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Abstract

A framework for constructing integral preserving numerical schemes for time-dependent
partial differential equations on non-uniform grids is presented. The approach can
be used with both finite difference and partition of unity methods, thereby includ-
ing finite element methods. The schemes are then extended to accommodate r-, h-
and p-adaptivity. To illustrate the ideas, the method is applied to the Korteweg–de
Vries equation and the sine-Gordon equation. Results from numerical experiments
are presented.

1 Introduction

Courant, Friedrichs and Lewy introduced difference schemes with conservation proper-
ties in [1], where a discrete conservation law for a finite difference approximation of
the wave equation was derived. Their methods are often called energy methods [2] or
energy-conserving methods [3], although the conserved quantity is often not energy in the
physical sense. The primary motivation for developing conservative methods was origi-
nally to devise a norm that could guarantee global stability. This was still an objective,
in addition to proving existence and uniqueness of solutions, when the energy methods
garnered newfound interest in the 1950s and 1960s, resulting in new developments such as
generalizations of the methods and more difference schemes, summarized by Richtmyer
and Morton in [4]. In the 1970s, the motivation behind studying schemes that preserve
invariant quantities changed, as the focus shifted to the conservation property itself. Li
and Vu-Quoc presented in [3] a historical survey of conservative methods developed up
to the early 1990s. They state that this line of work is motivated by the fact that in some
situations, the success of a numerical solution will depend on its ability to preserve one or
more of the invariant properties of the original differential equation. In addition, as noted
in [5, 6], there is the general idea that transferring more of the properties of the original
continuous dynamical system over to a discrete dynamical system may lead to a more
accurate numerical approximation of the solution, especially over long time intervals. In
recent years, there has been a greater interest in developing systematic techniques appli-
cable to larger classes of differential equations. Hairer, Lubich and Wanner give in [6] a
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presentation of geometric integrators for differential equations, i.e. methods for solving
ordinary differential equations (ODEs) that preserve a geometric structure of the system.
Examples of such geometric structures are symplectic structures, symmetries, reversing
symmetries, isospectrality, Lie group structure, orthonormality, first integrals, and other
invariants, such as volume and invariant measure.

In this paper we will be concerned with the preservation of first integrals of PDEs.
From the ODE literature we find that the most general methods for preserving first
integrals are tailored schemes, in the sense that the vector field of the ODE does not by
itself provide sufficient information, so the schemes make explicit use of the first integral.
An obvious approach in this respect is projection, where the solution is first advanced
using any consistent numerical scheme and then this approximation is projected onto
the appropriate level set of the invariant. In the same class of tailored methods one also
has the discrete gradient methods, usually attributed to Gonzalez [7]. For the subclass
of canonical Hamiltonian systems, the energy can be preserved by means of a general
purpose method called the averaged vector field method, see e.g. [8].

The notion of discrete gradient methods for ordinary differential equations has a
counterpart for partial differential equations called the discrete variational derivative
method. Such schemes have been developed since the late 1990s in a number of articles
by Japanese researchers such as Furihata, Matsuo, Sugihara, and Yaguchi. A relatively
recent account of this work can be found in the monograph [9]. More recently, the
development of integral preserving schemes for PDEs has been systematised and eased,
in particular by using the aforementioned tools from ordinary differential equations, see
for instance [10, 11]. Most of the schemes one finds in the literature are based on a
finite difference approach, and usually on fixed, uniform grids. There are however some
exceptions. Yaguchi, Matsuo and Sugihara presented in [12, 13] two different discrete
variational derivative methods on fixed, non-uniform grids, specifically defined for certain
classes of PDEs. Non-uniform grids are of particular importance for multidimensional
problems, since the use of uniform grids will greatly restrict the types of domains possible
to discretize. Another important consequence of being able to use non-uniform grids is
that it allows for the use of time-adaptive spatial meshes for solving partial differential
equations. Adaptive energy preserving schemes for the Korteweg–de Vries and Cahn–
Hilliard equations have been developed recently [14] by Miyatake and Matsuo. The main
objective of this paper is to propose a general framework for numerical methods for PDEs
that combine mesh adaptivity with first integral conservation.

Several forms of adaptive methods exist; they can roughly be categorized as r-, h-
and p-adaptive. When applying r-adaptivity, one keeps the number of degrees of freedom
constant while modifying the mesh at each time step to e.g. cluster in problematic areas
such as boundary layers or to follow wave fronts. When applying the Finite Difference
Method (FDM) or the Finite Element Method (FEM), moving mesh methods may be
used for r-adaptivity, some examples of which may be found in [15–17]. When using
Partition of Unity Methods (PUM) (and in particular when using FEM), h- and p-
adaptivity relate to adjusting the number of elements and the basis functions used on the
elements, respectively. For PUM methods there exist strategies for h- and p-adaptivity
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based both on a priori and a posteriori error analysis [18]. Common to all of these
strategies is that, based on estimated function values in preceding time steps, one can
suggest improved discretization parameters for the next time step. In the FDM approach,
these discretization parameters consist of the mesh points x, while in the PUM approach
the parameters encompass information about both the mesh and the basis functions.
We will, in general, denote a collection of discretization parameters by p, and assume
that the discretization parameters are changed separately from the degrees of freedom
u of the problem when using adaptive methods. That is, starting with an initial set of
discretization parameters p0 and initial values u0, one would first decide upon p1 before
calculating u1, then finding p2, then u2, etc., in a decoupled fashion.

A first integral of a PDE is a functional I on an infinite-dimensional function space,
whereas the numerical methods considered here will reduce the problem to a finite-
dimensional setting. Therefore, we cannot preserve the exact value of the first integral;
instead, we will preserve a consistent approximation to the first integral, Ip(u). The
approximation will be dependent on the discretization parameters p and, since adaptivity
alters the discretization parameters, we will therefore aim to preserve the value of the
approximated first integral across all discretization parameters, i.e. we will require that
Ipn+1(un+1) = Ipn(un). Here, and in the following, superscripts denote time steps unless
otherwise specified.

