arXiv:1704.01939v3 [math.NA] 22 Dec 2017

Adaptive mesh selection asymptotically guarantees a
prescribed local error for systems of initial value
problems '

Bolestlaw Kacewicz 2

Abstract

We study potential advantages of adaptive mesh point selection for the solution of systems of
initial value problems. For an optimal order discretization method, we propose an algorithm
for successive selection of the mesh points, which only requires evaluations of the right-hand
side function. The selection (asymptotically) guarantees that the maximum local error of
the method does not exceed a prescribed level. The usage of the algorithm is not restricted
to the chosen method; it can also be applied with any method from a general class. We
provide a rigorous analysis of the cost of the proposed algorithm. It is shown that the
cost is almost minimal, up to absolute constants, among all mesh selection algorithms. For
illustration, we specify the advantage of the adaptive mesh over the uniform one. Efficiency
of the adaptive algorithm results from automatic adjustment of the successive mesh points
to the local behavior of the solution. Some numerical results illustrating theoretical findings

are reported.

Mathematics Subject Classification: 65L05, 65150, 65L70

! This research was partly supported by the Polish NCN grant - decision No. DEC-2017/25/B/ST1/00945
and by the Polish Ministry of Science and Higher Education

2AGH University of Science and Technology, Faculty of Applied Mathematics,
Al. Mickiewicza 30, paw. A3/A4, III p., pok. 301,

30-059 Cracow, Poland

E-mail B. Kacewicz: kacewicz@agh.edu.pl

http://arxiv.org/abs/1704.01939v3

1 Introduction

We deal with the solution of systems of initial value problems (IVPs)

Z(t) = f(t,2(1), telab], z(a)=mn, (1)

where a < b, n € R% and f : [a,b] x R = R%is a C" function. We study how much adaptive
mesh points improve efficiency of algorithms for solving (1). For many years, adaption has
been a standard tool in numerical packages. Well known examples include the package
QUADPACK [8] for numerical integration, or, among other solvers, the DIFSUB procedure
by C.W. Gear or the library ODEPACK by A. Hindmarsh for IVPs. Many authors have
reported superiority of adaption over nonadaption for (1), based on numerical results for
a number of computational examples. One can cite as an example papers such as [3], [6]
or [7]. Practical efficiency gives us considerable knowledge about the power of adaption.
Conclusions are however not complete; an analysis of theoretical aspects is missing in many
cases of step size control strategies. For instance, most often, step size control devices are
not supported by cost analysis. The use of variable step size not only improves the efficiency
of methods for solving regular problems (1), but it also allows us to manage singularities.
Considerable progress has been made in rigorous analysis of adaption in that case, see e.g.
[5], [10]. Adaption allows us in many cases to maintain for singular problems the order of
convergence known from the regular case.

Advantages of adaption for regular problems are of different type. Integration of scalar
C* functions by the Simpson rule have been recently studied in [9]. Tt is shown in [9]
that adaption does not improve the order of convergence, but it can reduce the asymptotic
constant of the method. In the similar spirit, adaption has been considered for univariate
approximation and minimization in [1]. For scalar autonomous problems (1), adaptive mesh
selection has been recently studied in [4]. An adaptive strategy has been proposed and the
cost analyzed, based on specific properties of scalar autonomous equations. The particular
technique used does not allow us to extend the results from [4] to systems of IVPs.

In the present paper, we consider general systems (1), with a C" right-hand side function f.

Our contribution can be summarized as follows:

e For a maximal order method for solving the system (1), we propose a new mesh se-
lection algorithm that guarantees the local error of the method at a precribed level ¢,
for sufficiently small € € (0,1). At each time step, we select the step size and compute
an approximation to the solution, which requires two runs of the basic method. Infor-

mation about the function f only consists of function evaluations. We show that the

mesh selection algorithm can be applied to a general class of methods for solving (1).

e We rigorously analyze the cost of the method equipped with the mesh selection proce-
dure. We show that the cost is minimal among all mesh selection strategies, provided

that we accept some absolute constants.

e We specify in a quantitative way an advantage of the adaptive mesh over the uniform

one.

The adaptive mesh selection for systems (1) does not improve the speed of convergence of
algorithms. A potential gain of adaption lies in reducing a coefficient in the error bound.

The paper is organized as follows. We formulate the problem in Section 2. An algorithm ¢*
with maximal order is defined in Section 3, and the error analysis is given in Theorem 1.
In Section 4, we discuss upper bounds on the local error of ¢*, in particular, we show a
constructive upper bound in Theorem 2. Section 5 contains the main algorithm ADAPT-
MESH which combines ¢* with a new mesh selection algorithm. A generalization of the
algorithm ADAPT-MESH is given in Section 6. Section 7 contains a cost analysis of the
algorithm ADAPT-MESH compared to other algorithms, see Theorem 3. Possible advantage
of the adaptive mesh over the uniform one is discussed in detail. Finally, some results of

numerical experiments are reported in Section 8.

2 Problem formulation

We consider problem (1) with a continuous function f : [a, b] x R? — R? such that for some
L>0
I£(ty) — £ < Lily— 3]l fort € [a,8], .5 € R)

Here and in what follows || - || denotes the maximum norm in R%. Tt follows that there exists
a unique solution z of (1) defined on [a, b]. Let r > 1. We assume that f is a regular function
in a subset of its domain, f € C"([a,b] x D), where

D={yeR": |yl < sup [|z(t)] +1}. (3)
tela,b]
The class of functions f satisfying the above assumptions will be denoted by F;.
Let m € N. We wish to compute an approximation to the solution z in [a,b]. For m + 1
mesh points a = 2o, < T1m < ... < Ty, = b, we do it by computing approximations /; to

z in the subintervals (%, Tit1,m), ¢ =0,1,...,m — 1.

