-known bound will be used

‖(I −Πdiv
h )v‖0 + h‖(I −Πdiv

h )v‖1 ≤ Chj+1‖v‖j+1 ∀v ∈ V div ∩Hj+1(Ω)d, (10)
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for j = 0, . . . , k.
Denoting by πh the L2(Ω) projection onto Qh, one has that for 0 ≤ m ≤ 1

‖q − πhq‖m ≤ Chj+1−m‖q‖j+1 ∀q ∈ Hj+1(Ω), j = 0, . . . , l. (11)

For simplicity of presentation, the notation πh will be used instead of πhp for the
pressure p in (1).

In the error analysis, the Poincaré–Friedrichs inequality

‖v‖0 ≤ C‖∇v‖0 ∀v ∈ H1
0 (Ω)d, (12)

will be used.
In the sequel, Ihu ∈ Vh will denote the Lagrange interpolant of a continuous

function u. The following bound can be found in [6, Theorem 4.4.4]

|u− Ihu|Wm,p(K) ≤ cinth
n−m|u|Wn,p(K), 0 ≤ m ≤ n ≤ k + 1, (13)

where n > d/p when 1 < p ≤ ∞ and n ≥ d when p = 1.
In the analysis, the Stokes problem

−ν∆u+∇p = g in Ω,

u = 0 on ∂Ω, (14)

∇ · u = 0 in Ω,

will be considered. Let us denote by (uh, ph) ∈ Vh × Qh the mixed finite element
approximation to (14), given by

ν(∇uh,∇vh)− (∇ · vh, ph) = (g,vh) ∀vh ∈ Vh,
(∇ · uh, qh) = 0 ∀qh ∈ Qh.

Following [17, 22], one gets the estimates

‖u− uh‖1 ≤ C
(

inf
vh∈Vh

‖u− vh‖1 + ν−1 inf
qh∈Qh

‖p− qh‖0
)
, (15)

‖p− ph‖0 ≤ C
(
ν inf
vh∈Vh

‖u− vh‖1 + inf
qh∈Qh

‖p− qh‖0
)
, (16)

‖u− uh‖0 ≤ Ch
(

inf
vh∈Vh

‖u− vh‖1 + ν−1 inf
qh∈Qh

‖p− qh‖0
)
. (17)

It can be observed that the error bounds for the velocity depend on negative powers
of ν.

For the analysis, it will be advantageous to use a projection of (u, p) into Vh×Qh

with uniform in ν, optimal, bounds for the velocity. In [15] a projection with this
property was introduced. Let (u, p) be the solution of the Navier–Stokes equations
(1) with u ∈ V ∩Hk+1(Ω)d, p ∈ Q ∩Hk(Ω), k ≥ 1, and observe that (u, 0) is the
solution of the Stokes problem (14) with right-hand side

g = f − ∂tu− (u · ∇)u−∇p. (18)

6



Denoting the corresponding Galerkin approximation in Vh × Qh by (sh, lh), one
obtains from (15)–(17)

‖u− sh‖0 + h‖u− sh‖1 ≤ Chj+1‖u‖j+1, 0 ≤ j ≤ k, (19)

‖lh‖0 ≤ Cνhj‖u‖j+1, 0 ≤ j ≤ k, (20)

where the constant C does not depend on ν.
Remark 1 Assuming the necessary smoothness in time and considering (14) with

g = ∂t (f − ∂tu− (u · ∇)u−∇p) ,

one can derive an error bound of the form (19) also for ∂t(u − sh). One can pro-
ceed similarly for higher order derivatives in time. In Section 4, where bound-
edness of derivatives up to t = 0 is not assumed, the bound (19) is also valid,
but then the quantities assumed to be bounded up to t = 0 are t(j−1)/2‖u(t)‖j+1,
t(j+1)/2‖∂tu(t)‖j+1, t(j+3)/2‖∂ttu(t)‖j+1, etc. Note that for a given t0 > 0, the as-
sumptions in the present section hold for t ≥ t0, and those of Section 4 for 0 ≤ t ≤ t0.

Following [9], one can also obtain the following bound for sh

‖∇(u− sh)‖∞ ≤ C‖∇u‖∞, (21)

where C does not depend on ν.
The method that will be studied for the approximation of the solution of the

Navier–Stokes equations (1) is obtained by adding to the Galerkin equations a con-
trol of the divergence constraint (grad-div stabilization). More precisely, the fol-
lowing grad-div method will be considered: Find (uh, ph) : (0, T ] → Vh × Qh such
that

(∂tuh,vh) + ν(∇uh,∇vh) + b(uh,uh,vh)− (ph,∇ · vh, )
+ (∇ · uh, qh) + µ(∇ · uh,∇ · vh) = (f ,vh),

(22)

for all (vh, qh) ∈ Vh ×Qh, with uh(0) = Ihu0. Here, and in the rest of the paper,

b(u,v,w) = (B(u,v),w) ∀u,v,w ∈ H1
0 (Ω)d,

where,

B(u,v) = (u · ∇)v +
1

2
(∇ · u)v ∀u,v ∈ H1

0 (Ω)d

Notice the well-known property

b(u,v,w) = −b(u,w,v) ∀u,v,w ∈ V, (23)

such that, in particular, b(u,w,w) = 0 for all u,w ∈ V .

3 The regular continuous-in-time case

In this section, error bounds for the continuous-in-time discretization are derived
for the case in which regularity up to time t = 0 is assumed. Some of the lemmas
are written in such a way that can also be applied in Section 4 for the analysis of
the situation without compatibility assumptions.
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3.1 Error bound for the velocity

Using test functions in V div
h and applying definitions (6)–(9), one finds that (22)

implies that uh satisfies

∂tuh + νAhuh +Bh(uh,uh) + µChuh = Πdiv
h f , (24)

where
Bh(u,v) = Πdiv

h B(u,v), u,v ∈ H1
0 (Ω)d,

and Ch is defined in (7). Notice that Πdiv
h can be extended from L2(Ω)d to H−1(Ω)

in such a way that Bh(u,v) is well defined for u,v ∈ H1
0 (Ω)d.

The following two lemmas will be used in Sections 3 and 4.

Lemma 1 Let wh : [0, T ]→ V div
h be an arbitrary function piecewise differentiable

with respect time. Let uh be the mixed finite element approximation to the velocity
defined in (24). Define the truncation errors t1,h : [0, T ]→ V div

h and t2 : [0, T ]→
L2(Ω) such that the following equation is satisfied

∂twh + νAhwh +Bh(wh,wh) + µChwh = Πdiv
h f + t1,h −Dht2, (25)

where Dh has been defined in (8). Then, if the function

g(t) = 1 + 2‖∇wh(t)‖∞ +
‖wh(t)‖2∞

2µ
(26)

is integrable in (0, T ), i.e., ∇wh ∈ L1(0, T ;L∞) and wh ∈ L2(0, T ;L∞), the error
eh = uh −wh can be bounded as follows

‖eh(t)‖20 +

∫ t

0
eK(t,s)

(
2ν‖∇eh(s)‖20 + µ‖∇ · eh(s)‖20

)
ds

≤ eK(t,0)‖eh(0)‖20 +

∫ t

0
eK(t,s)

(
‖t1,h‖20 +

2

µ
‖t2‖20

)
ds,

where

K(t, s) =

∫ t

s

(
1 + 2‖∇wh‖∞ +

‖wh‖2∞
2µ

)
dr.

Proof Subtracting (24) from (25), taking the inner product with eh ∈ V div
h , and

performing some standard computations yields

1

2

d

dt
‖eh‖20 + ν‖∇eh‖20 + µ‖∇ · eh‖20 + b(wh,wh, eh)− b(uh,uh, eh)

= (t1,h, eh) + (t2,∇ · eh).
(27)

Observe that

b(wh,wh, eh)− b(uh,uh, eh) = −b(eh,wh, eh)− b(uh, eh, eh) = −b(eh,wh, eh),
(28)
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where in the last step it was used that, due to (23), b(uh, eh, eh) = 0. Applying
Hölder’s inequality one finds

|b(eh,wh, eh)| ≤ ‖∇wh‖∞‖eh‖20 +
1

2
‖∇ · eh‖0‖wh‖∞‖‖eh‖0

≤ ‖∇wh‖∞‖eh‖20 +
µ

4
‖∇ · eh‖20 +

‖wh‖2∞
4µ

‖eh‖20. (29)

Thus, from (27), using the Cauchy–Schwarz and Young’s inequalities, taking into
account the definition of function g in (26), and rearranging terms, it follows that

d

dt
‖eh‖20 + 2ν‖∇eh‖20 + µ‖∇ · eh‖20 ≤ g‖eh‖20 + ‖t1,h‖20 +

2

µ
‖t2‖20.

