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Rational frames of minimal twist along space

curves under specified boundary conditions

Rida T. Farouki
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA.

Hwan Pyo Moon

Department of Mathematics,
Dongguk University–Seoul, Seoul 04620, Republic of Korea.

Abstract

An adapted orthonormal frame (f1(ξ), f2(ξ), f3(ξ)) on a space curve
r(ξ), ξ ∈ [ 0, 1 ] comprises the curve tangent f1(ξ) = r

′(ξ)/|r′(ξ)| and
two unit vectors f2(ξ), f3(ξ) that span the normal plane. The variation
of this frame is specified by its angular velocity Ω = Ω1f1+Ω2f2+Ω3f3,
and the twist of the framed curve is the integral of the component Ω1

with respect to arc length. A minimal twist frame (MTF) has the least
possible twist value, subject to prescribed initial and final orientations
f2(0), f3(0) and f2(1), f3(1) of the normal–plane vectors. Employing the
Euler–Rodrigues frame (ERF) — a rational adapted frame defined on
spatial Pythagorean–hodograph curves — as an intermediary, an exact
expression for an MTF with Ω1 = constant is derived. However, since
this involves rather complicated transcendental terms, a construction
of rational MTFs is proposed by the imposition of a rational rotation
on the ERF normal–plane vectors. For spatial PH quintics, it is shown
that rational MTFs compatible with the boundary conditions can be
constructed, with only modest deviations of Ω1 about the mean value,
by a rational quartic normal–plane rotation of the ERF. If necessary,
subdivision methods can be invoked to ensure that the rational MTF
is free of inflections, or to more accurately approximate a constant Ω1.
The procedure is summarized by an algorithm outline, and illustrated
by a representative selection of computed examples.
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1 Introduction

To uniquely describe the spatial motion of a rigid body, one must specify
the variation of its position and orientation with time. Typically, the path
of a distinguished point (e.g., the center of mass) is employed to specify the
variation of position as a parametric curve r(t). To describe the variation
of orientation, an orthonormal frame (f1(t), f2(t), f3(t)) embedded within the
body may be used. If the parameter t represents time, the first and second
derivatives of r(t) determine the velocity and acceleration of the body, and
the first and second derivatives of the frame (f1(t), f2(t), f3(t)) determine its
angular velocity and acceleration. For a more general parameterization, the
chain rule must be invoked to convert parametric derivatives into physical
velocities and accelerations (i.e., derivatives with respect to time).

In many contexts, an adapted frame — in which f1(t) = r′(t)/|r′(t)| is the
curve tangent, while f2(t), f3(t) span the curve normal plane at each point —
is desirable. A familiar example is the Frenet frame (t,n,b) comprising the
tangent t, defining the instantaneous direction of motion along the curve; the
principal normal n pointing toward the center of curvature; and the binormal
b = t × n [25]. The angular velocity of the Frenet frame is specified by the
Darboux vector κb + τ t, where κ and τ are the curvature and torsion [25].
The angular velocity component τ t specifies the instantaneous rotation rate
of the normal plane vectors n,b about the tangent t along the curve.

If n,b are replaced by normal–plane vectors u,v with no instantaneous
rotation about t, we obtain a rotation–minimizing adapted frame (t,u,v) —
also called a Bishop frame [1]. Such frames are useful in computer animation,
spatial motion planning, construction of swept surfaces, robotics, and related
applications. Many approximation schemes for rotation–minimizing adapted
frames have been proposed [14, 19, 20, 21, 23, 24, 26, 27, 30, 31, 32] and in
recent years greater emphasis has been placed on the identification of space
curves that admit exact rational rotation–minimizing frames [9, 11, 17, 18]
— such curves are necessarily spatial Pythagorean–hodograph (PH) curves
[8], since only the PH curves possess rational unit tangents.

The construction of a rotation–minimizing adapted frame on a given curve
r(t) is essentially an initial value problem — i.e., specifying the orientation of
the normal–plane vector u,v at any curve point completely determines their
orientation at every other point. Consequently, it is not possible to construct
a rotation–minimizing spatial motion of a rigid body along a specified path
with prescribed initial and final orientations. Therefore, in previous studies
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[13, 15] of rational rotation–minimizing rigid body motions with specified
initial/final positions and orientations, the path was not defined a priori,
but was rather determined as an outcome of the construction procedure.

It is often desirable to prescribe both the path geometry and initial/final
orientation states for a spatial rigid–body motion. A novel adapted frame is
clearly required for this problem. Ideally, this frame would exhibit a constant

angular velocity component in the curve tangent direction, consistent with
the prescribed boundary conditions, but this property is not compatible with
a rational dependence of the frame vectors on the curve parameter — even in
the case of a curve with a rational RMF (t,u,v) the orientation of the MTF
normal–plane vectors relative to u and v would be specified by trigonometric
functions of the arc length. The focus of this study is therefore on rational
MTFs that satisfy the boundary conditions, and suppress variations in the
rotation rate of the normal–plane vectors about the tangent.

