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Abstract
The singular value decomposition (SVD) has a crucial role in model order reduc-
tion. It is often utilized in the offline stage to compute basis functions that project
the high-dimensional nonlinear problem into a low-dimensional model which is then
evaluated cheaply. It constitutes a building block for many techniques such as the
proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD).
The aim of this work is to provide an efficient computation of low-rank POD and/or
DMD modes via randomized matrix decompositions. This is possible due to the
randomized singular value decomposition (rSVD) which is a fast and accurate alter-
native of the SVD. Although this is considered an offline stage, this computation
may be extremely expensive; therefore, the use of compressed techniques drastically
reduce its cost. Numerical examples show the effectiveness of the method for both
POD and DMD.

Keywords Nonlinear dynamical systems · Proper orthogonal decomposition ·
Dynamic mode decomposition · Randomized linear algebra
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1 Introduction

Reduced-order models (ROMs) continue to play a critically enabling role in mod-
ern, large-scale scientific computing applications [3]. The ROM architecture is
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being exploited in many simulation-based physics and engineering systems in order
to render tractable many high-dimensional simulations. Fundamentally, the ROM
algorithmic structure is designed to construct low-dimensional subspaces, typically
computed with SVD, where the evolution dynamics can be projected using a Galerkin
method. Thus, instead of solving a high-dimensional system of differential equations
(e.g., millions or billions of degrees of freedom), a rank �model can be constructed in
a principled way. Three steps are required for this low-rank approximation: (i) numer-
ical solutions of the original high-dimensional system; (ii) dimensionality reduction
of this solution data typically produced with an SVD; and (iii) Galerkin projection of
the dynamics on the low-rank subspace using sparse and/or greedy sampling meth-
ods, i.e., gappy POD [26]. The first two steps are often called the offline stage of the
ROM architecture, whereas the third step is known as the online stage. Offline stages
are exceptionally expensive but enable the (cheap) online stage to potentially run in
real time. In this manuscript, we integrate recent innovations in randomized linear
algebra methods [21], particularly as it relates to the SVD, and compressive sam-
pling in order to (i) improve the computational efficiency of the second step of the
ROM architecture, namely the building of low-rank subspaces used for Galerkin pro-
jection, and (ii) provide a rapid evaluation of the nonlinear terms in the ROM model
using compressive sampling of the DMD.

Randomized methods for matrix computations provide an efficient computation
of low-rank structures in data matrices, which is a foundational aspect of machine
learning and big data applications. Such algorithms exploit the fact that the target
rank of interest, �, is significantly smaller than the high-dimensional data under con-
sideration, thus allowing for a compressed representation of the original data matrix
with only a minor loss in precision. Indeed, the randomized singular value decom-
position (rSVD) exploits this compressive representation and provides a low-rank
approximation of the SVD while using only slightly more than � random measure-
ments. The randomized SVD algorithm comes with strong theoretical error bounds
and the advantage that the error can be controlled by oversampling and subspace
iterations [9, 18, 21]. The rSVD can produce a low-rank approximation to the full
high-dimensional state vector by taking advantage of the QR algorithm with random
sampling. The QR approximation gives a mapping from high- to low-dimensional
subspaces and back again. The rSVD algorithm additionally provides an estimate of
the target rank and oversampling required [9, 18, 21]. In the case of ROMs, there may
only be a couple hundred modes of interest (� ≈ 200), whereas the numerical solu-
tion of the original high-dimensional system may have millions or billions of degrees
of freedom. ROMs allow one to simulate this system with a differential equation of
dimension �, thus greatly reducing computational time. Randomized techniques cir-
cumvent the challenge of traditional (deterministic) SVD reduction which requires
significant memory and processing resources for the high-dimensional data generated
from full-state simulations. Randomized techniques are robust, reliable, and compu-
tationally efficient, and can be used to construct the low-rank POD modes which
accurately approximate the POD modes of the high-dimensional data matrix [6, 18].
There exist several strategies for obtaining the compressed matrix, and using ran-
dom projections is certainly the most robust off-the-shelf approach. Randomized
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algorithms have been in particular studied for computing the near-optimal low-rank
singular value decomposition by [11, 17, 20, 31]. The seminal contribution [13]
extends and surveys this work.