In this article, we will present a method for developing adaptive numerical schemes
that conserve an approximated first integral. In Section 2, the PDE problem is stated, and
two classes of first integral preserving methods using arbitrary yet constant discretization
parameters are presented; one using an FDM approach and the other a PUM approach for
spatial discretization. A connection to previously existing methods is then established.
In Section 3, we present a way of adding adaptivity to the methods from Section 2 and
the modifications needed to retain the first integral preservation property, before showing
that certain projection methods form a subclass of the methods thus obtained. Section 4
contains examples of the application of the methods to two PDEs and numerical results
pertaining to the quality of the numerical solutions as compared to a standard implicit
method.

2 Spatial discretization with fixed mesh

2.1 Problem statement

Consider a partial differential equation

ut = f(x, uJ), x ∈ Ω ⊆ Rd, u ∈ B ⊆ L2, (2.1)

where uJ denotes u itself and its partial derivatives of any order with respect to the
spatial variables x1, ...., xd. We shall not specify the space B further, but assume that it
is sufficiently regular to allow all operations used in the following. For ease of reading,
all t-dependence will be suppressed in the notation wherever it is irrelevant. Also, from
here on, square brackets are used to denote dependence on a function and its partial
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derivatives of any order with respect to the independent variables t and x1, ..., xd. We
recall the definition of the variational derivative of a functional H[u] as the function
δH
δu [u] satisfying 〈

δH

δu
[u], v

〉
L2

=
d

dε

∣∣∣∣
ε=0

H[u+ εv] ∀v ∈ B, (2.2)

and define a first integral of (2.1) to be a functional I[u] satisfying〈
δI
δu

[u], f(x, uJ)

〉
L2

= 0, ∀u ∈ B.

We may observe that I[u] is preserved over time, since this implies

dI
dt

=

〈
δI
δu

[u],
∂u

∂t

〉
L2

= 0.

Furthermore, we may observe that if there exists some operator S(x, uJ), skew-symmetric
with respect to the L2 inner product, such that

f(x, uJ) = S(x, uJ)
δI
δu

[u],

then I[u] is a first integral of (2.1), and we can state (2.1) in the form

ut = S(x, uJ)
δI
δu

[u]. (2.3)

This can be considered as the PDE analogue of an ODE with a first integral, in which
case we have a system

du

dt
= S(u)∇uI(u), (2.4)

where S(u) is a skew-symmetric matrix [19]. The gradient is defined as usual, but for
clarity in later use we have added a subscript to specify that it is a vector of partial
derivatives with respect to the coordinates of u. Note that Hamiltonian equations are
contained of this class of ODEs. For such differential equations, there exist numerical
methods preserving the first integral I(u), for instance the discrete gradient methods,
which are of the form

un+1 − un

∆t
= S̄(un,un+1)∇I(un,un+1),

where S̄(un,un+1) is a consistent skew-symmetric time-discrete approximation to S(u)
and ∇I(v,u) is a discrete gradient of I(u), i.e. a function satisfying

(∇I(v,u))T (u− v) = I(u)− I(v), (2.5)

∇I(u,u) = ∇uI(u). (2.6)
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There are several possible choices of discrete gradients available, one of which is the
Average Vector Field (AVF) discrete gradient [10], given by

∇I(v,u) =

1∫
0

∇uI(ξu + (1− ξ)v)dξ,

which will be used for numerical experiments in the final chapter. Our approach to
solving (2.1) on non-uniform grids is based upon considering the PDE in the form (2.3),
reducing it to a system of ODEs of the form (2.4) and applying a discrete gradient
method. This is done by finding a discrete approximation Ip to I and using this to
obtain a discretization in the spatial variables, which is achieved through either a finite
difference approach or a variational approach.

2.2 Finite difference method

In the finite difference approach, we restrict ourselves to obtaining approximate values of
u at the grid points x0, ...,xM , which can be interpreted as quadrature points with some
associated nonzero quadrature weights κ0, ..., κM . The grid points constitute the dis-
cretization parameters p. We can then approximate the L2 inner product by quadrature
to arrive at a weighted inner product:

〈u, v〉L2 =

∫
Ω

u(x)v(x)dx '
M∑
i=0

κiu(xi)v(xi) = uTD(κ)v = 〈u,v〉κ ,

where D(κ) = diag(κ0, ..., κM ). Assume that there exists a consistent approximation
Ip(u) to the functional I[u], dependent on the values of u at the points xi. Then, we
can characterize the discretized variational derivative by asserting that〈

δIp
δu

(u),v

〉
κ

=
d

dε

∣∣∣∣
ε=0

Ip(u + εv) ∀v ∈ RM+1,

meaning (
δIp
δu

(u)

)T
D(κ)v = (∇uIp(u))Tv ∀v ∈ RM+1,

from which we conclude that

δIp
δu

(u) = D(κ)−1∇uIp(u). (2.7)

Using this as a discretization of δI
δu [u] and approximating S(x, uJ) by a matrix Sd(u),

skew-symmetric with respect to 〈·, ·〉κ, we obtain a discretization of (2.3) as:

du

dt
= Sp(u)∇uIp(u), (2.8)
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where Sp(u) = Sd(u)D(κ)−1. This system of ODEs is of the form (2.4), since

Sp(u)T = (Sd(u)D(κ)−1)T

= D(κ)−1Sd(u)TD(κ)D(κ)−1

= −D(κ)−1D(κ)Sd(u)D(κ)−1

= −Sd(u)D(κ)−1

= −Sp(u).