Multiplying by the integrating factor exp(−K(t, 0)) and integrating in time, the
result follows in a standard way. �

The following lemma will be used in the proof of the main results of the paper.

Lemma 2 There exists a positive constant C such that for any wh ∈ Vh and v ∈
V ∩H2(Ω)d the following bound holds

‖B(wh,wh)−B(v,v)‖0 ≤ C
(
‖wh‖∞ + ‖∇ ·wh‖L2d/(d−1)(Ω) + ‖v‖2

)
‖wh − v‖1.

Proof Since Vh ⊂ L∞(Ω) and by the well known Sobolev embedding H2(Ω) ⊂
L∞(Ω) (see e.g., [1]), it follows that B(wh,wh), B(v,v) ∈ L2(Ω). Then, the appli-
cation of the Hölder inequality yields

‖B(wh,wh)−B(v,v)‖0 = ‖B(wh,wh − v) +B(wh − v,v)‖0

≤ ‖wh‖∞‖wh − v‖1 +
1

2
‖∇ ·wh‖L2d/(d−1)(Ω)‖wh − v‖L2d(Ω)

+ ‖wh − v‖L2d(Ω)‖∇v‖L2d/(d−1)(Ω) +
1

2
‖∇ · (wh − v)‖0‖v‖∞.

The statement of the lemma follows from (3). �

The proof of the error estimate is based on the comparison of the Galerkin
approximation to the velocity uh in (22) with the approximation sh defined at the
end of Section 2. The pair (sh, lh) ∈ Vh ×Qh solves

ν(∇sh,∇vh)− (lh,∇ · vh)− (∇ · sh, qh)

= (f ,vh)− (∂tu,vh)− b(u,u,vh) + (p,∇ · vh).
(30)

Adding and subtracting terms gives

∂tsh + νAhsh +Bh(sh, sh) + µChsh = Πdiv
h f −Πdiv

h (∂tu− ∂tsh)

− (Bh(u,u)−Bh(sh, sh))−Dh(p− πh) + µCh(sh).

Taking into account (7) and ∇ · u = 0, one can see that Lemma 1 can be applied
with wh = sh, t1,h = Πdiv

h (τ 1 + τ 2), and t2 = τ3 + τ4, where

τ 1 = ∂tu− ∂tsh, τ 2 = B(u,u)−B(sh, sh),

τ3 = p− πh, τ4 = µ(∇ · (sh − u)).
(31)
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Let u satisfy the hypothesis in Theorem 1 below. In order to apply Lemma 1,
the integrability in (0, T ) of the function g defined in (26), with wh = sh, has to be
proved. To this end, it will be shown that the two terms ‖sh‖2∞ and ‖∇sh‖∞ are
bounded by an integrable function in (0, T ). For the latter, one can simply apply
(21). For the former term, one first observes that from the assumed regularity of u
it follows that u is continuous and, hence, ‖Ih(u)‖∞ ≤ C‖u‖∞ for some C > 0.
Then, one can write

‖sh‖∞ ≤ ‖sh − Ih(u)‖∞ + ‖Ih(u)‖∞ ≤ Cinvh
−d/2‖sh − Ih(u)‖0 + ‖u‖∞,

where in the last inequality inverse inequality (5) has been applied. Applying (13),
(19), and (3), one gets

‖sh‖∞ ≤ C‖u‖2, ‖∇sh‖∞ ≤ C‖∇u‖∞, (32)

where the constants are independent of ν.
Thus, by applying Lemma 1 with eh = uh − sh, one obtains

‖eh(t)‖20 +

∫ t

0
eK(t,s)

(
2ν‖∇eh(s)‖20 + µ‖∇ · eh(s)‖20

)
ds

≤ eK(t,0)‖eh(0)‖20 +

∫ t

0
eK(t,s)

(
‖τ 1 + τ 2‖20 +

2

µ
‖τ3 + τ4‖20

)
ds.

(33)

From (11) and (19) (see also Remark 1) one gets

‖τ3 + τ4‖20 ≤ Ch
2k(‖p‖2k + µ2‖u‖2k+1), (34)

and
‖τ 1 + τ 2‖20 ≤ Ch

2k‖∂tu‖2k + 2 ‖τ 2‖20 . (35)

For τ 2, the application of Lemma 2 gives

‖τ 2‖0 ≤ C
(
‖sh‖∞ + ‖∇ · sh‖L2d/(d−1)(Ω) + ‖u‖2

)
‖u− sh‖1. (36)

To bound ‖∇ · sh‖L2d/(d−1)(Ω), one finds with the inverse inequality (5) that

‖∇ · sh‖L2d/(d−1)(Ω) ≤ Ch
−1/2‖∇ · sh‖0,

and with (19) it follows that

‖∇ · sh‖L2d/(d−1)(Ω) ≤ Ch
−1/2‖∇ · (u− sh)‖0 ≤ Ch1/2 ‖u‖2 . (37)

Altogether, from (36), using also (32) and that h is bounded (at least from the
diameter of Ω), one obtains

‖τ 2‖0 ≤ C ‖u‖2 ‖u− sh‖1 ≤ Ch
k ‖u‖2 ‖u‖k+1 . (38)

In view of (32), one has 1 ≤ exp(K(t, s)) ≤ C exp(L(T )) with

L(T ) =

∫ T

0

(
1 + 2 ‖∇u(s)‖∞ +

‖u(s)‖22
2µ

)
ds, (39)

where C is independent of ν. From (33), (34)–(38) and taking into account that
‖eh(0)‖ ≤ Chk‖u‖k, one derives the following error estimate for the velocity.
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Theorem 1 For T > 0 let us assume for the solution (u, p) of (2) that

u ∈ L2(0, T,Hk+1(Ω)) ∩ L2(0, T,W 1,∞(Ω)) ∩ L∞(0, T,H2(Ω)),

u(0) ∈ Hmax{2,k}(Ω), ∂tu ∈ L2(0, T,Hk(Ω)), and p ∈ L2(0, T,Hk(Ω)/R) with k ≥
1. Then there exists a positive constant C depending on

‖u(0)‖2k +

∫ T

0

(
‖p(t)‖2Hk/R

µ
+ ‖∂tu(t)‖2k + (µ+ ‖u(t)‖22)‖u(t)‖2k+1

)
dt, (40)

but not directly on inverse powers of ν, such that the following bound holds for
eh = uh − sh and t ∈ [0, T ]

‖eh(t)‖20 +

∫ t

0
(ν‖∇eh(s)‖20 + µ‖∇ · eh(s)‖20) ds ≤ C exp(L(T ))h2k, (41)

where L(T ) is defined in (39).

Remark 2 Note that Theorem 1 is formulated for the most common choice of inf-
sup stable finite element spaces where the polynomial degree of the velocity space is
larger by one than the degree of the pressure space. In this situation, the constant C
in (41) depends on µ−1 and on µ, see (40). Thus, the asymptotic optimal choice of
the stabilization parameter is µ ∼ 1, which is a well-known result for this situation.

For pairs of inf-sup stable spaces with the same polynomial degree, like the MINI
element, the same regularity with respect to the polynomial degree for velocity and
pressure is usually assumed and the estimates for proving the error bound can be
adapted accordingly. In particular, one gets instead of (34)

‖τ3 + τ4‖20 ≤ Ch
2k(h2‖p‖2k+1 + µ2‖u‖2k+1),

such that equilibrating the two terms containing µ gives the choice µ ∼ h, which
is known from the literature [21]. However, also choosing µ ∼ 1 or µ ∼ h2 leads
for the MINI element to optimal error bounds with constants independent of ν.
Altogether, there is some freedom for the choice of µ and choosing this parameter
to be a constant is a valid option also for the MINI element.
Remark 3 By writing

(uh − u) = eh + (sh − u),

applying the triangle inequality, Theorem 1, and (19), it follows that the bound (41)
holds true changing eh by uh − u.