The potential of randomized sampling techniques has already been realized in
the ROMs community where it has been used recently to construct preconditioners
of parameter-dependent matrices for the solution of large systems of parameter-
dependent equations [32] and to construct a low-rank approximation of the linearized
parameter-to-observable map in modeling Antarctic ice sheets [14]. In addition to
randomized techniques, compressive sampling strategies are of growing interest for
matrix computations as they also allow for the approximation of decompositions with
few measurements. Much like randomized algorithms, compressive sampling takes
advantage of the inherent sparsity of the spatiotemporal dynamics in an appropriate
basis. Thus, the target rank � determines the number of sample points required. Com-
pressive sampling can be used with the dynamic mode decomposition (DMD) [16]
to enact a compressive DMD [4, 9] approximation for the Galerkin-projected dynam-
ics [1]. The DMD method is an attractive alternative to the standard POD–Galerkin
reduction which also uses sparse sampling through the gappy POD [10] and/or (dis-
crete) empirical interpolation method (DEIM/EIM) architecture (see, e.g., [2, 5]).
DMD is a least-squares regression technique that integrates Fourier transforms and
SVD. The DMD method originated in the fluid dynamics community as a method to
decompose complex flows into a simple representation based on low-rank, spatiotem-
poral coherent structures. The growing success of DMD stems from the fact that
it is an equation-free, data-driven method capable of providing an accurate decom-
position of a complex system into spatiotemporal coherent structures that may be
used for short-time future state prediction and control. For ROMs, only the leading-
order DMD modes are necessary to reconstruct the nonlinearity in a governing PDE
and predict future states of the high-dimensional dynamics. Ultimately, the low-rank
structure inherent in ROMs and DMD allows the community to exploit sparse mea-
surements to reconstruct an accurate approximation of the high-dimensional system.
In this work, two new innovations are introduced that leverage our current compu-
tational capabilities, namely compressive sampling for enhancing the DMD method
for ROMs and randomized singular value decompositions for constructing efficient
POD basis elements.

The structure of the paper is as follows. In Section 2, we review model reduction
techniques based upon the POD method, the discrete empirical interpolation method
(DEIM) and the DMD applied to general nonlinear dynamical systems. In Section 3,
we highlight innovations of randomized techniques for matrix computations, which
is the building block for our new approach. Section 3.1 focuses on the application of
compressed matrix decompositions in model order reduction. Finally, numerical tests
are presented in Section 4. Throughout the paper, we use the following notation: all
matrices and vectors are in bold letters. The basis functions are denoted by the matrix
� with different superscripts denoting how we computed the basis, e.g., �POD repre-
sents the basis functions from the POD method. The rank of the POD basis functions
is �, the rank of the nonlinear term is k, whereas p is the number of measurements
utilized in the compressed techniques and Û is the number of over sampling.
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2 Model order reduction techniques

We consider the general system of high-dimensional, ordinary differential equations
as follows: {

Mẏ(t) = Ay(t) + f(t, y(t)), t ∈ (0, T ],
y(0) = y0,

(2.1)

where y0 ∈ R
n is a given initial data, M,A ∈ R

n×n are given matrices and
f : [0, T ] × R

n → R
n is a continuous function in both arguments and locally

Lipschitz-type with respect to the second variable. It is well-known that under these
assumptions there exists a unique solution for (2.1). This class of problems arises
in a wide range of applications, but especially from the numerical approximation of
partial differential equations. In such cases, the dimension of the problem n is the
number of spatial grid points used from discretization, and it typically is very large.
The numerical solution of system (2.1) may be very expensive to compute; there-
fore, it is often useful to simplify the complexity of the problem by means of ROMs.
The model reduction approach is based on projecting the nonlinear dynamics onto a
low-dimensional manifold utilizing projectors that contain information from the full,
high-dimensional system. The norm, here and in the sequel of the section, can be
interpreted as 〈u, v〉 = uT v and ‖ · ‖2 = 〈·, ·〉.

Let us assume that we have computed some basis functions � = {ψj }�j=1 ∈ R
n×�

of rank � for (2.1). We can project the dynamics onto the low-rank basis functions
using the following:

y(t) ≈ �y�(t), (2.2)

where y�(t) are functions on R
� and defined on the time interval from [0, T ]. We

note that we are working with a Galerkin-type projection where we consider only a
few basis functions whose support is nonlocal, unlike finite element basis functions.

Inserting the projection assumption (2.2) into the full model (2.1), and making use
of the orthogonality of the basis functions, the reduced model takes the following
form as follows:{

M�ẏ�(t) = A�y�(t) + �T f(t, �y�(t)), t ∈ (0, T ],
y�(0) = y�

0,
(2.3)

where,

(M�)ij = 〈ψi,Mψj 〉, (A�)ij = 〈ψi,Aψj 〉 ∈ R
�×�

and y�
0 = (M�)−1(�)T My0 ∈ R

�. The system (2.3) is achieved following a Galerkin
projection. If the dimension of the system is � � n, then a significant dimensionality
reduction is accomplished.

This section focuses on several model order reduction techniques as they consti-
tute the building blocks of the proposed method. In particular, we recall three key
innovations for model reduction: POD, DEIM, and DMD. These techniques pro-
vide an efficient projector for the reduction of the complexity of the problem under
consideration.
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2.1 The PODmethod and reduced-order modeling

One popular method for reducing the complexity of the system is the so-called proper
orthogonal decomposition (POD). The idea was proposed in [26] and is detailed here
for completeness. We build an equidistant grid in time with constant step size �t . Let
t0 := 0 < t1 < t2 < . . . < tm ≤ T with tj = j�t, j = 0, . . . , m. Let us assume
we know the exact solution of (2.1) on the time-grid points tj , j ∈ {0, . . . , m}. Our
aim is to determine a POD basis of any rank � � n to optimally describe the set of
data collected in time by solving the following minimization problem:

min
ψ1,...,ψ�∈Rn

m∑
j=0

αj

∥∥∥∥∥y(tj ) −
�∑

i=1

〈y(tj ), ψi〉ψi

∥∥∥∥∥
2

such that 〈ψi, ψj 〉 = δij , (2.4)

where the coefficients αj are nonnegative and y(tj ) are the so-called snapshots, e.g.,
the solution of (2.1) at a given time tj .

