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Adaptive mesh selection asymptotically guarantees a
prescribed local error for systems of initial value

problems 1
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Abstract

We study potential advantages of adaptive mesh point selection for the solution of systems of

initial value problems. For an optimal order discretization method, we propose an algorithm

for successive selection of the mesh points, which only requires evaluations of the right-hand

side function. The selection (asymptotically) guarantees that the maximum local error of

the method does not exceed a prescribed level. The usage of the algorithm is not restricted

to the chosen method; it can also be applied with any method from a general class. We

provide a rigorous analysis of the cost of the proposed algorithm. It is shown that the

cost is almost minimal, up to absolute constants, among all mesh selection algorithms. For

illustration, we specify the advantage of the adaptive mesh over the uniform one. Efficiency

of the adaptive algorithm results from automatic adjustment of the successive mesh points

to the local behavior of the solution. Some numerical results illustrating theoretical findings

are reported.
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1 Introduction

We deal with the solution of systems of initial value problems (IVPs)

z′(t) = f(t, z(t)), t ∈ [a, b], z(a) = η, (1)

where a < b, η ∈ Rd and f : [a, b]×Rd → Rd is a Cr function. We study how much adaptive

mesh points improve efficiency of algorithms for solving (1). For many years, adaption has

been a standard tool in numerical packages. Well known examples include the package

QUADPACK [8] for numerical integration, or, among other solvers, the DIFSUB procedure

by C.W. Gear or the library ODEPACK by A. Hindmarsh for IVPs. Many authors have

reported superiority of adaption over nonadaption for (1), based on numerical results for

a number of computational examples. One can cite as an example papers such as [3], [6]

or [7]. Practical efficiency gives us considerable knowledge about the power of adaption.

Conclusions are however not complete; an analysis of theoretical aspects is missing in many

cases of step size control strategies. For instance, most often, step size control devices are

not supported by cost analysis. The use of variable step size not only improves the efficiency

of methods for solving regular problems (1), but it also allows us to manage singularities.

Considerable progress has been made in rigorous analysis of adaption in that case, see e.g.

[5], [10]. Adaption allows us in many cases to maintain for singular problems the order of

convergence known from the regular case.

Advantages of adaption for regular problems are of different type. Integration of scalar

C4 functions by the Simpson rule have been recently studied in [9]. It is shown in [9]

that adaption does not improve the order of convergence, but it can reduce the asymptotic

constant of the method. In the similar spirit, adaption has been considered for univariate

approximation and minimization in [1]. For scalar autonomous problems (1), adaptive mesh

selection has been recently studied in [4]. An adaptive strategy has been proposed and the

cost analyzed, based on specific properties of scalar autonomous equations. The particular

technique used does not allow us to extend the results from [4] to systems of IVPs.

In the present paper, we consider general systems (1), with a Cr right-hand side function f .

Our contribution can be summarized as follows:

• For a maximal order method for solving the system (1), we propose a new mesh se-

lection algorithm that guarantees the local error of the method at a precribed level ε,

for sufficiently small ε ∈ (0, 1). At each time step, we select the step size and compute

an approximation to the solution, which requires two runs of the basic method. Infor-

mation about the function f only consists of function evaluations. We show that the
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mesh selection algorithm can be applied to a general class of methods for solving (1).

• We rigorously analyze the cost of the method equipped with the mesh selection proce-

dure. We show that the cost is minimal among all mesh selection strategies, provided

that we accept some absolute constants.

• We specify in a quantitative way an advantage of the adaptive mesh over the uniform

one.

The adaptive mesh selection for systems (1) does not improve the speed of convergence of

algorithms. A potential gain of adaption lies in reducing a coefficient in the error bound.

The paper is organized as follows. We formulate the problem in Section 2. An algorithm φ∗

with maximal order is defined in Section 3, and the error analysis is given in Theorem 1.

In Section 4, we discuss upper bounds on the local error of φ∗, in particular, we show a

constructive upper bound in Theorem 2. Section 5 contains the main algorithm ADAPT-

MESH which combines φ∗ with a new mesh selection algorithm. A generalization of the

algorithm ADAPT-MESH is given in Section 6. Section 7 contains a cost analysis of the

algorithm ADAPT-MESH compared to other algorithms, see Theorem 3. Possible advantage

of the adaptive mesh over the uniform one is discussed in detail. Finally, some results of

numerical experiments are reported in Section 8.

2 Problem formulation

We consider problem (1) with a continuous function f : [a, b]×Rd → Rd such that for some

L ≥ 0

‖f(t, y)− f(t, ȳ)‖ ≤ L‖y − ȳ‖ for t ∈ [a, b], y, ȳ ∈ Rd. (2)

Here and in what follows ‖ · ‖ denotes the maximum norm in Rd. It follows that there exists

a unique solution z of (1) defined on [a, b]. Let r ≥ 1. We assume that f is a regular function

in a subset of its domain, f ∈ Cr([a, b]×D), where

D = {y ∈ Rd : ‖y‖ ≤ sup
t∈[a,b]

‖z(t)‖+ 1}. (3)

The class of functions f satisfying the above assumptions will be denoted by Fr.

Let m ∈ N. We wish to compute an approximation to the solution z in [a, b]. For m + 1

mesh points a = x0,m < x1,m < . . . < xm,m = b, we do it by computing approximations li to

z in the subintervals [xi,m, xi+1,m], i = 0, 1, . . . , m− 1.
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Let ℓ(m) be any nonincreasing sequence convergent to 0 as m → ∞. We consider for any f

a class of partitions of [a, b] defined as follows. We assume that there exist K = K(f, a, b, η)

and k0 = k0(f, a, b, η) such that for all m ≥ k0 and any partition it holds

max
0≤i≤m−1

(xi+1,m − xi,m) ≤ K ℓ(m). (4)

Thus, the partitions under consideration are uniformly normal. Note that we always have

max
0≤i≤m−1

(xi+1,m − xi,m) ≥ (b − a)/m for any m ≥ 1. Thus, the condition (4) implies that

ℓ(m) cannot go to zero faster than 1/m. Note that the convergence of ℓ(m) to zero can be

arbitrarily slow, and the constant K can be arbitrarily large. We shall omit in the sequel the

second subscript m, remembering that the choice of points xi can be different for varying m.

For a given yi ∈ Rd, we denote by zi the solution of a local problem

z′i(t) = f(t, zi(t)), t ∈ [xi, xi+1], zi(xi) = yi. (5)

If li is an approximation to zi given by a certain method, then local errors of the method

are given by

sup
t∈[xi,xi+1]

‖zi(t)− li(t)‖, i = 0, 1, . . . , m− 1.

Our aim is to select possibly small m and mesh points {xi}
m
i=0 such that the local errors

remain at a precribed level ε > 0.