3.2 Error bound for the pressure

The error bound for the pressure will be obtained now using the same arguments
as used in [15].

Applying the inf-sup condition (4), substituting in the numerator (22) and (30),
adding and subtracting terms, and using the Cauchy–Schwarz inequality, it follows
that

β0‖ph − πh‖0 ≤ ν‖∇eh‖0 + ‖B(uh,uh)−B(sh, sh)‖−1 + ‖∂teh‖−1

+ µ‖∇ · eh‖0 + ‖τ 1‖−1 (42)

+ ‖τ 2‖−1 + ‖τ3‖0 + ‖τ4‖0 + ‖lh‖0.

11



Note that, due to (41), the presence of the terms ν‖∇eh‖0 and µ‖∇ · eh‖ on the
right-hand side of (42) limits the maximum convergence rate to O(hk). The same
convergence rate is obtained for the term ‖τ4‖0, which is estimated with (19).

The fifth term is bounded with (35)

‖τ 1‖−1 ≤ C‖τ 1‖0 ≤ Chk ‖∂tu‖k ,

and the sixth term, using (38), by

‖τ 2‖−1 ≤ C‖τ 2‖0 ≤ Chk‖u‖2 ‖u‖k+1 . (43)

For the second term on the right-hand side of (42), the skew-symmetry of b(·, ·, ·)
gives

‖B(uh,uh)−B(sh, sh)‖−1 = sup
‖φ‖1=1

|b(uh, eh,φ) + b(eh, sh,φ)|

= sup
‖φ‖1=1

|b(uh,φ, eh) + b(eh,φ, sh)|.
(44)

Using now Hölder’s inequality and the Sobolev embedding (3), one finds the bound

|b(uh,φ, eh)| ≤ ‖eh‖0‖uh‖∞‖φ‖1 + ‖eh‖0‖∇ · uh‖L2d/(d−1)(Ω)‖φ‖L2d(Ω)

≤ C
(
‖uh‖∞ + ‖∇ · uh‖L2d/(d−1)(Ω)

)
‖eh‖0‖φ‖1.

For the second term on the right-hand of (44), arguing similarly, one gets

|b(eh,φ, sh)| ≤ ‖eh‖0‖sh‖∞‖φ‖1 + C‖∇ · eh‖0‖sh‖L2d/(d−1)(Ω)‖φ‖1,

such that

‖B(uh,uh)−B(sh, sh)‖−1

≤ C
(
‖uh‖∞ + ‖∇ · uh‖L2d/(d−1)(Ω) + ‖sh‖∞

)
‖eh‖0 (45)

+ C‖sh‖L2d/(d−1)(Ω)‖∇ · eh‖0.

Next, the terms between parentheses will be bounded. Applying (5) and (32), one
finds

‖uh‖∞ ≤ ‖eh‖∞ + ‖sh‖∞ ≤ Ch−d/2‖eh‖0 + ‖sh‖∞

≤ C
(
h−d/2‖eh‖0 + ‖u‖2

)
.

(46)

Recalling (5) and (37) yields

‖∇ · uh‖L2d/(d−1)(Ω) ≤ ‖∇ · eh‖L2d/(d−1)(Ω) + ‖∇ · sh‖L2d/(d−1)(Ω)

≤ Ch−1/2‖∇ · eh‖0 + Ch1/2‖u‖2.
(47)

Remark 4 The right-hand side of (46) is bounded for h → 0 always for d = 2.
It follows from (41) that for d = 3 the term is bounded for k ≥ 2. Note that most
inf-sup stable pairs of finite element spaces have velocity spaces which are at least
of second order so that this is not a big restriction. On the other hand, one can
deduce from (47) and (41) that the term

∫ t
0 ‖∇ · uh(s)‖2

L2d/(d−1)(Ω)
ds is bounded.

12



With (45) and using in addition (5), (32), and (37), one obtains

‖B(uh,uh)−B(sh, sh)‖−1 ≤ C ‖u‖2 (‖eh‖0 + ‖∇ · eh‖0)

+ C
(
h−d/2 ‖eh‖0 + h−1/2‖∇ · eh‖0

)
‖eh‖0. (48)

Next, the third term on the right-hand side of (42) will be bounded. Argu-
ing as in [15], it will be shown first that ‖∂teh‖−1 can be estimated by bounding

‖A−1/2
h ∂teh‖0. From [5, Lemma 3.11] it is known that

‖∂teh‖−1 ≤ Ch‖∂teh‖0 + C‖A−1/2Π∂teh‖0, (49)

where Π is the Leray projector defined in Section 2. Applying [5, (2.15)] one gets

‖A−1/2Π∂teh‖0 ≤ Ch‖∂teh‖0 + ‖A−1/2
h ∂teh‖0, (50)

with Ah defined in (6). With (49), (50), the symmetry of Ah, and the inverse
inequality (5), one obtains

‖∂teh‖−1 ≤ Ch‖∂teh‖0 + C‖A−1/2
h ∂teh‖0

= Ch‖A1/2
h A

−1/2
h ∂teh‖0 + C‖A−1/2

h ∂teh‖0
= Ch‖∇(A

−1/2
h ∂teh)‖0 + C‖A−1/2

h ∂teh‖0
≤ C‖A−1/2

h ∂teh‖0.

Taking into account that ‖A−1/2
h Πdiv

h g‖0 ≤ ‖g‖−1, for all g ∈ L2(Ω)d, see [5, (2.16)],

and arguing as in [15], the following estimate for ‖A−1/2
h ∂teh‖0 can be derived

‖A−1/2
h ∂teh‖0 ≤ ν‖A

1/2
h eh‖0 + ‖B(uh,uh)−B(sh, sh)‖−1 + Cµ‖∇ · eh‖0

+ ‖∂t(u− sh)‖−1 + ‖B(u,u)−B(sh, sh)‖−1

+ Cµ‖∇ · (u− sh)‖0 + C‖p− πh‖0.
(51)

All velocity-related terms on the right-hand side were already estimated in this
section.

The pressure terms in (42) and (51) are estimated with (11) and (20). Then,
arguing exactly as in [15], one concludes the following estimate.

Theorem 2 Under the assumptions of Theorem 1 there exists a positive constant
C such that the following bound holds

β2
0

∫ T

0
‖(ph − πh)(t)‖20 dt ≤ Ch2k, (52)

where in the case d = 3 the bound is valid for k ≥ 2.

Remark 5 By splitting

ph − p = (ph − πh) + (πh − p),

applying the triangle inequality, Theorem 2, and (11), it follows that the bound (52)
holds true replacing ph − πh by ph − p.
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4 The continuous-in-time case: analysis with-

out nonlocal compatibility conditions

It is well known that, no matter how regular the data are, solutions of the Navier–
Stokes equations cannot be assumed to have more than second order spatial deriva-
tives bounded in L2(Ω) up to initial time t = 0, since higher regularity requires the
data to satisfy nonlocal compatibility conditions which are not likely to happen in
practical situations [18, 19]. The analysis of this section takes into account the lack
of regularity at t = 0.

Along the section it is assumed that inf-sup stable mixed finite elements of
second order are used, for example the Hood–Taylor element consisting of continuous
piecewise quadratic polynomials for the velocity and continuous piecewise linear
polynomials for the pressure.

It shall be assumed that for some T > 0

M1 = max
0≤t≤T

‖u(t)‖1 < +∞, M2 = max
0≤t≤T

‖u(t)‖2 < +∞. (53)

Also, according to [18, Theorems 2.4 and 2.5], and assuming the right-hand side f
in (1) is smooth enough, it shall be assumed that, for k ≥ 2,

Mk = max
0≤t≤T

t(k−2)/2
(
‖u(t)‖k + ‖∂tu(t)‖k−2 + ‖p(t)‖Hk−1/R

)
< +∞, (54)

and, for k ≥ 3

K2
k =

∫ T

0
tk−3

(
‖u(t)‖2k + ‖∂su(t)‖2k−2 + ‖p(t)‖2Hk−1/R + ‖∂sp(t)‖2Hk−3/R

)
ds < +∞.

