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Abstract

In this work we consider the inverse elastic scattering problem by an inclusion in two
dimensions. The elastic inclusion is placed in an isotropic homogeneous elastic medium. The
inverse problem, using the third Betti’s formula (direct method), is equivalent to a system
of four integral equations that are non linear with respect to the unknown boundary. Two
equations are on the boundary and two on the unit circle where the far-field patterns of the
scattered waves lie. We solve iteratively the system of integral equations by linearising only
the far-field equations. Numerical results are presented that illustrate the feasibility of the
proposed method.

Keywords linear elasticity, inverse scattering problem, integral equation method

1 Introduction

The inverse scattering problem consists on finding the shape and the location of an obstacle by
measuring the scattered wave, close or far from the scatterer. Depending on the kind of illumination
(acoustic, electromagnetic or elastic) and the properties of the obstacle (soft, hard, penetrable or
not) one faces different kind of problems regarding the unique solvability of the problem and the
numerical scheme for approximating the solution.

In this work we place the obstacle in a two-dimensional homogeneous and isotropic elastic
medium and we assume that it is penetrable, a so-called inclusion, with different Lamé parameters
from the exterior domain. We consider as incident wave an elastic longitudinal or transversal wave
that after interacting with the boundary of the medium is split into an interior (transmitted) and
a scattered wave, propagating in the inclusion and the exterior, respectively. The scattered wave
is also decomposed into a longitudinal and a transversal wave with different wavenumbers that
behave like spherical waves with different polarizations at infinity.

Before considering the inverse problem, we should have a good knowledge of the direct problem,
which is to find the scattered field and its far-field patterns from the knowledge of the obstacle
and the incident wave. The direct problem is linear and well posed for smooth obstacles [28].
The inverse problem that we consider here can be seen as a continuation of [11] where the inverse
problem was examined for a rigid scatterer and a cavity. The problem of detecting an elastic
inclusion has been also considered for given boundary measurements [1, 3], using the factorization
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method [9], the linear sampling method [30, 32], a gradient descent method [25, 29] or the probing
method [18].

Here, we solve this inverse problem by formulating an equivalent system of non-linear integral
equations that has to be solved with a regularization iterative scheme due to its ill-posedness. To
avoid an inverse crime we consider the direct method (Betti’s formula) for the inverse problem
and we keep the indirect approach as proposed in [28] for the direct problem. This method was
introduced in [23] and then applied in many different problems, see for instance [6, 14, 15, 27, 31]
for some recent applications. The system consists of four equations, two on the unknown boundary
taking advantage of the boundary conditions and two on the unit circle assuming that we know
the far-field pattern of the scattered fields for one or more incident waves.

Even though the first two equations are well-posed because of the equivalence to the system of
integral equations for the direct problem, the last two inherit the ill-posedness of the system due to
the smoothness of the far-field operators. Following [2, 17] we apply a two-step method meaning,
we first solve the well-posed subsystem to obtain the corresponding densities and then we solve the
linearized (with respect to the boundary) ill-posed subsystem to update the initial approximation
of the radial function. We consider Tikhonov regularization and the normal equations are solved
by the conjugate gradient method.

The paper is organized as follows: in Section 2 we formulate the problem in two dimensions
and in Section 3 we present the direct scattering problem, the elastic potential and the equivalent
system of integral equations. The inverse problem is stated in Section 4 where we construct an
equivalent system of integral equation using the direct method. In Section 5 the two-step method
for the parametrized form of the system and the necessary Fréchet derivatives of the operators are
presented. In the last section, the numerical examples give satisfactory results and demonstrate
the applicability of the proposed method.

2 Problem formulation

We consider the scattering of time-harmonic elastic waves by an isotropic and homogeneous elastic
inclusion Di ⊂ R2 with smooth boundary Γ described by the Lamé parameters λi, µi and the
constant density ρi. The exterior of Di described by De = R2 \Di is filled with an isotropic and
homogeneous elastic medium with Lamé constants λe, µe and density ρe. Henceforth, j = i, e
counts for the interior Di and the exterior domain De, respectively. In addition, we assume that
λj + µj > 0, µj > 0 and ρj > 0.

By τ̂ we define the unit tangent vector to Γ and by n̂ = Q · τ̂ the unit normal vector directed
on De, where Q denotes the unitary matrix

Q =

(
0 1
−1 0

)
.

The incident field is either a longitudinal plane wave

uincp (x; d̂) = d̂ eikp,ed̂·x,

or a transversal plane wave

uincs (x; d̂) = −Q · d̂ eiks,ed̂·x,

where d̂ is the propagation vector and the wavenumbers are given by

k2
p,j :=

ρjω
2

λj + 2µj
, k2

s,j :=
ρjω

2

µj
,

where ω > 0 is the circular frequency. In the following, α = p, s counts for the longitudinal and
the transversal waves, respectively.
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The scattering of uinc by the inclusion generates the scattered field ue,x ∈ De and the trans-
mitted field ui,x ∈ Di. Both of them satisfy the Navier equation in their domains of definition

∆∗ju
j + ρjω

2uj = 0, x ∈ Dj , (1)

with the Lamé operator defined by ∆∗j := µj∆j + (λj + µj)∇∇ · . If uj satisfies (1), due to the
Helmholtz decomposition, it can be written as a sum of a longitudinal and a transversal wave

uj = ujp + ujs,

which are defined by

ujp := − 1

k2
p,j

∇∇ · uj , ujs := uj − ujp.