3

Let ¢(m) be any nonincreasing sequence convergent to 0 as m — oo. We consider for any f
a class of partitions of [a, b] defined as follows. We assume that there exist K = K(f,a,b,n)
and ko = ko(f, a,b,n) such that for all m > k¢ and any partition it holds

max (Tip1m — Tim) < K L(m). (4)

0<i<m—1

Thus, the partitions under consideration are uniformly normal. Note that we always have
0<€g%<_1(xi+1,m — Tim) > (b—a)/m for any m > 1. Thus, the condition (4) implies that
¢(m) cannot go to zero faster than 1/m. Note that the convergence of ¢(m) to zero can be
arbitrarily slow, and the constant K can be arbitrarily large. We shall omit in the sequel the
second subscript m, remembering that the choice of points x; can be different for varying m.

For a given y; € R%, we denote by z; the solution of a local problem

zi(t) = f(t,z:(t), t€[vi,wina], 2i(wi) = i (5)

If I; is an approximation to z; given by a certain method, then local errors of the method
are given by

te[l‘i,xprl]
Our aim is to select possibly small m and mesh points {z;}", such that the local errors

remain at a precribed level € > 0.

3 The basic method ¢* and its error

The basic method makes use of the approximate Picard iteration, an idea that turned out
useful in several contexts, see e.g. [2], [5]. Let m €e Nand g =a < 213 < ... < 2, = b
be mesh points satisfying (4). Let yo = n. For a given y;, we define approximations /; ; in
[xi, x;11] as follows.

We set [;o(t) = y;. Let [;; be given. Denote by tg,t1,...,t,_1 the equidistant nodes in
[, X1 1], with tg = z; for r = 1 and ¢ty = x4, t,_1 = z;41 for r > 2. (The points ¢}, depend on
i; we shall omit this index in the notation.) We define ¢; ; to be the Lagrange interpolation
polynomial of degree at most » — 1 for the function g; ;(t) = f(¢,; ;(t)) based on the nodes

torth, et
7“—1 7”—1 t _ tp
() =D gis(tr) 11 =
k=0 bk — tp

p=0,p#k

t € [z, xi41), (6)

0
where J[= 1. An approximation /; j;; is given by
p=0,p#k

L = v+ [0, et € i, ail, ™

The final approximation in [z;, z;41] is given by ;1. To complete the definition, we set

Yiv1 = li,r+1(33i+1)-
For t € [a, b] we define a continuous approximation to z by

La(t) = lippa(t), T € [, 2i01]. (8)

The transformation that assignes to f the approximation 1 will be denoted by ¢*, ¢*(f)(t) =
lr1(t), t € [a,b].

The following theorem provides error analysis of the method ¢*. The proof follows usual

lines of the analysis of approximate Picard iteration, it is however focused on our specific

requirements. We shall need in the next sections the error bound (9) for a non-uniform mesh,

as well as specific local error bounds derived in the body of the proof. Let h; = z;11 — ;.

Theorem 1 Let f € F.. There exists mgy such that for all m > my and any {z;}1,
satisfying (4), the global error of ¢* at f satisfies

Sup 12(t) = bra (O < M max (9)
where M = exp(L(b—a))(b —a) (2D, /r!' 4+ 1/2), and the number D,, only dependent on f,
r, a, b, is defined below before the inequality (17).

Proof Let My =0 and M;.; = exp(Lh;)M; + (2D, /r!' +1/2)h;; i =0,1,...,m — 1. One
can check that M; < M, i =0,1,..., m. We shall show by induction on ¢ that
sup ||z(t) = L1 (t)] < Miomax ' (10)

1. '
t€la, ;] <j<i—1

where max = 1.
0<j<-1

For ¢ = 0, (10) holds true. Let (10) hold for some i. Consider the interval [z;, z;1]. We
have that

12(2) — z(0)]] < exp(Lhi) [[2(z:) — will, T € i, zipa]- (11)
We shall now study the local error in [z;, ;41| given by e;; = sup |zi(t) — l;;(t)]-
tE[SEz‘7xi+1}

Denoting H;(t) = f(t, z:(t)) (= zi(t)), we let g; be the Lagrange interpolation polynomial for

5

r—1 r—1 _
W) =3 flteat) [T 2t lnml (12)
k=0 p=0,p#£k Uk P

Since

we have that
t t
l2i(®) = liga) < [156 2(€) — a©ll e + [10:©) — aus(©llde. (13)
By the Lagrange interpolation error formula applied component by component, we have that

r—1
15620©) - @@l < - sw 1HO@ITLIE~ tel, € € i
k=0

. ae[mi,$i+1]
Furthermore,
r—1 r—1 é- o tp
13 (&) = @iy (O < D N F(ts zi(te)) — fltws Lig))Il T rmrnl b
k=0 p=0,p#k | 'k T p

which yields that

13:(€) = ais (Il < LG, sup lzi(t) =Ly, € € [z, 2014],

te[mi,l’i+1}

where C, only depends on r. From (13) we get for 7 =0,1,...

1 \ : .
€ije1 <~ Sup IHT ()| B+ + hiLCle; ;. (14)

- e [ZBZ ,.CE,H,ﬂ

By solving (14) we get for j =0,1,...

1 \ oir 1 — (B LC,Y
st s HD) LY

i = + (hiLér)jeip.
7! o€z, Tit1) 1-— hZLCT,

Since
€0 < h; sup ||f(04a Zi(a))||>

OCE[SCZ‘,SCZ‘+1}

for m sufficiently large (such that h;LC, < 1/2) we have that

2 " , L A
ey < 5 sup [HT (@) W4 BTLEY s [Hi(o). (15)

 a€lwi,Tit] a€lzi,it]

Note that Hi(r)(a) and H;(a)) can be expressed in terms of partial derivatives of the function
foforder 0,1,...,r, evaluated at («, z;(«)). Due to (11) and the inductive assumption, for

sufficiently large m we have that ||z(a) — z;(«)|| < 1 for o € [x;, 2;41]. Hence,
(Oé, ZZ'(OK)) € [CL, b] X Dv (16)

where the set D is given in (3). This yields that sup HHZ-(T) (a)]] and sup ||H;(c)]]
ae[wi,wi+ﬂ QE|T;,Ti41
are bounded from above independently of i and m by some numbers D, and Dy, respectively.