3 The basic method φ∗ and its error

The basic method makes use of the approximate Picard iteration, an idea that turned out

useful in several contexts, see e.g. [2], [5]. Let m ∈ N and x0 = a < x1 < . . . < xm = b

be mesh points satisfying (4). Let y0 = η. For a given yi, we define approximations li,j in

[xi, xi+1] as follows.

We set li,0(t) ≡ yi. Let li,j be given. Denote by t0, t1, . . . , tr−1 the equidistant nodes in

[xi, xi+1], with t0 = xi for r = 1 and t0 = xi, tr−1 = xi+1 for r ≥ 2. (The points tk depend on

i; we shall omit this index in the notation.) We define qi,j to be the Lagrange interpolation

polynomial of degree at most r − 1 for the function gi,j(t) = f(t, li,j(t)) based on the nodes

t0, t1, . . . , tr−1,

qi,j(t) =
r−1
∑

k=0

gi,j(tk)
r−1
∏

p=0,p 6=k

t− tp
tk − tp

, t ∈ [xi, xi+1], (6)
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where
0
∏

p=0,p 6=k
= 1. An approximation li,j+1 is given by

li,j+1(t) = yi +

t
∫

xi

qi,j(ξ) dξ, t ∈ [xi, xi+1]. (7)

The final approximation in [xi, xi+1] is given by li,r+1. To complete the definition, we set

yi+1 = li,r+1(xi+1).

For t ∈ [a, b] we define a continuous approximation to z by

lr+1(t) = li,r+1(t), t ∈ [xi, xi+1]. (8)

The transformation that assignes to f the approximation lr+1 will be denoted by φ∗, φ∗(f)(t) =

lr+1(t), t ∈ [a, b].

The following theorem provides error analysis of the method φ∗. The proof follows usual

lines of the analysis of approximate Picard iteration, it is however focused on our specific

requirements. We shall need in the next sections the error bound (9) for a non-uniform mesh,

as well as specific local error bounds derived in the body of the proof. Let hi = xi+1 − xi.

Theorem 1 Let f ∈ Fr. There exists m0 such that for all m ≥ m0 and any {xi}
m
i=0

satisfying (4), the global error of φ∗ at f satisfies

sup
t∈[a,b]

‖z(t)− lr+1(t)‖ ≤ M max
0≤j≤m−1

hr
j , (9)

where M = exp(L(b− a))(b − a) (2Dr/r! + 1/2), and the number Dr, only dependent on f ,

r, a, b, is defined below before the inequality (17).

Proof Let M0 = 0 and Mi+1 = exp(Lhi)Mi + (2Dr/r! + 1/2)hi, i = 0, 1, . . . , m − 1. One

can check that Mi ≤ M , i = 0, 1, . . . , m. We shall show by induction on i that

sup
t∈[a,xi]

‖z(t)− lr+1(t)‖ ≤ Mi max
0≤j≤i−1

hr
j , (10)

where max
0≤j≤−1

= 1.

For i = 0, (10) holds true. Let (10) hold for some i. Consider the interval [xi, xi+1]. We

have that

‖z(t)− zi(t)‖ ≤ exp(Lhi) ‖z(xi)− yi‖, t ∈ [xi, xi+1]. (11)

We shall now study the local error in [xi, xi+1] given by ei,j = sup
t∈[xi,xi+1]

‖zi(t) − li,j(t)‖.

Denoting Hi(t) = f(t, zi(t)) (= z′i(t)), we let q̄i be the Lagrange interpolation polynomial for
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Hi,

q̄i(t) =
r−1
∑

k=0

f(tk, zi(tk)))
r−1
∏

p=0,p 6=k

t− tp
tk − tp

, t ∈ [xi, xi+1]. (12)

Since

zi(t) = yi +

t
∫

xi

f(ξ, zi(ξ)) dξ,

we have that

‖zi(t)− li,j+1(t)‖ ≤

t
∫

xi

‖f(ξ, zi(ξ))− q̄i(ξ)‖ dξ +

t
∫

xi

‖q̄i(ξ)− qi,j(ξ)‖ dξ. (13)

By the Lagrange interpolation error formula applied component by component, we have that

‖f(ξ, zi(ξ))− q̄i(ξ)‖ ≤
1

r!
sup

α∈[xi,xi+1]
‖H

(r)
i (α)‖

r−1
∏

k=0

|ξ − tk|, ξ ∈ [xi, xi+1].

Furthermore,

‖q̄i(ξ)− qi,j(ξ)‖ ≤
r−1
∑

k=0

‖f(tk, zi(tk))− f(tk, li,j(tk))‖
r−1
∏

p=0,p 6=k

∣

∣

∣

∣

∣

ξ − tp
tk − tp

∣

∣

∣

∣

∣

,

which yields that

‖q̄i(ξ)− qi,j(ξ)‖ ≤ LĈr sup
t∈[xi,xi+1]

‖zi(t)− li,j(t)‖, ξ ∈ [xi, xi+1],

where Ĉr only depends on r. From (13) we get for j = 0, 1, . . .

ei,j+1 ≤
1

r!
sup

α∈[xi,xi+1]
‖H

(r)
i (α)‖ hr+1

i + hiLĈrei,j. (14)

By solving (14) we get for j = 0, 1, . . .

ei,j ≤
1

r!
sup

α∈[xi,xi+1]
‖H

(r)
i (α)‖ hr+1

i

1− (hiLĈr)
j

1− hiLĈr

+ (hiLĈr)
jei,0.

Since

ei,0 ≤ hi sup
α∈[xi,xi+1]

‖f(α, zi(α))‖,

for m sufficiently large (such that hiLĈr ≤ 1/2) we have that

ei,j ≤
2

r!
sup

α∈[xi,xi+1]
‖H

(r)
i (α)‖ hr+1

i + hj+1
i (LĈr)

j sup
α∈[xi,xi+1]

‖Hi(α)‖. (15)
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Note that H
(r)
i (α) and Hi(α) can be expressed in terms of partial derivatives of the function

f of order 0, 1, . . . , r, evaluated at (α, zi(α)). Due to (11) and the inductive assumption, for

sufficiently large m we have that ‖z(α)− zi(α)‖ ≤ 1 for α ∈ [xi, xi+1]. Hence,

(α, zi(α)) ∈ [a, b]×D, (16)

where the set D is given in (3). This yields that sup
α∈[xi,xi+1]

‖H
(r)
i (α)‖ and sup

α∈[xi,xi+1]
‖Hi(α)‖

are bounded from above independently of i and m by some numbers Dr and D0, respectively.