Solving (2.4), we look for an orthonormal basis {ψi}�i=1 which minimizes the dis-
tance between the sequence y(tj ) with respect to its projection onto this unknown
basis. The matrix Y := {√α0y(t0) . . . ,

√
αmy(tm)} ∈ R

n×(m+1) contains the collec-
tion of snapshots y(tj ) as columns. We note that in the numerical experiments, we
will set αj ≡ 1, j = {0, . . . , m}. It is useful to look for � � min{m, n} in order to
reduce the dimension of the problem considered. The solution of (2.4) is given by the
SVD of the snapshots matrix Y = ��VT , where we consider the first �− columns
{ψi}�i=1, of the orthogonal matrix � and set �POD = �.

To concretely apply the POD method, the choice of the truncation parameter �

plays a critical role. There are no a-priori estimates which guarantee the ability
to build a coherent reduced model, but one can focus on heuristic considerations,
introduced in [26], so as to have the following ratio close to one as follows:

E(�) =

�∑
i=1

σ 2
i

r∑
i=1

σ 2
i

, (2.5)

where r is the rank of the snapshot matrix Y. This indicator is motivated by the fact
that the error in (2.4) is given by the singular values we neglect as follows:

m∑
j=0

αj

∥∥∥∥∥y(tj ) −
�∑

i=1

〈y(tj ), ψi〉ψi

∥∥∥∥∥
2

F

=
r∑

i=�+1

σ 2
i . (2.6)

We note that the error (2.6) is strictly related to the computation of the snapshots and
it is not related to the reduced dynamical system. More recently in [12], the authors
have introduced a hard-thresholding technique for determining the truncation of the
SVD when the data contains a low-rank signal with noise. This method provides a
principled approach to rank selection. Selecting the target rank � for the POD reduc-
tion has already been noted as a critical task. In practice, rank selection for a standard
POD reduction (not randomized) is often chosen from experience with simulations of
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the governing PDE. For instance, one could choose the rank � such that the quantity
E(�) in (2.5) is close to 1.

2.2 Discrete empirical interpolationmethod

For a review of DEIM, we closely follow the presentation in [5]. The ROM intro-
duced in (2.3) is a nonlinear system where the significant challenge with the
POD-Galerkin approach is the computational complexity associated with the evalua-
tion of the nonlinearity. To illustrate this issue, we consider the nonlinearity in (2.3)
as follows:

F(t, y�(t)) = (�POD)T f(t, �PODy�(t)) = 〈�POD, f(t, �PODy�(t))〉.
To compute this inner product, the variable y�(t) ∈ R

� is first expanded to an
n-dimensional vector �PODy�(t) ∈ R

n, then the nonlinearity f(t, �PODy�(t)) is
evaluated and, at the end, we return back to the reduced-order model. This is compu-
tationally expensive, since it implies that the evaluation of the nonlinear term requires
computing the full, high-dimensional model; therefore, the reduced model is not
independent of the full dimension n. To avoid this computationally expensive, high-
dimensional evaluation, the gappy POD method was introduced [10]. In its original
formulation, random and sparse sampling was proposed for computing the required
nonlinear inner products. Advances in gappy methods have led to the state-of-the-
art empirical interpolation method (EIM, [2]) and discrete empirical interpolation
method (DEIM, [5]) methods which are now broadly used in the ROMs community.

The computation of the POD basis functions U = {U1, . . . , Uk} for the nonlinear
part are related to the set of the snapshots f(tj , y(tj )) where y(tj ) is already computed
from (2.1). The DEIM approximation of f(t, y(t)) is as follows:

fDEIM(t, yDEIM(t)) = U(ST U)−1f(t, yDEIM(t))

where S ∈ R
n×k and yDEIM(t) = ST �PODy�(t). The matrix S pick coordinates in

R
n where the nonlinearity is evaluated and the selection is made according to an

LU decomposition algorithm with pivoting [5], or following the QR decomposition
with pivoting [7]. The error between f(t, y(t)) and its DEIM approximation f DEIM is
given by the following:

‖f − fDEIM‖2 ≤ c‖(I − UUT )f ‖2 with c = ‖(ST U)−1‖2
where different error performance is achieved depending on the selection of the
interpolation points in S as shown in [7].

2.3 Dynamic mode decomposition

DMD is an equation-free, data-driven method capable of providing accurate assess-
ments of the spatiotemporal coherent structures in a given complex system, or
short-time future estimates of such a systems. It traces its origins to pioneering work
of Bernard Koopman in 1931 [15], whose work was revived in a set of papers start-
ing in 2004 [23–25]. The DMD provides the eigenvalues and eigenvectors of the best
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fit linear system relating a snapshot matrix and a time shifter version of the snapshot
matrix at some later time.