For the final approximation [; 11 we have from (15) that
9 .
eir1 < DR+ RTTA(LC,)T Dy, (17)
d
which yields for sufficiently large m that

2 1
€ir+1 S (ﬁDr + 5) hg—i_l- (18)

For the final global approximation [, 1, we have for ¢ € [z;, x;11]

12(8) = ba (DI < N|2() = 2O + |2:() = lira (DI < exp(Lha)||2(z:) — will + €irsr. (19)

By the inductive assumption, we get that

2 1
|2(t) — a1 (t)|| < exp(Lh;)M Inax hl + (ﬁDT + 5) A N A (20)

11]

Hence,
sup [|2(t) — L1 (8)|| < Misy max h, (21)

te[a,xiy1] 0<j<i
where M, 1 = exp(Lh;)M; + (2D, /r! +1/2) h;. The induction is finished.
To complete the proof we recall that M; < M for i = 0,1,...,m, where M is given in the

statement of the theorem. u

Given m and a mesh {x;}", the method ¢* describes the construction of the approximations
liy+1 0 [@;, m4q] for i = 0,1,...,m — 1. Theorem 1 provides the bound on the global error
of ¢*. A selection of the mesh {z;}7, still remains an open question; we will study this issue

in the next sections.

4 Local error bounds for ¢*

We now extract from the proof of Theorem 1 bounds on the local error e; ;1 of the method
¢*. By (15)

2 r r r N7
Cirp1 <= sup |[H (@) W+ hP(LC) sup [[Hi(a)]). (22)

T aglwi,wit) €[z, Tit1]

Let 5 > 0. From (22), for sufficiently large m we have

1 r

aﬁmw(ﬁ wprmﬁmm+@hwa (23)
r O!E[Z‘i,xprl]

The function H;(a) = f(a, z;(a)) = zi() is not known. We now show how the term ’sup’

above can be (asymptotically) replaced by a known quantity.

We take 11, ©; < ;41 < b. For h; = Zi11 — xr; we assume that

where v > 1 is a given number which may depend on f, but is independent of ¢ and m.
Let t, k = 0,1,...,7r be equidistant points from [z, Z;41], to = @4, t, = T;41 (we omit the
index i). We construct an auxillary approximation I, in the interval [x;, Z,,1] in the same
way as we did in (6)—(8) in the case of the approximation /; .11 in the interval [z;, z;41], using
now as interpolation nodes the points to,t1,...,t,_1 € [x;, Ti1].

Let Hi(o) = f(a, lirs1()) and fIi[t_o, t1,...,t.] be the divided difference, computed compo-
nent by component, for H;. We shall need the bounds stated in the following two lemmas.
Recall that H;(t) = f(t, z(t)).

Lemma 1 Let f € F,, B >0 and p € (0,1). There exists mq such that for any m > my,
for any {x;}I" satisfying (4) and i =0,1,...,m — 1 we have

Si+B)(1—9)<— sup [H (@) +8<(S+5)(1+¢), (25)

1
7! a€[x,xiq1]
where Sz = ||Hi[£0,t71, cee 757"]”

Proof Let & be a point from [x;, z;41] for which

sup [|H ()] = |H(@)]-

€|z, Tiq1]

For the /th component H! of the function H;, we express the divided difference as

A % ()" (&), (26)
where &' is some point from [z;, Z;,1]. For any [= 1,2,...,d it holds
=) @]+ 5= (5] @] +8) @+,
rl 7!
where

()7 @) rt = ()" (@
’(H;)(’“’ (@) 1+ 8

Similarly to what we have already noticed, the quantity (Hil)(r) (t), t € [x;, max{x;11, Tit1}],

/!

can be expressed by values of a continuous function defined by partial derivatives of f,
evaluated at (t,z;(t)), where the argument (¢, z;(¢)) belongs to the compact set [a,b] x D.

By the uniform continuity of this function, we have that

max max sup |kl =0, asm — oo.
0<i<m—11<i<d d,ézle[mi,max{mi+1,ii+1}}

Hence |kt < ¢ for m > myg, which leads to (25). u

Lemma 2 Let f € F,. There exist C, C, mq such that for any m > mg, for any {x;}7,
satisfying (4) it holds

1 - -
7 sup|lzi(t) = L (O] < Chy, (27)

nr
hi t€[w;,Tit1)

|Hilto, t1, -] = Hilfo, b1,]

fori=0,1,....m—1.

(Here t), are, as above, the equidistant nodes in [x;, T;11]; the index i is omitted.)

Proof The proof follows from the fact that

T T I rr T T I t 1 t y bigr t
Hi[tmtl’---;tr]_Hi[t07t17---7tr] :Z (kaz(kz) f(k —I—l(k))7
k=0 [T (te—tp)
p=0,p#£k
and from (18) applied to the approximation L7r+1 in the interval [z;, Z;41] with h; replaced

From (23), Lemmas 1 and 2 we get the following computable (asymptotic) upper bound on
the local error of the method ¢*.