This allows us to apply first integral preserving methods for systems of ODEs to solve
the spatially discretized system. For example, we may consider using a discrete gradient
∇Ip, and a skew-symmetric, time-discrete approximation Sp(un,un+1) to Sp(u), where
un = u(tn), tn = n∆t. Then, the following scheme will preserve the approximated first
integral Ip in the sense that Ip(un+1) = Ip(un):

un+1 − un

∆t
= Sp(un,un+1)∇Ip(un,un+1). (2.9)

2.3 Partition of unity method

One may also approach the problem of spatially discretizing the PDE through the use of
variational methods such as the Partition of Unity Method (PUM) [20], which generalizes
the Finite Element Method (FEM). Here, the variational structure of the functional
derivative can be utilized in a natural way, such that one avoids having to approximate
S(x, uJ). We begin by stating a weak form of (2.3). Then, the problem consists of finding
u ∈ B such that

〈ut, v〉L2 =

〈
S(x, uJ)

δI
δu

[u], v

〉
L2

= −
〈
δI
δu

[u], S(x, uJ)v

〉
L2

∀v ∈ B. (2.10)

Employing a Galerkin formulation, we restrict the search to a finite dimensional subspace
Bh = span{ϕ0, ...ϕM} ⊆ B, and approximate u by the function

uh(x, t) =

M∑
i=0

ui(t)ϕi(x).

We denote by p the collection of discretization parameters defining Bh; this includes in-
formation about mesh points, element types and shapes of basis functions. Furthermore,
we define the canonical mapping Φp : RM+1 → Bh given by

Φp(u) =
M∑
i=0

uiϕi, (2.11)

and the discrete first integral Ip by

Ip(u) = I(Φp(u)).

The following lemma will prove useful later in the construction of the method:
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Lemma 1. For any uh, v ∈ Bh,
d

dε

∣∣∣∣
ε=0

I(uh + εv) = (∇uIp(u))Tv.

Proof.

d

dε

∣∣∣∣
ε=0

I(uh + εv) =
d

dε

∣∣∣∣
ε=0

I(Φp(u + εv))

=

〈
δI
δu

[Φp(u + εv)],
d

dε
Φp(u + εv)

〉
L2

∣∣∣∣
ε=0

=

〈
δI
δu

[Φp(u + εv)], (∇uΦp(u + εv))Tv

〉
L2

∣∣∣∣
ε=0

=

〈
δI
δu

[Φp(u)], (∇uΦp(u))Tv

〉
L2

=
M∑
i=0

vi

〈
δI
δu

[Φp(u)],
∂

∂ui
Φp(u)

〉
L2

=

M∑
i=0

vi
∂

∂ui
I[Φp(u)] =

M∑
i=0

vi
∂

∂ui
Ip(u) = (∇uIp(u))Tv.

We observe that for u, v ∈ Bh, the L2 inner product has a discrete counterpart:

〈u, v〉L2 =
M∑
i=0

M∑
j=0

uivj 〈ϕi, ϕj〉L2 = uTAv = 〈u,v〉A

with the symmetric positive definite matrix A given by Aij = 〈ϕi, ϕj〉L2 . Note also that
equation (2.10) is satisfied in Bh if it is satisfied for all basis functions ϕj . The Galerkin
form of the problem therefore consists of finding ui(t) such that

M∑
i=0

dui
dt
〈ϕi, ϕj〉L2 = −

〈
δI
δu

[uh], S(x, uh,J)ϕj

〉
L2

∀j ∈ {0, ...,M}. (2.12)

This weak form is rather unwieldy and does not give rise to a system of the form (2.4),
so in order to make further progress, we consider the projection of δIδu [uh] onto Bh:

δI
δu

h

[uh] =

M∑
i=0

whi [uh]ϕi(x) =

M∑
i=0

wi(u)ϕi(x),

where wi(u) = whi [Φ(u)] = whi [uh] are coefficients that will be characterized later. Re-
placing δI

δu [uh] by its projection in (2.12) gives the approximate weak form:

M∑
i=0

dui
dt
〈ϕi, ϕj〉L2 = −

M∑
i=0

wi(u)
〈
ϕi, S(x, uh,J)ϕj

〉
L2

∀j ∈ {0, ...,M}.

7



Thus, we obtain a system of equations for the coefficients ui:

A
du

dt
= −B(u)w(u), (2.13)

with the skew-symmetric matrix B(u) given by B(u)ji =
〈
ϕi, S(x,Φ(u)J)ϕj

〉
L2 . Fur-

thermore, we may characterize the vector w(u) by the following argument:

w(u)TAv =

〈
δI
δu

h

[uh], v

〉
L2

=

〈
δI
δu

[uh], v

〉
L2

=
d

dε

∣∣∣∣
ε=0

I(uh + εv) = (∇uIp(u))Tv,

where the last equality holds by Lemma 1. This holds for all v ∈ RM+1, and thus

w(u) = A−1∇uIp(u). (2.14)

Inserting (2.14) into (2.13) and left-multiplying by A−1, we are left with an ODE for the
coefficients ui:

du

dt
= Sp(u)∇uIp(u). (2.15)

Here, Sp(u) = −A−1B(u)A−1 is a skew-symmetric matrix, and the system is thereby
of the form (2.4), meaning Ip can be preserved numerically using e.g. discrete gradient
methods as in equation (2.9).

2.4 Discrete variational derivative methods

Let us now define a general framework for the discrete variational derivative methods
that encompass the methods presented by Furihata, Matsuo and coauthors in a number
of publications including [2, 9, 12,13,21].