On the boundary we impose transmission conditions of the form

ui = ue + uinc, on Γ, (2a)

Tiui = Te(ue + uinc), on Γ, (2b)

where the boundary traction operator Tj is given by

Tjuj := λjn̂(∇ · uj) + 2µj (n̂ ·∇) uj + µj(Q · n̂)∇ ·
(
Q · uj

)
.

The field ue is required to satisfy also the Kupradze radiation condition

lim
r→∞

√
r

(
∂ueα
∂r
− ikα,eu

e
α

)
= 0, r = |x| , (3)

uniformly in all directions. Then, the direct elastic scattering problem reads: Given Dj (geometry
and elastic parameters) and the incident field uincα , solve the boundary value problem (1) - (3) to
obtain uj .

At this point we recall that any solution of (1) satisfying (3) has an asymptotic behaviour of
the form

ueα =
eikα,er√

r

{
u∞α (x̂) +O

(
1

r

)}
, r →∞,

uniformly in all directions x̂ = x/r ∈ S, where S denotes the unit circle. The pair (u∞p ,u
∞
s ) is

called the far-field patterns of the scattered field ue.

3 The direct elastic scattering problem

To represent the solution of the direct and the inverse problem as a combination of an elastic single-
and a double-layer potential we first introduce the fundamental solution of the Navier equation

Φj(x,y) =
i

4µj
H

(1)
0 (ks,j |x− y|)I +

i

4ρjω2
∇∇>

[
H

(1)
0 (ks,j |x− y|)−H(1)

0 (kp,j |x− y|)
]

in terms of the the identity matrix I and the Hankel function H
(1)
0 of order zero and of the first

kind. The Green’s tensor can be transformed into

Φj(x,y) = Φ1,j(|x− y|)I + Φ2,j(|x− y|)J(x− y),
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where the functions Φ1,j , Φ2,j : R→ C are given by [21]

Φ1,j(t) =
i

4µj
H

(1)
0 (ks,jt)−

i

4ρjω2t

[
ks,jH

(1)
1 (ks,jt)− kp,jH(1)

1 (kp,jt)
]
, (4a)

Φ2,j(t) =
i

4ρjω2

[
2ks,j
t

H
(1)
1 (ks,jt)− k2

s,jH
(1)
0 (ks,jt)−

2kp,j
t

H
(1)
1 (kp,jt) + k2

p,jH
(1)
0 (kp,jt)

]
(4b)

with H
(1)
1 = −H(1)′

0 and

J(x) =
xx>

|x|2 , x 6= 0

in terms of a dyadic product of x with its transpose x>. Then, for the vector density ϕ ∈ [C0,a(Γ)]2,
0 < a ≤ 1, we introduce the elastic single-layer potential

(Sjϕ)(x) =

∫

Γ

Φj(x,y) ·ϕ(y)ds(y), x ∈ Dj\Γ, (5)

and the elastic double-layer potential

(Djϕ)(x) =

∫

Γ

[
Tj
yΦj(x,y)

]> ·ϕ(y)ds(y), x ∈ Dj\Γ. (6)

It is well known that Sj and Tj
xDj are continuous inR2 but both Dj and Tj

xSj satisfy the following
jump relations [24]

Djϕ =

(
±1

2
I + Kj

)
ϕ, on Γ, (7a)

Tj
xSjϕ =

(
∓1

2
I + Lj

)
ϕ, on Γ, (7b)

Tj
xDjϕ = Njϕ, on Γ, (7c)

where the upper (lower) sign corresponds to the limit x → Γ from De (Di), and the integral
operators are defined by

(Kjϕ)(x) =

∫

Γ

[
Tj
yΦj(x,y)

]> ·ϕ(y)ds(y), x ∈ Γ, (8a)

(Ljϕ)(x) =

∫

Γ

Tj
xΦj(x,y) ·ϕ(y)ds(y), x ∈ Γ, (8b)

(Njϕ)(x) = Tj
x

∫

Γ

[
Tj
yΦj(x,y)

]> ·ϕ(y)ds(y), x ∈ Γ. (8c)

All the above integrals are well defined and in particular the operator Sj for x ∈ Γ is weakly
singular, the operators Kj , Lj are singular and Nj admits a hypersingular kernel. From the
asymptotic behaviour of the Hankel functions we can compute also the far-field patterns of the
single- (5) and double-layer potential (6) [7, 21]

(S∞α ϕ)(x̂) = βα

∫

Γ

Jα(x̂) ·ϕ(y) e−ikα,ex̂·yds(y), x̂ ∈ S, (9a)

(D∞α ϕ)(x̂) = γα

∫

Γ

Jα(x̂) · F(x̂,y) ·ϕ(y) e−ikα,ex̂·yds(y), x̂ ∈ S, (9b)
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with the coefficients

βp =
eiπ/4

λe + 2µe

1√
8πkp,e

, βs =
eiπ/4

µe

1√
8πks,e

,

γp =
e−iπ/4

λe + 2µe

√
kp,e
8π

, γs =
e−iπ/4

µe

√
ks,e
8π

,

and the matrices Jp(x̂) = J(x̂), Js(x̂) = I− J(x̂) and

F(x̂,y) = λex̂ n̂(y)> + µen̂(y) x̂> + µe(n̂(y) · x̂)I.

