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Abstract

The problem of multivariate exponential analysis or sparse interpola-
tion has received a lot of attention, especially with respect to the number
of samples required to solve it unambiguously. In this paper we show how
to bring the number of samples down to the absolute minimum of (d+1)n
where d is the dimension of the problem and n is the number of expo-
nential terms. To this end we present a fundamentally different approach
for the multivariate problem statement. We combine a one-dimensional
exponential analysis method such as ESPRIT, MUSIC, the matrix pencil
or any Prony-like method, with some linear systems of equations because
the multivariate exponents are inner products and thus linear expressions
in the parameters.

Keywords: exponential sum, multivariate, Prony’s method.
Mathematics Subject Classication (2010): 42B99, 42A15.

1 Introduction

Multivariate exponential analysis is a classical problem at the basis of many
application domains (such as, for instance, [13, 14, 27, 25]) that recently has
gained a lot of attention. The problem statement is that of recovering the
vectors φj ∈ Cd, j = 1, . . . , n and the coefficients αj ∈ C, j = 1, . . . , n in the
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d-variate n-sparse sum

f(x) := f(x1, . . . , xd) =

n
∑

j=1

αj exp (〈φj , x〉) ,

x = (x1, . . . , xd), φj = (φj1, . . . , φjd), 〈φj , x〉 =

d
∑

i=1

φjixi,

from (d+1)n samples of f(x1, . . . , xd), which is the minimal number of samples
because it equals the number of parameters in the problem statement.

When d = 1 then the problem can be solved using a variety of Prony-based
algorithms [2, 23, 20, 10], in which the identification of the φj and αj is separated
and taken care of in two stages. The frequencies φj , j = 1, . . . , n are obtained
from a generalized eigenvalue or polynomial rooting problem, while the linear
coefficients αj , j = 1, . . . , n are computed from a Vandermonde system of linear
equations [8, pp. 378–382]. Input to these algorithms are 2n samples of f(x)
at some equidistant points f(s∆), s = 0, . . . , 2n − 1. This number of samples
is minimal if n is known. Otherwise at least one more sample is required to
identify the sparsity n. For more details on the latter we refer to [11, 5].

Several computational methods were developed to solve the problem also
when d > 1, from straightforward generalizations to more sophisticated ap-
proaches, all of them using more than a minimum of (d + 1)n samples though.
It should be obvious to the reader that the challenge is not to recover inner
products 〈φj , x〉 and the associated coefficients αj for j = 1, . . . , n, from 2n
equidistant samples in higher-dimensional space. Under modest conditions this
can be achieved using the univariate techniques mentioned above. Instead, the
challenge is to recover the individual φji, j = 1, . . . , n, i = 1, . . . , d and the coef-
ficients αj . We describe the state of the art in multivariate exponential analysis
and explain how our approach differs from it.

The one-dimensional matrix pencil method was generalized to the 2-dimen-
sional matrix enhancement and matrix pencil method (MEMP) [9] and can be
extended to higher dimensions in a straightforward manner. It uses a Hankel-
block-Hankel matrix to decompose the 2-dimensional problem into two one-
dimensional problems reflecting each dimension. This decomposition introduces
an additional challenge though, namely that of matching or pairing the infor-
mation computed from the one-dimensional problems [19]. Moreover, when
constructing a uniform d-dimensional grid of sample points, the amount of in-
formation is O(nd).

Solving the problem along some one-dimensional subspace, in other words
computing some projection such as in [17, 18] requires only O(n) samples. Using
an adaptive sampling scheme and under some mild condition on the coefficients,
this remains valid in the 2-dimensional case [26]. However, in [6] is shown that
there is no finite set of (independently of f) predefined lines for which the
bivariate reconstruction problem has a unique solution. A lower bound for the
number of samples in the reconstruction when d = 2 is O(n2). In order to solve
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the pairing problem, [6] reformulates the problem as a non-convex optimization
problem, which is not computationally feasible for practical purposes.

Rather than projecting on one-dimensional subspaces, a symbolic approach
based on [22] is developed in [21] making use of constructive ideal theory and
multivariate polynomial interpolation. The largest number of required samples
in this setting is estimated to be O((d + 1)n2 log2d−2 n). In the same corner
one finds [12] and [16] which obtain the multivariate exponents as common
roots of a finite system of d-variate polynomials. Still making use of O(nd)
samples however, algebraic geometry theory now guarantees the correct pairing
and recovery.