For the final approximation li,r+1 we have from (15) that

ei,r+1 ≤
2

r!
Drh

r+1
i + hr+2

i (LĈr)
r+1D0, (17)

which yields for sufficiently large m that

ei,r+1 ≤
(

2

r!
Dr +

1

2

)

hr+1
i . (18)

For the final global approximation lr+1, we have for t ∈ [xi, xi+1]

‖z(t)− lr+1(t)‖ ≤ ‖z(t)− zi(t)‖ + ‖zi(t)− li,r+1(t)‖ ≤ exp(Lhi)‖z(xi)− yi‖+ ei,r+1. (19)

By the inductive assumption, we get that

‖z(t)− lr+1(t)‖ ≤ exp(Lhi)Mi max
0≤j≤i−1

hr
j +

(

2

r!
Dr +

1

2

)

hr+1
i , t ∈ [xi, xi+1]. (20)

Hence,

sup
t∈[a,xi+1]

‖z(t)− lr+1(t)‖ ≤ Mi+1 max
0≤j≤i

hr
j , (21)

where Mi+1 = exp(Lhi)Mi + (2Dr/r! + 1/2)hi. The induction is finished.

To complete the proof we recall that Mi ≤ M for i = 0, 1, . . . , m, where M is given in the

statement of the theorem.

Givenm and a mesh {xi}
m
i=0, the method φ∗ describes the construction of the approximations

li,r+1 in [xi, xi+1] for i = 0, 1, . . . , m− 1. Theorem 1 provides the bound on the global error

of φ∗. A selection of the mesh {xi}
m
i=0 still remains an open question; we will study this issue

in the next sections.
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4 Local error bounds for φ∗

We now extract from the proof of Theorem 1 bounds on the local error ei,r+1 of the method

φ∗. By (15)

ei,r+1 ≤
2

r!
sup

α∈[xi,xi+1]
‖H

(r)
i (α)‖ hr+1

i + hr+2
i (LĈr)

r+1 sup
α∈[xi,xi+1]

‖Hi(α)‖. (22)

Let β > 0. From (22), for sufficiently large m we have

ei,r+1 ≤ 2

(

1

r!
sup

α∈[xi,xi+1]

‖H
(r)
i (α)‖+ β

)

hr+1
i . (23)

The function Hi(α) = f(α, zi(α)) = z′i(α) is not known. We now show how the term ’sup’

above can be (asymptotically) replaced by a known quantity.

We take x̄i+1, xi < x̄i+1 ≤ b. For h̄i = x̄i+1 − xi we assume that

h̄i ≤ γhi, (24)

where γ ≥ 1 is a given number which may depend on f , but is independent of i and m.

Let t̄k, k = 0, 1, . . . , r be equidistant points from [xi, x̄i+1], t̄0 = xi, t̄r = x̄i+1 (we omit the

index i). We construct an auxillary approximation l̄i,r+1 in the interval [xi, x̄i+1] in the same

way as we did in (6)–(8) in the case of the approximation li,r+1 in the interval [xi, xi+1], using

now as interpolation nodes the points t̄0, t̄1, . . . , t̄r−1 ∈ [xi, x̄i+1].

Let H̃i(α) = f(α, l̄i,r+1(α)) and H̃i[t̄0, t̄1, . . . , t̄r] be the divided difference, computed compo-

nent by component, for H̃i. We shall need the bounds stated in the following two lemmas.

Recall that Hi(t) = f(t, zi(t)).

Lemma 1 Let f ∈ Fr, β > 0 and ϕ ∈ (0, 1). There exists m0 such that for any m ≥ m0,

for any {xi}
m
i=0 satisfying (4) and i = 0, 1, . . . , m− 1 we have

(Si + β) (1− ϕ) ≤
1

r!
sup

α∈[xi,xi+1]
‖H

(r)
i (α)‖+ β ≤ (Si + β) (1 + ϕ), (25)

where Si = ‖Hi[t̄0, t̄1, . . . , t̄r]‖.

Proof Let ᾱ be a point from [xi, xi+1] for which

sup
α∈[xi,xi+1]

‖H
(r)
i (α)‖ = ‖H

(r)
i (ᾱ)‖.
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For the lth component H l
i of the function Hi, we express the divided difference as

H l
i [t̄0, t̄1, . . . , t̄r] =

1

r!

(

H l
i

)(r)
(α̂l), (26)

where α̂l is some point from [xi, x̄i+1]. For any l = 1, 2, . . . , d it holds

1

r!

∣

∣

∣

∣

(

H l
i

)(r)
(ᾱ)

∣

∣

∣

∣

+ β =
(

1

r!

∣

∣

∣

∣

(

H l
i

)(r)
(α̂l)

∣

∣

∣

∣

+ β
)

(1 + κl
i),

where

κl
i =

∣

∣

∣

∣

(

H l
i

)(r)
(ᾱ)

∣

∣

∣

∣

/r!−

∣

∣

∣

∣

(

H l
i

)(r)
(α̂l)

∣

∣

∣

∣

/r!
∣

∣

∣

∣

(

H l
i

)(r)
(α̂l)

∣

∣

∣

∣

/r! + β
.

Similarly to what we have already noticed, the quantity
(

H l
i

)(r)
(t), t ∈ [xi,max{xi+1, x̄i+1}],

can be expressed by values of a continuous function defined by partial derivatives of f ,

evaluated at (t, zi(t)), where the argument (t, zi(t)) belongs to the compact set [a, b] × D.

By the uniform continuity of this function, we have that

max
0≤i≤m−1

max
1≤l≤d

sup
ᾱ,α̂l∈[xi,max{xi+1,x̄i+1}]

|κl
i| → 0, as m → ∞.

Hence |κl
i| ≤ ϕ for m ≥ m̄0, which leads to (25).

Lemma 2 Let f ∈ Fr. There exist C̄, C̃, m0 such that for any m ≥ m0, for any {xi}
m
i=0

satisfying (4) it holds

∥

∥

∥Hi[t̄0, t̄1, . . . , t̄r]− H̃i[t̄0, t̄1, . . . , t̄r]
∥

∥

∥ ≤ C̄
1

h̄r
i

sup
t∈[xi,x̄i+1]

‖zi(t)− l̄i,r+1(t)‖ ≤ C̃h̄i, (27)

for i = 0, 1, . . . , m− 1.

(Here t̄k are, as above, the equidistant nodes in [xi, x̄i+1]; the index i is omitted.)

Proof The proof follows from the fact that

Hi[t̄0, t̄1, . . . , t̄r]− H̃i[t̄0, t̄1, . . . , t̄r] =
r
∑

k=0

f(t̄k, zi(t̄k))− f(t̄k, l̄i,r+1(t̄k))
r
∏

p=0,p 6=k
(t̄k − t̄p)

,

and from (18) applied to the approximation l̄i,r+1 in the interval [xi, x̄i+1] with hi replaced

by h̄i.