Consider the following data snapshot matrices as follows:

Y=
⎡
⎣ y(t0) y(t1) · · · y(tm−1)

⎤
⎦ , Y′ =

⎡
⎣ y(t1) y(t2) · · · y(tm)

⎤
⎦ (2.7)

with y(tj ) an initial condition to (2.1) and y(tj+1) its corresponding output after
some prescribed evolution time �t > 0 with there being m initial conditions consid-
ered. The DMD method computes the best linear operator A relating to the matrices
above:

Y′ = AY, (2.8)

where A ∈ R
n×n is unknown. The exact DMD algorithm proceeds as follows [28]:

First, we collect data Y,Y′ and compute the reduced, or economy, singular value
decomposition of Y:

Y = U�VT .

We note that the use of the economy SVD is suggested since the matrices Y,Y′ ∈
R

n×m with n 
 m. Furthermore, the economy U ∈ R
n×m is sufficient to provide the

same approximation of the regular SVD given the limited amount of snapshots.
Then, we compute the least-squares fit A that satisfies Y′ = AY and project onto

the POD modes U. Specifically, the Moore-Penrose pseudo-inverse of Y allows us to
compute A = Y′Y†, where the Moore-Penrose algorithm provides the least-square
fitting procedure. In terms of its low-rank projection, this yields as follows:

Ã = UT AU = UT Y′V�−1,

and compute the eigen-decomposition of Ã :
ÃW = W
,

where 
 are the DMD eigenvalues. Finally, the DMD modes �DMD are given by the
following:

�DMD = Y′V�−1W. (2.9)

Unlike a POD approximation, the DMD modes contained in the columns of �DMD

are not orthogonal. However, this is not a problem in practice unless there is non-
normal behavior in dynamical system. The data Y,Y′ may come from a nonlinear
system y(tj+1) = f (y(tj )), in which case the DMD modes are related to eigenvec-
tors of the infinite-dimensional Koopman operator. More details can be found in [16].
We may interpret DMD as a model reduction technique if data is acquired from a
high-dimensional model, or a method of system identification if the data comes from
measurements of an unknown system. For the purpose of this work, we consider the
DMD-Galerkin method, where the assumption (2.2) holds true for � given by (2.9).
We note that the techniques we provide aim to speed up the computation of the offline
stage.
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3 Randomized linear algebra inmodel order reduction

Randomized linear algebra is of growing importance for the analysis of high-
dimensional data [21]. Specifically, randomized techniques attempt to construct
low-rank matrix decompositions that are computationally efficient and accurate
approximations of the standard matrix decompositions such as QR and SVD. Ran-
domized algorithms can be parallelized and distributed for large matrices and there
are several implementations of the randomized techniques in MATLAB or R that
are now available via open source [9, 27, 30]. The algorithms that result from
using randomized sampling techniques are not only computationally efficient, but
are also simple to implement as they rely on standard matrix-matrix multiplication
and unpivoted QR factorization. In addition to computational efficiency, convergence
properties of randomized methods have been well-characterized. In addition, many
practical innovations, including power sampling schemes, can improve convergence
performance [13]. This is beyond the scope of the current work, and the interested
reader is encouraged to consult the overview work [21].

Consider a randomized algorithm to compute the low-rank matrix approxima-
tion [13] is shown as follows;

Y ≈ Q B,

n × m n × � � × m

where � denotes the target rank and is assumed to be � � min{m, n}. Random matrix
theory provides a simple and elegant solution for computing the low-rank approxi-
mation by creating a random sampling matrix � ∈ R

m×� where the entries are drawn
from, for example, a Gaussian distribution with mean zero and variance one. Then, a
sampled matrix X ∈ R

n×� is computed as follows:

X = Y�.

If the matrix Y has exact rank �, then the sampled matrix X spans, with high proba-
bility, a basis for the column space. However, most data matrices in practice are only
dominated by rank-� features since the singular values {σi}ni=�+1 are nonzero. Thus,

instead of just using � samples, it is favorable to slightly oversample p = � + Û,
where p denotes the number of measurements and �̃ the number of over sampling. In
practice, small values of �̃ ≈ 20 are sufficient to obtain a good basis that is compara-
ble to the best possible basis [21]. An orthonormal basis Q ∈ R

n×� is then obtained
via the QR decomposition X = QR, such as the following:

Y ≈ QQT Y.

Finally, Y is projected to this low-dimensional space, as shown in the following;

B = QT Y,

where B ∈ R
�×m. The matrix B can then be used to efficiently compute the matrix

decomposition of interest such as the SVD. The oversampling �̃ allows one to con-
trol the approximation error [13, 21]. The algorithm is summarized in Algorithm 1.
In Fig. 1, we show the decay of the singular values for different level of the random-
ized SVD. As expected by increasing the number of sampling p, we obtain a more
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Fig. 1 Convergence of the singular values for randomized SVD with different number of measurements
�. We consider the full matrix (red), p = r/2 (blue), p = r (black), p = 2r (green) where r is the rank
of the snapshots matrix in test 1. (left) Absolute difference for singular values computed by standard and
randomized method with different numbers of over sampling �̃

accurate approximation. For the sake of completeness, in this example, we relate the
number of sampling p to the rank of the matrix, which is in general not known in
advance. However, we note that the target rank � can be estimated by a variety of rank
revealing algorithms [8, 13, 19, 30]. A complete description of these methods goes
beyond the scopes of this paper. In the right panel, we compute the absolute differ-
ence between the true and approximated singular values. As one can see with an over
sample of �̃ = 20, we already get accurate results. Clearly, the more oversampling
the better quality.