Theorem 2 Let f € F,., >0 and ¢ € (0,1). There exists mqy such that for all m > my,
for any {x;}I" satisfying (4), and any T;y1 satisfying (24) it holds

Cir1 <G R i=0,1,...,m—1, (28)

where

Gi = Gi(f) = (8/3) (| Hilfo. T, ..][+ 8) (1 +). (29)

Proof We successively use (23), (25) and (27). We first get
eirt1 < 2(|[Hilto, tr, - -, 4|+ B) (1 + @) LT,

and next
eirs1 <2 (I[Hilto, Br, . Bl + Chi + B) (1+ @) b,
For sufficiently large m such that Ch; < /3 we get (28). =

For given x; < b and y;, after selecting a point Z;,1, we are able to construct an auxillary
approximation [; ., and compute H, [to,t1, ..., t,]. Hence, for given 8 and ¢, the coefficient

G, can be effectively computed. For further purposes, note that
G; > (8/3)5. (30)
On the other hand, due to (27), we have in terms of H; that
Gi < (8/3) (1Hilto, t, . G| + 1+ 8) (1 +),

for sufficiently large m. Due to (26) and the observation made in the proof of Lemma 1

regarding the derivatives of H;, we have the bound

where N(f) is independent of i and m.

5 Algorithm with guaranteed local error

Let € € (0,1). Our aim is to select mesh points {z}} in the method ¢* in order to guarantee

that in all steps the local error is at most ¢,

Cirs1 <&, i=0,1,...,m—1. (32)

10

Given z; and y;, we set
Tiy1 = x; +min{h(e),b—x}, (33)

where h : (0,1) — R, is any function such that h(c) = O(e¥/" V) as ¢ — 0%, with a
constant in the ‘O’-notation possibly dependent on f (but not on i or the number of subin-
tervals). We discuss the form of h(e) below. We then compute the auxillary approximation

lir+1 defined in Section 4 before Lemma 1, and the coefficient G; from (29), with [z;, Z;41]

replaced by [, Z;11]. The mesh point z} ; < b is now selected such that
Gihit'=¢ (b =2}y —), (34)

that is, we put
e\ 1/(r+1)
v =ai4mind () boar (35)

With this mesh point z7, ;, the approximation ;. defined in the algorithm ¢* satisfies, due
to Theorem 2, the condition (32).

Remark 1 We comment on the choice of h(g). We can choose Z;;; ’'large’ by taking
h(g) = /1) so that
Tip1 = x] + min {51/(’"“), b— xf} . (36)

The condition (24) holds for Z;1, and z},_,, since x},, — 2] = O(Z;11 — x}), which follows
from (30) and (31). If we take h(e) = O(¢), then the condition (24) holds for Z;;; and z},,,
since T; 1 < xj,, for sufficiently small €. In this case Z;;1 can be arbitrarily close to ;. Our
results hold for such h(e). It seems that the faster h(e) goes to zero with € — 0, the earlier

the asymptotics shows up.
We have arrived at the following algorithm.

Algorithm ADAPT-MESH

1. Choose € € (0,1), 5> 0and ¢ € (0,1). Set 2§ = a and yj =n.

2. Given z7 and gy}, compute T;y; from (33). Compute the equidistant points o =
ity .t = Ty from [2F, Ti4].

3. Compute the approximation l; . in [z}, Z;11] from (6) and (7), based on #y, 1, ..., ;.
4. Compute (component by component) the divided difference f[i[fo,fl,...,fr], where

H(t) = f(t, Ly (1))
5. Compute G; from (29).

6. Compute z},, from (35), and the equidistant points from [z, z},] with t, =] for

11

r=1and ty = aj,t;,...,t,—1 = xj,, for r > 2.

7. Compute the approximation l; .11 in [z}, 2z}] from (6) and (7), based on ty,t1,...,t,_1.
8. Set yf, = lir1(af). If 27, <b, then go to 2 with ¢ :=¢+ 1.
STOP

Steps 2—5 can be viewed as a ’'prediction’ stage, while the final approximation is computed
in steps 6 and 7.
We denote by m* = m*(e) the number of subintervals defined by the algorithm ADAPT-
MESH. The local error of the approximation /;,41 in the interval [z}, 27,] is guaranteed to
be at most ¢,

sup [|zi(t) — L) <, i=0,1,...,m" =1,

LIS B
for sufficiently small €, see (32). The cost of each step of the method ¢*, when applied
on a given mesh, is k*(r) = r? + O(r) evaluations of f which are needed to produce I; 1.
The algorithm ADAPT-MESH is additionally equipped with the mesh selection procedure
which makes the cost twice as large. The cost of ADAPT-MESH equals 2r2 + O(r) function
evaluations per step, which is roughly 2m*k*(r) in total. In Section 7 we compare it with

the cost of other methods and mesh selection procedures.

By the definition of {z}}, we have that =}, , — 2} = (e/GHYY i =0,1,...,m* — 2, and
e+ (6/Ge_1)") > b, This yields that m* is the minimal number m € N such that

1\ V(1)
mS(m) > (b— a) (g) , (37)

where
g 1 m—1 1 1/(r+1) -
= 2 (z) (38)

Taking into account the bounds on G;, we have that

(§ﬁ) 1/(r+1) b a) (é)l/(rﬂ) <t < N(f)l/(”l)(b o (é)l/(ﬂrl) 1 (39)

We see that the mesh selection procedure in the algorithm ADAPT-MESH does not reduce
the speed of growth of the cost as ¢ — 0, with respect to the equidistant mesh. As in the

latter case (see Section 7), we have that

m*(e) = © ((é)l/(m)) | (40)

12

A potential gain of adaption lies in reducing the coefficient.
Note that the condition (4) is satisfied for {z}. Indeed, we have using (39) that