A typical application for this novel type of adapted frame concerns the
case of rigid–body motion along a smooth closed curve r(t), t ∈ [ 0, 1 ] with
r(1) = r(0) and also matched first and second derivatives at this point. When
a rotation–minimizing frame with a given initial orientation is used to orient
the body along such a path, the final instance (t(1),u(1),v(1)) does not, in
general, coincide with the initial instance (t(0),u(0),v(0)) upon reaching the
closure point r(1) = r(0). With the new type of adapted frame, however, an
exact coincidence of the initial and final frames can be achieved.

The plan for the remainder of this paper is as follows. Section 2 reviews
some basic properties of spatial PH curves, the Euler–Rodrigues frame (ERF)
defined along them, and the twist and inflectional properties of the ERF. The
concept of a minimal twist frame (MTF), with prescribed initial and final
states, is then introduced in Section 3, and a closed–form solution for an MTF
with constant angular velocity in the tangent direction is derived. Since this
incurs a rather complicated functional form, Section 4 considers the problem
of constructing rational MTFs for which the requirement of constant angular
velocity is relaxed to minimizing its variation about the mean value. The use
of subdivision methods to ensure that rational MTFs are free of inflections,
or to further suppress variations of their angular velocity components in the
tangent direction, is also discussed. Section 5 provides an algorithm outline
for the construction of rational MTFs, and illustrates its implementation by
a selection of computed examples. Finally, in Section 6 we summarize the
key results of this study, and identify some possible generalizations and open
problems that are worthy of further investigation.

2



2 Spatial Pythagorean–hodograph curves

A spatial Pythagorean–hodograph curve r(ξ), ξ ∈ [ 0, 1 ] is generated [8] from
a quaternion polynomial

A(ξ) = u(ξ) + v(ξ) i + p(ξ) j + q(ξ)k (1)

and its conjugate A∗(ξ) = u(ξ) − v(ξ) i − p(ξ) j − q(ξ)k by integrating the
product

r′(ξ) = A(ξ) iA∗(ξ) = [ u2(ξ) + v2(ξ) − p2(ξ) − q2(ξ) ] i

+ 2 [ u(ξ)q(ξ) + v(ξ)p(ξ) ] j + 2 [ v(ξ)q(ξ)− u(ξ)p(ξ) ]k . (2)

The resulting PH curve r(ξ) has the polynomial parametric speed

σ(ξ) = |r′(ξ)| = |A(ξ)|2 = u2(ξ) + v2(ξ) + p2(ξ) + q2(ξ) , (3)

which specifies the derivative ds/dξ of arc length s with respect to the curve
parameter ξ. Hence, the cumulative arc length function

s(ξ) =

∫ ξ

0

σ(t) dt

is also a polynomial, and the total arc length

S = s(1) =

∫ 1

0

σ(t) dt

can be exactly computed. We focus here on the lowest–order PH curves that
are suitable for free–form design — the spatial PH quintics [12] — which are
generated by quadratic quaternion polynomials

A(ξ) = A0(1 − ξ)2 + A12(1 − ξ)ξ + A2ξ
2 (4)

with coefficients Ar = ur + vr i + pr j + qr k for r = 0, 1, 2. The parametric
speed (3) has the Bernstein coefficients

σ0 = |A0|
2 , σ1 = 1

2
(A0A

∗

1 + A1A
∗

0) ,

σ2 = 1
6
(A0A

∗

2 + 4 |A1|
2 + A2A

∗

0) ,

σ3 = 1
2
(A1A

∗

2 + A2A
∗

1) , σ4 = |A2|
2 ,

and the Bernstein coefficients of the arc length polynomial s(ξ) are

s0 = 0 and sr = sr−1 + 1
5
σr−1 , r = 1, . . . , 5 .

3



2.1 Euler–Rodrigues frame on PH curves

The Euler–Rodrigues frame (ERF) is an adapted rational orthonormal frame,
defined on spatial PH curves [5] through the expression

(e1(ξ), e2(ξ), e3(ξ)) =
(A(ξ) iA∗(ξ),A(ξ) jA∗(ξ),A(ξ)kA∗(ξ))

|A(ξ)|2
. (5)

The frame vector e1(ξ) is the curve tangent, while e2(ξ) and e3(ξ) span the
normal plane. Compared with the Frenet–Serret frame [25], the ERF has the
advantage of being rational in the curve parameter ξ, and non–singular at
inflection points (where the curvature vanishes). In terms of the components
of the quaternion polynomial (1), the frame vectors (5) are

e1 =
(u2 + v2 − p2 − q2) i + 2(uq + vp) j + 2(vq − up)k

u2 + v2 + p2 + q2
,

e2 =
2(vp − uq) i + (u2 − v2 + p2 − q2) j + 2(uv + pq)k

u2 + v2 + p2 + q2
,

e3 =
2(up + vq) i + 2(pq − uv) j + (u2 − v2 − p2 + q2)k

u2 + v2 + p2 + q2
. (6)

For spatial PH quintics, the ERF vectors have a rational quartic dependence
on the curve parameter ξ.