Algorithm 1 Randomized SVD (rSVD).

Require: Matrix Y ∈ R
n×m

1: Draw a Gaussian random matrix � ∈ R
m×p with mean 0 and variance 1,

2: Form the sample matrix X = Y�,
3: Compute the QR decomposition of X : X = QR,
4: Set B=QT Y,
5: Compute SVD of B = Û�VT ,
6: Set U = QÛ.

Finally, we note that the computational cost for the randomized SVD is O(mn�),
whereas the deterministic SVD is O(mn2). We can easily see that if � � n, we have
an impressive speed up of the method. Our next result follows closely ([13, Theorem
10.5]) and provide an error for the randomized SVD:

Theorem 3.1 Suppose that Y ∈ R
n×m is a matrix with singular values σ1 ≥ σ2 ≥

. . .. Choose a target rank � ≥ 2 and an oversampling parameter �̃ ≥ 2, where
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p = �+ �̃ ≤ min{m, n}. Draw an m×p standard Gaussian matrix �, and construct
the sample matrix X = Y�. Then, the expected approximation error is as follows;

E‖(I − PX)Y‖F ≤
√(

1 + �

�̃ − 1

)√∑
j>�

σ 2
j . (3.10)

The interested reader can find in [13] the proof of the theorem.

3.1 Compressedmodel order reduction techniques

Model order reduction techniques are usually based on snapshots that collect data
on the underlying dynamical system. The SVD decomposition of the date matrix
Y ∈ R

n×m provides a low-dimension projector operator that allows one to obtain
surrogate models. However, the SVD may be computationally expensive and, for this
reason, we propose the use of Algorithm 1 to reduce the offline cost of the method.
The main idea is to consider basis functions not from the full set of measurements but
from a few spatially incoherent measurements. We introduce the measurement matrix
C ∈ R

p×n which produces the compressed matrix X ∈ R
p×m such as the following:

X = CY.

Here, we consider sparse measurements of the snapshots matrix in order compute
POD and DMD from this new compressed snapshot matrix. In this paper, we assume
that snapshots matrix is almost square, e.g., n ≈ m, and one can imagine this is
a realistic situation working with an explicit time scheme or in a many-query con-
text. In the following subsections, we provide further details about compressed POD,
compressed POD-DEIM, and compressed DMD.

3.1.1 Compressed POD

The compressed POD method works, as does POD, starting with a snapshot matrix
with the aim to compute solutions of the problem (2.4) in a fast and reliable way. As
discussed before, the solution of the minimization problem leads to an expensive sin-
gular value decomposition problem. Here, the idea is to apply the randomized SVD
technique in Section 2 for the approximation of (2.4). The method works as follows:
(i) we collect the snapshot set and (ii) we produce the SVD modes which satisfy the
optimization problem (2.4). We make use of the optimality conditions in [29] in order
to take advantage of the randomized SVD. In this way, we are able to approximate
the high-dimensional POD modes using compressed POD modes which are com-
puted significantly faster. Clearly, the number of samples points plays a crucial role.
The algorithm is summarized in Algorithm 2.

The error in the minimization problem is now associated with subsampling of
the randomized SVD and follows directly from Theorem 3.1 since the optimality
conditions are derived as the standard method and we replace the computation of the



Randomized model order reduction 1261

Algorithm 2 Compressed POD (cPOD).

Require: Snapshot matrix Y ∈ R
n×m, � number of basis functions, p number of

measurements.
1: Compute the randomized SVD (see Algorithm 1), [U, �,V] = rsvd(Y)

2: Set �i = Ui for i = 1, . . . , �.

SVD with its randomized algorith. The expectation error for problem (2.4) reads as
follows:

E

⎛
⎜⎝

m∑
j=0

αj

∥∥∥∥∥∥y(tj ) −
�+�̃∑
i=1

〈y(tj ), ψi〉ψi

∥∥∥∥∥∥
2

F

⎞
⎟⎠ ≤

(
1 + �

�̃ − 1

)∑
j>�

σ 2
j . (3.1)

where �̃ is the number of additional samples in the compressed technique. We note
that we consider the expectation value of the error due to the random measurements
we consider. The error (3.1) is now related to the computation of the set of snapshots
and the number of samples p = � + �̃. We note that if the singular values of the
snapshot matrix decay rapidly a minimal amount of samples drives the error close
to the theoretically minimum value. However, if the singular values do not decay
rapidly, we can lose accuracy. As explained in [13], the error bound always exceeds
this reference error, but it may be polynomially larger, depending on the ratio between
the target rank � and the oversampling parameter �̃. For �̃ small (say, less than five),
the error is somewhat variable because the small singular values of a nearly square
Gaussian matrix are very unstable. As the oversampling increases, the performance
improves quickly. We refer to [13] and the reference therein for more details about
the error of the randomized SVD.We also note that both errors (3.1) and (2.6) depend
on the sum of the singular values neglected. Finally, we note that the POD basis
functions for the snapshot matrix Y ∈ R