(55)
Remark 6 Observe that in view of Remark 2, for the case k = 1 in Theorem 1
(which covers the case of the so-called MINI element) the constant C in (40) and
the function L(T ) from (39) depend on M2

2 (1 + T (µ−1 + µ + M2
2 )) + K2

3 and T +
2T 1/2K3 + TM2

2µ
−1/2, respectively, where no negative powers of t appear. Thus,

in the absence of nonlocal compatibility conditions at t = 0, the analysis of the
previous section applies to the case k = 1, but it does not apply to the case k ≥ 2
since ‖∂tu(t)‖2k is not integrable near t = 0.

4.1 An auxiliary function

For the analysis, the auxiliary function ûh : [0, T ]→ Vh satisfying

∂tûh + νAhûh = Πdiv
h (f −∇p)−Bh(u,u), ûh(0) = Πdiv

h u0, (56)

will be considered and the following notations will be used

zh = Πdiv
h u− ûh, θh = Πdiv

h u− sh.

Notice that in view of the triangle inequality, (19), the approximation property of
the L2(Ω) projection, and (54)–(55) it follows that for 0 < t ≤ T ,

‖θh(t)‖j ≤M3
h3−j

t1/2
, j = 0, 1, (57)∫ t

0
(‖θh‖2j + s2 ‖∂sθh‖2j ) ds ≤ C

(
K2

3 +K2
5

)
h6−2j , j = 0, 1, (58)
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for some positive constant C independent of ν. Observe also that projecting (1)
onto V div

h , using the definition of sh with (14) and the right-hand side given in (18),
yields

Πdiv
h ∂tu+ νAhsh +Bh(u,u) + Πdiv

h ∇p = Πdiv
h f ,

so that

Πdiv
h ∂tu+ νAhΠdiv

h u = Πdiv
h f −Bh(u,u)−Πdiv

h ∇p+ νAhθh.

Subtracting now (56) and applying the commutation of the Leray projection and
the temporal derivative, one finds that the error zh satisfies

∂tzh + νAhzh = νAhθh, zh(0) = 0. (59)

Lemma 3 There exists a positive constant C independent of ν such that the error
zh = Πdiv

h u − ûh of the discrete velocity ûh defined by (56) satisfies the following
bounds for 0 < t ≤ T :

‖zh(t)‖20 +

∫ t

0
‖zh(s)‖21 ds ≤ CK

2
3h

4, (60)

‖A−1/2
h zh(t)‖20 +

∫ t

0
‖zh(s)‖20 ds ≤ CK

2
3h

6, (61)

‖zh(t)‖j ≤
C

t1/2
(K3 +K5 +M3)h3−j , j = 0, 1. (62)

Proof Multiplying (59) by zh, integrating on Ω, applying the Cauchy–Schwarz
inequality, and Young’s inequality gives

1

2

d

dt
‖zh‖20 + ν ‖∇zh‖20 = ν(A

1/2
h zh, A

1/2
h θh) ≤ ν

2
‖∇zh‖20 +

ν

2
‖∇θh‖20 .

Using integration in time and taking into account that zh(0) = 0, it follows that

‖zh(t)‖20 + ν

∫ t

0
‖∇zh(s)‖20 ds ≤ ν

∫ t

0
‖∇θh(s)‖20 ds.

Now, applying (58) and the Poincaré–Friedrichs inequality (12), the bound (60)
follows directly. Repeating these arguments but multiplying by A−1

h zh instead of zh
gives (61).

To prove (62), multiply (59) by tA−1
h ∂tzh and integrate in Ω to get

t
∥∥∥A−1/2

h ∂tzh

∥∥∥2

0
+
ν

2

d

dt

(
t ‖zh‖20

)
= ν(t∂tzh,θh) +

ν

2
‖zh‖20 .

Integrating between 0 and t and integrating the term arising from ν(t∂tzh,θh) by
parts, one gets∫ t

0
s
∥∥∥A−1/2

h ∂szh

∥∥∥2

0
ds+

ν

2
t ‖zh(t)‖20

= νt(zh(t),θh(t))− ν
∫ t

0
(zh,θh + s∂sθh) ds+

ν

2

∫ t

0
‖zh‖20 ds.

15



Applying the Cauchy–Schwarz inequality and Young’s inequality to the first two
terms on the right-hand side and rearranging terms it follows that∫ t

0
s
∥∥∥A−1/2

h ∂szh

∥∥∥2

0
ds+

ν

4
t ‖zh(t)‖20

≤ νt ‖θh(t)‖20 + ν

∫ t

0

(
‖θh‖20 + s2 ‖∂sθh‖20

)
ds+ ν

∫ t

0
‖zh‖20 ds.

The bound (62) for j = 0 now follows by applying (57)–(58) and (61). With the
same arguments, but multiplying by t∂tzh instead of tA−1

h ∂tzh the bound (62) for
j = 1 is obtained. �

Remark 7 For piecewise polynomials of degree higher than two, it is possible
to obtain higher order bounds, but with negative powers of ν. For example, for
piecewise cubics, by repeating the arguments in the proof of Lemma 3, it is possible
to show that

‖zh(t)‖j ≤
C

ν1/2t
(K4 +K6 +M4)h4−j , j = 0, 1, 0 ≤ t ≤ T,

using as test function t2A−1
h ∂tzh. Similar negative powers of ν are obtained also

with some other techniques like those in [13]. At the moment, it is an open question
whether different techniques could be applied to get higher order bounds with con-
stants independent of inverse powers of ν. For this reason, only piecewise quadratics
for the velocity are considered in this section.

4.2 Error bound for the velocity

Observe that the first equation in (56) can be rewritten as

∂tûh + νAhûh +Bh(ûh, ûh) + µChûh = Πdiv
h f + (Bh(ûh, ûh)−Bh(u,u))

−Dhp+ µChûh.

Lemma 1 will be applied with wh = ûh, t1,h = τ̂ 2, and t2 = τ3 + τ̂4, where

τ̂ 2 = Bh(ûh, ûh)−Bh(u,u), τ̂4 = µ∇ · (ûh − u),

and where τ3 is defined in (31). The application of this lemma requires to show that
both ‖ûh‖2∞ and ‖∇ûh‖∞ are integrable in (0, T ).

To bound ‖ûh‖∞, apply the triangle inequality and the inverse inequality (5) to
get

‖ûh‖∞ ≤ Cinvh
−d/2‖ûh − Ihu‖0 + ‖Ihu‖∞

≤ Cinvh
−d/2

(
‖ûh −Πdiv

h u‖0 + ‖Πdiv
h u− u‖0 + ‖u− Ihu‖0

)
+ ‖Ihu‖∞.

Since ‖Ihu‖∞ ≤ C ‖u‖∞, utilizing (3) gives

‖Ihu‖∞ ≤ C ‖u‖2 ≤ CM2.

Applying (13), (10), and (60) yields

‖ûh‖∞ ≤ C
(

(K3 +M2)h(4−d)/2 +M2

)
. (63)
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The bound of ‖∇û‖∞ will be shown for the more difficult and practically more
relevant case d = 3. With the triangle inequality and the inverse inequality (5), one
obtains

‖∇ûh‖∞ ≤Cinvh
−5/2‖ûh − sh‖0 + ‖∇sh‖∞ (64)

≤Cinvh
−5/2

(
‖ûh −Πdiv

h u‖0 + ‖Πdiv
h u− u‖0 + ‖u− sh‖0

)
+ ‖∇sh‖∞.

Applying (21), (3), and (54) yields

‖∇sh‖∞ ≤ CM3t
−1/2.

Arguing as before and applying (62), (10), and (19) gives

‖∇ûh‖∞ ≤ Ct−1/2
(

(K3 +K5 +M3)h1/2 +M3

)
. (65)

Thus, from (63) and (65) it follows that

g(t) = 1 + 2‖∇ûh(t)‖∞ +
‖ûh(t)‖2∞

2µ

≤ C
(
K3 +K5 +M3

τ1/2
+

(K3 +M2)2

2µ

)
≤ L1

t1/2
,

where

L1 = C (K3 +K5 +M3) +
(K3 +M2)2

2µ
.

Then

K(t, s) =

∫ t

s
g(r) dr ≤ L1

∫ t

s

1

r1/2
dr ≤ 2L1(t1/2 − s1/2). (66)

Lemma 1 with wh = ûh gives for êh = uh − ûh

‖êh(t)‖20 +

∫ t

0
eK(t,s)

(
2ν‖∇êh(s)‖20 + µ‖∇ · êh(s)‖20

)
ds

≤ eK(t,0)‖eh(0)‖20 +

∫ t

0
eK(t,s)

(
‖τ̂ 2‖20 +

2

µ
‖τ3 + τ̂4‖20

)
ds.