The variation of the ERF along r(ξ) is specified by its angular velocity ω

through the relations

de1

ds
= ω × e1 ,

de2

ds
= ω × e2 ,

de3

ds
= ω × e3 ,

and when ω is expressed in terms of the ERF frame vectors as

ω = ω1e1 + ω2e2 + ω3e3 , (7)

its components are specified [10] by

ω1 = e3 ·
de2

ds
= − e2 ·

de3

ds
= 2

uv′ − u′v − pq′ + p′q

σ2
,

ω2 = e1 ·
de3

ds
= − e3 ·

de1

ds
= 2

up′ − u′p + vq′ − v′q

σ2
,

ω3 = e2 ·
de1

ds
= − e1 ·

de2

ds
= 2

uq′ − u′q − vp′ + v′p

σ2
. (8)
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It is convenient to introduce the polynomial

h(ξ) = u(ξ)v′(ξ) − u′(ξ)v(ξ)− p(ξ)q′(ξ) + p′(ξ)q(ξ) , (9)

so that the ERF angular velocity component in the tangent direction can be
written as

ω1(ξ) = 2
h(ξ)

σ2(ξ)
. (10)

Although the normal–plane vectors e2, e3 depend upon the chosen coordinate
frame (i, j,k), the angular velocity component ω1 (which defines the rotation
rate of e2 and e3 about the curve tangent e1) is independent of the adopted
coordinate system. A change of coordinates amounts to replacing A(ξ) by

Ã(ξ) = A(ξ)U = ũ(ξ) + ṽ(ξ) i + p̃(ξ) j + q̃(ξ)k , (11)

for some unit quaternion U , and one can verify that the polynomials σ̃(ξ) and
h̃(ξ) generated by substituting ũ(ξ), ṽ(ξ), p̃(ξ), q̃(ξ) for u(ξ), v(ξ), p(ξ), q(ξ) in
(3) and (9) are identical to σ(ξ) and h(ξ).

2.2 Properties of the Euler–Rodrigues frame

The twist TERF of the ERF represents the total rotation1 of the normal–plane
vectors e2, e3 about the tangent e1 along r(ξ), namely

TERF =

∫ S

0

ω1 ds =

∫ 1

0

ω1(ξ) σ(ξ) dξ = 2

∫ 1

0

h(ξ)

σ(ξ)
dξ . (12)

For a PH quintic, the integrand has a numerator of degree 2 and denominator
of degree 4, and the integral admits a closed–form reduction through a partial
fraction decomposition. Let z1, z1 and z2, z2 denote the two pairs of complex
conjugate roots of the real polynomial σ(ξ) = u2(ξ) + v2(ξ) + p2(ξ) + q2(ξ),
so that

σ(ξ) = c (ξ − z1)(ξ − z1)(ξ − z2)(ξ − z2)

for some real constant c 6= 0. A closed–form solution for the roots of σ(ξ) is
possible by means of Ferrari’s method [29]. Dividing h(ξ) and σ(ξ) by c, the
partial–fraction decomposition of the integrand in (12) has the form

h(ξ)

σ(ξ)
=

c1

ξ − z1
+

c1

ξ − z1
+

c2

ξ − z2
+

c2

ξ − z2
, (13)

1The term “twist” is established usage in this context, that is of interest in (for example)
the geometry of DNA and other complex molecules — see [2, 4, 6, 22].
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where the complex values

c1 =
h(z1)

(z1 − z1)(z1 − z2)(z1 − z2)
, c2 =

h(z2)

(z2 − z1)(z2 − z1)(z2 − z2)
(14)

are called the residues of the rational function h(ξ)/σ(ξ) at its poles z1, z2

and c1, c2 are their conjugates. Then from (13) we have the indefinite integral

∫

h(ξ)

σ(ξ)
dξ = c1 ln(ξ − z1) + c1 ln(ξ − z1) + c2 ln(ξ − z2) + c2 ln(ξ − z2) ,

and conjugate terms may be combined to obtain the explicitly real form

∫

h(ξ)

σ(ξ)
dξ = 2 Re(c1) ln |ξ − z1| − 2 Im(c1) arg(ξ − z1)

+ 2 Re(c2) ln |ξ − z2| − 2 Im(c2) arg(ξ − z2) . (15)