The method we propose differs significantly from all of the above, not only in
its informational usage which can be as low as (d+1)n, but also in its approach
which only makes use of a 1-dimensional Prony technique combined with some
linear systems of equations because the individual φji appear linearly in the
〈φj , x〉. The presented multivariate exponential analysis technique results from
ideas that were initially formulated in [3, 4]: a so-called identification shift in the
sampling strategy allows to overcome any ambiguity in the exponential analysis.

After this state of the art of the literature, Sections 2 and 3 deal with the
ideal case where some mild assumptions are verified and only (d + 1)n evalua-
tions are necessary, thus generalizing Prony’s result where 2n samples solve a
univariate exponential analysis problem. In Section 4 the most general case is
detailed, requiring slightly more samples because the assumptions do not hold.
An analysis of the worst case scenario and an algorithm for the detection of
n is presented in Section 5. Finally, the new algorithm is illustrated with an
example in Section 6.

2 Multivariate exponential analysis

As surveyed in the introduction, up to now computational methods require more
samples than the minimal number, for one or other reason. We now explain how
the problem statement can also be solved in the multivariate setting using the
minimal number (d+1)n of samples. The trick to achieve this is to split the set
of samples in two subsets, namely 2n equidistant samples and another (d− 1)n
samples that may but need not be equidistant in the higher-dimensional space
(they cannot be entirely unstructured though). We discuss the use of the 2n
equidistant samples in this section and that of the additional (d− 1)n samples
in Section 3. For now we assume in the multivariate setting that the value of n
is known. How to detect n is further discussed in Section 5.

Let ∆ = (∆1, . . . ,∆d) 6= (0, . . . , 0) and |ℑφji| < π/|∆i|, j = 1, . . . , n, i =
1, . . . , d [15, 24], where the function i returns the imaginary part of a complex
number. Let us sample f(x1, . . . , xd) at the points s∆, s = 0, . . . , 2n− 1:

Fs := f(s∆1, . . . , s∆d), s = 0, . . . , 2n− 1. (1)

For the time being, we also assume that the sampling direction ∆ is such that
the values exp(〈φj ,∆〉), j = 1, . . . , n are mutually distinct. How to deal with
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collisions in these values is described in Section 4.
Following the univariate scheme [8, pp. 378–382] the coefficients βi, i = 0, . . .,

n− 1 of the polynomial

B(z) =

n
∏

j=1

(z − exp (〈φj ,∆〉)) = zn + βn−1z
n−1 + . . .+ β0 (2)

can be obtained from the n× n Hankel system of linear equations










F0 F1 · · · Fn−1

F1 · · · Fn

...
...

Fn−1 Fn · · · F2n−2

















β0

...
βn−1






= −







Fn

...
F2n−1






, (3)

or the roots exp(〈φj ,∆〉), j = 1, . . . , n of B(z) can be found as the generalized
eigenvalues λ of the problem










F1 F2 · · · Fn

F2 · · · Fn+1

...
...

Fn Fn+1 · · · F2n−1











v = λ











F0 F1 · · · Fn−1

F1 · · · Fn

...
...

Fn−1 Fn · · · F2n−2











v, v ∈ C
n.

(4)
So we can recover the expressions exp(Φj) where

Φj = 〈φj ,∆〉, j = 1, . . . , n. (5)

Although we have not yet identified the individual φji, j = 1, . . . , n, i = 1, . . . , d,
nothing prevents us from already computing the linear coefficients αj from one
of the n× n Vandermonde systems







exp(kΦ1) exp(kΦ2) · · · exp(kΦn)
...

...
exp((k + n− 1)Φ1) exp((k + n− 1)Φ2) · · · exp((k + n− 1)Φn)













α1

...
αn







=







Fk

...
Fk+n−1






, 0 ≤ k ≤ n. (6)

The latter can also be replaced by the 2n × n Vandermonde system involving
all samples, which is then solved in the least squares sense, as recommended in
the case of real-life and hence noisy data.

3 Identification shifts

In order to extract the φji, j = 1, . . . , n, i = 1, . . . , d from the Φj , j = 1, . . . , n,
still under the assumption that the values exp(Φj), j = 1, . . . , n are mutually
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distinct, some additional samples are required. For this purpose we choose a
set {∆, δ1, . . . , δd−1} of d linearly independent vectors in Cd. The additional
samples are taken along a linear combination of ∆ and some δi, i = 1, . . . , d− 1:

Fℓi := f(κℓi∆+ δi) = f(κℓi∆1 + δi1, . . . , κℓi∆d + δid),

ℓ = 1, . . . , n, i = 1, . . . , d− 1 (7)

where the κℓi, ℓ = 1, . . . , n for fixed i are taken to be mutually distinct. A simple
choice for κℓi for all i is κℓi = ℓ − 1. Then the additional samples are taken
equidistantly along independent shifts δi with respect to the original vector ∆,
in other words Fℓi = f((ℓ − 1)∆ + δi). At the same time we assume that

|ℑ〈φj , δi/||δi||〉| < π/||δi||, j = 1, . . . , n, i = 1, . . . , d

in order to comply with the Shannon-Nyquist conditions formulated in [15, 24].
We call these vectors δi, i = 1, . . . , d−1 identification shifts for reasons that will
become apparent: they allow to identify the individual φji from the computed
Φj . For this identification we exploit the fact that the φji appear linearly in the
Φj and hence we turn our attention to systems of linear equations rather than
to multivariate polynomial root solving or structured generalized eigenvalue
problems.

Consider for fixed i = 1, . . . , d−1, meaning for a chosen linearly independent
shift vector δi, the following Vandermonde-like system of linear equations:



















exp(κ1iΦ1) exp(κ1iΦ2) · · · exp(κ1iΦn)

exp(κ2iΦ1) · · · exp(κ2iΦn)
...

...

exp(κniΦ1) · · · exp(κniΦn))

























A1i

...
Ani






=







F1i

...
Fni






. (8)

Since we know exp(Φj), j = 1, . . . , n and have chosen κℓi, ℓ = 1, . . . , n, with i
fixed, the Vandermonde-like coefficient matrix can easily be composed. Note
that for the choice κℓi = ℓ−1 the Vandermonde-like coefficient matrix coincides
with that of (6) where k = 0. The unknowns Aji, j = 1, . . . , n come from a
reinterpretation of the samples Fℓi as

Fℓi = f(κℓi∆+ δi) =
n
∑

j=1

αj exp (〈φj , δi〉)) exp (〈φj , κℓi∆〉) , ℓ = 1, . . . , n

with
Aji = αj exp (〈φj , δi〉)) , j = 1, . . . , n

and
exp(κℓiΦj) = exp (〈φj , κℓi∆〉) , ℓ, j = 1, . . . , n.
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The values Aji/αj equal

Aji

αj

= exp (〈φj , δi〉) , j = 1, . . . , n,

which we denote by

exp(Φji) := exp (〈φj , δi〉) , j = 1, . . . , n.

Here the index i is still fixed. Note that we have no problem to pair the Φji to
the Φj , j = 1, . . . , n since for each i the Aji are paired to the αj , j = 1, . . . , n
through the Vandermonde-like systems (6) and (8).

By setting up (8) for each i = 1, . . . , d − 1 and pairing its solution with Φj

in (5), we obtain for fixed j = 1, . . . , n the linear system of equations











∆1 · · · ∆d

δ11 · · · δ1d
...

...
δd−1,1 · · · δd−1,d

















φj1

...
φjd






=











Φj

Φj1

...
Φj,d−1











. (9)

Since the vectors ∆ and δi, i = 1, . . . , d− 1 are linearly independent, the coeffi-
cient matrix of (9) is regular and so the individual φji, j = 1, . . . , n, i = 1, . . . , d
can be computed, at the expense of 2n evaluations Fs in (1) and (d − 1)n
evaluations Fℓi in (7).

Before we continue we point out that (as is clear from the semantics of the
formulas) we can also denote ∆ as δ0, Fs as Fs0 and Φj as Φj0.

4 Disentangling collisions

We now turn our attention to the situation in which the first batch of samples
Fs at multiples of the vector ∆ does not reveal all individual terms because some
values exp(Φj), j = 1 . . . , n collide and the exponential sum shrinks to ν < n
terms. For ease of notation, but without loss of generality, we take the colliding
terms to be successive, for instance: exp(Φ1) = . . . = exp(Φh1

), exp(Φh1+1) =
. . . = exp(Φh2

), . . . , exp(Φhν−1+1) = . . . = exp(Φn). Assume that with 0 ≤ s ≤
2ν − 1, ν ≤ n the exponential samples break down into

Fs =

ν
∑

j=1

(

αhj−1+1 + . . .+ αhj

)

exp
(

〈φhj
, s∆〉

)

,

h0 = 0, hj < hj+1, hν = n (10)

because
exp(Φhj−1+1) = . . . = exp(Φhj

), j = 1, . . . , ν.

Since |ℑφji| < π/|∆i|, j = 1, . . . , n, i = 1, . . . , d, we actually have

Φhj−1+1 = · · · = Φhj
, j = 1, . . . , ν.
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The Vandermonde system (6) now becomes







exp(kΦh1
) · · · exp(kΦhν

)
...