Considering the indirect integral equation method, we search the solution of the direct scattering
problem in the form

uj(x) = (Djϕj)(x) + (Sjψj)(x), x ∈ Dj . (10)

To simplify the above representation, we set

ϕj(x) = τjϕ(x), ψj(x) = ψ(x), τj =
λj + 2µj
µj(λj + µj)

and the formula (10) is reduced to

uj(x) = τj(Djϕ)(x) + (Sjψ)(x), x ∈ Dj . (11)

Using this representation, applying the boundary conditions (2) and the jump relations (7) we see
that the densities ϕ, ψ satisfy the system of integral equations

(
I + Li − Le τiNi − τeNe

Si − Se − τi+τe2 I + τiKi − τeKe

)(
ψ
ϕ

)
=

(
Teuinc|Γ
uinc|Γ

)
. (12)

The following result regarding uniqueness and existence was proved in [28].

Theorem 3.1 The system of integral equations (12) has precisely one solution (ϕ,ψ), with ϕ ∈
[C1,a(Γ)]2 and ψ ∈ [C0,a(Γ)]2. Moreover, the corresponding displacement fields (11) solve the
direct scattering problem (1) - (3).

Then, the solution of the direct problem (11) provides us with the far-field pattern (u∞p ,u
∞
s ) given

by

u∞α (x̂) =

∫

Γ

Jα(x̂) · [τeγαF(x̂,y) ·ϕ(y) + βαψ(y)] e−ikα,ex̂·yds(y), x̂ ∈ S, (13)

where we have used the asymptotic forms (9) and that ϕ, ψ are the solutions of (12).

Remark 3.2 The choice of τj is not random since, as we are going to see later, the combination
τiNi − τeNe turns out to be a weakly singular operator, reducing the hypersingularity of Nj .

For the numerical implementation, we present also different representations of the solutions in
order to distinguish from the formulas we will derive later for the solution of the inverse problem,
even though, we are going to consider the direct method. We do not consider the solvability of the
above systems. Let the solution of the direct problem be given by

uj(x) = (Sjψj)(x), x ∈ Dj . (14)

Then, the densities satisfy the system of equations
(

Si −Se
1
2I + Li

1
2I− Le

)(
ψi
ψe

)
=

(
uinc|Γ

Teuinc|Γ

)

5



and we obtain the far-field patterns u∞α (x̂) = (S∞α ψe)(x̂). If we consider the representations

uj(x) = (Djψj)(x), x ∈ Dj , (15)

the densities satisfy (
− 1

2I + Ki − 1
2I−Ke

Ni −Ne

)(
ψi
ψe

)
=

(
uinc|Γ

Teuinc|Γ

)
,

resulting to the far-field patterns u∞α (x̂) = (D∞α ψe)(x̂).

4 The inverse elastic scattering problem

Now we can state the inverse problem, which reads: Find the shape and the position of the inclusion
Di (i.e. reconstruct the boundary) from the knowledge of the far-field patterns (u∞p (x̂),u∞s (x̂))

for all x̂ ∈ S, for one incident plane wave uincα with direction d̂ either longitudinal or transverse. In
general, the unique solvability of the inverse problem for one or even for a finite number of incident
waves is an open problem. Uniqueness for the transmission problem exists only for infinitely many
incident waves [12]. There exist also results for a rigid scatterer, local uniqueness in R2 [11] and
measuring only u∞s for a transversal incident plane wave and simple geometries in R3 [13].

4.1 The integral equation method

To solve numerically this problem, we consider the non-linear integral equation method, introduced
in [23], but here we apply the direct method in contrast to the forward problem. We recall for
v,w ∈ [C2(Dj)]

2 the third Betti’s formula

∫

Dj

(v ·∆∗jw−w ·∆∗jv)dx =

∫

Γ

(v ·Tjw−w ·Tjv)ds(x).

Using the definitions (5) and (6), we consider the above formula once for the field ue and the tensor
Φe in De, and then for uinc, Φe in De to obtain

ue(x) = (Deu
e)(x)− (Se(T

eue))(x), x ∈ De, (16a)

0 = (Deu
inc)(x)− (Se(T

euinc))(x), x ∈ De. (16b)

We define ut := ue + uinc and by adding (16a) and (16b) we obtain

ue(x) = (Deu
t)(x)− (Se(T

eut))(x), x ∈ De. (17)

Similarly, for ui, Φi in Di, the third Betti’s formula results to

−ui(x) = (Diu
i)(x)− (Si(T

iui))(x) = (Diu
t)(x)− (Si(T

eut))(x), x ∈ Di, (18)

where for the last equality we have used the transmission conditions (2). We set κ = ut|Γ and
µ = Teut|Γ and letting x → Γ in the above representations, taking the traction and considering
the jump relations (7), we get

uj(x) = ( 1
2I±Kj)κ(x)∓ (Sjµ)(x), x ∈ Γ,

Tjuj(x) = ±(Njκ)(x) + ( 1
2I∓ Lj)µ(x), x ∈ Γ.
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We consider (2) to obtain