Definition 1. Let Ip be a consistent approximation to the functional I [u] discretized
on p given by grid points xi and quadrature weights κi, i = 0, ...,M . Then δIp

δ(v,u)(v,u)

is a discrete variational derivative of Ip(u) if it is a continuous function satisfying〈
δIp

δ(v,u)
,u− v

〉
κ

= Ip(u)− Ip(v), (2.16)

δIp
δ(u,u)

=
δIp
δu

(u) , (2.17)

and the discrete variational derivative methods for solving PDEs on the form (2.3) are
given by

un+1 − un

∆t
= Sd(u

n,un+1)
δIp

δ(un,un+1)
, (2.18)

where Sd(un,un+1) is a time-discrete approximation to Sd(u), and itself skew-symmetric
with respect to the inner product 〈·, ·〉κ.
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Proposition 1. A discrete gradient method (2.9) applied to the system of ODEs (2.8)
or (2.15) is equivalent to a discrete variational derivative method as given by (2.18), with

Sd(u
n,un+1) = Sp(un,un+1)D (κ) ,

and the discrete variational derivative

δIp
δ(v,u)

= D(κ)−1∇Ip(v,u) (2.19)

satisfying (2.16)-(2.17).

Proof. Applying (2.5), we get that, for the discrete variational derivative defined by
(2.19), 〈

δIp
δ(v,u)

,u− v

〉
κ

=
〈
D(κ)−1∇Ip(v,u),u− v

〉
κ

=
(
D(κ)−1∇Ip (v,u)

)T
D(κ) (u− v)

= ∇Ip (v,u)T (u− v) = Ip(u)− Ip(v),

and hence (2.16) is satisfied. Furthermore, applying (2.6) and (2.7),

δIp
δ(u,u)

= D(κ)−1∇Ip(u,u) = D(κ)−1∇uIp (u) =
δIp
δu

(u)

and (2.17) is also satisfied.

Consequently, all discrete variational derivative methods as given by (2.18) can be
expressed as discrete gradient methods on the system of ODEs (2.8) or (2.15) obtained
by discretizing (2.3) in space, and vice versa.

3 Adaptive discretization

3.1 Mapping solutions between parameter sets

Assuming that adaptive strategies are employed, one would obtain a new set of discretiza-
tion parameters p at each time step. After such a p has been found, the solution using
the previous parameters must be transferred to the new parameter set before advancing
to the next time step. This transfer procedure can be done in either a preserving or a
non-preserving manner. Let pn, un, pn+1 and un+1 denote the discretization parameters
and the numerical values obtained at the current time step and next time step, respec-
tively. Also, let û denote the values of un transferred onto pn+1 by whatever means. We
call the transfer operation preserving if Ipn+1(û) = Ipn(un). If the transfer is preserving,
then the next time step can be taken with a preserving scheme, e.g. the scheme

un+1 − û

∆t
= Spn+1(û,un+1)∇Ipn+1(û,un+1),
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which is preserving in the sense that

Ipn+1(un+1)−Ipn(un) = Ipn+1(un+1)− Ipn+1(û)

=
〈
∇Ipn+1(û,un+1),un+1−û

〉
= ∆t

〈
∇Ipn+1(û,un+1), Spn+1(û,un+1)∇Ipn+1(û,un+1)

〉
= 0,

since Spn+1(û,un+1) is skew-symmetric. If non-preserving transfer is used, corrections
are needed in order to obtain a preserving numerical method.

Proposition 2. The scheme

un+1 = û−
(Ipn+1(û)− Ipn(un))z〈
∇Ipn+1(û,un+1), z

〉 +∆tSpn+1(û,un+1)∇Ipn+1(û,un+1), (3.1)

where z is an arbitrary vector chosen such that
〈
∇Ipn+1(û,un+1), z

〉
6= 0, is first integral

preserving in the sense that Ipn+1(un+1)−Ipn(un) = 0.

Proof.

Ipn+1(un+1)−Ipn(un)=Ipn+1(un+1)− Ipn+1(û) + Ipn+1(û)− Ipn(un)

=
〈
∇Ipn+1(û,un+1),un+1−û

〉
+ Ipn+1(û)− Ipn(un)

=

〈
∇Ipn+1(û,un+1),un+1−û+

(Ipn+1(û)− Ipn(un))z〈
∇Ipn+1(û,un+1), z

〉〉
=∆t

〈
∇Ipn+1(û,un+1), Spn+1(û,un+1)∇Ipn+1(û,un+1)

〉
= 0.

The second equality follows from (2.5), the fourth equality from the scheme (3.1), and
the last equality follows from the skew-symmetry of Spn+1 .

The correcting direction z should be chosen so as to obtain a minimal correction, and such
that 〈∇Ipn+1(û,un+1), z〉 6= 0. One possibility is simply taking z = ∇Ipn+1(û,un+1).
In the FDM case one may alternatively choose z = D(κ)−1∇Ipn+1(û,un+1), and in the
PUM case, z = A−1∇Ipn+1(û,un+1).

When using the PUM formulation, one may obtain a method for preserving transfer
in the following manner. Any changes through e.g. r- p- and/or h-refinement between
time steps will result in a change in the shape and/or number of basis functions. Denote
by Bh = span{ϕi}Mi=0 the trial space from the current time step and by B̂h = span{ϕ̂i}M̂i=0

the trial space for the next time step, and note that in general, M 6= M̂ . We do not
concern ourselves with how the new basis is found, but simply acknowledge that the basis
changes through adaptivity measures as presented in e.g. [15] or [18]. Our task is now
to transfer the approximation uh from Bh to B̂h, obtaining an approximation ûh, while
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conserving the first integral, i.e. I[uh] = I[ûh]. This can be formulated as a constrained
minimization problem:

min
ûh∈B̃h

||ûh − uh||2L2 s.t. I[ûh] = I[uh].