...
exp((k + ν − 1)Φh1

) · · · exp((k + ν − 1)Φhν
)













α1 + . . .+ αh1

...
αhν−1+1 + . . .+ αhν







=







Fk

...
Fk+ν−1






, 0 ≤ k ≤ ν. (11)

Note that at the same time, the degree of the polynomial B(z) in (2) is only
ν. How this is detected and how the true n is revealed is discussed in the next
section. To proceed we denote

Aj := αhj−1+1 + . . .+ αhj
, j = 1, . . . , ν. (12)

To disentangle the collisions in the exponential sum, we need additional
evaluations besides the minimal number (d + 1)n. At the end of Section 5 we
also explain how these additional evaluations allow to deal with the situation
where some Aj = 0.

We start with i = 1 and the identification shift vector δ1. First we point
out how the Vandermonde-like system (8) of Section 3 looks like in case of
such collisions: in the coefficient matrix the value n is replaced by ν and in
Φj the index j is replaced by hj . With the collisions in (10), the unknowns
Aj1, j = 1, . . . , ν take the form

Aj1 = αhj−1+1 exp
(

〈φhj−1+1, δ1〉
)

+ . . .+ αhj
exp

(

〈φhj
, δ1〉

)

, j = 1, . . . , ν.

In the sequel we denote from here on the additional evaluations Fℓ1 mentioned
in Section 3 by

F1ℓ1 := Fℓ1 = f(κℓ1∆+ δ1), ℓ = 1, . . . , ν

and we add, still with i = 1, the samples

Fsℓ1 := f(κℓ1∆+sδ1), s = 2, 3, . . . , 2 max
1≤j≤ν

(hj−hj−1), ℓ = 1, . . . , ν, i = 1.

The triple index expresses the shift vector multiple in the index s, the collision
into ν piles of the Φj in the index ℓ, and the identification level in i (which is
i = 1 here).

Since the values of hj are actually unknown, the addition of samples is done
further and interlaced with singularity checks of some Hankel matrices, as we
explain now. The checks are performed for each collision or pile hj and later
repeated for each i. Collisions in the space spanned by ∆ may not be fully
disentangled in the space spanned by ∆ and δ1, but they are gradually being
disentangled as we add independent vectors δi until we span the whole space.
At the last stage, when dealing with the full basis ∆, δ1, . . . , δd−1, the true
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n is revealed because in the end all collisions are taken apart, given enough
additional samples. For the moment we continue with i = 1.

For each s separately, we set up in analogy with (8), the Vandermonde-like
system



















exp(κh11Φh1
) exp(κh11Φh2

) · · · exp(κh11Φhν
)

exp(κh21Φh1
) · · · exp(κh21Φhν

)
...

...

exp(κhν1Φh1
) · · · exp(κhν1Φhν

)

























As11

...
Asν1






=







Fs11

...
Fsν1







(13)
where

Asj1 = αhj−1+1 exp
(

〈φhj−1+1, sδ1〉
)

+ . . .+ αhj
exp

(

〈φhj
, sδ1〉

)

,

j = 1, . . . , ν. (14)

Note that the coefficient matrix is independent of s. Also, the former unknowns
Aj and Aj1 can as well be indexed as A0j1 and A1j1 respectively, and so (13)
and (14) remain valid for s = 0, 1, which is important for the sequel. The values
Aj from (12) and Asj1, s ≥ 1 from (14) are actually equidistant samples of the
function

Aj1(x) =Aj1(x1, . . . , xd)

=αhj−1+1 exp
(

〈φhj−1+1, x〉
)

+ . . .+ αhj
exp

(

〈φhj
, x〉

)

,

j = 1, . . . , ν, (15)

taken at x = sδ1, s ≥ 0. For each fixed j = 1, . . . , ν we now put together the
Hankel matrix





















A0j1 A1j1 A2j1 A3j1 . . .

A1j1 A2j1 A3j1 . . .

A2j1 A3j1 A4j1 . . .

A3j1

...
...

...





















. (16)

Note that in order to enlarge (16) with one row and column for a particular
j, one needs to solve (13) for two additional values of s, thereby obtaining the
additional Asj1 for all 1 ≤ j ≤ ν.