To estimate the truncation errors first apply Lemma 2 to get

‖τ̂ 2‖0 ≤ C (‖ûh‖∞ + ‖∇ · ûh‖L2d/(d−1) + ‖u‖2) ‖u− ûh‖1. (67)

Using the triangle inequality, the inverse inequality (5), (37), (60), (10), (19),
and (53) one gets

‖∇ · ûh‖L2d/(d−1)

≤ Cinvh
−3/2‖ûh − sh‖0 + ‖∇ · sh‖L2d/(d−1)

≤ Ch−3/2
(
‖ûh −Πdiv

h u‖0 + ‖Πdiv
h u− u‖0 + ‖u− sh‖0

)
+ Ch1/2 ‖u‖2

≤ Ch1/2(K3 + ‖u‖2) ≤ C(K3 +M2). (68)
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By inserting (68) and (63) in (67) it follows that

‖τ̂ 2‖0 ≤ C(K3 +M2)‖u− ûh‖1. (69)

As in (34) one also gets

‖τ3 + τ̂4‖20 ≤ C
(
‖p‖2H2/Rh

4 + µ2‖u− ûh‖21
)
. (70)

To bound ‖u− ûh‖1 in (69) and (70) one adds and subtracts Πdiv
h u. Applying then

(55), (10), and (60) leads to the estimate∫ t

0

(
‖τ̂ 2‖20 +

2

µ
‖τ3 + τ̂4‖20

)
ds ≤ CK2

3

(
µ+ µ−1 + (K3 +M2)2

)
h4

= C0h
4. (71)

Collecting all estimates and applying at the initial time the triangle inequality,
the interpolation estimate (13) and (10), the following theorem is proved.

Theorem 3 For T > 0, assuming the solution (u, p) of (1) satisfies (53), (54) and
(55) the following bound holds for the error êh = uh − ûh, t ∈ [0, T ]:

‖êh(t)‖20 +

∫ t

0

(
2ν‖∇êh(s)‖20 + µ‖∇ · êh(s)‖20

)
ds ≤ eK(t,0)

(
M2

2 + C0

)
h4, (72)

where K(t, s) is defined in (66) and C0 is the constant in (71).

Remark 8 By decomposing

uh − u = êh + (ûh − u) = êh − zh +
(

Πdiv
h u− u

)
,

and applying the triangle inequality, Theorem 3, (60), and (10), it follows that the
bound (72) holds true changing êh by uh − u.
Remark 9 Observe that it is the factor h−5/2 in (64) that prevents the analysis
in the present section to apply to the case k = 1. On the other hand, the anal-
ysis in Section 3 applies to k = 1 since one compares uh with sh for which the
bounds (32) are available. The comparison with sh in Section 3, however, induces
the truncation error τ 1, which, as commented in Remark 6, prevents the extension
of the analysis in that section to the case k > 1.

4.3 Error bound for the pressure

The analysis follows closely that of Section 3.2.
Again, using the inf-sup condition (4), a straightforward calculation leads to

β0‖ph − πh‖0 ≤ ν‖∇êh‖0 + ‖B(uh,uh)−B(ûh, ûh)‖−1 + ‖∂têh‖−1

+ µ‖∇ · êh‖0 + ‖B(u,u)−B(ûh, ûh)‖−1

+ µ‖∇ · (u− ûh)‖0 + ‖p− πh‖0 + ‖lh‖0,
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where lh denotes here the discrete pressure corresponding to the formulation of (56)
in Vh. Repeating the arguments used when obtaining (43) and (69), one gets

‖B(u,u)−B(ûh, ûh)‖−1 ≤ C(K3 +M2)‖u− ûh‖1.

In the same way as for (45), one obtains

‖B(uh,uh)−B(ûh, ûh)‖−1 ≤ (‖uh‖∞ + ‖∇ · uh‖L2d/(d−1) + ‖ûh‖∞) ‖êh‖0
+ ‖ûh‖L2d/(d−1)‖∇ · êh‖0.

Using the inverse inequality (5), (68), (46), and (63) leads to

‖B(uh,uh)−B(ûh, ûh)‖−1 ≤ C(K3 +M2) (‖êh‖0 + ‖∇ · êh‖0)

+ C
(
h−d/2 ‖êh‖0 + h−1/2‖∇ · êh‖0

)
‖êh‖0.

Arguing as in Section 3.2, one gets for ‖∂têh‖−1

‖∂têh‖−1 ≤ ν‖A1/2
h êh‖0 + ‖B(uh,uh)−B(ûh, ûh)‖−1 + Cµ‖∇ · êh‖0

+ ‖B(u,u)−B(ûh, ûh)‖−1

+ Cµ‖∇ · (u− ûh)‖0 + C‖p− πh‖0.

All terms on the right-hand side of this estimate have already been bounded. Ar-
guing like at the end of Section 3.2, one derives the following estimate.

Theorem 4 Under the assumptions of Theorem 3 there exists a positive constant
C such that the following bound holds

β2
0

∫ t

0
‖(ph − πh)(s)‖20 ≤ Ch4. (73)

Remark 10 By writing

ph − p = (ph − πh) + (πh − p),

applying the triangle inequality, Theorem 4, and (11), it follows that the bound (73)
holds true replacing ph − πh by ph − p.

5 A fully discrete method

We now analyze the discretization of (24) by the implicit Euler method. For this
purpose, we consider a partition 0 = t0 < t1 < . . . < tN = T of the interval [0, T ],
and for each time level we look for approximations Un

h ≈ u(tn) in V div
h and pnh ≈

p(tn) in Qh, satisfying

(DtU
n
h,vh) + ν(∇Un

h,∇vh) + b(Uh,U
n
h,vh)− (pnh,∇ · vnh)

+ (∇ · un
h, qh) + µ(∇ ·Un

h,∇ · vh) = (f(tn),vh),
(74)

for all (vh, qh) ∈ (Vh ×Qh), for n = 1, . . . , N , where U0
h ∈ Vh is given, and

DtU
n
h =

Un
h −U

n−1
h

tn − tn−1
.
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In what follows we will take U0
h = sh(0) and consider for simplicity constant step

sizes, that is
tn − tn−1 = ∆t, n = 1, . . . , N.

The changes for variable step sizes as well as for other consistent initial approxima-
tions are straightforward. Also, other time integrators can be considered and the
analysis can be carried out arguing essentially as in the next lines.

The existence of the approximation can be proved with the help of Brouwer’s
fixed point theorem as in [31]. The approximations Un

h satisfy

DtU
n
h + νAhU

n
h +Bh(Uh,U

n
h) + µChU

n
h = Πdiv

h f(tn), (75)

where we keep the notation of previous sections.
To obtain error bounds, we will use the following discrete Gronwall lemma that

can be found in [20].

Lemma 4 Let k, B, and an, bn, cn, γn be nonnegative numbers such that

an + k

n∑
j=0

bn ≤ k
n∑

j=0

γnan + k

n∑
j=0

cn +B, n ≥ 1.

Suppose that kγn < 1, for all n, and set σn = (1 − kγn)−1. Then, the following
bound holds

an + k

n∑
j=0

bn ≤ exp

k n∑
j=0

σjγj

k n∑
j=0

cn +B

 , n ≥ 1.

Lemma 5 Fix γ ∈ (0, 1), and let (wn
h)∞n=0, (tnh,0)∞n=1 and (tnh,1)∞n=1 be series in V div

h

and let (tnh,2)∞n=1 a series in L2(Ω) satisfying

Dtw
n
h +νAhw

n
h +Bh(wn

h,w
n
h)+µChw

n
h = Πdiv

h f(tn)+νAht
n
h,0 +tnh,1 +Dht

n
h,2. (76)

Assume ∆tgnh < γ where

gnh = 1 + 2
∥∥∇wn

h

∥∥
∞ +

∥∥wn
h

∥∥2

∞
2µ

, n = 1, 2, . . . . (77)

There exists a positive constant C depending only on γ such that the following bound
holds for the differences enh = wn

h −U
n
h:

‖enh‖20 +

n∑
j=1

‖ejh − e
j−1
h ‖20 + ∆t

n∑
j=1

(
ν‖∇ejh‖

2
0 + µ‖∇ · ejh‖

2
0

)

≤ C exp

∆t
n−1∑
j=1

gj

‖e0
h‖20 + ∆t

n∑
j=1

(
ν‖∇tjh,0‖

2
0 + ‖tjh,1‖

2
0 +

1

µ
‖tjh,2‖

2
0

) .