n×(m+1) can be also computed from the
eigenvalue problem for the matrix YYT or YT Y. Interested readers can see, e.g., [29]
for a more comprehensive description. Regardless, if the dimension of the matrix Y
is such that n ≈ m, then the computation of the eigenvalue problem will not lead to a
faster approximation than the SVD. This further motivates our approach through the
rSVD.

For the randomized model reduction advocated here, as in standard model reduc-
tion, the choice of the target rank � is critical. One can also use past experience with
a given PDE as a guide to select it. In the absence of prior knowledge, rank revealing
algorithms have also been developed for the randomized SVD which estimates the
target rank � of interest [8, 13, 19, 22, 30], including data sets with slowly decaying
singular values. Thus, the target rank does not need to be known in advance. Impor-
tantly, the blocked randUTV [22] provides accuracy very close to that of the SVD
for problems such as low-rank approximation, solving ill-conditioned linear systems,
determining bases for various subspaces associated with the matrix, etc. Further-
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more, randUTV produces highly accurate approximations to the singular values of
the desired matrix. Unlike the SVD, the randomized algorithm of randUTV builds
a UTV factorization in an incremental, single-stage, and non-iterative way, making
it possible to halt the factorization process once a specified tolerance has been met.
Thus, an advantage of randomized algorithms is that one can build the reduced space
in an adaptive manner until a certain accuracy is satisfied. The code to perform this
computation is available as open source [22]. Ultimately, this gives a computation-
ally cheap way to estimate the rank, and then the standard randomized SVD method
can be used on ensuing computations. Although a complete description of random-
ized rank revealing algorithms goes beyond the scopes of this work, we would like to
mention that it already constructs the reduced space which is desired for the approx-
imation of the range of the snapshot matrix Y. For this reason, we show in Fig. 2 a
comparison of the k-rank projection error ‖Y − UkUT

kY‖ where the projection oper-
ators Uk are computed with randomized SVD and blocked randUTV techniques. We
further note that the randUTV is a blocked randomized technique and we need to
choose a-priori the number of blocks.

3.1.2 Compressed POD-DEIM

Similarly to the compressed POD method, we aim to apply the rSVD to the DEIM
approach. The DEIM method considers the computation of the SVD for both the
snapshots of the solution and snapshots of the nonlinear term. We note that, although
the online stage benefits from a sparse evaluation of the nonlinearity, the offline stage
is even more expensive than POD itself. The goal is to substitute the full dimensional
SVD with the much smaller randomized SVD. In this way, we can highly reduce the
cost of the computational costs and, at the same time, obtain accurate results.

10 20 30 40 50
10-15

10-10

10-5

100
Projection error

UTV 5 blocks
UTV 20 blocks
SVD
rSVD

Fig. 2 Comparison of the projection operator computed by SVD (yellow circles), rSVD (purple line,
�̃ = 5), randUTV with 5 blocks (blue stars) and randUTV with 20 blocks (red line)
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3.2 Compressive DMD

We can also combine ideas from compressive sampling to compute the dynamic
mode decomposition from a few measurements of the data. This method was already
introduced in [4]. Here, it is applied in as Galerkin projection method. It is possible
to either collect data the full amount of data Y,Y′ as in Section 2.3 or projected data
X,X′, where X = CY, X′ = CY′ and C ∈ R

p×n is the measurement matrix. We will
call the matrices X,X′ the output-projected snapshot matrices. Similar to equation
above, X and X′ are related by the following:

X′ = AXX. (3.2)

The goal, as in DMD, is to compute eigenvalues and eigenvectors of the unknown
matrix AX. The method differs from the standard DMD since we are using sparse
measurements. Under general assumptions, it is possible to prove the convergence
of the method when the number of measurements p increases [18, 21], but there
is an important empirical observation that p = � + 20 is sufficient to given an
accurate approximation of the low-rank subspace in practice [9, 21]. Clearly the
cDMD method is computationally more efficient, and the method is summarized in
Algorithm 3.

Algorithm 3 Compressive DMD (cDMD).

Require: Snapshots {y(t0), . . . , y(tm)}, C ∈ R
p×n

Set Y = [y(t0), . . . , y(tm−1)] and Y′ = [y(t1), . . . , y(tm)],
X = CY, X′ = CY′,

3: Compute the SVD of X, X = U�VT ,
Define Ãx := UT Y′V�−1,
Compute eigenvalues and eigenvectors of ÃxW = W
,

6: Set �DMD = X′V�−1W.

Once the DMD basis functions �DMD are computed, we utilize assumption (2.2)
and obtained a surrogate model of the form (2.3).