( 1
2I−Ke)κ+ Seµ = uinc, on Γ, (20a)

( 1
2I + Ki)κ− Siµ = 0, on Γ, (20b)

−Neκ+ ( 1
2I + Le)µ = Teuinc, on Γ, (20c)

Niκ+ ( 1
2I− Li)µ = 0, on Γ. (20d)

In addition, given the far-field operators (9) and the representation (17) of the exterior field we
observe that the unknown boundary Γ and the densities satisfy the (far-field) equation

(
D∞p

D∞s

)
κ−

(
S∞p

S∞s

)
µ =

(
u∞p

u∞s

)
, on S,

or in compact form
D∞κ− S∞µ = U∞ (21)

where the right-hand side is the known far-field patterns from the direct problem. We observe that
we have six equations (20) and (21) for the three unknowns Γ,κ and µ. In order to take advantage
of the well-posedness of the direct problem, we consider the linear combinations (20a) + (20b) and
τe·(20c) + τi·(20d) for the equations on the boundary and we keep the overdetermined far-field
equation. Then, we can state the following theorem as a formal formulation of the inverse problem.

Theorem 4.1 Given an incident field uincα , α = p or s and the far-field patterns U∞, for all
x̂ ∈ S, if Γ and the vector densities κ,µ satisfy the system of integral equations

(I + Ki −Ke)κ+ (Se − Si)µ = uinc|Γ, (22a)

(τiNi − τeNe)κ+ ( τi+τe2 I + τeLe − τiLi)µ = τeT
euinc|Γ, (22b)

D∞κ− S∞µ = U∞, (22c)

then, Γ solves the inverse problem.

The integral operators involved in (22) are linear with respect to the densities but non-linear with
respect to the boundary Γ. The subsystem (22a) - (22b) is equivalent to (12), thus well-posed as
already proved [28]. The ill-posedness of the inverse problem is then due to the smooth kernels of
the far-field operators in (22c).

In general, there exist three different iterative methods to solve the system (22) by linearization:

A. Given initial guesses for the boundary and the densities, we linearize all three equations in
order to update all the unknowns.

B. Given initial guess for the boundary, we solve the subsystem (22a) - (22b) to obtain the
densities. Then, keeping the densities fixed we solve the linearized equation (22c) to obtain
the update for the boundary.

C. Given initial guesses for the densities, we solve the far-field equation (22c) to obtain Γ and
then we solve the linearized form of (22a) - (22b) to obtain the densities.

The linearization, using Fréchet derivatives of the operators, and the regularization of the ill-posed
equations are needed in all methods. However, the iterative method A requires the calculation
of the Fréchet derivatives of the operators with respect to all the unknowns and the selection of
two regularization parameters at every step. Thus, we prefer to use one of the so-called two-step
methods B or C. Between the two methods, it is obvious that the second method is preferable
since we solve first a well-posed linear system and then we linearize only the far-field operators
(operators with smooth and simple kernels). From now on, we focus on Method B, a method
introduced in [17] and then applied in different problems, see for instance [2, 26] for some recent
applications.
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5 The two-step method

To analyse further the Method B, we consider the following parametrization for the boundary

Γ = {z(t) = r(t)(cos t, sin t) : t ∈ [0, 2π]},

where z : R→ R2 is a C2-smooth, 2π-periodic parametrization. We assume in addition that z is
injective in [0, 2π), that is z′(t) 6= 0, for all t ∈ [0, 2π]. The non-negative function r represents the
radial distance of Γ from the origin. Then, we define

ξ(t) = κ(z(t)), ζ(t) = µ(z(t)), t ∈ [0, 2π]

and the parametrized form of (22) is given by

A(r; ξ) + B(r; ζ) = C, (23)

where

A =



A1

A2

A3


 , B =



B1

B2

B3


 , C =



C1

C2

C3


 ,

with the parametrized operators

(A1(r; ξ))(t) = ξ(t) +

∫ 2π

0

[
Ti

z(τ)Φi(t, τ)−Te
z(τ)Φe(t, τ)

]>
· ξ(τ)|z′(τ)|dτ,

(A2(r; ξ))(t) =

∫ 2π

0

(
τiT

i
z(t)

[
Ti

z(τ)Φi(t, τ)
]>
− τeTe

z(t)

[
Te

z(τ)Φe(t, τ)
]>)

· ξ(τ)|z′(τ)|dτ,

(A3(r; ξ))(t) = (D∞(r; ξ))(t),

(B1(r; ζ))(t) =

∫ 2π

0

[Φe(t, τ)−Φi(t, τ)] · ζ(τ)|z′(τ)|dτ,

(B2(r; ζ))(t) =
τi + τe

2
ζ(t) +

∫ 2π

0

(
τeT

e
z(t)Φe(t, τ)− τiTi

z(t)Φi(t, τ)
)
· ζ(τ)|z′(τ)|dτ,

(B3(r; ζ))(t) = −(S∞(r; ζ))(t),

where Φj(t, τ) := Φj(z(t), z(τ)),

(D∞α (r; ξ))(t) = γα

∫ 2π

0

Jα(x̂(t)) · F(x̂(t), z(τ)) · ξ(τ) e−ikα,ex̂(t)·z(τ)|z′(τ)|dτ,

(S∞α (r; ζ))(t) = βα

∫ 2π

0

Jα(x̂(t)) · ζ(τ) e−ikα,ex̂(t)·z(τ)|z′(τ)|dτ

and the right-hand side

(C1(r))(t) = uinc(z(t)), (C2(r))(t) = τe(T
euinc)(z(t)), C3(t) = U∞(x̂(t)).