It is known that the rank of any (hj − hj−1 + t)× (hj − hj−1 + t) submatrix
for finite t ≥ 0 is bounded by hj−hj−1 [11, 5] since hj−hj−1 equals the number
of terms in each of the evaluations Aj , Asj1, s ≥ 1. The actual rank rj of the
(hj −hj−1)× (hj −hj−1) submatrix with Aj in the top left corner tells us (with
high probability [11]) how many of the hj − hj−1 terms in Aj(x) can indeed be
separated at the current level (i = 1) where identification shift δ1 is brought
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into the picture. The value of rj is discovered as one adds samples Fsℓ1, solves
(13) and enlarges (16) step by step. This explains why we need to add samples
Fsℓ1 until s reaches 2maxj(hj − hj−1) or until for all j the rank rj is known.
How do we proceed to extract the coefficients and exponential parameters from
(15) and disentangle the collisions?

For j fixed, rj of the individual terms

αhj−1+k exp(〈φhj−1+k, δ1〉), k = 1, . . . , hj − hj−1, 1 ≤ rj ≤ hj − hj−1

of Aj1(x) can be deduced from the samples Aj , Asj1, s ≥ 1 of Aj1(x) using one
of the Prony-like methods [2, 23, 20, 10] which were already mentioned to solve
for (5) from (3) or (4) and compute the coefficients from (6). We remark that
when rj < hj−hj−1 then some collisions in Aj1(x) still remain indistinguishable
in the space spanned by ∆ and δ1.

For the sake of completeness we explicitly give the generalized eigenvalue
problems that lead to the identification of 1 ≤ rj ≤ hj − hj−1 terms in Aj(x):











A1j1 A2j1 · · · Arj ,j1

A2j1 A3j1 · · · Arj+1,j1

...
...

Arj ,j1 Arj+1,j1 · · · A2rj−1,j1











v

= λ











A0j1 A1j1 · · · Arj−1,j1

A1j1 A2j1 · · · Arj ,j1

...
...

Arj−1,j1 Arj ,j1 · · · A2rj−2,j1











v, v ∈ C
rj .

After disentangling at i = 1, at least partially, some of the collisions, we
can update the number of terms in the exponential model from ν to µ ≥ ν and
reduce the collisions to

Fs =

µ
∑

j=1

(

αgj−1+1 + . . .+ αgj

)

exp
(

〈φgj , s∆〉
)

,

g0 = 0, gj < gj+1, gµ = n.

It is clear that the previous indices hj , j = 1, . . . , ν are among the gk, k =
1, . . . , µ but remember that we don’t know the values hj or gk explicitly. We
only know that for some j a collision from index hj−1 + 1 to hj , 1 ≤ j ≤ ν
may have split into separate piles indexed by some gk and gk+1, 1 ≤ k ≤ µ. At
this moment in the procedure, namely at the completion of step i = 1, we have
computed

exp(Φgk1), Φgk1 := 〈φgk , δ1〉, k = 1, . . . , µ.

Because |ℑ〈φj , δ1/||δ1||〉| < π/||δ1||, j = 1, . . . , n we in fact obtained all the
values

Φgk−1+1,1 = · · · = Φgk,1, k = 1, . . . , µ, g0 = 0, , gµ = n

9



which we need later on in combination with the

Φhj−1+1 = · · · = Φhj
, j = 1, . . . , ν ≤ µ

to identify the individual φji as in (9).
We now explain how to move from i to i+1. The first thing is to find proper

locations for the samples involving the next identification shift δ2. Some care
needs to be taken with respect to the regularity of the Vandermonde matrices
involved. For i = 2 we collect

Fsℓ2 := f(κℓ2(∆ + δ1) + sδ2),

s = 1, . . . , 2 max
1≤j≤µ

(gj − gj−1), ℓ = 1, . . . , µ, i = 2. (17)

Let us denote
Ωgj1 := Φgj +Φgj1, j = 1, . . . , µ.

Note that the sum is a direct consequence of the choice ∆+ δ1 in (17), which is
briefly discussed below. Similarly to (13) we write down, for each s separately,



















exp(κg12Ωg11) exp(κg12Ωg21) · · · exp(κg12Ωgµ1)

exp(κg22Ωg11) · · · exp(κg22Ωgµ1)
...

...

exp(κgµ2Ωg11) · · · exp(κgµ2Ωgµ1)

























As12

...
Asµ2






=







Fs12

...
Fsµ2







(18)
where

Asj2 = αgj−1+1 exp
(

〈φgj−1+1, sδ2〉
)

+ . . .+ αgj exp
(

〈φgj , sδ2〉
)

,

j = 1, . . . , µ. (19)

From here it is clear how to finalize the i = 2 phase and how to proceed to the
next value of i. We point out that instead of the linear combination ∆ + δ1 in
(17), any linear combination c∆+eδ1 with ce 6= 0 that guarantees the regularity
of the coefficient matrix in (18) can be used (then the definition of Ωgj also needs
to be adapted). This option may be useful as it allows to control the location
of the sample points for numeric purposes or so.