4 Numerical tests

In this section, we present our numerical tests using our three proposed com-
pressed/randomized SVD strategies of the last section. In our numerical computa-
tions, we use the finite difference method to reduce a partial differential equation into
the form (2.1) and integrate the system with a semi-implicit Euler scheme in the first
example where the linear part is treated implicitly and the nonlinear term explicitly.
In the second example, we integrate the system with an implicit Euler scheme which
involves the Newton method. All the numerical simulations reported in this paper are
performed on a MacBook Pro with an Intel Core i5, 2.2Ghz and 8GB RAM using
MATLAB R2013a.
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Fig. 3 Test 1: solution of equation (4.3) at time t = {0, 0.1} (top) and t = {1.5, 3} (bottom)

In the following numerical examples, we build different surrogate models, such
as POD, compressed POD (cPOD), POD-DEIM, compressed POD-DEIM (cPOD-
cDEIM), DMD and compressed DMD (cDMD), and compare their performance in
terms of CPU time and the error with respect to a reference solution computed by a
high-fidelity, finite-difference approximation. We select two numerical examples, the
first one considers a time-dependent semilinear PDEs, whereas the second studies a
semilinear elliptic parametric equations. Both examples lead to the same conclusions.
In the numerical tests, the number of samples utilized for the compression of the
snapshot matrix is p = � + 20, where � is the number of desired basis functions
and �̃ = 20 the number of oversampling. The randomized techniques provides also
accurate algorithms to detect the rank of a matrix as mentioned in [13]. As shown
in Fig. 1, this turns out to be very efficient for both accuracy and computational
cost.

4.1 Test 1: semilinear equation

Let us consider the following semilinear parabolic equations:⎧⎨
⎩

yt (x, t) − θ�y(x, t) + μ
(
y(x − t) − y3(x, t)

) = 0, (x, t) ∈ � × [0, T ],
y(x, 0) = y0(x), x ∈ �,

y(·, t) = 0, x ∈ ∂�, t ∈ [0, T ],
(4.3)
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Fig. 4 Test 1: CPU time of the offline-online stages (left) and relative error in Frobenius norm (right). We
compare the following methods: POD (red), cPOD (magenta), POD-DEIM (yellow), cPOD-cDEIM (blue,
DMD (black), cDMD (green). Number of model are always the same for all the methods

where � = [0, 1] × [0, 1], T = 5, θ = 0.1, μ = 11, x = (x1, x2), y0(x) = 0.1
if 0.1 ≤ x1x2 ≤ 0.6 and 0 elsewhere. The POD basis vectors are built upon 10000
equidistant snapshots. The FD discretization yields a system of ODEs of the same
form as (2.1) with n = 10000. The solution of this equation generates a stationary
solution y(x, t) ≡ 1 for large t as shown in Fig. 3.

The complexity of problem (4.3) is reduced by model order reduction. When
dealing with model order reduction, it is relevant to consider the CPU time of the
simulation and the error. In general, it is important to have a trade-off between the
two quantities. Figure 4 considers the CPU time on the left panel. As we can see,
the compressed techniques are faster than the standard reduction techniques. We note
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Fig. 5 Test 1: CPU time for a given error tolerance



1266 A. Alla, J.N. Kutz

1000 2000 3000 4000 5000 6000

10
−2

10
0

10
2

10
4

CPU TIME

Dimension of the full problem

 

 

POD
cPOD
POD−DEIM
rPOD−rDEIM
DMD
cDMD

1000 2000 3000 4000 5000 6000
10

−4

10
−3

10
−2

10
−1

10
0

RELATIVE ERROR

Dimension of the full problem

 

 

POD
cPOD
POD−DEIM
rPOD−rDEIM
DMD
cDMD

Fig. 6 Test 1: scaling of the CPU time with increasing dimension of the snapshot set (left), relative error
for ten modes and different snapshot set

here that for the CPU time we consider both offline and online stages. Although we
do not aim at and improvement of the online stage, in this work, one might also con-
sider a further speed up as suggested in [1]. It is somehow clear that the compressed
DMD provides the fastest approximation since it does not require the computation
of the randomized SVD. However, we show in Fig. 4 the relative error computed
with respect to the Frobenius norm. As we can see, POD and cPOD, such as POD-
DEIM and cPOD-cDEIM, perform exactly the same results. Slightly different are the
results from DMD and cDMD. All these techniques perform with very high accuracy.
As expected, the POD-DEIM and its related compressed technique is less accurate
since we do not evaluate the nonlinearity for the full state. We also note that the error
computed using the POD-DEIM and the cPOD-cDEIM methods matches perfectly.
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Fig. 7 Test 2: solution of problem (4.4) for different parametric configurations (top) and contour lines
(bottom). We consider (μ1, μ2) = (0.2, 5) (left), (μ1, μ2) = (7, 0.4) (middle), (μ1, μ2) = (9, 9) (right)



Randomized model order reduction 1267

20 40 60 80 100 120
10-15

10-10

10-5

100

105

FULL
p =rank/2
p =rank
p =2*rank

20 40 60 80 100 120 140 160 180 200
10-15

10-10

10-5

100

105

FULL
p =rank/2
p =rank
p =2*rank

Fig. 8 Test 2: decay of the singular values for the snapshot set with different number of measurements
(left) and for the nonlinear term (right)

Furthermore, once can also see the instability of the POD-DEIM method due to an
insufficient approximation of the nonlinear term.