Proof A direct calculation shows that

(enh − en−1
n , enh) =

1

2
‖enh‖20 −

1

2
‖en−1

h ‖20 +
1

2
‖enh − en−1

h ‖20.
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so that subtracting (75) from (76), taking the inner product in L2(Ω) with 2enh,
adding 0 = 2µ(∇ ·wn

h,∇ · enh) − 2µ(∇ · (wn
h − u(tn)),∇ · enh) and after some rear-

rangements we have

1

∆t

(
‖enh‖20 − ‖en−1

h ‖20 + ‖enh − en−1
h ‖20

)
+ ν‖∇enh‖20 +

3

2
µ‖∇ · enh‖20

≤ ν‖∇tnh,0‖20 − 2b(enh,w
n
h, e

n
h) + ‖tnh,1‖20 +

2

µ
‖tnh,2‖20 + ‖enh‖20, (78)

where the product (enh, Bh(wn
h,w

n
h)−Bh(Un

h,U
n
h)) = b(wn

h,w
n
h, e

n
h)−b(Un

h,U
n
h, e

n
h)

has been treated as in (28). Arguing as in (29) we may write

b(enh,w
n
h, e

n
h) ≤

(
‖∇wn

h‖∞ +
‖wn

h‖2∞
4µ

)
‖enh‖20 +

µ

4
‖∇ · enh‖20.

Thus, multiplying by ∆t in (78) it follows that

‖enh‖20−‖en−1
h ‖20+‖enh−en−1

h ‖20+ν∆t‖∇enh‖20+µ∆t‖∇·enh‖20 ≤ cn+∆tgnh‖enh‖20, (79)

where

cn = ∆t

(
ν‖∇tnh,0‖20 + ‖tnh,1‖20 +

2

µ
‖tnh,2‖20

)
.

Adding the expression in (79) to those corresponding to n−1, n−2, etc, down to 1,
we have

(1−∆tgnh) ‖enh‖20 +
n∑

j=1

‖ejh − e
j−1
h ‖20 + ∆t

n∑
j=1

(
ν‖∇ejh‖

2
0 + µ‖∇ · ejh‖

2
0

)

≤ ‖e0
h‖20 +

n∑
j=1

cj +

n−1∑
j=1

∆tgjh‖e
j
h‖

2
0.

Since we are assuming that ∆tgnh ≤ γ, we have (1 − ∆tgnh) > 1 − γ > 0 and the
proof is finished by applying Lemma 4. �

5.1 Error analysis in the regular case

We apply Lemma 5 with wn
h = sh(tn), so that

tnh,0 = 0, tnh,1 = Πdiv
h (τn

1,1 + τn
1,2 + τ 2(tn)), tnh,2 = τ3(tn) + τ4(tn),

where τ 2, τ3 and τ4 are those defined in (31), and

τn
1,1 =

(sh(tn)− u(th))− (sh(tn−1)− u(tn−1))

∆t
=

1

∆t

∫ tn

tn−1

∂t(sh(t)− u(t)) dt,

(80)

τn
1,2 =

u(tn)− u(tn−1)

∆t
− ∂tu(tn) = − 1

∆t

∫ tn

tn−1

(s− tn−1)∂ttu(s) ds. (81)

We notice that in view of (32) we have that

gjh ≤ L̂ = 1 + C max
0≤t≤T

(
2 ‖∇u(t)‖∞ +

‖u(t)‖22
2µ

)
, j = 1, . . . , N, (82)
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so that

exp

∆t
n−1∑
j=1

gj

 ≤ exp
(
L̂tn

)
. (83)

We also have that τ 2(tn), τ3(tn), and τ4(tn) have already been bounded in (34)
and (35). Furthermore, applying Cauchy-Schwarz inequality in (80) and the bound (19)
with j = k − 1 applied to ∂t(sh(t)− u(t)) we have

‖τn
1,1‖20 ≤ C

h2k

∆t

∫ tn

tn−1

‖∂tu‖2k dt

and applying the Cauchy-Schwarz inequality in (81)

‖τn
1,2‖20 ≤ C∆t

∫ tn

tn−1

‖∂ttu‖20 dt.

Thus, we have the following result.

Theorem 5 For T > 0 let us assume for the solution (u, p) of (2) that

u ∈ L∞(0, T,Hk+1(Ω)) ∩ L∞(0, T,W 1,∞(Ω)),

u(0) ∈ Hmax{2,k}(Ω), ∂tu ∈ L2(0, T,Hk(Ω)), ∂ttu ∈ L2(0, T, L2(Ω)) and p ∈
L2(0, T,Hk(Ω)/R) with k ≥ 1. Then, there exist positive constants C1 and C2

depending on

‖u(0)‖2k +

∫ T

0
‖∂tu(t)‖2k dt+ max

0≤t≤T

(
‖p(t)‖2Hk/R

µ
+
(
µ+ ‖u(t)‖22

)
‖u(t)‖2k+1

)

and ∫ T

0
‖∂ttu(t)‖20 dt,

respectively, but none of them depending on inverse powers of ν, such that the
following bound holds for eh = Un

h − sh(tn) and 1 ≤ n ≤ N

‖enh‖20 + ∆t
n∑

j=1

(
ν‖∇enh‖20 + µ‖∇ · enh‖20

)
≤ exp

(
L̂tn

)(
C1h

2k + C2(∆t)2
)
, (84)

where L̂ is defined in (82).

For the pressure, we can obtain error bounds by repeating the analysis in Sec-
tion 3.2 with ∂teh replaced by Dte

n
h and the truncation error τ 1 by τn

1,1 + τn
1,2. We

observe, however, that instead of (48) we now have

‖B(Un
h,U

n
h)−B(sh(tn), sh(tn))‖−1

≤ C ‖u(tn)‖2 (‖enh‖0 + ‖∇ · enh‖0) + C
(
h−d/2 ‖enh‖0 + h−1/2‖∇ · enh‖0

)
‖enh‖0.

Now, the errors ‖enh‖0 and ‖∇ · enh‖0, as shown in (84) are bounded in terms of
powers of h and ∆t. Thus, we have the following result.
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Theorem 6 In the conditions of Theorem 5, there exists a positive constant C such
that the following bound holds

β2
0∆t

N∑
j=1

‖pnh − πh(tn)‖20 ≤ C
(

1 +
(∆t)2

hd

)(
h2k + (∆t)2

)
. (85)

where in the case d = 3 the bound is valid for k ≥ 2.

Remark 11 Observe that in Theorem 6 the presence of negative powers of h in the
error bound (85) does not affect the convergence rate in the pressure whenever
∆t ≤ Chd/2 for any positive constant C. This condition will be automatically
satisfied if we try to balance spatial and temporal discretization errors, since in that
case we would have to take ∆t ≈ hk.

5.2 Error analysis without compatibility conditions

We now assume that (53) holds and that M3 < +∞ and

K3,0 =

∫ T

0
t‖∂ttu(t)‖20 dt < +∞.

In the case k = 1 and d = 2 we will also assume K3 < +∞. The cases k = 1 and
k ≥ 2 will be analyzed separately.

For k = 1, and taking into account that ‖u(t)‖∞ ≤ ‖u(t)‖2 and ‖∇u(t)‖∞ ≤
C ‖u(t)‖3 ≤ CM3t

−1/2, the analysis of the previous section is still valid with the

following two changes. First we must replace (82) and (83) by gjh ≤ L̂1 + 2M3t
−1/2
j ,

for j = 1, . . . , N where

L̂1 = 1 +
M2

2

2µ
, (86)

so that

exp

∆t
n−1∑
j=1

gjh

 ≤ exp
(
L̂1tn + 2M3

√
tn

)
. (87)

The second and more relevant change is the estimation of τ 1,2, which now is

‖τn
1,2‖20 ≤

1

∆t2

(∫ tn

tn−1

(t− tn) dt

)(∫ tn

tn−1

(t− tn)‖∂ttu(t)‖20 dt

)

≤ 1

2

∫ tn

tn−1

t‖∂ttu(t)‖20 dt.