We observe that

||ûh − uh||2L2 =

M̂∑
i=0

M̂∑
j=0

ûiûjÂij − 2

M̂∑
i=0

M∑
j=0

ûiu
n
jCij +

M∑
i=0

M∑
i=0

uni u
n
jAij

= ûT Âû− 2ûTCun + unAun,

where Aij = 〈ϕi, ϕj〉L2 , Âij = 〈ϕ̂i, ϕ̂j〉L2 and Cij = 〈ϕ̂i, ϕj〉L2 . Also observing that

I[ûh] = Ipn+1(û), I[uh] = Ipn(un),

the problem can be reformulated as

min
û∈RM̂+1

ûT Âû− 2ûTCun + unAun s.t. Ipn+1(û)− Ipn(un) = 0.

This is a quadratic minimization problem with one nonlinear equality constraint. Using
the method of Lagrange multipliers, we find û as the solution of the nonlinear system of
equations

Âû− Cun − λ∇ûIpn+1(û) = 0

Ipn+1(û)− Ipn(un) = 0,

which can be solved numerically using a suitable nonlinear solver.
In general, applicable also in the FDM case, given ū obtained by interpolating un

onto pn+1 in a non-preserving manner, a preserving transfer operation is obtained by
solving the system of equations

û− ū− λ∇ûIpn+1(û) = 0

Ipn+1(û)− Ipn(un) = 0.

3.2 Projection methods

Let the function fp : RM × RM → RM be such that

un+1 − un

∆t
= fp(un,un+1) (3.2)

defines a step from time tn to time tn+1 of any one-step method applied to (2.1) on the
fixed grid represented by the discretization parameters p. Then we define one step of an
integral preserving linear projection method un 7→ un+1 from pn to pn+1 by
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1. Interpolate un onto pn+1 by whatever means to get û,

2. Integrate û one time step by computing ũ = û + ∆tfpn+1 (û, ũ),

3. Compute un+1 by solving the system of M + 1 equations un+1 = ũ + λz and
Ipn+1(un+1) = Ipn(un), for un+1 ∈ RM and λ ∈ R, where the direction of projec-
tion z is typically an approximation to ∇uIpn+1(un+1).

By utilizing the fact that for a method defined by (3.2) there exists an implicitly
defined map Ψp : RM → RM such that un+1 = Ψpu

n, we define

gp(un) :=
Ψpu

n − un

∆t
,

and may then write the tree points above in an equivalent, more compact form as:
Compute un+1 ∈ RM and λ ∈ R such that

un+1 − û−∆tgpn+1 (û)− λz = 0, (3.3)

Ipn+1(un+1)− Ipn(un) = 0, (3.4)

where û is un interpolated onto pn+1 by an arbitrary procedure.
The following theorem and proof are reminiscent of Theorem 2 and its proof in [22],

whose subsequent corollary shows how linear projection methods for solving ODEs are a
subset of discrete gradient methods.

Theorem 1. Let gp : RM → RM be a consistent discrete approximation of f in (2.1)
and let ∇Ip(un,un+1) be any discrete gradient of the consistent approximation Ip(u) of
I [u] defined by (2.2) on the grid given by discretization parameters p. If we set Spn+1

in (3.1) to be

Spn+1(û,un+1) =
gpn+1(û)zT − zgpn+1(û)T〈
∇Ipn+1 (û,un+1) , z

〉 , (3.5)

then the linear projection method for solving PDEs on a moving grid, given by (3.3)-(3.4),
is equivalent to the discrete gradient method on moving grids, as given by (3.1).

Proof. For better readability, we set ∇I := ∇Ipn+1

(
û,un+1

)
. Assume that (3.3)-(3.4)

are satisfied. By applying (3.4), we get that

Ipn(un)− Ipn+1(û) = Ipn+1(un+1)− Ipn+1(û)

=
〈
∇I,un+1 − û

〉
= ∆t

〈
∇I, gpn+1(û)

〉
+ λ

〈
∇I, z

〉
,

and hence

λ =
Ipn(un)− Ipn+1(û)〈

∇I, z
〉 −∆t

〈
∇I, gpn+1(û)

〉〈
∇I, z

〉 (3.6)
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Substituting this into (3.3), we get

un+1 = û +
Ipn(un)− Ipn+1(û)〈

∇I, z
〉 z + ∆t

(
gpn+1 (û)−

〈
∇I, gpn+1(û)

〉〈
∇I, z

〉 z

)
,

where

gpn+1 (û)−
〈
∇I, gpn+1(û)

〉〈
∇I, z

〉 z =
∇ITzgpn+1(û)−∇ITgpn+1(û)z〈

∇I, z
〉

=
gpn+1(û)zT∇I − zgpn+1(û)T∇I〈

∇I, z
〉

and thus (3.1) is satisfied, with Spn+1 as given by (3.5). Conversely, if un+1 satisfies
(3.1), then (3.4) is satisfied. Furthermore, inserting (3.5) into (3.1) and following the
above deduction backwards, we get (3.3), with λ defined by (3.6).

Since (3.5) defines a particular set of choices for Spn+1 , the linear projection methods
on moving grids constitute a subset of all possible discrete gradient methods on moving
grids as defined by (3.1). Note also that, since the linear projection methods are inde-
pendent of the discrete gradient, each linear projection method defines an equivalence
class of the methods (3.1), uniquely defined by the choice of gpn+1 .

3.3 Family of discretized integrals

At the core of the methods considered here is the notion that an approximation to the
first integral I is preserved, and that this approximation is dependent on the discretiza-
tion parameters which may change from iteration to iteration. That is, we have a family
of discretized first integrals Ip, and at each time step the discretized first integral is
exchanged for another. For each set of discretization parameters p, there is a corre-
sponding set of degrees of freedom u, in which we search for a u such that Ip(u) is
preserved. This can be interpreted as a fiber bundle with base space B as the set of all
possible discretization parameters p, and fibers Fp as the sets of all degrees of freedom
such that the discretized first integral is equal to the initial discretized first integral, i.e.
Fp = {u ∈ RM |Ip(u) = Ip0(u0)}. A similar idea, although without energy preservation,
has been discussed by Bauer, Joshi and Modin in [23].