In utilizing the ERF as a basis for constructing rational MTFs, it is useful
to keep in mind some characteristic features that govern the ERF variation.
The expression (12) for the twist of the ERF on a spatial PH curve will incur
cancellation of clockwise and anti–clockwise rotation of e2, e3 about e1 if the
ERF angular velocity component ω1 exhibits a sign change for ξ ∈ (0, 1). A
point where ω1 changes sign — i.e., where the polynomial (9) has a real root
of odd multiplicity — is called an inflection of the ERF. For a PH quintic,
this polynomial is quadratic, with the Bernstein coefficients

h0 = 2(u0v1 − u1v0 − p0q1 + p1q0) ,

h1 = u0v2 − u2v0 − p0q2 + p2q0 , (16)

h2 = 2(u1v2 − u2v1 − p1q2 + p2q1) ,

and the roots

ξ =
h0 − h1 ±

√

h2
1 − h0h2

h0 − 2h1 + h2
. (17)

Clearly the ERF has no inflections when h2
1−h0h2 < 0. When h2

1−h0h2 > 0,
the ERF has no inflections or precisely one inflection on ξ ∈ (0, 1) according
to whether the coefficients h0, h1, h2 exhibit no sign changes or just one sign
change; and if they exhibit two sign changes there may be either zero or two
inflections for ξ ∈ (0, 1). A PH curve segment r(ξ), ξ ∈ [ 0, 1 ] is said to have
a monotone ERF if its ERF has no inflections for ξ ∈ (0, 1).
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Also of interest are the extrema of ω1, which are identified by the roots
of its arc–length derivative — namely,

dω1

ds
= 2

σ(ξ)h′(ξ) − 2 σ′(ξ)h(ξ)

σ4(ξ)
. (18)

For a spatial PH quintic, the numerator of this expression is a polynomial of
degree 5 in ξ (since σ(ξ) and h(ξ) are of degree 4 and 2), so ω1 has at least 1
and at most 5 extrema, but not necessarily within [ 0, 1 ]. Its coefficients can
be determined from those of h(ξ) and σ(ξ) through standard algorithms [16]
for the sums and products of polynomials in Bernstein form.

In the construction of rational MTFs from the ERF, it may be useful to
subdivide the given PH quintic r(ξ) into subsegments with “simple” ERF
variations, for which ω1 is free of interior sign changes or extrema (or both).
This may be accomplished by applying the de Casteljau algorithm [7] to the
quaternion polynomial (4) at the roots of (9) or (18) on ξ ∈ (0, 1), if any —
note that these subsegments will have matched ERFs at their junctures.

3 Minimal twist adapted frames

On a given space curve r(ξ), ξ ∈ [ 0, 1 ] of total arc length S, let

(f1(0), f2(0), f3(0)) and (f1(1), f2(1), f3(1)) (19)

be the initial and final instances of an adapted frame (f1(ξ), f2(ξ), f3(ξ)) with
f1(ξ) = r′(ξ)/|r′(ξ)|. If Ω = Ω1f1 + Ω2f2 + Ω3f3 is the angular velocity of this
frame, it is called a minimal twist frame (MTF), subject to the boundary
conditions (19), if (i) Ω1 does not change sign for ξ ∈ (0, 1) — i.e., the frame
is monotone; and (ii) it yields the least possible absolute value of the integral

T =

∫ S

0

Ω1 ds =

∫ 1

0

Ω1(ξ) σ(ξ) dξ .

A point where Ω1 changes sign is an inflection of the frame (f1, f2, f3). In the
absence of inflections, the values of T for different frames with the same end
states can differ only by integer multiples of 2π. However, if inflections are
present, the value of T will incorporate cancellation of clockwise and anti–
clockwise rotations of f2, f3 about f1, a behavior that is inconsistent with the
desired “minimal twist” property, and is excluded by stipulation (i).
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Consider an adapted frame (f1(ξ), f2(ξ), f3(ξ)) on a PH space curve r(ξ),
ξ ∈ [ 0, 1 ] specified in terms of the ERF by f1(ξ) = e1(ξ) and

[

f2(ξ)
f3(ξ)

]

=

[

cos θ(ξ) sin θ(ξ)
− sin θ(ξ) cos θ(ξ)

] [

e2(ξ)
e3(ξ)

]

, (20)

which amounts to orienting f2(ξ), f3(ξ) relative to e2(ξ), e3(ξ) in the normal
plane by the angular function θ(ξ). To obtain a rational frame, we choose

θ(ξ) = 2 tan−1 b(ξ)

a(ξ)
. (21)

for relatively prime polynomials a(ξ), b(ξ) of given degree m, so that

cos θ(ξ) =
a2(ξ) − b2(ξ)

a2(ξ) + b2(ξ)
, sin θ(ξ) =

2 a(ξ)b(ξ)

a2(ξ) + b2(ξ)
. (22)

Let Ω be the angular velocity of the frame (f1(ξ), f2(ξ), f3(ξ)), with

df1
ds

= Ω × f1 ,
df2
ds

= Ω × f2 ,
df3
ds

= Ω × f3 .