1/(r+1) 1/(r+1)
* " 3¢ e+ (N b—a
s () sz (SE) TR

for sufficiently small €. Hence, (4) holds with any

N () 1/(r+1) b—a
> . 1/(7’"‘1‘1) N/ > .
K>2-3 <8ﬁ> and {(m) > —

6 Mesh selection for a general class of methods

The mesh selection procedure described above can be applied to a class of methods ¢ for
solving (1), not only for ¢*. We assume that for any discretization {z;}, satisfying (4),
a method ¢ successively computes in each interval [z;, z;41] an approximation /; to z;, with
li(z;) = y; and y;11 = li(z;41), starting from zqg = a, yo = 1. Global approximation I
computed by ¢ in [a, b] is composed of the approximations I; in [x;, x;41], ¢(f)(t) = I(t) =
Li(t), t € [xi,zi41], i = 0,1,...,m — 1. We assume that the computation of [; requires a
certain number of evaluations of some functionals on f (information about f). The total
number of evaluations in a single interval [z;, z;41] is Ky (7), Where k4(r) is independent of ¢
and m. For instance, for the method ¢* the functionals are defined by evaluations of f, and
ke (r) = 2r* + O(r). We assume about ¢ that:

A. There are 3,3 > 0 such that for any f € F, there is mg such that for all m > my, for
any {z;}1", satisfying (4)

1
rl

(]
T OCE[SCZ‘,Z‘@Jrﬂ

sp [eit) - ()] < B(

t€[zs,zi41]

sup ||z.<7”+1>(a)||+ﬁ> Rt i=0,1,...,m—1. (42)

Assumption A has been verified for ¢ = ¢* in (23). Of course, the method ¢* is not the only

example of ¢. It can also be defined in many different ways, e.g., by Taylor’s approximation.

Remark 2 Tt is easy to see that Theorem 1 (with slightly different constant M), Lemma 1,
Lemma 2 and Theorem 2 hold for ¢, with 8 given in assumption A, with [; .1 replaced by
[; and l;rH replaced by ;. The coefficient G; is now given by

Gi = (4/3)3 (|| Hilfo, F1, ... Bl + B) (1 +). (43)

13

We have that
(4/3)88 < Gi < N(f),

where N(f) depends on (3, and it is independent of i and m.

We now discuss yet another local error bound for ¢. We show that the local solution z; in

the bound (42) can be replaced, at cost of changing a constant, by the global solution z.

Lemma 3 Forany f € F,., 5> 0 and ¢ € (0,1) there is mg such that for all m > my, for
any {x; Y1, satisfying (4) it holds

]‘ T 1 r
L 8 = (— sup 20 () +f3> G4m), ()
T a€(zi,wipi] 7! a€[wi,Tit1]

i=0,1,...,m—1, for some k;, where |k;| < .

Proof Let the two sup above be achieved in points t1,ts € [x;, x;11], respectively. We have
1 (r+1) 1 (r+1)
;II ")l + 8 = IR+ B) (L4 ki),

where ki = (1/r1) (o ()] = 120 @) / (/)00 ()]] + 5). Henee,

1 r+1 r 1 r+1 r r (r
il < gl) ==) < g7 (17 () = 2D @)+ 120 () - 2 (1))
The last term is bounded by sup |20V (¢;) — 20D (ty)||, so that, due to the uniform
‘tl t2|<h

continuity of 2+ it tends to 0 (uniformly with respect to i) as m — oo. Note that 2" (¢)
and 2"tV (¢;) can be expressed by partial derivatives of f of order 0,1,...,7 evaluated in
(t1, zi(t1)) and (1, z(t1)), respectively. Due to Theorem 1 for ¢, we have

J24(t) = 2(0)ll < exp(Lh)lys — 2(z)]| = O (_max #5).

0<j<m—1 7

Hence, z(t1), zi(t1) € D, see (3), for sufficiently large m. This and the uniform continuity of
the partial derivatives of f in [a,b] X D yield that the first term also tends to 0 as m — oo,
uniformly with respect to ¢; and i. Hence, |k;| tends to 0 as m — oo, uniformly with respect

to t1, to and i. This proves the lemma. u

We now list upper bounds on the local error of ¢ that appeared so far. The basic one is
given in assumption A
sup [zi(t) = L) < e A, (45)

te€[wi,mit1]

14

where

ci:ﬁ(l sup ||z§7”“><a>||+ﬁ). (46)

T! OCE[SCZ‘,SCZ‘+1}
The bound (45) involves the local solution z;; it usually appears in the error analysis of a

method ¢. The second one follows from Lemma 3 and has the form (45) with ¢; replaced by

6=d (5w @I+ 5) 4. (47)
s €T, xiy1]

We observe that the bounds & hi™", i = 0,1,...,m — 1, only depend on the local behavior
of f and on the mesh {z;}. They hold for any method ¢ satisfying A, and are useful for
theoretical reasons. Note that the function p(z;, x;41) = & hf“ is an increasing function
with respect to x;11 (for fixed x;), and a decreasing function with respect to z; (for fixed
SL’i+1)-

The third bound is constructive and it will be used in the algorithm ADAPT-MESH-GEN
below. It is given by (45) with ¢; replaced by G; from (43). Note that the coefficients (47)
and (43) are not overestimated compared to (46); they are equivalent up to a coefficient only
dependent on ¢, for sufficiently large m. It follows from Lemmas 1, 2 and 3 that for any

m > myg, any {z; }1*, satisfying (4) and i =0,1,...,m — 1 it holds

1 1
ST Pa<a<é and 2 Gi<ea <G (48)
1+ 2(1+)

Hence, for a given ¢, the three error bounds
C; h;‘-l—l’ C; h;‘-l—l’ and Gz h;‘-l—l’

are equivalent up to absolute constants (for a fixed ¢). In particular, they all reflect a local
behavior of f.

As in the case of the method ¢*, we are free to choose the mesh points for ¢. The following
algorithm, very much similar to ADAPT-MESH, describes the mesh selection for ¢ that

allows us to keep the local error at level .
Algorithm ADAPT-MESH-GEN

1. Choose € € (0,1), and ¢ € (0,1). Set 29 = a and yo = 7.

2. Given z; and y;, compute
Tiv1 = x; + min{h(e),b — x;} . (49)

15

3. Compute an approximation [; in [x;, Z;41] using ¢.
4. For Hi(t) = f(t,1;(t)), compute (component by component) the divided difference

Hilto, t1,...,t.], where to = x;,t1,...,t. = T;41 are the equidistant points from [z;, Z;,1].
5. Compute G; = (4/3)3 (|| Hilfo, f1, ..., &) + B) (1 + ¢).