Thus, we have the following result.

Theorem 7 Fix T > 0 and assume that the solution (u, p) of (1) satisfies (53),
and that M3, K3 and K3,0 are finite. Assume linear finite element approximations
in the velocity are used. Then,
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i) There exists a positive constant C1 depending on M2 and K3 but not on inverse
powers of ν, such that the following bound holds for the error enh = sh(tn)−Un

h,
1 ≤ n ≤ N :

‖enh‖20 +

n∑
j=1

‖ejh − e
j−1
h ‖20 + ∆t

n∑
j=1

(
ν‖∇enh‖20 + µ‖∇ · enh‖20

)
≤ exp

(
L̂1tn + 2M3

√
tn

) (
C1h

2 +K3,0∆t
)
,

where L̂1 is defined in (86).

ii) In the case d = 2 then there exists a positive constant C2 depending on M2,
M3, L̂1 and K3 but not on inverse powers of ν, such that the following bound
holds:

β2
0∆t

N∑
j=1

‖pnh − πh(tn)‖20 ≤ C2

(
1 +

∆t

h

)(
h2 + ∆t

)
.

Remark 12 Let us observe that contrary to Theorem 5 we have found a limitation
in the rate of convergence of order O((∆t)1/2) in the temporal error. To our knowl-
edge this paper is the first one in which error bounds with constants independent on
ν are obtained for the fully discrete case without assuming nonlocal compatibility
conditions for the Navier-Stokes equations. At present it is an open problem to
find out if this O((∆t)1/2) limitation could be avoided using a different technique
of analysis.

For k ≥ 2, we will apply Lemma 5 to the differences

enh = un
h −Un

h,

where
un
h = Πdiv

h u(tn) n = 0, 1, . . . , N.

By projecting (1) onto V div
h and adding and subtracting terms, it is easy to check

that the projections un
h satisfy for n = 1, . . . , N ,

Dtu
n
h + νAhu

n
h +Bh(un

h,u
n
h) + µChu

n
h = νAht̃

n
h,0 − t̃

n
1,h −Dht̃

n
2 ,

where, t̃
n
h,0 = un

h − sh(tn), t̃
n
1,h = Πdiv

h τn
1,2 + τ̃n

2 , and t̃n2 = τ3(tn) + τ̃n4 , τn
1,2 and τ3

being those defined in (81) and (31), and where

τ̃ 2 = Bh(un
h,u

n
h)−Bh(u(tn),u(tn)), τ̃n4 = µ∇ · (un

h − u(tn)).

We will need estimates in L∞(Ω) of un
h, which are given by the following result.

Lemma 6 There is a constant CD > 0 such that the following bounds hold:∥∥Πdiv
h u

∥∥
∞ ≤ CD ‖u‖2 ,

∥∥∇Πdiv
h u

∥∥
∞ ≤ CD ‖u‖3 .

Proof We prove the second inequality for d = 3, the case d = 2 and the first
inequality being proved similarly. By adding ±Ihu, using (5) and (13) we have∥∥∇Πdiv

h u
∥∥
∞ ≤ C

(
h−(2+d)/2

∥∥(Πdiv
h − Ih)u

∥∥
0

+ ‖∇u‖∞
)
.
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For the first term, by writing (Πdiv
h − Ih) = (Πdiv

h − I) + (I− Ih) and using (10) with
j = 2, 3 and (13) with m = 0 and n = 2, 3 we have

h−(2+d)/2
∥∥(Πdiv

h − Ih)u(t)
∥∥

0
≤ C(‖u‖2 ‖u‖3)1/2 ≤ C ‖u‖3 .

Then, the result follows by estimating ‖∇u(t)‖∞ with Sobolev’s inequality (3). �

Thus, as with the case wn
h = sh(tn), we also have that for wn

h = un
h the value gnh

defined in (77) satisfies the bound (87). We also observe that τ̃ 2 and τ̃4 can be
estimated similarly to (38) so that we can write

‖τ̃n
2‖0 ≤ C ‖u(tn)‖2 ‖u(tn)− un

h‖1 ≤ C ‖u‖2 ‖u‖3 h
2 ≤ CM2

M3

t
1/2
n

h2,

and, similarly to (34),

‖τn3 + τ̃n4 ‖20 ≤ C(‖p(tn)‖22 + µ2‖u(tn)‖23)h4 ≤ C(1 + µ2)
M2

3

tn
h4,

and, applying (10) and (19)

‖∇t̃nh,0‖20 ≤ C‖u(tn)‖23h4 ≤ CM
2
3

tn
h4.

Then, noticing that

∆t
n∑

j=1

1

tj
= 1 +

n−1∑
j=2

1

j
≤ 1 + log

(
tn+1

∆t

)
.

we have

∆t
n∑

j=1

(
ν‖∇tjh,0‖

2
0 + ‖tjh,1‖

2
0 +

1

µ
‖tjh,2‖

2
0

)

≤ C

(
log

(
tn+1

∆t

)
M2

3

(
ν +M2

2 +
1

µ
+ µ

)
h4 +K3,0∆t

)
.

We conclude with the following result.

Theorem 8 For T > 0, assuming the solution (u, p) of (1) satisfies (53), and
that M3, K3 and K3,0 are finite. Assume that piecewise approximations in the
velocity of degree k ≥ 2 are used. Then, the following bound holds for the error
enh = Πdiv

h u(tn)−Un
h, 1 ≤ n ≤ N

‖enh‖20 +
n∑

j=1

‖ejh − e
j−1
h ‖20 + ∆t

n∑
j=1

(
ν‖∇enh‖20 + µ‖∇ · enh‖20

)
≤ exp

(
L̂1tn + 2M3

√
tn

)(
C3 log

(
tn+1

∆t

)
h4 +K3,0∆t

)
, (88)

where L̂1 is defined in (86), and C3 depends on M2 and M3 but not on inverse
powers of ν.
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For the pressure, we take inner product of the first equation in (1) with vh ∈ Vh,
subtract (74), add ±(πh(tn),∇ · vh) and use the inf-sup condition, to obtain (after
some rearrangements)

β0‖pnh − πh(tn)‖0 ≤ ν‖∇enh‖0 + ‖B(un
h,u

n
h)−B(Un

h,U
n
h)‖−1 + ‖Dte

n
h‖−1

+µ‖∇ · enh‖0 + ‖Πdiv
h τn

1,2‖−1 + ‖(I −Πdiv
h )∂tu(tn)‖−1

+‖τ̃ 2‖−1 + ‖τ3‖0 + ‖τ̃4‖0 + ‖lh(tn)‖0, (89)

where enh = un
h −U

n
h. As in Section 3.2, we estimate ‖Πdiv

h τn
1,2‖−1 ≤ C‖Πdiv

h τn
1,2‖0

and ‖τ̃ 2‖−1 ≤ C‖τ̃ 2‖0. Using (20) with j = 1 we have ‖lh(tn)‖0 ≤ νh2‖u(tn)‖2.
Also, repeating the arguments that lead from (45) to (48) with sh replaced by Πdiv

h u,
and in view of Lemma 6, we have

‖B(un
h,u

n
h)−B(Un

h,U
n
h)‖−1 ≤ C ‖u(tn)‖2 (‖enh‖0 + ‖∇ · enh‖0)

+C
(
h−d/2 ‖enh‖0 + h−1/2‖∇ · enh‖0

)
‖enh‖0.

We now estimate ‖(I − Πdiv
h )∂tu(tn)‖−1. For φ ∈ H1

0 (Ω)d, we use the Leray
decomposition φ = Πφ+∇q, and recall that ‖Πφ‖1 ≤ C‖φ‖1 and ‖q‖2 ≤ C‖φ‖1.
We notice that(

(I −Πdiv
h )∂tu,∇q

)
= −

(
∇ · (I −Πdiv

h )∂tu, q
)

=
(
∇ · (I −Πdiv

h )∂tu, q − πhq
)

=
(

(I −Πdiv
h )∂tu,∇(q − πhq)

)
≤ Ch2‖∂tu‖1‖φ‖1, (90)

where in the last inequality we have applied (10) with j = 0 and (11) with m = 1
and j = 1. We also have,(

(I −Πdiv
h )∂tu,Πφ

)
=
(

(I −Πdiv
h )∂tu, (I −Πdiv

h )Πφ
)
,

so that applying (10) with j = 0, and together with (90), it easily follows that

‖(I −Πdiv
h )∂tu(tn)‖−1 ≤ Ch2‖∂tu(tn)‖1. (91)

Finally, arguing as Section 3.2 the term ‖Dte
n
h‖−1 can be bounded by the terms

on the the right-hand side of (89) except itself, so that we can conclude with the
following result.