Relative to the ERF (i.e., writing Ω = Ω1e1+Ω2e2+Ω3e3) it has components

Ω1(ξ) = ω1(ξ) +
θ′(ξ)

σ(ξ)
, (23)

and Ω2(ξ) = ω2(ξ), Ω3(ξ) = ω3(ξ), where from (21) we have

θ′(ξ) = 2
a(ξ)b′(ξ) − a′(ξ)b(ξ)

a2(ξ) + b2(ξ)
. (24)

The initial and final frames (19) are defined by specifying initial and final
normal–plane orientations, θi = θ(0) and θf = θ(1), of f2(ξ), f3(ξ) relative to
e2(ξ), e3(ξ) such that θi, θf ∈ (−π, +π ]. However, the boundary conditions
do not determine a unique adapted frame (f1(ξ), f2(ξ), f3(ξ)). The frame has
the angular velocity component (23) in the tangent direction, where ω1(ξ) is
the angular velocity component of the ERF, and θ′(ξ)/σ(ξ) is the component
incurred by the normal–plane rotation (20), so the choice of θ(ξ) influences
the frame variation between the specified end states. In general, the twist of
an adapted frame on a space curve, with given initial and final orientations,
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may exceed 2π in magnitude, indicating a total rotation in exceess of what is
necessary to satisfy the boundary conditions, by one or more full revolutions.

Now the twist of the frame (f1, f2, f3) is given by

T =

∫ S

0

Ω1 ds =

∫ 1

0

ω1σ + θ′ dξ = TERF + θf − θi , (25)

and the magnitude of T may exceed 2π, since TERF may be greater than 2π
in magnitude, and θi and θf are indeterminate up to integer multiples of 2π.
Since an MTF can alway satisfy initial/final orientations with a total twist
not less than −π or greater than +π, the reduced twist Tmin is used in lieu of
the nominal value T = θf −θi. If T ∈ (−π, +π ] we take Tmin = T . Otherwise,
we define Tmin by adding to or subtracting from T the integer multiple of 2π
that yields a value in the domain (−π, +π ].

A minimal twist frame, under given boundary conditions, is characterized
by having the twist value Tmin, and the mean angular velocity component

Ω1 =
Tmin

S
. (26)

A closed–form expression for the frame vectors f2(ξ) and f3(ξ) that achieve the
constant angular velocity component Ω1 in the tangent direction e1(ξ) = f1(ξ)
is specified by (20) where, on setting Ω1(ξ) ≡ Ω1 in (23) and integrating, the
angle function θ(ξ) has the form

θ(ξ) = θi + Ω1 s(ξ) − 2

∫ ξ

0

h(x)

σ(x)
dx , (27)

and the integral on the right admits the closed–form reduction (15). Figure 1
illustrates an example of a spatial PH quintic curve with specified initial/final
orientations for the frame normal–plane vectors f2(ξ) and f3(ξ), and the exact
MTF variation of these vectors along the curve, as defined by (20) and (27).
Figure 2 compares the variation of the angular velocity component along the
tangent direction for the ERF and MTF in this example.

4 Rational minimal twist frames

Expressions (20) and (27) define an MTF that satisfies the desirable constant
angular velocity constraint Ω1(ξ) ≡ Ω1, but this imposes a rather complicated

9



Figure 1: Left: A spatial PH quintic r(ξ) with given initial/final orientations
f2(0), f3(0) and f2(1), f3(1) for the normal–plane vectors of an adapted frame
(f1(ξ), f2(ξ), f3(ξ)). Right: the exact MTF variation of the vectors f2(ξ), f3(ξ)
along r(ξ), as specified by (20) and (27), subject to the boundary conditions.
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Figure 2: Variation with arc length of the frame angular velocity component
in the tangent direction, for the Euler–Rodrigues frame (ERF) and minimal
twist frame (MTF), along the spatial PH quintic example shown in Figure 1.
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functional form on f2(ξ) and f3(ξ). Although s(ξ) is a polynomial, the integral
in (27) has a transcendental dependence on ξ, as seen in (15). Moreover, the
sine and cosine of the expression (27) are required in (20).