From (23), Lemmas 1 and 2 we get the following computable (asymptotic) upper bound on

the local error of the method φ∗.
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Theorem 2 Let f ∈ Fr, β > 0 and ϕ ∈ (0, 1). There exists m0 such that for all m ≥ m0,

for any {xi}
m
i=0 satisfying (4), and any x̄i+1 satisfying (24) it holds

ei,r+1 ≤ Gi h
r+1
i , i = 0, 1, . . . , m− 1, (28)

where

Gi = Gi(f) = (8/3)
(

‖H̃i[t̄0, t̄1, . . . , t̄r]‖+ β
)

(1 + ϕ). (29)

Proof We successively use (23), (25) and (27). We first get

ei,r+1 ≤ 2 (‖Hi[t̄0, t̄1, . . . , t̄r]‖+ β) (1 + ϕ) hr+1
i ,

and next

ei,r+1 ≤ 2
(

‖H̃i[t̄0, t̄1, . . . , t̄r]‖+ C̃h̄i + β
)

(1 + ϕ) hr+1
i .

For sufficiently large m such that C̃h̄i ≤ β/3 we get (28).

For given xi < b and yi, after selecting a point x̄i+1, we are able to construct an auxillary

approximation l̄i,r+1 and compute H̃i[t̄0, t̄1, . . . , t̄r]. Hence, for given β and ϕ, the coefficient

Gi can be effectively computed. For further purposes, note that

Gi ≥ (8/3)β. (30)

On the other hand, due to (27), we have in terms of Hi that

Gi ≤ (8/3) (‖Hi[t̄0, t̄1, . . . , t̄r]‖+ 1 + β) (1 + ϕ),

for sufficiently large m. Due to (26) and the observation made in the proof of Lemma 1

regarding the derivatives of Hi, we have the bound

Gi ≤ N(f), (31)

where N(f) is independent of i and m.

5 Algorithm with guaranteed local error

Let ε ∈ (0, 1). Our aim is to select mesh points {x∗
i } in the method φ∗ in order to guarantee

that in all steps the local error is at most ε,

ei,r+1 ≤ ε, i = 0, 1, . . . , m− 1. (32)
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Given x∗
i and y∗i , we set

x̄i+1 = x∗
i +min {h(ε), b− x∗

i } , (33)

where h : (0, 1) → R+ is any function such that h(ε) = O(ε1/(r+1)), as ε → 0+, with a

constant in the ′O′-notation possibly dependent on f (but not on i or the number of subin-

tervals). We discuss the form of h(ε) below. We then compute the auxillary approximation

l̄i,r+1 defined in Section 4 before Lemma 1, and the coefficient Gi from (29), with [xi, x̄i+1]

replaced by [x∗
i , x̄i+1]. The mesh point x∗

i+1 ≤ b is now selected such that

Gih
r+1
i = ε (hi = x∗

i+1 − x∗
i ), (34)

that is, we put

x∗
i+1 = x∗

i +min

{

(

ε

Gi

)1/(r+1)

, b− x∗
i

}

. (35)

With this mesh point x∗
i+1, the approximation li,r+1 defined in the algorithm φ∗ satisfies, due

to Theorem 2, the condition (32).

Remark 1 We comment on the choice of h(ε). We can choose x̄i+1 ’large’ by taking

h(ε) = ε1/(r+1), so that

x̄i+1 = x∗
i +min

{

ε1/(r+1), b− x∗
i

}

. (36)

The condition (24) holds for x̄i+1 and x∗
i+1, since x∗

i+1 − x∗
i = Θ(x̄i+1 − x∗

i ), which follows

from (30) and (31). If we take h(ε) = O(ε), then the condition (24) holds for x̄i+1 and x∗
i+1,

since x̄i+1 ≤ x∗
i+1 for sufficiently small ε. In this case x̄i+1 can be arbitrarily close to x∗

i . Our

results hold for such h(ε). It seems that the faster h(ε) goes to zero with ε → 0, the earlier

the asymptotics shows up.

We have arrived at the following algorithm.

Algorithm ADAPT-MESH

1. Choose ε ∈ (0, 1), β > 0 and ϕ ∈ (0, 1). Set x∗
0 = a and y∗0 = η.

2. Given x∗
i and y∗i , compute x̄i+1 from (33). Compute the equidistant points t̄0 =

x∗
i , t̄1, . . . , t̄r = x̄i+1 from [x∗

i , x̄i+1].

3. Compute the approximation l̄i,r+1 in [x∗
i , x̄i+1] from (6) and (7), based on t̄0, t̄1, . . . , t̄r−1.

4. Compute (component by component) the divided difference H̃i[t̄0, t̄1, . . . , t̄r], where

H̃i(t) = f(t, l̄i,r+1(t)).

5. Compute Gi from (29).

6. Compute x∗
i+1 from (35), and the equidistant points from [x∗

i , x
∗
i+1] with t0 = x∗

i for
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r = 1 and t0 = x∗
i , t1, . . . , tr−1 = x∗

i+1 for r ≥ 2.

7. Compute the approximation li,r+1 in [x∗
i , x

∗
i+1] from (6) and (7), based on t0, t1, . . . , tr−1.

8. Set y∗i+1 = li,r+1(x
∗
i+1). If x

∗
i+1 < b, then go to 2 with i := i+ 1.

STOP

Steps 2–5 can be viewed as a ’prediction’ stage, while the final approximation is computed

in steps 6 and 7.

We denote by m∗ = m∗(ε) the number of subintervals defined by the algorithm ADAPT-

MESH. The local error of the approximation li,r+1 in the interval [x∗
i , x

∗
i+1] is guaranteed to

be at most ε,

sup
t∈[x∗

i
,x∗

i+1
]
‖zi(t)− li,r+1(t)‖ ≤ ε, i = 0, 1, . . . , m∗ − 1,

for sufficiently small ε, see (32). The cost of each step of the method φ∗, when applied

on a given mesh, is κ∗(r) = r2 + Θ(r) evaluations of f which are needed to produce li,r+1.

The algorithm ADAPT-MESH is additionally equipped with the mesh selection procedure

which makes the cost twice as large. The cost of ADAPT-MESH equals 2r2+Θ(r) function

evaluations per step, which is roughly 2m∗κ∗(r) in total. In Section 7 we compare it with

the cost of other methods and mesh selection procedures.