Theorem 9 In the conditions of Theorem 8, there exists a constant C > 0 not
depending on inverse powers of ν such the following bound holds,

β2
0∆t

N∑
j=1

‖pnh − πh(tn)‖20 ≤ Cr(tn, h,∆t)
(

1 +
r(tn, h,∆t)

hd

)
,

where r(tn, h,∆t) is the right-hand side of (88).

Remark 13 As in Remark 11, we observe that if the two sources of error (temporal
and spatial) are to be balanced in (88) at the final time tN = T , then ∆t ≈ h4 log(N).
Thus, h−d∆t = O(h4−d log(N)), so that the presence of negative powers of h in
the error bound in Theorem 9 does not alter the convergence rate, and the error
is O(h4 log(N) + ∆t).
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Figure 1: Left: numerical results for the velocity error, left-hand side of estimate (41), and
the pressure error, integral term on the left-hand side of estimate (52) with p−ph: different
values of ν for a fixed spatial grid. Right: individual contributions of the left-hand side
of (41).

6 Numerical studies

In this section, numerical studies will be presented that support the analytical results
with respect to the order of convergence and the independence of the errors of ν.
As usual for such purposes, an example with a known solution is considered.

Let Ω = (0, 1)2 and T = 5, then the Navier–Stokes equations (1) were considered
with the prescribed solution

u = cos(t)

(
sin(πx− 0.7) sin(πy + 0.2)
cos(πx− 0.7) cos(πy + 0.2)

)
,

p = cos(t)(sin(x) cos(y) + (cos(1)− 1) sin(1)).

It is clear that examples constructed in this way satisfy the nonlocal compatibility
condition. The simulations were performed for the P2/P1 pair of finite element
spaces on a regular triangular grid consisting on the coarsest level 0 of two mesh
cells (diagonal from lower left to upper right). The number of degrees of freedom for
velocity/pressure on level 3 is 578/81 and on level 8 it is 526338/66049. As temporal
discretization, the Crank–Nicolson scheme was used. The grad-div stabilization
parameter was chosen to be µ = 0.25 in all simulations, see [15] for a motivation of
this specific choice. In each discrete time, the fully nonlinear problem was solved.
The simulations were performed with the code MooNMD [25].

Results of the numerical studies are presented in Figs. 1 and 2. For the simula-
tions on level 6 with different values of ν, Fig. 1, the equidistant time step 0.0625
was used in the Crank–Nicolson scheme. It can be clearly seen that the velocity and
pressure errors, which were bounded in the analysis, are independent of ν. Con-
sidering the individual contributions of the velocity error, one can observe that in
particular the norm of the divergence is almost the same for all values of ν.

For the simulations with constant ν on a sequence of grids, the smaller time steps
0.002 and 0.001 were used. Because the curves for both time steps are almost on top
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Figure 2: Numerical results for the velocity error, left-hand side of estimate (41), and
the pressure error, integral term on the left-hand side of estimate (52) with p− ph. Left:
different grid levels and different lengths of the time step for fixed ν (the lines for the
time steps 0.001 and 0.002 are almost on top of each other). Right: the individual terms
of the left-hand side of (41).

of each other, see Fig. 2, it can be concluded that the temporal error is negligible.
The pressure error decreases somewhat faster than predicted by the theory with an
order of nearly 2.9. Also the velocity error decreases faster on coarse grids because
on these grids the contribution ‖eh(5)‖0 dominates which is reduced by a higher
order than two, compare the right picture of Fig. 2. But on finer grids, the predicted
second order convergence can be seen.

7 Summary

Inf-sup stable finite element discretizations are considered to approximate the evolu-
tionary Navier–Stokes equations. The Galerkin finite element method is augmented
with a grad-div stabilization term. It had been reported in the literature [23, 29]
that stable simulations were obtained in the computation of turbulent flows using
exclusively grad-div stabilization. This observation is the motivation of the present
paper. Error bounds for the Galerkin plus grad-div stabilization method were de-
rived, both for the continuous-in-time case and a fully discrete scheme. The error
constants do not depend on inverse powers of ν, although they depend on norms of
the solution that are assumed to be bounded. The paper extends a previous work
by the same authors [15], where the evolutionary Oseen equations were considered.
The analysis covers both the case in which the solution is assumed to be smooth
and the practically relevant situation in which nonlocal compatibility conditions are
not satisfied and, hence, the derivatives of the solution cannot be assumed to be
bounded up to t = 0. To the best of our knowledge, this paper is the first one
where this breakdown of regularity at t = 0 has been taking into account to analyze
the effect of the grad-div stabilization. Related works like [4, 8, 7] assume that the
solution satisfies nonlocal compatibility conditions. The present paper also seems to
be the first one where error bounds with constants independent of ν are obtained for
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a fully discrete method for the Navier–Stokes equations without assuming nonlocal
compatibility conditions.
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[15] Javier de Frutos, Bosco Garćıa-Archilla, Volker John, and Julia Novo. Grad-
div stabilization for the evolutionary Oseen problem with inf-sup stable finite
elements. Journal of Scientific Computing, 66(3):991–1024, 2016.

[16] Leopoldo P. Franca and Thomas J. R. Hughes. Two classes of mixed finite
element methods. Comput. Methods Appl. Mech. Engrg., 69(1):89–129, 1988.

[17] Vivette Girault and Pierre-Arnaud Raviart. Finite element methods for Navier-
Stokes equations, volume 5 of Springer Series in Computational Mathematics.
Springer-Verlag, Berlin, 1986. Theory and algorithms.

[18] John G. Heywood and Rolf Rannacher. Finite element approximation of the
nonstationary Navier-Stokes problem. I. Regularity of solutions and second-
order error estimates for spatial discretization. SIAM J. Numer. Anal.,
19(2):275–311, 1982.

[19] John G. Heywood and Rolf Rannacher. Finite element approximation of the
nonstationary Navier-Stokes problem. III. Smoothing property and higher order
error estimates for spatial discretization. SIAM J. Numer. Anal., 25(3):489–
512, 1988.

[20] John G. Heywood and Rolf Rannacher. Finite element approximation of the
nonstationary Navier-Stokes problem. IV. Error analysis for second order time
discretization. SIAM J. Numer. Anal., 27(2):353–384, 1990.

[21] Eleanor W. Jenkins, Volker John, Alexander Linke, and Leo. G. Rebholz. On
the parameter choice in grad-div stabilization for the Stokes equations. Adv.
Comput. Math., 40, 491–516, 2014.

[22] Volker John. Finite Element Methods for Incompressible Flow Problems, vol-
ume 51 of Springer Series in Computational Mathematics. Springer-Verlag,
Berlin, 2016.

[23] Volker John and Adela Kindl. Numerical studies of finite element variational
multiscale methods for turbulent flow simulations. Comput. Methods Appl.
Mech. Engrg., 199(13-16):841–852, 2010.

[24] Volker John, Alexander Linke, Christian Merdon, Michael Neilan, and Leo G.
Rebholz. On the divergence constraint in mixed finite element methods for
incompressible flows. SIAM Review, 2016 (to appear).

[25] Volker John and Gunar Matthies. MooNMD—a program package based on
mapped finite element methods. Comput. Vis. Sci., 6(2-3):163–169, 2004.

[26] Gert Lube, Daniel Arndt, and Helene Dallmann. Understanding the Limits
of Inf-Sup Stable Galerkin-FEM for Incompressible Flows. in Boundary and
Interior Layers, Computational and Asymptotic Methods - BAIL 2014, Petr
Knobloch (ed.), 147–169, 2016.

[27] Maxim A. Olshanskii. A low order Galerkin finite element method for the
Navier-Stokes equations of steady incompressible flow: a stabilization issue
and iterative methods. Comput. Methods Appl. Mech. Engrg., 191, 5515–5536,
2002.

30



[28] Maxim A. Olshanskii, and Arnold Reusken. Grad-div stabilization for Stokes
equations. Math. Comp., 73, 1699–1718, 2004
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