In many applications, it is preferable to relax the constant angular velocity
condition, in order to obtain an MTF with simpler (rational) expressions for
the normal–plane vectors f2(ξ), f3(ξ). Such a frame can be constructed from
the form (21), for real polynomials a(ξ) and b(ξ). It is convenient to combine
them into a complex polynomial w(ξ) = a(ξ) + i b(ξ), such that

exp(i θ(ξ)) =
w2(ξ)

|w(ξ)|2
=

a2(ξ) − b2(ξ) + i 2a(ξ)b(ξ)

a2(ξ) + b2(ξ)
. (28)

This can be more compactly formulated as

exp(i θ(ξ)) = w(ξ)/w(ξ) , (29)

w(ξ) = a(ξ)− i b(ξ) being the conjugate of w(ξ), and equation (24) becomes

θ′(ξ) = 2
Im(w(ξ)w′(ξ))

|w(ξ)|2
= 2

a(ξ)b′(ξ) − a′(ξ)b(ξ)

a2(ξ) + b2(ξ)
. (30)

It should be noted that Ω1 ≡ constant is never achieved when f2(ξ), f3(ξ) are
defined by (20) and (21). If deg(u, v, p, q) = m and deg(a, b) = l, then

deg(h) = 2m − 2, deg(σ) = 2m, deg(ab′ − a′b) = 2l − 2, deg(a2 + b2) = 2l.

Thus from (23) with ω1 = 2h/σ2 and θ′ = 2(ab′ − a′b)/(a2 + b2), we obtain

Ω1 = 2
(a2 + b2)h + σ(ab′ − a′b)

σ2(a2 + b2)
, (31)

and since this rational function has a numerator of degree 2m + 2l− 2 and a
denominator of degree 4m+2l, it cannot be a constant. Note that real roots
of the numerator identify inflections of the frame (f1(ξ), f2(ξ), f3(ξ)).

Now when the polynomial w(ξ) is expressed in Bernstein form as

w(ξ) =

m
∑

k=0

wk

(

m

k

)

(1 − ξ)m−kξk , (32)

the boundary constraints θ(0) = θi and θ(1) = θf yield the conditions

w0/w0 = exp(i θi) and wm/wm = exp(i θf ) ,

11



and hence w0 = γi exp(i1
2
θi), wm = γf exp(i1

2
θf ) for non–zero real constants

γi, γf . However, since expression (29) remains unchanged on scaling w(ξ) by
any non–zero real value, we can set γi = 1 or γf = 1. Henceforth, we take

w0 = exp(i1
2
θi) and wm = γ exp(i1

2
θf ) .

It is preferable to maintain w(ξ) = a(ξ) + i b(ξ) of low degree, so f2(ξ), f3(ξ)
as defined by (20) are of reasonable degree. We begin by dispensing with the
case of a linear w(ξ), and then treat in detail the case of a quadratic w(ξ).

4.1 Linear polynomial w(ξ)

In the simplest non–trivial case (m = 1), setting

w(ξ) = w0(1 − ξ) + w1ξ

with w0 = exp(i1
2
θi) and w1 = γ exp(i1

2
θf ), the expression (30) becomes

θ′(ξ) =
2 γ sin 1

2
∆θ

(1 − ξ)2 + γ cos 1
2
∆θ 2(1 − ξ)ξ + γ2ξ2 ,

where ∆θ = θf − θi. Since the numerator is a constant, and the denominator
is quadratic with discriminant − (γ sin 1

2
∆θ)2, we note that θ′ cannot change

sign, so θ(ξ) is monotone, with θ(ξ) ≡ 0 when θf = θi. The quantity γ is the
only parameter available to modulate the variation of θ(ξ). Setting

ρ0 = σ(0) [ Ω1 − ω1(0) ] and ρ1 = σ(1) [ Ω1 − ω1(1) ] , (33)

one can verify that the choices

γ =
ρ0

2 sin 1
2
∆θ

and γ =
2 sin 1

2
∆θ

ρ1

yield Ω1(0) = Ω1 and Ω1(1) = Ω1, respectively. Agreement of Ω1(ξ) with the
value (26) can thus be achieved at only one end point. The case of a linear
w(ξ) evidently offers insufficient scope for modulating the variation of Ω1(ξ).
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4.2 Quadratic polynomial w(ξ)

In the case of a quadratic polynomial,

w(ξ) = w0(1 − ξ)2 + w12(1 − ξ)ξ + w2ξ
2 , (34)

the numerator of (30) is quadratic and the denominator is quartic. For w(ξ)
quadratic, the MTF vectors on a spatial PH quintic obtained from (20) have
a rational dependence of degree 8 on the curve parameter ξ.

Choosing w0 = exp(i1
2
θi) and w2 = γ exp(i1

2
θf ), and using the quantities

(33), one can verify that the choice

w1 =
exp(i1

2
θf ) ρ0 + exp(i1

2
θi) γ ρ1

4 sin 1
2
∆θ

(35)

yields Ω1(0) = Ω1(1) = Ω1, so Ω1(ξ) agrees with the value (26) at both end
points, and γ remains as a free parameter. Using (35), the numerator of (30)
has the Bernstein coefficients

2 Im(w0w1) = 1
2
ρ0 , 2 Im(w0w2) = 2 γ sin 1

2
∆θ , 2 Im(w1w2) = 1

2
γ2ρ1 ,

and the Bernstein coefficients of the denominator are

|w0|
2 = 1 ,

2 Re(w0w1) =
cos 1

2
∆θ ρ0 + γ ρ1

2 sin 1
2
∆θ

,

2 Re(w0w2) + 4 |w1|
2 =

ρ2
0 + 2 γ cos 1

2
∆θ ρ0ρ1 + γ2ρ2

1

16 sin2 1
2
∆θ

,

2 Re(w1w2) =
ρ0 + γ2 cos 1

2
∆θ ρ1

2 sin 1
2
∆θ

,

|w2|
2 = γ2 .