By the definition of {x∗
i }, we have that x∗

i+1 − x∗
i = (ε/Gi)

1/(r+1), i = 0, 1, . . . , m∗ − 2, and

x∗
m∗−1 + (ε/Gm∗−1)

1/(r+1) ≥ b. This yields that m∗ is the minimal number m ∈ N such that

mS(m) ≥ (b− a)
(

1

ε

)1/(r+1)

, (37)

where

S(m) =
1

m

m−1
∑

i=0

(

1

Gi

)1/(r+1)

. (38)

Taking into account the bounds on Gi, we have that

(

8

3
β
)1/(r+1)

(b− a)
(

1

ε

)1/(r+1)

≤ m∗ < N(f)1/(r+1)(b− a)
(

1

ε

)1/(r+1)

+ 1. (39)

We see that the mesh selection procedure in the algorithm ADAPT-MESH does not reduce

the speed of growth of the cost as ε → 0, with respect to the equidistant mesh. As in the

latter case (see Section 7), we have that

m∗(ε) = Θ

(

(

1

ε

)1/(r+1)
)

. (40)
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A potential gain of adaption lies in reducing the coefficient.

Note that the condition (4) is satisfied for {x∗
i }. Indeed, we have using (39) that

max
0≤i≤m∗−1

(x∗
i+1 − x∗

i ) ≤

(

3ε

8β

)1/(r+1)

≤ 2 · 31/(r+1)

(

N(f)

8β

)1/(r+1)
b− a

m∗
, (41)

for sufficiently small ε. Hence, (4) holds with any

K ≥ 2 · 31/(r+1)

(

N(f)

8β

)1/(r+1)

and ℓ(m) ≥
b− a

m
.

6 Mesh selection for a general class of methods

The mesh selection procedure described above can be applied to a class of methods φ for

solving (1), not only for φ∗. We assume that for any discretization {xi}
m
i=0 satisfying (4),

a method φ successively computes in each interval [xi, xi+1] an approximation li to zi, with

li(xi) = yi and yi+1 = li(xi+1), starting from x0 = a, y0 = η. Global approximation l

computed by φ in [a, b] is composed of the approximations li in [xi, xi+1], φ(f)(t) = l(t) =

li(t), t ∈ [xi, xi+1], i = 0, 1, . . . , m − 1. We assume that the computation of li requires a

certain number of evaluations of some functionals on f (information about f). The total

number of evaluations in a single interval [xi, xi+1] is κφ(r), where κφ(r) is independent of i

and m. For instance, for the method φ∗ the functionals are defined by evaluations of f , and

κφ∗(r) = 2r2 +Θ(r). We assume about φ that:

A. There are β̄, β > 0 such that for any f ∈ Fr there is m0 such that for all m ≥ m0, for

any {xi}
m
i=0 satisfying (4)

sup
t∈[xi,xi+1]

‖zi(t)− li(t)‖ ≤ β̄

(

1

r!
sup

α∈[xi,xi+1]
‖z

(r+1)
i (α)‖+ β

)

hr+1
i , i = 0, 1, . . . , m− 1. (42)

Assumption A has been verified for φ = φ∗ in (23). Of course, the method φ∗ is not the only

example of φ. It can also be defined in many different ways, e.g., by Taylor’s approximation.

Remark 2 It is easy to see that Theorem 1 (with slightly different constant M), Lemma 1,

Lemma 2 and Theorem 2 hold for φ, with β given in assumption A, with li,r+1 replaced by

li and l̄i,r+1 replaced by l̄i. The coefficient Gi is now given by

Gi = (4/3)β̄
(

‖H̃i[t̄0, t̄1, . . . , t̄r]‖+ β
)

(1 + ϕ). (43)
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We have that

(4/3)β̄β ≤ Gi ≤ N(f),

where N(f) depends on β̄, and it is independent of i and m.

We now discuss yet another local error bound for φ. We show that the local solution zi in

the bound (42) can be replaced, at cost of changing a constant, by the global solution z.

Lemma 3 For any f ∈ Fr, β > 0 and ϕ ∈ (0, 1) there is m0 such that for all m ≥ m0, for

any {xi}
m
i=0 satisfying (4) it holds

1

r!
sup

α∈[xi,xi+1]
‖z

(r+1)
i (α)‖+ β =

(

1

r!
sup

α∈[xi,xi+1]
‖z(r+1)(α)‖+ β

)

(1 + κi) , (44)

i = 0, 1, . . . , m− 1, for some κi, where |κi| ≤ ϕ.

Proof Let the two sup above be achieved in points t1, t2 ∈ [xi, xi+1], respectively. We have

1

r!
‖z

(r+1)
i (t1)‖+ β =

(

1

r!
‖z(r+1)(t2)‖+ β

)

(1 + κi) ,

where κi = (1/r!)
(

‖z
(r+1)
i (t1)‖ − ‖z(r+1)(t2)‖

)

/
(

(1/r!)‖z(r+1)(t2)‖+ β
)

. Hence,

|κi| ≤
1

βr!
‖z

(r+1)
i (t1)−z(r+1)(t2)‖ ≤

1

βr!

(

‖z
(r+1)
i (t1)− z(r+1)(t1)‖+ ‖z(r+1)(t2)− z(r+1)(t1)‖

)

.

The last term is bounded by sup
|t1−t2|≤hi

‖z(r+1)(t1) − z(r+1)(t2)‖, so that, due to the uniform

continuity of z(r+1), it tends to 0 (uniformly with respect to i) asm → ∞. Note that z
(r+1)
i (t1)

and z(r+1)(t1) can be expressed by partial derivatives of f of order 0, 1, . . . , r evaluated in

(t1, zi(t1)) and (t1, z(t1)), respectively. Due to Theorem 1 for φ, we have

‖zi(t1)− z(t1)‖ ≤ exp(Lhi)‖yi − z(xi)‖ = O
(

max
0≤j≤m−1

hr
j

)

.

Hence, z(t1), zi(t1) ∈ D, see (3), for sufficiently large m. This and the uniform continuity of

the partial derivatives of f in [a, b]×D yield that the first term also tends to 0 as m → ∞,

uniformly with respect to t1 and i. Hence, |κi| tends to 0 as m → ∞, uniformly with respect

to t1, t2 and i. This proves the lemma.

We now list upper bounds on the local error of φ that appeared so far. The basic one is

given in assumption A

sup
t∈[xi,xi+1]

‖zi(t)− li(t)‖ ≤ ci h
r+1
i , (45)
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where

ci = β̄

(

1

r!
sup

α∈[xi,xi+1]
‖z

(r+1)
i (α)‖+ β

)

. (46)

The bound (45) involves the local solution zi; it usually appears in the error analysis of a

method φ. The second one follows from Lemma 3 and has the form (45) with ci replaced by

c̄i = β̄

(

1

r!
sup

α∈[xi,xi+1]
‖z(r+1)(α)‖+ β

)

(1 + ϕ) . (47)

We observe that the bounds c̄i h
r+1
i , i = 0, 1, . . . , m − 1, only depend on the local behavior

of f and on the mesh {xi}. They hold for any method φ satisfying A, and are useful for

theoretical reasons. Note that the function p(xi, xi+1) = c̄i h
r+1
i is an increasing function

with respect to xi+1 (for fixed xi), and a decreasing function with respect to xi (for fixed

xi+1).