6. Compute
e\ 1/(r+1)

7. Compute an approximation l; in [z;, z;11] using ¢.
8. Set Yit1 = lz(xz—l—l) If Tiv1 < b, then go to 2 with ¢ := 7+ 1.
STOP

Since ¢; hi ™ < Gy hitt < e, we see that the local error of the approximation /; computed in
the step 7 is guaranteed to be at most ¢,

sSup ||Zl(t)_l2(t)|| Sg? Z.:()ala"'am_la (51)

te[l‘i,xz‘+1]

for sufficiently small €. The cost of each step of ADAPT-MESH-GEN, measured by the
number of evaluations of functionals on f needed to produce l;, is doubled with respect to

the cost of ¢ applied on a given mesh.

7 Adaptive mesh — the cost analysis

Consider an arbitrary method ¢ satisfying A, based on amesh zp=a <21 < ... <z, =0
for which (4) holds. We measure the cost of ¢, cost(¢, m), by the total number of evaluations

of functionals on f needed for computing ! in all subintervals [z;, x;.1] , i.e.,
cost(p, m) = Ky(r) m. (52)

Our goal is to keep the local error at a prescribed level ¢, see (51). Assuming that the goal
is achieved by some ¢ with some mesh g, x1, ..., Z,,, we wish to compare cost(¢p, m) with
the cost of the algorithm ADAPT-MESH.

To compare the costs of algorithms, we use the local error bound ¢; i ™ from assumption
A. We wish to assure that
chit™t <e, foralli, (53)

16

which implies (51). We define the reference quantity m(e) as follows. Let

k(m) = inf{ max ¢ hiT: zg=a<m <. .. <2y <@, = b satisfies (4) } . (54)

0<i<m—1

Then we define
m(e) =min{m e N: k(m)<e}. (55)

Thus, () is the minimal number of subintervals m for which there exists a mesh with
m + 1 points such that ¢; hj Tt <e,i=0,1,...,m — 1.
Define similarly to (54) and (55) the following, technically useful, quantities

k(m) = inf{ max ¢hiT : zp=a<m <...<apq < xy = b satisfies (4) } (56)

0<i<m-—1

and

m(e) =min{m e N: k(m)<e}. (57)

Since ¢; h;“ is an increasing function of x;; (for fixed x;) and a decreasing function of x;
(for fixed x;41), for sufficiently small € > 0 the quantity m(e) can be computed as follows.
We start with g = a, and for a given z;, we compute Z;;; as the unique solution of

i (zip1 — ;)" = . Then m(e) is the minimal 7 such that Z; > b.

Note further that for any m > mg and {x;}", satisfying (4), it follows from (48) that

1
max ¢ hi™t < max &Rt < k4 max ¢ bl
0<i<m—1 0<i<m—1 1— (p 0<i<m—1
which yields for m > myq that
. _ 1 .
k(m) < (m) < 1 k(). (58)

Hence, for any € € (0, ¢] (and fixed ¢, 3)

m<a>sm<a>sm(1‘“”) (59)

e
1+

We now compare the cost of ADAPT-MESH with the cost of other algorithms ¢ equipped
with any mesh selection procedure. The number of subintervals computed by ADAPT-
MESH is m*(¢) and the cost of producing ;.11 in each subinterval is x*(r). Since the cost
is doubled due to the mesh selection, it holds

cost(¢*, m*(e)) = 2k (r)m*(e). (60)

17

The quantities k(m) and 7(¢) depend on ¢ (and 5). In the following result, we shall use
for clarity the notation ks(m) and ris(e). We compare m*(g) from ADAPT-MESH (where
B = 2) with the minimal number of intervals for any other method ¢ with 3 = 2, equipped

with any mesh selection strategy. We have

Theorem 3 Let f € F,., p € (0,1) and ¢ be any method satisfying A with 3 = 2. Then
there exists g € (0,1) such that for any 0 < € < gq it holds

ts(pre) < ringe () < m* () < g (pe). (61)

with p1 = (1+¢)/(1 —) and p = (1 —)/ (2(1 + ¢)?).
Hence,
2K*(r)
kg (r)

2K*(r)
Kg(r)

cost (¢, mg (p1€)) < cost(¢™,m*(e)) < cost (¢, my (pe)) . (62)

Proof The algorithm ADAPT-MESH defines m* + 1 points z; such that for h; = xj_, — 2}

and G; for ¢* we have

Gihitt=¢, i=0,1,...,m"(e) =2, and G, ht, <e. (63)

m*—1

We show the lower bound in (61). For {z}}7, and ¢ sufficiently small, we have that ¢; h{ ! <
Gihi*' < efori = 0,1,...,m* — 1. This yields that kg (m*) < e, which implies that
Mg (e) < m*(e). The further lower bound follows from (59).

We now show the upper bound. By (48), for any m > my, any ¢, any {z;}, satisfying (4)

and any i, we have for h; = x;11 — z; (and G; for ¢) that

Gihitt < M c hi Tt
L=

For ¢ = ¢*, m = m* and the mesh {z}} given by ADAPT-MESH, due to (63), we have for

h; = xj,; — o7 and ¢ sufficiently small that

2(1+)

e<— Ghit™, i=0,1,...,m" -2,
that is,
1 _
2ﬂ+i06 Ght i=0,1,...,m" —2. (64)

18

The observation made after (57) yields that the points #; computed for the accuracy (1 —
©)/(2(1 + ¢))e satisty in the light of (64) the inequalities z; < z} for i = 0,1,...,m* — 1.
This implies that
l-¢
o) <m|=———=¢]. 65
we)<m (i) (65
Finally, (59) and (65) give us the desired inequality (61)

m*(e) < g (M e) . (66)

2(14)2
The inequalities for the cost follow immediately. u

Theorem 3 says that the cost of ADAPT-MESH can only exceed by the constant 2x*(7)/k4(r)
the cost of any algorithm ¢ with 5 = 2, with any mesh selection strategy such that the local
error is at most (1—)?/(2(1+¢)?) e. This accuracy is more demanding than e. For instance,
if we take ¢ = 1/2, then ¢ in the accuracy demand is replaced by ¢/18.