Remark 5.1 The operators Ak, Bk, k = 1, 2, 3 act on the densities and the first variable r shows
the dependence on the unknown parametrization of the boundary. Only C3 is independent of the
radial function.

The two-step method for the system (23) reads as follows:
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Iterative Scheme 5.2 Initially, we give an approximation of the radial function r(0). Then, in
the kth iteration step:

i. We assume that we know r(k−1) and we solve the subsystem
(
A1

A2

)
(r(k−1); ξ) +

(
B1

B2

)
(r(k−1); ζ) =

(
C1

C2

)
(r(k−1)), (24)

to obtain the densities ξ(k), ζ(k).

ii. Then, keeping the densities fixed, we linearize the third equation of (23), namely

A3(r(k−1); ξ(k)) + (A′3(r(k−1); ξ(k)))(q) + B3(r(k−1); ζ(k)) + (B′3(r(k−1); ζ(k))(q) = C3. (25)

We solve this equation for q and we update the radial function r(k) = r(k−1) + q.

The iteration stops when a suitable stopping criterion is satisfied.

The function q stands for the radial function of the perturbed boundary

Γq = {q(t) = q(t)(cos t, sin t) : t ∈ [0, 2π]},
and the Fréchet derivatives of the operators are calculated by formally differentiating their kernels
with respect to r [8]

(A′3(r; ξ))(q) =

(
(D∞p

′
(r; ξ))(q)

(D∞s
′
(r; ξ))(q)

)
, (B′3(r; ζ))(q) = −

(
(S∞p

′
(r; ζ))(q)

(S∞s
′
(r; ζ))(q)

)

with

((D∞α
′
(r; ξ))(q))(t) = γα

∫ 2π

0

Jα(x̂(t)) ·Gα(x̂(t), z(τ),q(τ)) · ξ(τ) e−ikα,ex̂(t)·z(τ)dτ,

( (S∞α
′
(r; ζ))(q))(t) = βα

∫ 2π

0

gα(x̂(t), z(τ),q(τ))Jα(x̂(t)) · ζ(τ) e−ikα,ex̂(t)·z(τ)dτ,

where

Gα(x̂(t), z(τ),q(τ)) = λex̂(t)v(τ)> + µev(τ)x̂(t)> + µe(v(τ) · x̂(t))I

− ikα,e(x̂(t) · q(τ)) |z′(τ)|F(x̂(t), z(τ))

for v(τ) := Q · q′(τ) and

gα(x̂(t), z(τ),q(τ)) = −ikα,e(x̂(t) · q(τ)) |z′(τ)|+ z′(τ) · q′(τ)

|z′(τ)| .

To show injectivity of the integral operators involved in (25), we consider a simplified lineariza-
tion. Assuming that z′ is known, we linearize with respect to z only, viewing z′ as independent of
z, resulting to

((D∞α
′
(r; ξ))(q))(t) = −ikα,eγα

∫ 2π

0

(x̂(t) · q(τ))Jα(x̂(t)) · F(x̂(t), z(τ)) · ξ(τ)e−ikα,ex̂(t)·z(τ)dτ,

( (S∞α
′
(r; ζ))(q))(t) = −ikα,eβα

∫ 2π

0

(x̂(t) · q(τ))Jα(x̂(t)) · ζ(τ) e−ikα,ex̂(t)·z(τ)dτ,

where now ξ(τ) := ξ(τ) |z′(τ)| and ζ(τ) := ζ(τ) |z′(τ)| . In addition, we recall that for sufficiently
small q, the perturbed boundary Γq can be represented by q(t) = q̃(t)Q ·z′(t), t ∈ [0, 2π] [16]. Now
we can state the following theorem considering the above formulas for the Fréchet derivatives and
as unknown the function q̃.

9



Theorem 5.3 Let ξ, ζ solve (24) and let r be the radial function of the unperturbed boundary Γ.
If q̃ ∈ C2[0, 2π] satisfies the homogeneous form of equation (25), meaning

(A′3(r; ξ) + B′3(r; ζ))(q̃) = 0, (26)

then q̃ = 0.