4 Numerical experiments

4.1 General remarks on type of experiments made

To provide examples of the application of our method and to investigate its accuracy,
we have applied it to two one-dimensional PDEs: the sine-Gordon equation and the
Korteweg–de Vries (KdV) equation. The choice of these equations were made because
they both possess traveling wave solutions in the form of solitons, providing an ideal
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situation for r-adaptivity, which allows the grid points to cluster around wave fronts.
The following experiments consider r-adaptivity only, and not p- or h-adaptivity. The
sine-Gordon equation is solved using the FDM formulation of section 2.2, while the KdV
equation is solved using the PUM formulation of section 2.3.

We wish to compare our methods to standard methods on fixed and adaptive meshes.
This gives us four methods to consider: Fixed mesh methods with energy preservation by
discrete gradients (DG), adaptive mesh methods with preservation by discrete gradients
(DGMM), a non-preserving fixed grid method (MP), and the same method with adaptive
mesh (MPMM). The former two methods are those described earlier in the paper, while
the latter two are made differently for the two equations. In the sine-Gordon case, we
use a finite difference scheme where spatial discretization is done using central finite
differences and time discretization using the implicit midpoint rule. In the KdV case,
the spatial discretization is performed the same way as for the discrete gradient schemes,
while the time discretization is done using the implicit midpoint rule. The procedure for
mesh adaptivity in the DGMM and MPMM schemes is presented in the next subsection.

The MPMM scheme for the sine-Gordon equation appeared unstable unless restric-
tively short time steps were used, and the results of those tests are therefore omitted
from the following discussion. It is difficult to analyze the MPMM scheme and pin-
point an exact cause for this instability. However, it is worth noting that the other
three schemes have preservation properties that should contribute to their stability; the
DG and DGMM schemes have energy preservation properties, and the semidiscretization
used for the sine-Gordon equation gives rise to a Hamiltonian system of equations which
means that the MP scheme, which is symplectic, should perform well. On the other
hand, the moving mesh strategy used breaks the symplecticity property in the MPMM
scheme; specifically, the transfer strategies as presented in the next subsection do not
preserve symplecticity. The results using MPMM for the KdV equation were better, and
are presented.

4.2 Adaptivity

Concerning adaptivity of the mesh, we used a simple method for r-adaptivity which can
be applied to both FDM and FEM problems in one spatial dimension. When applying
moving mesh methods, one can either couple the evolution of the mesh with the PDE
to be solved through a Moving Mesh PDE [24] or use the rezoning approach, where
function values and grid points are calculated in an intermittent fashion. Since our
method is based on having a new set of grid points at each time step, and not coupling
the evolution of the mesh to the PDE, the latter approach was used. It is based on an
equidistribution principle, meaning that when Ω = [a, b] is split into M intervals, one
requires that

xi+1∫
xi

ω(x)dx =
1

M

b∫
a

ω(x)dx,
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where the monitor function ω is a function measuring how densely grid points should
lie, based on the value of u. The choice of monitor function is problem dependent, and
choosing it optimally may require considerable research. A variety of monitor functions
have been studied for certain classes of problems, see e.g. [25, 26]. Through numerical
experiments, we found little difference in performance when choosing between monitor
functions based on arc-length and curvature, and have in the following used the former,
that is, the generalized arc-length monitor function [25]

ω(x) =

√
1 + k2

(
∂u

∂x
(x)

)2

.

In this case, the equidistribution principle amounts to requiring that the weighted arc
length (in the case k = 1 one recovers the usual arc length) of u over each interval
is equal. In applications, we only have an approximation of u, meaning ω must be
approximated as well; in our case, we have applied a finite difference approximation
and obtained approximately equidistributing grids using de Boor’s method as explained
in [15, pp. 36-38]. We tried different smoothing techniques, including a direct smoothing
of the monitor function and an iterative procedure for the regridding by De Boor’s method
(see e.g. [15,27,28]). In the case of the KdV equation, there was little to no improvement
using smoothing, but the sine-Gordon experiments showed significant improvement with
direct smoothing; i.e., in De Boor’s algorithm, we use the smoothed discretized monitor
function

ω̄i =
ωi−1 + 2ωi + ωi+1

4
.

Having obtained the discretization parameters for the current time step, the numeri-
cal solution u from the previous time step must be transferred onto the new set of mesh
points. We tested three different ways of doing this, two of which are using linear in-
terpolation and cubic interpolation. The linear interpolation consists of constructing a
function û(x) which is piecewise linear on each interval [xni , x

n
i+1] such that û(xni ) = uni ,

then evaluating this function at the new mesh points, giving the interpolated values
ûi = û(xn+1

i ). The cubic interpolation consists of a similar construction, using cubic
Hermite splines through the MATLAB function pchip. Of these two transfer methods,
the cubic interpolation yielded superior results in all cases, and so only results using
cubic interpolation are presented. The third way, using preserving transfer as presented
in section 3.1, applies to the KdV example, where the PUM is used. Here, we found little
difference between cubic interpolation and exact transfer, so results are presented using
cubic interpolation for the transfer operation here as well.

4.3 Sine-Gordon equation

The sine-Gordon equation is a nonlinear hyperbolic PDE in one spatial and one temporal
dimension exhibiting soliton solutions, with applications in predicting dislocations in
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crystals and propagation of fluxons in junctions between superconductors. It is stated in
initial value problem form as:

utt − uxx + sin(u) = 0, (x, t) ∈ R× [0, T ], (4.1)
u(x, 0) = f(x), ut(x, 0) = g(x).