Observe that adaptive mesh cannot reduce the speed of growth of the cost as ¢ — 0. It
follows from (61) and (40) that for the best choice of points we have, similarly as for the

i(e) = © ((%)1/(”1)) |

The asymptotics is thus the same. Possible advantage of the adaptive mesh selection is

equidistant mesh, that

hidden in the size of the quantity m(e), see the definition (55). To illustrate this, we now
discuss possible advantage of the algorithm ADAPT-MESH with respect to another algo-
rithm ¢ with 8 = 2, based on the uniform mesh. Note that for any ¢, any m and the uniform

mesh we have

r+1
max cithrl:N(f)(b a) :

0<i<m—1 m

where N(f) = 3 ((1/r!) sup [[20*FD(#)]] + 5) (1+ ¢). Hence,

t€[a,b]

M () = min {m . N(f) <b — CL)TH < 6} = {(b —a) (N(f)y/(”l)} - (67)

It follows from (48) that we also have

r+1
max c,-h?“z@(N(f)(b_a)), as m — 00,

0<i<m—1

19

and

. N 1/(r+1)
quu‘d(a) =0 ({(b —a) (if)> , ase—0,
where constants in the ©-notation only depend on ¢.
We want to compare m*(¢) (which decides about the cost of ADAPT-MESH) with 72944 (¢)
(which decides about the cost of ¢ with the equidistant mesh). We have by (65) the following

sequence of inequalities
_ -y _ equid l—¢p
me)<m|—"¢] <M | ———¢
o< (g55) <™ (5 5)

= 1/(r+1)
-0 ({(b —a) (@) D =0 (m*"(e)) , (68)

where again constants in the ©-notation only depend on ¢.

The second inequality in (68) allows us to understand when the adaption pays off. Just
below the definition (57), we gave a comment on how to compute m(e). The comment yields
that m(e) is the minimal number m € N such that

mS(m) > (b— a) (%) v (69)
where
Sm) = %21 <é)1/(r+1) . (70)

To see this, consult similar reasoning leading to (37) and (38). In the case of m®dd (&) an

analogous condition to (69) is given in the first equality in (67):

1 1 1/(r+1)
) . (71)

mNGFWﬂTZw_@<E

Comparing (69) and (71), we see that the second term in (68) is much less than the third

term if S(m)~! is much smaller than N(f)Y/+Y. Since
- (1
NU?=5<7SMMVWM@W+B>G+¢%
T te(a,b]

and

@=5<% sup W“mﬁm+5>ﬂ+¢%

I te[l‘i,xprl]
we can identify cases when the gain of adaption is significant. Adaption pays off for functions

for which the size of |2V (¢)|| changes significantly in parts of the interval [a, b]. Of course,

20

the second inequality in (68) can also turn into equality. For such functions f there is no
gain of adaption. Translating the above discussion to similar properties of the cost of the

algorithm is straightforward.

8 Numerical example

We illustrate the performance of the mesh selection mechanism in ADAPT-MESH by an
example (other test examples in C*tT are in progress), see [11]. We consider a scalar test

problem from [4] with a parameter § > 0
Jt)=2(2(t) = 1)7¥2 t€[0,1], 2(0) =143, (72)

. . . 15 5/2)%/° . . o
with the global solution given by z(t) = (gt +0) + 1. The solution with the initial
condition z(z) =y (x >0,y > 1) is given by

15

2oy () = (g(t)t (y— 1)5/2)2/5 41

The right-hand side f(¢,y) = %(y —1)73/2 is a C* function for y > 1.

The problem (72) is a typical test problem whose computational difficulty can be controlled
by d; it grows as d tends to zero. We use the algorithm ADAPT-MESH with » = 1, which
corresponds to the Euler method equipped with the mesh selection algorithm, and with
r = 2. For the global solution z, we have that |2V (¢)| for ¢ close to 0 behaves like 1/§*
for 7 = 1 and 1/8%° for r = 2. For t away from 0, |z("+1)(¢)| is essentially a constant. That
is, for small & we should observe a significant advantage of adaptive mesh points over the
equidistant points.

The computer precision is macheps = 1071°. Obviously, since macheps is fixed and com-
puting time is limited, we cannot verify the asymptotic behavior of the algorithm as £ — 0;
we are only able to see results for some number of values of €.

Let us now briefly discuss a practical choice of h(e) in step 2 of the algorithm. In fixed
precision computation, the crucial point is accuracy of computing the divided difference in
(27) of Lemma 2. Due to round off errors in computing both f(#y,l;,+1(f)) and the di-
vided difference, the bound (27) changes to C(h; + macheps/h?), for some C' dependent
on f. The minimum of the function of h; is achieved for h; = (r - macheps)"/+Y . Thus,

in step 2, neglecting the coefficient dependent on r, we fix h(e) independently of ¢ to be
h(&?) — 10—15/(7’4—1)'

21

In step 5, we set

G — 2|Hylw}, 2] + 1 r=1,
e 4 ‘ﬁl[l’:, (LL’? + i’i+1)/2,i’i+1]’ + 2 r=2.