Proof: We follow the ideas presented in [16] for the Laplace operator. Equation (26) is equivalent
to

(D∞α
′ (r; ξ)− S∞α

′ (r; ζ))(q̃) = 0, α = p, s. (27)

We introduce the function

V (x) =

∫ 2π

0

∂

∂n̂(z(τ))

[
Te

z(τ)Φe(x, z(τ))
]>
· ξ(τ)q̃(τ) |z′(τ)| dτ

−
∫ 2π

0

∂

∂n̂(z(τ))
Φe(x, z(τ)) · ζ(τ)q̃(τ) |z′(τ)| dτ, x ∈ De,

that is a radiating solution of (1) in De. The far-field patterns of V are given by

V∞α (x̂) =

∫ 2π

0

∂

∂z(τ)
Ψ∞α (x̂, z(τ)) · ξ(τ)q̃(τ) |z′(τ)| dτ

−
∫ 2π

0

∂

∂z(τ)
Φ∞α (x̂, z(τ)) · ζ(τ)q̃(τ) |z′(τ)| dτ, x̂ ∈ S,

where Ψ∞α (x̂, z(τ)) = γαJα(x̂) · F(x̂, z(τ)) e−ikα,ex̂·z(τ) and Φ∞α (x̂, z(τ)) = βαJα(x̂) e−ikα,ex̂·z(τ).
We observe that V∞α coincide with the left hand-side of (27) since also F is independent of z.
Then, V∞α ≡ 0, and by Rellich’s Lemma we get that V (x) = 0, x ∈ De. In this equation the
first integral has a hypersingular kernel and the second one a kernel with lower singularity. Since
the fundamental solution of the Navier equation has the same (logarithmic) singularity as the
fundamental solution of the Laplace equation, we can show that ξ(t)q̃(t) = 0 for almost every
t ∈ [0, 2π] [16]. An application of unique continuation and Holmgren’s theorem [19] results to
q̃ = 0, since ξ cannot be zero on Γ. �

6 Numerical implementation

In this section we firstly justify numerically the convergence of the proposed scheme using analytic
solutions of the direct problem and then we investigate the applicability of the Iterative Scheme 5.2
for solving the inverse problem. We solve both integral equations systems using the Nyström
method.

To handle the singularities of the kernels we consider the usual quadrature rules based on
trigonometric interpolation [20, 22]. For smooth kernels we use the trapezoidal rule. The exact
forms of the parametrized kernels are presented in [5, 7]. Thus, here we only briefly present the
form of the kernel of the operator τiNi − τeNe appearing in (12) and in A2. This combination of
operators consists of two hypersingular terms but it turns out to be weakly singular, as discussed
in Remark 3.2. We consider the following decomposition

Tj
z(t)

[
Tj

z(τ)Φj(t, τ)
]>

= Tj
z(t)

[
Tj

z(τ)

(
Φj(t, τ)−Φ

(0)
j (t, τ)

)]>
+ Tj

z(t)

[
Tj

z(τ)Φ
(0)
j (t, τ)

]>
, (28)

where Φ
(0)
j denotes the fundamental solution of the static (ω = 0) Navier equation. The first

term is weakly singular and the second one preserves the hypersingularity. The advantage, of
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Figure 1. The source points considered for the different boundary curves.

this decomposition, is that the second term coming from the static case is easier to handle by a
Maue-type expression [7], although it is not needed here. The integral operator with kernel the
second term can be written as [5, Equation 2.6]

(N
(0)
j (r; ξ))(t) =

∫ 2π

0

Tj
z(t)

[
Tj

z(τ)Φ
(0)
j (t, τ)

]>
· ξ(τ)|z′(τ)|dτ

=
cj

2π |z′(t)|

∫ 2π

0

[
cot

τ − t
2
ξ′(τ) + K(t, τ) · ξ(τ)

]
dτ,

for a smooth kernel K independent of Dj and cj = µj(λj + µj)/(λj + 2µj). Since cj = τ−1
j , we see

that
τi(N

(0)
i (r; ξ))(t)− τe(N(0)

e (r; ξ))(t) = 0.

Then, the combination τiNi − τeNe presents only weakly singularity due to the first term in (28).
The error and convergence analysis of the proposed numerical method can be carried out based

on the theory of operator approximations and on estimates for trigonometrical interpolation in
Sobolev spaces [22, Section 12.4]. This analysis shows that the applied method admits super-
algebraic convergence and in the case of analytical data it convergences exponentially.

In the following examples, we consider three different parametrizations of the boundary curves.
A peanut-shaped boundary with radial function

r(t) = (0.5 cos2 t+ 0.15 sin2 t)1/2, t ∈ [0, 2π],

an apple-shaped boundary with radial function

r(t) =
0.45 + 0.3 cos t− 0.1 sin 2t

1 + 0.7 cos t
, t ∈ [0, 2π],

and a kite-shaped boundary with parametrization

z(t) = (cos t+ 0.7 cos 2t, 1.2 sin t), t ∈ [0, 2π].

6.1 Example with analytic solution

We consider two arbitrary points zi ∈ Di and ze ∈ De and we define the vector-valued boundary
functions

f = [Φi(x, ze)]1 − [Φe(x, zi)]1, on Γ,

g = [Ti
xΦi(x, ze)]1 − [Te

xΦe(x, zi)]1, on Γ,
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n u∞
p,1(x̂(0)) u∞

p,1(x̂(π/4))

8 0.021470558670546 + i 0.022335063461969 0.015209469321064 + i 0.002605280958500

16 0.021873642791839 + i 0.021893613229408 0.015342524818313 + i 0.002060474589649

32 0.021876587646542 + i 0.021876540811223 0.015334092161171 + i 0.002039057704230

64 0.021876565329344 + i 0.021876565329354 0.015334087405495 + i 0.002039073011261

φ∞
p,1(x̂(0)) φ∞

p,1(x̂(π/4))

0.021876565329347 + i 0.021876565329347 0.015334087405495 + i 0.002039073011258

Table 1. The computed and the exact longitudinal far-field for the peanut-shaped
boundary considering the representation (11).

where [·]1 denotes the first column of the tensor. Then, the fields

ui(x) = [Φi(x, ze)]1, x ∈ Di, ue(x) = [Φe(x, zi)]1, x ∈ De,

satisfy the Navier equations (1) and the transmission boundary conditions

ui = ue + f, on Γ,

Tiui = Teue + g, on Γ.