We consider a finite domain [−L,L]× [0, T ] with periodic boundary conditions u(−L) =
u(L) and ut(−L) = ut(L). The equation has the first integral

I[u] =

∫
R

1

2
u2
t +

1

2
u2
x + 1− cos(u)dx.

Introducing v = ut, (4.1) can be rewritten as a first-order system of PDEs:[
ut
vt

]
=

[
v

uxx − sin(u)

]
,

with first integral

I[u, v] =

∫
R

1

2
v2 +

1

2
u2
x + 1− cos(u)dx. (4.2)

Finding the variational derivative of this, one can interpret the equation in the form (2.3)
with S and δI

δu as follows:

S =

[
0 1
−1 0

]
,

δI
δu

[u, v] =

[
sin(u)− uxx

v

]
.

We will apply the FDM approach presented in section 2.2, approximating (4.2) by some
quadrature with points {xi}Mi=0 and weights {κi}Mi=0,

I[u, v] '
M∑
i=0

κi

(
1

2
v2
i +

1

2
u2
x,i + 1− cos(ui)

)
.

In addition, we approximate the spatial derivatives with central differences. At the
endpoints, a periodic extension is assumed, yielding the approximation

Ip(u) =

M∑
i=0

κi

(
1

2
v2
i +

1

2

(
δui
δxi

)2

+ 1− cos(ui)

)
.

Here, δwi = wi+1 − wi−1 denotes central difference, with special cases δu0 = δuM =
u1 − uM−1, and δx0 = δxM = x1 − x0 + xM − xM−1. Taking the gradient of Ip(u) and
applying the AVF discrete gradient gives

∇Ip(un,un+1) =

1∫
0

∇uIp(ξun + (1− ξ)un+1)dξ
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Figure 1: Left : Illustration of kink-antikink solution. Right : Grid movement - each line
represents the path of one grid point in time.

The periodic boundary conditions are enforced by setting u0 = uM . In the implemen-
tation, the κi were chosen as the quadrature weights associated with the composite
trapezoidal rule, i.e.

κ0 =
x1 − x0

2
, κM =

xM − xM−1

2
, κi =

xi+1 − xi−1

2
, i = 1, ...,M − 1.

Furthermore, S was approximated by the matrix

Sd =

[
0 I
−I 0

]
,

with I an M ×M identity matrix. The exact solution considered was

u(x, t) = 4 tan−1

 sinh

(
ct√

1− c2

)
c cosh

(
x√

1− c2

)
 .

This is a kink-antikink system, an interaction between two solitons, each moving in
different directions with speed c ∈ (0, 1), resulting in two wave fronts traveling in opposite
directions. The wave fronts become steeper as c→ 1.

Figure 1 illustrates the analytical solution and shows the time evolution of the mesh
as obtained with the DGMM method. Note that the grid points cluster along the wave
fronts. The left hand side of Figure 2 shows the time evolution of the error Eun =
||uIn(x) − u(x, tn)||L2 , where uIn is a linear interpolant created from the pairs (un,xn).
The right hand side of Figure 2 shows the time evolution of the relative error in the
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Figure 2: Left : L2 error. Right : Relative error in Ip. Parameters: ∆t = 0.01, M = 300,
L = 30, c = 0.99.

discretized energy, EIn = (Ipn(un) − Ip0(u0))/Ip0(u0). We can see that the long-term
behaviour of the MP scheme is superior to that of the DG scheme, but when mesh
adaptivity is applied, the DGMM scheme is clearly better. Also note that while the DG
and DGMM schemes preserve Ip to machine precision, the MP scheme does not.

Figure 3 shows the convergence behaviour of the three schemes with respect to the
number of spatial discretization points M , and the number of time steps N . Note that
the DG and MP methods plateau at N ' 400; this is due to the error stemming from
spatial discretization dominating the time discretization error for these methods, while
the DGMM scheme has lower spatial discretization error. The convergence order of the
DGMM scheme was measured using a first order polynomial fitting of log(Eun) to log(M)
and log(N). The convergence order with respect to M was calculated as 1.518, and the
convergence order with respect to N was measured at 1.121.

Finally, to illustrate the applicability of the DGMM scheme to harder problems,
Figure 4 shows the error at stopping time of the methods as a function of a parameter
ε representing the increasing speed of the solitons (c = 1 − ε). From this plot, it is
appararent that while the non-adaptive MP scheme is competitive at low speeds, the
moving mesh method provides significantly more accuracy as c→ 1.

4.4 Korteweg–de Vries equation

The KdV equation is a nonlinear PDE with soliton solutions modelling shallow water
surfaces, stated as

ut + uxxx + 6uux = 0. (4.3)
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It has infinitely many first integrals, one of which is the Hamiltonian

H[u] =

∫
R

1

2
u2
x − u3dx.

With this Hamiltonian, we can write (4.3) in the form (2.3) with S and δH
δu as follows:

S =
∂

∂x
,

δH
δu

[u] = −uxx − 3u2.

We will apply the PUM approach to create a numerical scheme which preserves an
approximation to H[u], splitting Ω = [−L,L] into M elements {[xi, xi+1]}M−1

i=0 and using
Lagrangian basis functions ϕj of arbitrary degree for the trial space. Approximating u
by uh as in section 2.3, we find

Hp(u) = H[uh] =

∫
Ω

1

2
(uhx)2 − (uh)3dx

=
1

2

∑
j,k

ujuk

∫
Ω
ϕj,xϕk,xdx−

∑
j,k,l

ujukul

∫
Ω
ϕjϕkϕldx. (4.4)

The integrals can be evaluated exactly and efficiently by considering elementwise which
basis functions are supported on the element before applying Gaussian quadrature to
obtain exact evaluations of the polynomial integrals. We define

Dijk =

∫
Ω
ϕiϕjϕkdx and Eij =

∫
Ω
ϕi,xϕj,xdx.