(Note that for 7 = 1 we have l;, 11 = l;,+1.) The following table shows results computed by
ADAPT-MESH for a number of values of § and €. We denote

MAXERR = max |z(231) = i),

where z;(z}) =y}, and m* is the number of intervals computed in ADAPT-MESH. The value
EQUIDIST is the maximal local error of the respective method for » = 1 or r = 2 applied on
the equidistant mesh x; = ¢/m*, 1 =0, 1,..., m*, with the same number of subintervals equal
to m*. In the successive columns we show the values m* , MAXERR/e and EQUIDIST /e.

) € m* MAXERR/e EQUIDIST/e m* MAXERR/e EQUIDIST/s
r=1 r=1 r=1 r=2 r=2 r=2
01 1072 33 0.22 49.42 24 0.03 26.06
1074 315 0.246 225.7 99 0.04 345.62
10-8 31373 0.25 424.4 2081 0.04 5331.38
1074 31371619 0.264 428.7 207780 0.06 7409.35
1072 1072 41 0.22 1801.15 33 0.04 1105.64
1074 390 0.25 18147.4 136 0.11 25876.9
1078 38841 0.25 907049 2821 0.16 9.15 % 109
10~ 38839361 0.26 2.79 % 106 281583 0.175 4.73 % 107
1073 1072 43 0.22 55127.5 32 1.3 37025.9
1074 413 0.37 5.73 % 10° 140 18.65 8.45 % 10°
1078 41109 0.49 5.6 % 107 2917 950.194 4.0 % 10%
1074 41106703 0.5 1.48 ¥ 1010 291133 2262.01 3.35 % 1012
1074 1072 42 1.005 1.79 % 106 22 16.14 1.7 % 106
10~4 414 8.09 1.81 % 107 121 336.5 3.1%107
1078 41367 77.96 1.81 % 107 2915 118505 1.29 % 1010
1074 41365164 88.96 1.71 %102 291276 7.88 %107 1.28 x 1014

According to the theory, for sufficiently small e the values in the 4th column (for r = 1) and
7th column (for 7 = 2) should be at most 1. This is the case for § = 1071072 for r = 1, 2,

22

and § = 1073 for » = 1. For small values of J, the round off errors do not allow us to observe
the asymptotic behavior of the algorithm, since the value of € is too large. Comparison of
columns 4 and 5 for r = 1 and 7 and 8 for r = 2 shows the gain of the adaptive mesh selec-
tion algorithm applied in ADAPT-MESH over the equidistant points. In the test we have
computed results for the equidistant mesh with the same number of points. We may wish to
compare the behavior of adaption with nonadaption using the same number of evaluations
of f. For r = 1, the adaptive method uses 2 function evaluations, while the nonadaptive one
only one value. Hence, in this case the value in the 5th column should be divided by 4. For
r = 2, the respective numbers are 10 and 4 evaluations, that is the result in the 8th column
should be divided roughly by 16. This does not change the picture — in both cases, for small
0 the tests show a very significant advantage of the adaption over nonadaption.

We shortly comment on comparison between the algorithm defined in [4] for scalar au-
tonomous problems and the current algorithm designed for systems of IVPs, for the test
problem (72). As it can be expected, the algorithm from [4] allows us to better treat small
values of §. This follows from the fact that, roughly speaking, the step size control in [4]
was based on two-sided estimates of local errors. Specific properties of scalar autonomous
problems were used in [4]; they cannot be extended to systems of initial value problems. In

order to handle systems of IVPs, the present algorithm uses upper local error bounds, see
(28) and (29).

9 Conclusions

We have proposed a mesh selection algorithm for systems of IVPs that (asymptotically)
guarantees a given level of the local error. The algorithm only requires evaluations of the
right-hand side f. Rigorous analysis of the cost has been given, including comparison with

the best choice of the mesh points, as well as with the uniform mesh.

References

[1] Cuo1, S.T., DING, Y., HICKERNELL, F.J, TonG, X. (2017), Local adaption for
approximation and minimization of univariate functions, J. Complexity, 40, 17-33,
http://dx.doi.org/10.1016/j.jc0.2016.11.005.

[2] Daun, T., (2011), On the randomized solution of initial value problems, J. Complezity,
97, 300-311.

23

[3] JACKIEWICZ, Z. (2002), Implementation of DIMSIMs for stiff differential systems, Appl.
Numer. Math., 42, No. 1-3, 251-267.

[4] KAaceEwicz, B., (2017), Adaptive mesh point selection for the efficient solution of scalar
IVPs, to appear in Numerical Algorithms, DOI: 10.1007/s11075-017-0304-2

[5] KAaceEwicz, B., PrzyBYrLowicz, P.; (2015), Complexity of the derivative-free solution
of systems of IVPs with unknown singularity hypersurface, J. Complexity, 31, 75-97.

[6] LyNEss, J.N., (1983), When not to use an automatic quadrature routine?, STAM Review,
25, 63-87.

[7] Mazzia, F., Nacy, A.M, (2015), A new mesh selection strategy with stiffness detection
for explicit Runge Kutta methods, Applied Math. and Comp., 255, 125-134.

8] PiessENs, R., DE DONCKER-KAPENGA,E., UBERHUBER,C. W., (1983), QUAD-
PACK: a subroutine package for automatic integration, Springer, ISBN: 3-540-12553-1.

[9] PLaskoTA, L., (2015), Automatic integration using asymptotically optimal adaptive
Simpson quadrature, Numer. Math., 131, 173-198.

[10] PraskoTA, L., WasiLkowskIl, G.W., (2009), The power of adaptive algorithms for
functions with singularities, J. Fized Point Theory Appl., 6, 227-248.

[11] WiLGa, B., (2017), Adaptive mesh selection in the numerical solution of IVPs, in
Polish, master’s thesis supervised by B. Kacewicz, Faculty of Applied Mathematics, AGH

University of Science and Technology, Cracow, Poland, in preparation.

24