To fix the free parameter γ, we consider minimization of the mean square
deviation of Ω1(ξ) from the average value Ω1, as defined by

〈 |∆Ω1|
2 〉 =

1

S

∫ 1

0

[ Ω1(ξ) − Ω1 ]2 σ(ξ) dξ . (36)

On expanding the integrand and noting that
∫ 1

0

Ω1(ξ) σ(ξ) dξ = S Ω1 ,
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the expression (36) can be reduced to

〈 |∆Ω1|
2 〉 =

1

S

∫ 1

0

Ω2
1(ξ) σ(ξ) dξ − Ω

2

1 .

Thus, using (23) and noting that Ω1 is a constant, 〈 |∆Ω1|
2 〉 can be minimized

with respect to the parameter γ by determining the minima of the integral

F (γ) =

∫ 1

0

[

ω1(ξ) +
θ′(ξ)

σ(ξ)

]2

σ(ξ) dξ , (37)

where only θ′(ξ) depends on γ. The extrema of (36) satisfy the condition

dF

dγ
= 2

∫ 1

0

[

ω1(ξ) +
θ′(ξ)

σ(ξ)

]

∂θ′

∂γ
(ξ) σ(ξ) dξ = 0 .

The above integral is, in principle, amenable to closed–form reduction, since
the polynomials appearing in it are of degree 4 at most. However, upon taking
the partial derivative of θ′(ξ) with respect to γ, this reduction becomes very
cumbersome, and in general the resulting equation will have a transcendental
dependence on γ that necessitates an iterative numerical solution.

Instead, we use the following approach. For γ 6= 0, the function2 (37) can
be computed to any desired precision through the Simpson quadrature rule
[28]. For uniform nodes ξi = i/N , i = 0, . . . , N (with N even) this estimates
the integral (37) as

F (γ) ≈
1

3N

N/2
∑

i=1

f(ξ2i−2) + 4 f(ξ2i−1) + f(ξ2i) , (38)

where f(ξ) = Ω2
1(ξ) σ(ξ). Choosing N = 2n for n = 1, 2, . . ., the previously–

computed f values can be re–used upon increasing n to n + 1. Since f(ξ) is
non–negative, this yields rapid convergence to any desired tolerance. It can
be shown that the error ǫ in the estimate (38) satisfies

|ǫ| <
1

180N4
max

ξ∈[ 0,1 ]
|f (4)(ξ)| .

2The value γ = 0 is excluded, since then w2 = 0 and by l’Hôpital’s rule the limiting
value of (29) as ξ → 1 fails to yield interpolation of the specified frame vectors f2(1), f3(1).

14



Combining the ability to efficiently compute F (γ) to any prescribed accuracy
with a simple scheme [3] for minimization of a univariate function over a given
interval in γ, without the need for derivative information, yields the rational
MTF whose angular velocity component Ω1(ξ) most closely agrees with the
constant mean value Ω1, when the complex polynomial w(ξ) = a(ξ) + i b(ξ),
which defines the “compensating” ERF rotation (20), is quadratic.

4.3 Refinement by subdivision

As emphasized in Section 3, an MTF (f1, f2, f3) must not exhibit sign changes
in the angular velocity component Ω1, since a cancellation of clockwise and
anti–clockwise rotation of f2 and f3 about f1 is inconsistent with the desired
“minimal twist” property of such frames. Because of the non–linear nature of
the construction, the imposition of this requirement as an a priori constraint
is a challenging task. However, it is not difficult to check a posteriori whether
it has been satisfied — and, if not, implement corrective measures.

The frame angular velocity component Ω1(ξ) can be expressed in the form
(31) in terms of the parametric speed (3), the polynomial (9), and the real and
imaginary parts of the complex polynomial w(ξ) = a(ξ)+i b(ξ). For a quintic
PH curve and quadratic w(ξ), the numerator of (31) is a polynomial of degree
6 whose Bernstein coefficients can be computed by standard algorithms [16].
The subdivision and variation–diminishing properties can then be invoked to
identify its real roots, if any, on the domain ξ ∈ (0, 1).