To round up this section, we summarize the algorithm that recovers the
vectors φj and coefficients αj for j = 1, . . . , n in case of possible collisions of
inner products with the chosen directional vectors ∆, δi, i = 1, . . . , d− 1. Before
we proceed, we further adapt our notation. Let

δ0 := ∆,

ν−1 := 0,

ν0 := ν,

ν1 := µ

10



Our first aim is to identify all the inner products Φji = 〈φj , δi〉, j = 1, . . . , n, i =
0, . . . , d− 1, including possible collisions. This is done by making use of succes-
sively collected samples, namely

Fsℓi = f (κℓi(δ0 + . . .+ δi−1) + sδi) ,

s = 0, 1, 2, . . . ℓ = 1, 2, . . . , νi−1, i = 0, . . . , d− 1,

where we assume that empty sums equal zero and values in an empty range
need not be specified. The samples are collected by fixing the indices from the
right to the left: at identification level i, collision or pile ℓ is being sparsely
interpolated using the samples collected at shift multiples s. Here νi indicates
the number of non-coinciding inner products at identification level i. Remember
that s is running up to twice the number of terms in expression Aℓi(x) at level i
(for i = 1 this is given in (15) and it is straightforward to imagine how it looks
like for general i). We remind the reader that only the evaluation at multiples
of δi, i ≥ 0 needs to follow an equidistant scheme. The values κℓi need not
be like that. We also mentioned earlier that the sum δ0 + . . . + δi−1 can be
replaced by another linear combination. The only crucial element is that the
δi, i ≥ 0 are linearly independent. The latter will precisely allow us to identify
the vector components φji, j = 1, . . . , n, i = 1, . . . , d from the inner products
〈φj , δi〉, j = 1, . . . , n, i = 0, . . . , d− 1 as in (9).

5 Detecting the sparsity

The minimal number of (d+1)n samples only delivers the parameters αj , φji, j =
1, . . . , n, i = 1, . . . , d if the value of n is somehow known a priori and no collision
of values exp(Φj), j = 1, . . . , n occurs. In the previous section we described how
to deal with eventual collisions. Here we detail how to detect the value of n
should it not be given. In addition, we analyze how many samples are needed
in the worst case when neither n is known nor the projections are collision free.

While collecting the samples Fs = f(s∆) and building the Hankel matrices
in (3) or (4), the rank of the Hankel matrix reveals (with high probability [11])
the number ν of terms that do not collide when evaluating in the space spanned
by the vector ∆. To this end we need at least 2ν + 1 values so that we can
compose the (ν + 1)× (ν + 1) Hankel matrix







F0 . . . Fν

...
...

Fν . . . F2ν







and conclude that it is singular [7, 1, 11].
From ν and (3) or (4) we proceed to collect the samples F1ℓ1 (s = 1) and F2ℓ1

(s = 2), another 2ν in total (ℓ = 1, 2, . . . , ν). If all 2× 2 Hankel matrices of the
form (16) are singular, then every collision remains indistinguishable (unless the
zero determinant was an unfortunate coincidence [11]) also in the space spanned
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by ∆ and δ1. However, if for some j the 2 × 2 matrix (16) is regular, then we
have to proceed to the next values for s (s = 3, 4), collect another 2ν values
in total, and find out how many terms actually can be revealed in the space
spanned by ∆ and δ1. We proceed until we find no larger matrices of the form
(16) that are regular. Only after working ourselves through all regular matrices
of the form (16) with δ1 (i = 1) we can update ν to µ ≥ ν.

And then we bring the next identification shift vector δ2 in the picture. We
collect the samples Fsℓ2 (s = 1, 2) as in (17) and compose matrices similar
to (16) but now with the last index in the Asj1 replaced by i = 2 and with
Asj2 defined as in (19). The inspection of the Hankel matrices containing the
values computed for Asj2 is identical to the procedure described in the previous
paragraph for i = 1. If required, as before, we add more samples for larger
values of s.