The third bound is constructive and it will be used in the algorithm ADAPT-MESH-GEN

below. It is given by (45) with ci replaced by Gi from (43). Note that the coefficients (47)

and (43) are not overestimated compared to (46); they are equivalent up to a coefficient only

dependent on ϕ, for sufficiently large m. It follows from Lemmas 1, 2 and 3 that for any

m ≥ m0, any {xi}
m
i=0 satisfying (4) and i = 0, 1, . . . , m− 1 it holds

1− ϕ

1 + ϕ
c̄i ≤ ci ≤ c̄i and

1− ϕ

2(1 + ϕ)
Gi ≤ ci ≤ Gi. (48)

Hence, for a given ϕ, the three error bounds

ci h
r+1
i , c̄i h

r+1
i , and Gi h

r+1
i ,

are equivalent up to absolute constants (for a fixed ϕ). In particular, they all reflect a local

behavior of f .

As in the case of the method φ∗, we are free to choose the mesh points for φ. The following

algorithm, very much similar to ADAPT-MESH, describes the mesh selection for φ that

allows us to keep the local error at level ε.

Algorithm ADAPT-MESH-GEN

1. Choose ε ∈ (0, 1), and ϕ ∈ (0, 1). Set x0 = a and y0 = η.

2. Given xi and yi, compute

x̄i+1 = xi +min {h(ε), b− xi} . (49)
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3. Compute an approximation l̄i in [xi, x̄i+1] using φ.

4. For H̃i(t) = f(t, l̄i(t)), compute (component by component) the divided difference

H̃i[t̄0, t̄1, . . . , t̄r], where t̄0 = xi, t̄1, . . . , t̄r = x̄i+1 are the equidistant points from [xi, x̄i+1].

5. Compute Gi = (4/3)β̄
(

‖H̃i[t̄0, t̄1, . . . , t̄r]‖+ β
)

(1 + ϕ).

6. Compute

xi+1 = xi +min

{

(

ε

Gi

)1/(r+1)

, b− xi

}

. (50)

7. Compute an approximation li in [xi, xi+1] using φ.

8. Set yi+1 = li(xi+1). If xi+1 < b, then go to 2 with i := i+ 1.

STOP

Since ci h
r+1
i ≤ Gi h

r+1
i ≤ ε, we see that the local error of the approximation li computed in

the step 7 is guaranteed to be at most ε,

sup
t∈[xi,xi+1]

‖zi(t)− li(t)‖ ≤ ε, i = 0, 1, . . . , m− 1, (51)

for sufficiently small ε. The cost of each step of ADAPT-MESH-GEN, measured by the

number of evaluations of functionals on f needed to produce li, is doubled with respect to

the cost of φ applied on a given mesh.

7 Adaptive mesh – the cost analysis

Consider an arbitrary method φ satisfying A, based on a mesh x0 = a < x1 < . . . < xm = b

for which (4) holds. We measure the cost of φ, cost(φ,m), by the total number of evaluations

of functionals on f needed for computing l in all subintervals [xi, xi+1] , i.e.,

cost(φ,m) = κφ(r)m. (52)

Our goal is to keep the local error at a prescribed level ε, see (51). Assuming that the goal

is achieved by some φ with some mesh x0, x1, . . . , xm, we wish to compare cost(φ,m) with

the cost of the algorithm ADAPT-MESH.

To compare the costs of algorithms, we use the local error bound ci h
r+1
i from assumption

A. We wish to assure that

ci h
r+1
i ≤ ε, for all i, (53)
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which implies (51). We define the reference quantity m̂(ε) as follows. Let

k̂(m) = inf
{

max
0≤i≤m−1

ci h
r+1
i : x0 = a ≤ x1 ≤ . . . ≤ xm−1 ≤ xm = b satisfies (4)

}

. (54)

Then we define

m̂(ε) = min
{

m ∈ N : k̂(m) ≤ ε
}

. (55)

Thus, m̂(ε) is the minimal number of subintervals m for which there exists a mesh with

m+ 1 points such that ci h
r+1
i ≤ ε, i = 0, 1, . . . , m− 1.

Define similarly to (54) and (55) the following, technically useful, quantities

k̄(m) = inf
{

max
0≤i≤m−1

c̄i h
r+1
i : x0 = a ≤ x1 ≤ . . . ≤ xm−1 ≤ xm = b satisfies (4)

}

(56)

and

m̄(ε) = min
{

m ∈ N : k̄(m) ≤ ε
}

. (57)

Since c̄i h
r+1
i is an increasing function of xi+1 (for fixed xi) and a decreasing function of xi

(for fixed xi+1), for sufficiently small ε > 0 the quantity m̄(ε) can be computed as follows.

We start with x̂0 = a, and for a given x̂i, we compute x̂i+1 as the unique solution of

c̄i (xi+1 − x̂i)
r+1 = ε. Then m̄(ε) is the minimal i such that x̂i ≥ b.

Note further that for any m ≥ m0 and {xi}
m
i=0 satisfying (4), it follows from (48) that

max
0≤i≤m−1

ci h
r+1
i ≤ max

0≤i≤m−1
c̄i h

r+1
i ≤

1 + ϕ

1− ϕ
max

0≤i≤m−1
ci h

r+1
i ,

which yields for m ≥ m0 that

k̂(m) ≤ k̄(m) ≤
1 + ϕ

1− ϕ
k̂(m). (58)

Hence, for any ε ∈ (0, ε0] (and fixed φ, β̄)

m̂ (ε) ≤ m̄(ε) ≤ m̂

(

1− ϕ

1 + ϕ
ε

)

. (59)

We now compare the cost of ADAPT-MESH with the cost of other algorithms φ equipped

with any mesh selection procedure. The number of subintervals computed by ADAPT-

MESH is m∗(ε) and the cost of producing li,r+1 in each subinterval is κ∗(r). Since the cost

is doubled due to the mesh selection, it holds

cost(φ∗, m∗(ε)) = 2κ∗(r)m∗(ε). (60)
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The quantities k̂(m) and m̂(ε) depend on φ (and β̄). In the following result, we shall use

for clarity the notation k̂φ(m) and m̂φ(ε). We compare m∗(ε) from ADAPT-MESH (where

β̄ = 2) with the minimal number of intervals for any other method φ with β̄ = 2, equipped

with any mesh selection strategy. We have

Theorem 3 Let f ∈ Fr, ϕ ∈ (0, 1) and φ be any method satisfying A with β̄ = 2. Then

there exists ε0 ∈ (0, 1) such that for any 0 < ε ≤ ε0 it holds

m̂φ(p1ε) ≤ m̂φ∗(ε) ≤ m∗(ε) ≤ m̂φ (pε) , (61)

with p1 = (1 + ϕ)/(1− ϕ) and p = (1− ϕ)2/(2(1 + ϕ)2).