A more appropriate comparison is given in Fig. 5. There, we look at the CPU time
for a given fixed error tolerance. As it is shown, the compressed techniques reach a
desired error faster than standard method gaining at least 1 order of magnitude.

Another important feature to investigate when dealing with compressed techniques
is how the CPU time scales with different dimensions of the snapshot matrix. The
computation of the SVD is, computationally, the most expensive part of the method
and its cost varies according to the dimension of the snapshot set. Here, we consider a
square matrix. As we can see in Fig. 6 in the left panel, the CPU time scale shows that
we gain more than two orders of magnitude in speed up as the dimension increases.
Thus, it provides a powerful technique that allows one to significantly reduce the
computational costs in the offline stage. In the right panel, we can see the relative
error for ten basis functions.
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Fig. 9 Test 2: CPU time of the offline-online stages (left) and Relative Error in Frobenius norm (right).
We compare the following methods: POD (red), cPOD (magenta), POD-DEIM (yellow), cPOD-cDEIM
(blue, DMD (black), cDMD (green). Number of model are always the same for all the methods
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4.2 Test 2: parametric example

The second numerical example concerns a parametric elliptic equation. This example
follows closely from [5]. Let the dynamics given by the following:{

−�u(x, y) + s(u(x, y); μ) = f (x, y) (x, y) ∈ �

u(x, y) = 0 (x, y) ∈ ∂�
(4.4)

where the spatial variable (x, y) ∈ � = (0, 1)2 and the parameters are μ =
(μ1, μ2) ∈ D = [0, 01, 10]2 ⊂ R

2 with a homogeneous Dirichlet boundary
conditions. The nonlinearity and the source term are given, respectively, by the
following:

s(u, μ) = μ1

μ2
(eμ2u − 1), f (x, y) = 100 sin(2πx) sin(2πy).

We numerically solve the system applying Newton’s method to the nonlinear equa-
tions resulting from a FD discretization. The full dimension of the discretized
problem is n = 2500 and the parameter training set contains 2500 equidistributed.
The solution of (4.4) is shown in Fig. 7. Note that different choice of the parameter
configuration leads different solutions.

For the sake of completeness, we show the decay of the singular values of the
snapshot matrix on the left panel of Fig. 8. We compare the singular values computed
with the standard SVD and the randomized SVD as we increase the sampling points
of the original matrix. As expected, it leads to improved approximations and, at the
same time, faster approximations of the problem. A similar behavior comes from the
nonlinear term (right panel).
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We show the CPU time for all the methods studied in the left panel of Fig. 9 and
the error behavior in the right panel. One can see we obtain similar results as in the
previous test, where the compressed techniques are faster then the standard methods
and accuracy is of same order.

A more appropriate comparison is given in Fig. 10. There, we look at the CPU
time for a given fixed error tolerance. As it is shown, the compressed techniques
reach a desired error faster than standard method gaining one order of magnitude.

5 Conclusion

Model order reduction is a successful and commonly used technique that projects
nonlinear high-dimensional dynamical systems and PDEs into low-dimensional sur-
rogate models using optimal basis functions computed from information of the
system. Although the solution of the surrogate model is computationally efficient, the
computation of the basis functions remains computationally expensive. In this paper,
we have demonstrated through several examples that compressed (randomized) tech-
niques are a promising approach to circumventing expensive offline stages in model
order reduction. In particular, when dealing with large snapshot matrices, we sug-
gest the use of randomized singular valued decomposition for the proper orthogonal
decomposition and compressed dynamic mode decomposition. They both provide
very accurate solutions and promise significant computational savings in the offline
stage, which turns out to be the most expensive part of the building block for the
surrogate model.

Critical for enacting these computational enhancements is the advent of ran-
domized linear algebra techniques. Randomized linear algebra methods have been
recently surveyed in [21]. Indeed, the methods are continuing to mature and have
many critical error bounds associated with their proposed matrix factorizations.
These efficient matrix decompositions are tremendously important for analyzing
high-dimensional data sets and/or for producing the low-dimensional subspaces
required for ROMs. Randomized techniques have continued to experience modifi-
cations that increase their efficiency and broaden the range of applicability of the
methods. More broadly, randomized methods have application to classical (nonran-
domized) techniques for solving the same problems, such as, e.g., Krylov methods,
subspace iteration, and rank-revealing QR factorizations.

Ultimately, ROMs are primarily concerned with producing rapid evaluation of
surrogate models that represent the original high-dimensional system with a given
accuracy. Given the significant computational bottleneck for evaluating the low-
dimensional projection, it is surprising the randomized linear algebra techniques have
yet to penetrate the ROMs community. We have explicitly demonstrated that such
randomized techniques can be a significant enhancement of the ROMs architecture.
It should be used whenever possible given the current maturity of the technique and
the error bounds available.
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