Finally, by the time we reach i = d− 1 we can update the number of terms
to the true value for n. Now how many samples has this cost us? When n is
known a priori and we do not run into collisions or cancellations, which with
high probability do not occur, the algorithm presented in Section 3 uses only

(d+ 1)n

samples. Next, we look at the situation where collisions occur and Section 4 is
put to work (how to deal with possible cancellations is dealt with at the end of
this section). Also the sparsity n is not given. The Aj and Φhj

with j = 1, . . . , ν
in (10) are retrieved from O(ν) samples where ν ≤ n. In Aj , 1 ≤ j ≤ ν there are
hj −hj−1 terms colliding, where each hj −hj−1 ≤ n− ν+1. To disentangle the
terms in Aj we need O(hj−hj−1) samples and so we need at mostO(ν(n−ν+1))
samples to disentangle all Aj , j = 1, . . . , ν. Note that we have overestimated
each hj − hj−1 by n − ν + 1, while if one hj − hj−1 = n − ν + 1, all others
equal 1. The procedure is repeated when working with the identifications shifts
δ1, . . . , δd−1, leading us to a grand total of

O

(

(d+ 1) max
1≤ν≤n

ν(n− ν + 1)

)

. (20)

Remains to discuss the issue of a vanishing Asji. For simplicity, but without
loss of generality, we discuss the situation where one of the coefficients Aj given
by (12) vanishes, in other words Aj = Aj1(0) = 0 with Aj1(x) given by (15).
So besides encountering a collision, the result of the collision is now also zero.

If some Aj = 0 then the rank of the matrices in (4) is less than ν and will
not reveal the correct value for ν. Of course, the accidental cancellation of a
coefficient Aj happens only with very small probability. It suffices either to
probe f(x1, . . . , xd) along another (random) choice for the vector ∆ [28, 11],
or if one absolutely wants to extract the information 〈φj ,∆〉 for the originally
chosen ∆, to probe f(x1, . . . , xd) along one or more (random) parallel shifts of
∆, as in

Fs := f(s∆1 + kǫ, . . . , s∆d + kǫ), s = 0, . . . , n, k = 1, 2, . . . (21)
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Such a shift affects the coefficient Aj in that it changes from Aj(0) to

Aj(kǫ) = αhj−1+1 exp
(

〈φhj−1+1, kǫ〉
)

+ . . .+ αhj
exp

(

〈φhj
, kǫ〉

)

.

The rank of the matrices in (4) when filled with the values in (21) either confirms
the already computed rank ν or reveals a higher and more probably correct
rank ν. The random probing or parallel translation can be added to every step
i = 0, . . . , d − 1 in the procedure when selecting δ0 = ∆, δ1, . . . , δd−1 without
impacting our data usage analysis in (20).

All the above is now illustrated with an example in which we take the reader
through the entire process, first collision-free, then including collision disentan-
glement.

6 Numerical illustration

We take d = 2, write u := x1, v := x2, x = (u, v)t and consider the exponential
sum

f(u, v) =

4
∑

j=1

αj exp(〈φj , x〉)

with

φ1 = (−0.5, 1 + i2π × 0.5),

φ2 = (0.1 + i2π × 3.4, 1.5 + i2π × 5.2),

φ3 = (0.1 + i2π × 3.4,−0.5 + i2π × 12.6),

φ4 = (−2.5 + i2π × 23.2,−10+ i2π × 82.3),

α1 = 1.7 exp(i2π/10),

α2 = 1.1 exp(i2π/20),

α3 = 0.9,

α4 = 9.2 exp(i2π/2).

When outputting numerical results for this small scale example, we round all
values to 4 significant digits (all relative errors are less than 5 × 10−4). The
numerical effect of the choice of the vectors ∆ and δi throughout the process,
and that of the underlying one-dimensional Prony-like method in use, is beyond
the scope of this paper and will be the subject of further investigations.

First we show the simple case described in the Sections 2 and 3, where the
number of terms n = 4 is known up front and no collisions of the inner products
in the samples occur. Of course, the latter is hard to predict in practice.

We take ∆ = (0.01, 0.01) and δ1 = (−0.01, 0.01). Using 8 equidistant eval-
uations at x = s∆, s = 0, . . . , 7, we obtain from (4) the values of exp(Φj) and
can deduce the Φj , j = 1, . . . , 4 because |ℑφji| < π/|∆i|:

Φ1 =< φ1,∆ >≈ 0.005000+ 0.03142i,

Φ2 =< φ2,∆ >≈ 0.01600 + 0.5404i,

Φ3 =< φ3,∆ >≈ −0.004000+ 1.005i,

Φ4 =< φ4,∆ >≈ −0.1250 + 0.3456i.
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We obtain the coefficients αj , j = 1, . . . , 4 from (6):

α1 ≈ 1.700 exp(i2π × 0.1000),

α2 ≈ 1.100 exp(i2π × 0.05000),

α3 ≈ 0.9000

α4 ≈ 9.200 exp(i2π × 0.5000).