Hence,

2κ∗(r)

κφ(r)
cost (φ, m̂φ (p1ε)) ≤ cost(φ∗, m∗(ε)) ≤

2κ∗(r)

κφ(r)
cost (φ, m̂φ (pε)) . (62)

Proof The algorithm ADAPT-MESH defines m∗+1 points x∗
i such that for hi = x∗

i+1−x∗
i

and Gi for φ
∗ we have

Gi h
r+1
i = ε, i = 0, 1, . . . , m∗(ε)− 2, and Gm∗−1 h

r+1
m∗−1 ≤ ε. (63)

We show the lower bound in (61). For {x∗
i }

m∗

i=0 and ε sufficiently small, we have that ci h
r+1
i ≤

Gi h
r+1
i ≤ ε for i = 0, 1, . . . , m∗ − 1. This yields that k̂φ∗(m∗) ≤ ε, which implies that

m̂φ∗(ε) ≤ m∗(ε). The further lower bound follows from (59).

We now show the upper bound. By (48), for any m ≥ m0, any φ, any {xi}
m
i=0 satisfying (4)

and any i, we have for hi = xi+1 − xi (and Gi for φ) that

Gi h
r+1
i ≤

2(1 + ϕ)

1− ϕ
c̄i h

r+1
i .

For φ = φ∗, m = m∗ and the mesh {x∗
i } given by ADAPT-MESH, due to (63), we have for

hi = x∗
i+1 − x∗

i and ε sufficiently small that

ε ≤
2(1 + ϕ)

1− ϕ
c̄i h

r+1
i , i = 0, 1, . . . , m∗ − 2,

that is,
1− ϕ

2(1 + ϕ)
ε ≤ c̄i h

r+1
i , i = 0, 1, . . . , m∗ − 2. (64)
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The observation made after (57) yields that the points x̂i computed for the accuracy (1 −

ϕ)/(2(1 + ϕ))ε satisfy in the light of (64) the inequalities x̂i ≤ x∗
i for i = 0, 1, . . . , m∗ − 1.

This implies that

m∗(ε) ≤ m̄

(

1− ϕ

2(1 + ϕ)
ε

)

. (65)

Finally, (59) and (65) give us the desired inequality (61)

m∗(ε) ≤ m̂φ

(

(1− ϕ)2

2(1 + ϕ)2
ε

)

. (66)

The inequalities for the cost follow immediately.

Theorem 3 says that the cost of ADAPT-MESH can only exceed by the constant 2κ∗(r)/κφ(r)

the cost of any algorithm φ with β̄ = 2, with any mesh selection strategy such that the local

error is at most (1−ϕ)2/(2(1+ϕ)2) ε. This accuracy is more demanding than ε. For instance,

if we take ϕ = 1/2, then ε in the accuracy demand is replaced by ε/18.

Observe that adaptive mesh cannot reduce the speed of growth of the cost as ε → 0. It

follows from (61) and (40) that for the best choice of points we have, similarly as for the

equidistant mesh, that

m̂(ε) = Θ

(

(

1

ε

)1/(r+1)
)

.

The asymptotics is thus the same. Possible advantage of the adaptive mesh selection is

hidden in the size of the quantity m̂(ε), see the definition (55). To illustrate this, we now

discuss possible advantage of the algorithm ADAPT-MESH with respect to another algo-

rithm φ with β̄ = 2, based on the uniform mesh. Note that for any φ, any m and the uniform

mesh we have

max
0≤i≤m−1

c̄i h
r+1
i = N̄(f)

(

b− a

m

)r+1

,

where N̄(f) = β̄

(

(1/r!) sup
t∈[a,b]

‖z(r+1)(t)‖+ β

)

(1 + ϕ). Hence,

m̄equid(ε) = min







m : N̄(f)

(

b− a

m

)r+1

≤ ε







=









(b− a)

(

N̄(f)

ε

)1/(r+1)








. (67)

It follows from (48) that we also have

max
0≤i≤m−1

ci h
r+1
i = Θ



N̄(f)

(

b− a

m

)r+1


 , as m → ∞,
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and

m̂equid(ε) = Θ













(b− a)

(

N̄(f)

ε

)1/(r+1)










 , as ε → 0,

where constants in the Θ-notation only depend on ϕ.

We want to compare m∗(ε) (which decides about the cost of ADAPT-MESH) with m̂equid(ε)

(which decides about the cost of φ with the equidistant mesh). We have by (65) the following

sequence of inequalities

m∗(ε) ≤ m̄

(

1− ϕ

2(1 + ϕ)
ε

)

≤ m̄equid

(

1− ϕ

2(1 + ϕ)
ε

)

= Θ













(b− a)

(

N̄(f)

ε

)1/(r+1)










 = Θ
(

m̂equid(ε)
)

, (68)

where again constants in the Θ-notation only depend on ϕ.

The second inequality in (68) allows us to understand when the adaption pays off. Just

below the definition (57), we gave a comment on how to compute m̄(ε). The comment yields

that m̄(ε) is the minimal number m ∈ N such that

mS̄(m) ≥ (b− a)
(

1

ε

)1/(r+1)

, (69)

where

S̄(m) =
1

m

m−1
∑

i=0

(

1

c̄i

)1/(r+1)

. (70)

To see this, consult similar reasoning leading to (37) and (38). In the case of m̄equid (ε) an

analogous condition to (69) is given in the first equality in (67):

m
1

N̄(f)1/(r+1)
≥ (b− a)

(

1

ε

)1/(r+1)

. (71)

Comparing (69) and (71), we see that the second term in (68) is much less than the third

term if S̄(m)−1 is much smaller than N̄(f)1/(r+1). Since

N̄(f) = β̄

(

1

r!
sup
t∈[a,b]

‖z(r+1)(t)‖+ β

)

(1 + ϕ),

and

c̄i = β̄

(

1

r!
sup

t∈[xi,xi+1]
‖z(r+1)(t)‖ + β

)

(1 + ϕ) ,

we can identify cases when the gain of adaption is significant. Adaption pays off for functions

for which the size of ‖z(r+1)(t)‖ changes significantly in parts of the interval [a, b]. Of course,
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the second inequality in (68) can also turn into equality. For such functions f there is no

gain of adaption. Translating the above discussion to similar properties of the cost of the

algorithm is straightforward.