In addition, ue satisfies the Kupradze radiation condition (3). The exact values of the far-field
patterns of ue considering the asymptotic behaviour of the Hankel function are given by

φ∞α (x̂, zi) = βα e
−ikα,ex̂·zi [Jα(x̂)]1, α = p, s.

To compute numerically the far-field patterns we consider the three different integral represen-
tations of the solution, meaning equations (12), (14) and (15) in order to show the efficiency of
the numerical scheme. Then, the densities satisfy the corresponding systems of equations where
we have to replace uinc|Γ by f and Teuinc|Γ by g.

In all examples we choose the Lamé constants to be λe = 1, µe = 1 and ρe = 1 in De and
λi = 2, µi = 2 and ρi = 1 in Di and ω = 8 circular frequency. We consider the source points
zi = (0, 0.2) and ze = (0.4, 0.6) for the peanut-shaped and the apple-shaped boundary and the
points zi = (0.5, 0.5) and ze = (−1, 0.5) for the kite-shaped boundary, see Figure 1.

The Tables 1, 2 and 3 show some numerical values of the components of the far-fields patterns
at given directions. We consider different representations of the solution for the different boundary
parametrizations to show that our approach is applicable in all cases. We see that the exponential
convergence is clearly exhibited and we obtain the correct values related to the point source located
in Di.

6.2 The inverse problem

To avoid an inverse crime in the following examples, the simulated far-field data were obtained by
solving numerically the direct problem, replacing (11) by (14) and considering double amount of
collocation points.

We approximate the radial function q by a trigonometric polynomial of the form

q(t) ≈
m∑

k=0

ak cos kt+

m∑

k=1

bk sin kt, t ∈ [0, 2π],
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n u∞
s,2(x̂(0)) u∞

s,2(x̂(π/4))

8 −0.000799863220578− i 0.002335597090466 −0.031580574133787 + i 0.015384692677552

16 −0.000014894279556− i 0.000022763052245 −0.033171141088210 + i 0.011955071914825

32 −0.000000000009438− i 0.000000000006972 −0.033172445082299 + i 0.011957712237710

64 −0.000000000000002− i 0.000000000000008 −0.033172445069954 + i 0.011957712196999

φ∞
s,2(x̂(0)) φ∞

s,2(x̂(π/4))

0.000000000000000 + i 0.000000000000000 −0.033172445069954 + i 0.011957712197001

Table 2. The computed and the exact transversal far-field for the apple-shaped bound-
ary considering the representation (15).

n u∞
p,1(x̂(π/4)) u∞

s,1(x̂(π/4))

16 −0.010422864908398− i 0.010511643137096 0.006390366624901 + i 0.055889882020365

32 −0.012209281542488− i 0.009493771192078 0.005583999436220 + i 0.034801431044799

64 −0.012210910150120− i 0.009496616688802 0.005585376568695 + i 0.034816685008179

128 −0.012210910180807− i 0.009496616653359 0.005585376688542 + i 0.034816685082766

φ∞
p,1(x̂(π/4)) φ∞

s,1(x̂(π/4))

−0.012210910180807− i 0.009496616653360 0.005585376688542 + i 0.034816685082766

Table 3. The computed and the exact far-fields for the kite-shaped boundary consid-
ering the representation (14).

and we consider 2n equidistant points tj = jπ/n, j = 0, ..., 2n− 1.
The subsystem (24) is well-posed and no special treatment is required. We solve the ill-posed

linearized equation (25) by minimizing the Tikhonov functional of the corresponding discretized
equation

‖ATx− b‖22 + λ‖x‖pp, λ > 0.

where x ∈ R(2m+1)×1 is the vector with the unknowns coefficients a0, ..., am, b1, ..., bm of the radial
function, and A ∈ C8n×8n, b ∈ C8n×1 are given by

Akj = MA′
3
(tk, tj) + MB′

3
(tk, tj),

bk = C3(tk)− (MA3 · ξ)(tk)− (MB3 · ζ)(tk),

for k, j = 0, ..., 2n − 1, where MK denotes the matrix related to the discretized kernel of the
operator K. The multiplication matrix T ∈ R(8n)×(2m+1) stands for the trigonometric functions
of the approximated radial function. Here p ≥ 0 defines the corresponding Sobolev norm. Since q
has to be real valued we actually solve the following regularized equation

(
T>

(
<(A)><(A) + =(A)>=(A)

)
T + λkIp

)
x = T>

(
<(A)><(b) + =(A)>=(b)

)
, (29)

on the kth step, where the matrix Ip ∈ R(2m+1)×(2m+1) corresponds to the Sobolev Hp penalty
term. We solve (29) using the conjugate gradient method. We update the regularization parameter
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in each iteration step k by

λk = λ0

(
2

3

)k−1

, k = 1, 2, ...

for some given initial parameter λ0 > 0. To test the stability of the iterative method against noisy
data, we add also noise to the far-field patterns with respect to the L2 norm

U∞δ = U∞ + δ
‖U∞‖2
‖V‖2

V ,

for a given noise level δ, where V = V1 + iV2, for V1,V2 ∈ R8n×1 with components normally
distributed random variables.