From 4 additional evaluations along the identification shift δ1, we obtain the
values of exp(Φ11), exp(Φ21), exp(Φ31), exp(Φ41) from (8). Their exponents are
the projections of the vectors φj along δ1:

Φ11 =< φ1, δ1 >≈ 0.01500+ 0.03142i,

Φ21 =< φ2, δ1 >≈ 0.01400+ 0.1131i,

Φ31 =< φ3, δ1 >≈ −0.006000+ 0.5781i,

Φ41 =< φ4, δ1 >≈ −0.07500+ 3.713i.

We finally obtain the values of φj = (φj1, φj2)
t by solving for each j = 1, . . . , 4

(

∆1 ∆2

δ11 δ12

)(

φj1

φj2

)

=

(

Φj

Φj1

)

.

This leads to the following numerical approximations for the φj :

φ1 ≈ (−0.5000, 1.000+ i2π × 0.5000),

φ2 ≈ (0.1000 + i2π × 3.400, 1.500+ i2π × 5.200),

φ3 ≈ (0.1000 + i2π × 3.400,−0.5000+ i2π × 12.60),

φ4 ≈ (−2.500 + i2π × 23.20,−10.00+ i2π × 82.30).

So far we have used 12 samples in total, which indeed equals (d+1)n. Next we
deal with the situation in which neither n is known, nor the assumption of the
non-collision holds.

One additional evaluation in the first batch, at x = 8∆, would ideally (mean-
ing that the numerical rank is easy to detect) and with high probability (mean-
ing that we don’t accidentally hit a root of the determinant) have revealed that
n = 4, still under the assumption that no collisions occur at the inner products.
But let us instead move to other directions ∆ and δ1 that get us in trouble
because of colliding inner products.

Take ∆ = (0.03, 0) and δ1 = (0, 0.01). The projections of φ2 and φ3 along
∆ clearly coincide. After 7 evaluations at x = s∆, s = 0, . . . , 6 we found that
ν0 = 3 and we obtain from (11) that (without actually knowing the values of
the hj which we list only to help the reader follow the example):

Φh1
=< φ1,∆ >≈ −0.01500,

Φh2
=< φ3,∆ >≈ 0.003000+ 0.6409i,

Φh3
=< φ4,∆ >≈ −0.07500+ 4.373i.
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We proceed without knowing n and without knowing whether and where some
collisions have occurred. But we know, since d = 2, that after adding an inde-
pendent shift vector δ1, all terms will have revealed themselves.

So we add evaluations Fsℓ1 = f(κℓ1∆+ sδ1) with ℓ = 1, 2, 3 and s = 1, 2, . . .
For simplicity we choose κℓ1 = ℓ − 1. With ℓ = 1 and s = 1, 2 we find that the
matrix

(

A1 A111

A111 A211

)

,

where the Asji are computed from (14), has rank 1 and so h1 = 1 = g1. With
ℓ = 2 and s = 1, 2, 3, 4 we find that the matrix





A2 A121 A221

A121 A221 A321

A221 A321 A421





has rank 2. This indicates with high probability that there are 2 terms coinciding
at Φh2

(hence h2 = 3 and g2 = 2, g3 = 3). Remember that in order to obtain
As21, 1 ≤ s ≤ 4, we need to solve (13) which involves the samples Fsj1, 1 ≤ j ≤ 3.
Hence, continuing the sampling for ℓ = 2 drags along ℓ = 1, 3 at the same time.
In other words, we are now spending 3 × 4 samples for ℓ = 1, 2, 3 rather than
only 4 samples for ℓ = 2.

We now reveal 〈φ2, δ1〉 and 〈φ3, δ1〉 by solving the generalized eigenvalue
problem

(

A121 A221

A221 A321

)

v = λ

(

A2 A121

A121 A221

)

v.

With ℓ = 3 and s = 1, 2 we find the same conclusion as with ℓ = 1, now for

(

A3 A131

A131 A231

)

,

and so ν1 = 4 with h3 = 4, g4 = 4.
At the expense of a total of (2× 3+1)+3× 4 = 19 evaluations, we find that

n = 4 and we can identify all φji and αj for j = 1, . . . , 4 and i = 1, 2.

7 Conclusion

In 1795 the French scientist G. de Prony showed that a univariate linear com-
bination of n exponential terms with unknown real but mutually distinct expo-
nents could be fitted uniquely to 2n data samples. His result solves the d = 1
case of this paper. The current paper is the first of its kind where this re-
sult is proven to hold for general d > 1: a multivariate linear combination of
n exponential terms with unknown inner product exponents can, under mild
conditions, be fitted using only (d+ 1)n data.
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