8 Numerical example

We illustrate the performance of the mesh selection mechanism in ADAPT-MESH by an

example (other test examples in C++ are in progress), see [11]. We consider a scalar test

problem from [4] with a parameter δ > 0

z′(t) =
3

4
(z(t)− 1)−3/2, t ∈ [0, 1], z(0) = 1 + δ, (72)

with the global solution given by z(t) =
(

15
8
t+ δ5/2

)2/5
+ 1. The solution with the initial

condition z(x) = y (x ≥ 0, y > 1) is given by

zx,y(t) =
(

15

8
(t− x) + (y − 1)5/2

)2/5

+ 1.

The right-hand side f(t, y) = 3
4
(y − 1)−3/2 is a C∞ function for y > 1.

The problem (72) is a typical test problem whose computational difficulty can be controlled

by δ; it grows as δ tends to zero. We use the algorithm ADAPT-MESH with r = 1, which

corresponds to the Euler method equipped with the mesh selection algorithm, and with

r = 2. For the global solution z, we have that |z(r+1)(t)| for t close to 0 behaves like 1/δ4

for r = 1 and 1/δ6.5 for r = 2. For t away from 0, |z(r+1)(t)| is essentially a constant. That

is, for small δ we should observe a significant advantage of adaptive mesh points over the

equidistant points.

The computer precision is macheps = 10−15. Obviously, since macheps is fixed and com-

puting time is limited, we cannot verify the asymptotic behavior of the algorithm as ε → 0;

we are only able to see results for some number of values of ε.

Let us now briefly discuss a practical choice of h(ε) in step 2 of the algorithm. In fixed

precision computation, the crucial point is accuracy of computing the divided difference in

(27) of Lemma 2. Due to round off errors in computing both f(t̄k, l̄i,r+1(t̄k)) and the di-

vided difference, the bound (27) changes to C̃(h̄i + macheps/h̄r
i ), for some C̃ dependent

on f . The minimum of the function of h̄i is achieved for h̄i = (r · macheps)1/(r+1). Thus,

in step 2, neglecting the coefficient dependent on r, we fix h(ε) independently of ε to be

h(ε) = 10−15/(r+1).
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In step 5, we set

Gi =







2|H̃i[x
∗
i , x̄i+1]|+ 1 r = 1,

4
∣

∣

∣H̃i[x
∗
i , (x

∗
i + x̄i+1)/2, x̄i+1]

∣

∣

∣+ 2 r = 2.

(Note that for r = 1 we have li,r+1 = l̄i,r+1.) The following table shows results computed by

ADAPT-MESH for a number of values of δ and ε. We denote

MAXERR = max
0≤i≤m∗−1

|zi(x
∗
i+1)− y∗i+1|,

where zi(x
∗
i ) = y∗i , andm∗ is the number of intervals computed in ADAPT-MESH. The value

EQUIDIST is the maximal local error of the respective method for r = 1 or r = 2 applied on

the equidistant mesh xi = i/m∗, i = 0, 1, . . . , m∗, with the same number of subintervals equal

to m∗. In the successive columns we show the values m∗ , MAXERR/ε and EQUIDIST/ε.

δ ε m∗ MAXERR/ε EQUIDIST/ε m∗ MAXERR/ε EQUIDIST/ε

r = 1 r = 1 r = 1 r = 2 r = 2 r = 2

0.1 10−2 33 0.22 49.42 24 0.03 26.06

10−4 315 0.246 225.7 99 0.04 345.62

10−8 31373 0.25 424.4 2081 0.04 5331.38

10−14 31371619 0.264 428.7 207780 0.06 7409.35

10−2 10−2 41 0.22 1801.15 33 0.04 1105.64

10−4 390 0.25 18147.4 136 0.11 25876.9

10−8 38841 0.25 907049 2821 0.16 9.15 ∗ 106

10−14 38839361 0.26 2.79 ∗ 106 281583 0.175 4.73 ∗ 109

10−3 10−2 43 0.22 55127.5 32 1.3 37025.9

10−4 413 0.37 5.73 ∗ 105 140 18.65 8.45 ∗ 105

10−8 41109 0.49 5.6 ∗ 107 2917 950.194 4.0 ∗ 108

10−14 41106703 0.5 1.48 ∗ 1010 291133 2262.01 3.35 ∗ 1012

10−4 10−2 42 1.005 1.79 ∗ 106 22 16.14 1.7 ∗ 106

10−4 414 8.09 1.81 ∗ 107 121 336.5 3.1 ∗ 107

10−8 41367 77.96 1.81 ∗ 109 2915 118505 1.29 ∗ 1010

10−14 41365164 88.96 1.71 ∗ 1012 291276 7.88 ∗ 107 1.28 ∗ 1014

According to the theory, for sufficiently small ε the values in the 4th column (for r = 1) and

7th column (for r = 2) should be at most 1. This is the case for δ = 10−1, 10−2 for r = 1, 2,

22



and δ = 10−3 for r = 1. For small values of δ, the round off errors do not allow us to observe

the asymptotic behavior of the algorithm, since the value of ε is too large. Comparison of

columns 4 and 5 for r = 1 and 7 and 8 for r = 2 shows the gain of the adaptive mesh selec-

tion algorithm applied in ADAPT-MESH over the equidistant points. In the test we have

computed results for the equidistant mesh with the same number of points. We may wish to

compare the behavior of adaption with nonadaption using the same number of evaluations

of f . For r = 1, the adaptive method uses 2 function evaluations, while the nonadaptive one

only one value. Hence, in this case the value in the 5th column should be divided by 4. For

r = 2, the respective numbers are 10 and 4 evaluations, that is the result in the 8th column

should be divided roughly by 16. This does not change the picture – in both cases, for small

δ the tests show a very significant advantage of the adaption over nonadaption.

We shortly comment on comparison between the algorithm defined in [4] for scalar au-

tonomous problems and the current algorithm designed for systems of IVPs, for the test

problem (72). As it can be expected, the algorithm from [4] allows us to better treat small

values of δ. This follows from the fact that, roughly speaking, the step size control in [4]

was based on two-sided estimates of local errors. Specific properties of scalar autonomous

problems were used in [4]; they cannot be extended to systems of initial value problems. In

order to handle systems of IVPs, the present algorithm uses upper local error bounds, see

(28) and (29).

9 Conclusions

We have proposed a mesh selection algorithm for systems of IVPs that (asymptotically)

guarantees a given level of the local error. The algorithm only requires evaluations of the

right-hand side f . Rigorous analysis of the cost has been given, including comparison with

the best choice of the mesh points, as well as with the uniform mesh.
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