Already in the acoustic regime [2], one incident wave does not provide satisfactory results, thus
we have to generalize Iterative Scheme 5.2 also for multiple illuminations uincl , l = 1, ..., L.

Iterative Scheme 6.1 (Multiple illuminations) Initially, we give an approximation of the ra-
dial function r(0). Then, in the kth iteration step:

i. We assume that we know r(k−1) and we solve the L subsystems

(
A1

A2

)
(r(k−1); ξl) +

(
B1

B2

)
(r(k−1); ζl) =

(
C1,l

C2,l

)
(r(k−1)), l = 1, ..., L (30)

to obtain the densities ξ
(k)
l , ζ

(k)
l .

ii. Then, keeping the densities fixed, we solve the overdetermined version of the linearized third
equation of (23)




A′3(r(k−1); ξ
(k)
1 ) + B′3(r(k−1); ζ

(k)
1 )

A′3(r(k−1); ξ
(k)
2 ) + B′3(r(k−1); ζ

(k)
2 )

...

A′3(r(k−1); ξ
(k)
L ) + B′3(r(k−1); ζ

(k)
L )



q =




C3,1 −A3(r(k−1); ξ
(k)
1 )−B3(r(k−1); ζ

(k)
1 )

C3,2 −A3(r(k−1); ξ
(k)
2 )−B3(r(k−1); ζ

(k)
2 )

...

C3,L −A3(r(k−1); ξ
(k)
L )−B3(r(k−1); ζ

(k)
L )




for q and we update the radial function r(k) = r(k−1) + q.

The iteration stops when a suitable stopping criterion is satisfied.

6.3 Numerical results

In the following examples we choose the incident field to be a longitudinal plane wave with different
incident directions given by

d̂l = (cos 2πl
L , sin 2πl

L ), l = 1, ..., L.

We choose the Lamé constants to be λe = 1, µe = 1 and ρe = 1 in De and λi = 2, µi = 3 and
ρi = 1 in Di and ω = 8 circular frequency. We set n = 64 collocation points for the direct problem
and n = 32 for the inverse. The regularized equation (29) is solved for p = 1, meaning H1 penalty
term and for initial regularization parameter λ0 = 0.8.

We present reconstructions for different boundary curves, different number of incident directions
and initial guesses for exact and perturbed far-field data. When, we refer to noisy data, we have
considered δ = 5%. In all figures the initial guess is a circle with radius r0, a green solid line, the
exact curve is represented by a dashed red line and the reconstructed by a solid blue line. The
arrows denote the directions of the incoming incident fields.
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In the first example we consider the peanut-shaped boundary. The reconstructions for m = 3
coefficients, two incident fields and r0 = 0.5 initial radius are presented in Figure 2 after 40 itera-
tions for the exact data and 25 iterations for the noisy. In Figure 3, we see that the reconstructions
are not highly dependent on the initial guess.

In the second example, the boundary to be reconstructed is the apple-shaped. Here, we set
m = 4, and r0 = 0.5. The reconstructions for exact data and different number of incident fields
are presented in Figure 4 for 18 iterations (one incident direction) and 40 iterations (three incident
directions). Figure 5 shows the effect of the initial guess for noisy data and 40 iterations.

In the last example, we choose the kite-shaped boundary. We consider m = 7 coefficients and
r0 = 1.5. In Figure 6 we see the improvement with respect to the number of incident fields for exact
data, 10 iterations for three illuminations and 40 iterations for four illuminations. The dependence
on the initial guess is shown in Figure 7, for r0 = 1 we needed 40 iterations and 25 for r0 = 1.5, in
doth cases we considered noisy data.

All examples show the feasibility of the proposed method that is also reasonably stable against
noise. The results are considerably improved if we consider more that one incident wave. One
could also considered more sophisticated regularization techniques and methods to compute the
regularization parameter that could improve the reconstructions but are out of the scope of this
paper.
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Figure 2. Reconstruction of a peanut-shaped boundary for exact (left) and noisy
(right) data.
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Figure 3. Reconstruction of a peanut-shaped boundary for initial guess r0 = 0.5 (left)
and r0 = 1 (right) and exact data.
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Figure 4. Reconstruction of a apple-shaped boundary for one (left) and three (right)
incident fields.
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Figure 5. Reconstruction of a apple-shaped boundary for initial guess r0 = 0.5 (left)
and r0 = 0.2 (right) and noisy data.
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Figure 6. Reconstruction of a kite-shaped boundary for three (left) and four (right)
incident fields.
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Figure 7. Reconstruction of a kite-shaped boundary for initial guess r0 = 1 (left) and
r0 = 1.5 (right) and noisy data.
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