The matrices A and B with

Aij =

∫
Ω
ϕiϕjdx and Bji =

∫
Ω
ϕiϕj,xdx

are formed in the same manner. Note that B is in this case independent of u. Applying
the AVF method yields the discrete gradient

∇Hp(un,un+1) =

1∫
0

∇uHp(ξun + (1− ξ)un+1)dξ

such that, with the convention of summation over repeated indices,

(∇Hp)i =
1

2
Eij(u

n
j + un+1

j )−Dijk(u
n
j (unk +

1

2
un+1
k ) + un+1

j (
1

2
unk + un+1

k )).

This gives us all the required terms for forming the system (2.15) and applying the
discrete gradient method to it. During testing, the ϕj were chosen as piecewise linear
polynomials. The exact solution considered is of the form

u(x, t) =
c

2
sech2

(√
c

2
(x− ct)

)
, (4.5)
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which is a right-moving soliton with c as the propagation speed, chosen as c = 6 in
the numerical tests. We have considered periodic boundary conditions on a domain
[−L,L]× [0, T ], with L = 100 in all the following results.

Our discrete gradient method on a moving mesh (DGMM) is compared to the same
method on a static, equidistributed mesh (DG), and the implicit midpoint method on
static (MP) and moving mesh (MPMM). The spatial discretization is performed the same
way in all cases. Figure 5 shows an example of exact and numerical solutions at t = 15.
Note that the peak in the exact solution will be located at x = ct.
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Analytic solution

Figure 5: Solutions at T = 15. ∆t = 0.01, M = 400. MP and DG are almost indistin-
guishable.

To evaluate the numerical solution, it is reasonable to look at the distance error

Edist
n = ctn − x∗,

where x∗ = argmax
x

uh(x, tn), i.e. the location of the peak in the numerical solution.
Another measure of the error is the shape error

Eshape
n =

∣∣∣∣∣∣∣∣uh(x, tn)− u
(
x,
x∗

c

)∣∣∣∣∣∣∣∣ ,
where the peak of the exact solution is translated to match the peak of the numerical
solution, and the shapes of the solitons are compared.

Figure 6 confirms that the DG and DGMM methods preserve the approximated
Hamiltonian (4.4), while it is also worth noting that in the case of the midpoint method,
the error in this conserved quantity is much larger on a moving than on a static mesh.
Similar behaviour is also observed for a moving-mesh method for the regularized long
wave equation in the recent paper [29], where it is concluded that a moving mesh method
with a conservative property would be an interesting research topic. Figure 7, where the
phase and shape errors are plotted up to T = 15, is an example of how the DGMM
method performs comparatively better with increasing time.
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Figure 8: Phase error (left) and shape error (right) as a function of the number of
elements M , at time T = 5. ∆t = 0.01.

In figures 8 and 9 we present the phase and shape errors for the different methods as
a function of the number of elements M and the number of time steps N , respectively.
Reference lines are included to give an indication of the rate of convergence. We also
calculated this for the DGMM method by first degree polynomial fitting of the error
curve, giving a convergence order of 1.135 for the phase error and 2.311 for the shape
error as a function of M . As a function of N , we get a convergence order of 1.492 for
the phase error, and 1.609 for the shape error (the latter measured up to N = 320,
where it flattens out). We observe that the DGMM scheme performs especially well,
compared to the other three schemes, for a coarse spatial discretization compared to the
discretization in time. In figure 10, the phase and shape errors are plotted as a function of
the parameter c in the exact solution (4.5), where we note that c

2 is the height of the wave;
increasing c leads to sharper peaks and thus a harder numerical problem. As expected,
the advantages of the DGMM method is less evident for small c, but we observe that the
DGMM method outperforms the static grid midpoint method already when c = 2.

4.5 Execution time

The code used is not optimized, so any quantitative comparison to standard methods has
not been performed; it is still possible to make some qualitative observations. Adding
adaptivity increases time per iteration slightly since the systems become more compli-
cated, especially in the case of the PUM approach where the matrices A and B need to
be recalculated, at each time step when adaptivity is used. This increases runtime some-
what when compared to fixed grid methods. However, adaptivity allows for using fewer
degrees of freedom, and so decreases the degrees of freedom needed for a given level of
accuracy. This accuracy gain is more pronounced the harder the problem is (steeper wave
fronts etc.), and so it stands to reason that there will be situations where adaptive energy
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Figure 9: Phase error (left) and shape error (right) at time T = 5, as a function of the
number of time steps N = T/∆t. M = 800.
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preserving methods will outperform non-adaptive and/or non-preserving methods. This
is in accordance with what we have observed from our not optimized experiments.

5 Conclusion

In this paper, we have introduced a general framework for producing adaptive first inte-
gral preserving methods for partial differential equations. This is done by first providing
two means of producing first integral preserving methods on arbitrary fixed grids, then
showing how to extend these methods to allow for adaptivity while preserving the first
integral. Numerical testing shows that moving mesh methods coupled with discrete gra-
dient methods provide good solvers for the sine-Gordon and Korteweg–de Vries equations.
It would be of interest to apply the method to higher-dimensional PDEs with a more
challenging geometry, preferably using the PUM approach, to investigate its accuracy
as compared to conventional methods, and to test whether h- and/or p-refinement pro-
vides a notable improvement. It may also prove fruitful to explore the ideas presented
in [23] to make the transfer operations between sets of discretization parameters in a
more natural setting than simply interpolating, as suggested in section 3.3. Further-
more, analysis of the methods considered here could provide important insight into e.g.
stability, consistency and convergence order.
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