Failure of frame monotonicity in computing a rational MTF is generally a
consequence of the inadequacy of the sole free parameter γ to compensate for
variation in the ERF angular velocity ω1 over the entire curve r(ξ), ξ ∈ [ 0, 1 ].
To remedy this, the domain [ 0, 1 ] can be decomposed into subsets over which
the ERF exhibits “simple” behavior. Two types of subdivision points were
identified in Section 2.2 — (i) the roots of (9) where ω1 changes sign; and (ii)
the roots of the numerator of (18) where ω1 is extremal. The points (i) and
(ii) identify subintervals over which ω1 does not change sign, and is monotone
increasing or decreasing, respectively. The simpler behavior of ω1 over the
subintervals delineated by either (or both) of these point sets makes it much
easier for the normal–plane rotation (20) specified by the complex quadratic
polynomial w(ξ) = a(ξ) + i b(ξ) to compensate for its variation.

Suppose that N subdivision points ξ1, . . . , ξN ∈ (0, 1) are identified. With
ξ0 = 0 and ξN+1 = 1, they define N + 1 parameter subintervals [ ξk−1, ξk ] as
domains for subsegments of r(ξ) with the arc lengths ∆Sk = s(ξk)− s(ξk−1),
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k = 1, . . . , N + 1. A portion Tk of the reduced twist Tmin for the entire curve
is assigned to each of these subsegments, according to

Tk =
∆Sk

S
Tmin . (39)

Setting θ0 = θi and θN+1 = θf , a set of intermediate orientations θ1, . . . , θN

of the MTF vectors f2(ξ), f3(ξ) relative to the ERF vectors e2(ξ), e3(ξ) at the
points ξ1, . . . , ξN must be assigned. Let θ(ξ) specify the continuous rotation
(20) of e2(ξ), e3(ξ) onto f2(ξ), f3(ξ). Then, from (10) and (23), we must have

∫ ξk

ξk−1

[

2
h(ξ)

σ2(ξ)
+

θ′(ξ)

σ(ξ)

]

σ(ξ) dξ = Tk ,

in order for the subsegment ξ ∈ [ ξk−1, ξk ] to have the twist value (39). This
condition reduces to

θ(ξk) = θ(ξk−1) + Tk − TERF, k , (40)

where

TERF, k = 2

∫ ξk

ξk−1

h(ξ)

σ(ξ)
dξ (41)

is the total ERF twist for subsegment k, which may be determined as twice
the difference of expression (15), evaluated at ξ = ξk and ξ = ξk−1.

The relation (40) recursively defines a sequence θ1, . . . , θN of intermediate
orientations of the MTF relative to the ERF, in terms of the known quantities
(39) and (41), upon setting θk = θ(ξk) for k = 1, . . . , N . With these values,
we can specify boundary conditions for “local” angular functions θk(ξ), ξ ∈
[ ξk−1, ξk ] on each subsegment by choosing θk(0) = θk−1 and θk(1) = θk.
These functions are defined through the relations

exp(i θk(ξ)) = wk(ξ)/wk(ξ) ,

where wk(ξ) is a complex quadratic polynomial associated with subsegment
k, expressed in Bernstein form on the interval ξ ∈ [ ξk−1, ξk ] as

wk(ξ) =
wk,0(ξk − ξ)2 + wk,12(ξk − ξ)(ξ − ξk−1) + wk,2(ξ − ξk−1)

2

(∆ξk)2
,
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where ∆ξk = ξk − ξk−1. By analogy with the arguments used in Section 4.2,
we use the values wk,0 = exp(i1

2
θk−1), wk,2 = γk exp(i1

2
θk), and

wk,1 =
exp(i1

2
θk) ρk−1 + exp(i1

2
θk−1) γkρk

4 sin 1
2
∆θk

∆ξk ,

where ∆θk = θk − θk−1 and

ρk−1 = σ(ξk−1) [ Ω1 − ω1(ξk−1) ] , ρk = σ(ξk) [ Ω1 − ω1(ξk) ] .

The free parameters γk are individually determined for each subsegment k
by minimizing the integral (37), restricted to the domain ξ ∈ [ ξk−1, ξk ].

Note that the MTF frames obtained through this subdivision scheme are
continuous in orientation and its first derivative (angular velocity), but not
second derivative (angular acceleration). However, since the rms variation of
the angular velocity Ω1 about the mean value Ω1 is greatly suppressed when
using this subdivision scheme (see Example 3 below), the discontinuities in
angular acceleration are typically insignificant.

5 Algorithm and computed examples

To assist in implementation, the preceding analysis is now summarized in an
algorithm outline, and some computed examples are presented to illustrate
representative results obtained from the algorithm. For brevity, the algorithm
addresses only the core rational MTF construction based upon the quadratic
complex polynomial (34), as described in Section 4.2. This can be coded as
a basic function, to be called repeatedly with appropriate input parameters,
when invoking the subdivision scheme described in Section 4.3 to adequately
suppress variations in Ω1 or to ensure monotonicity of the MTF.

Algorithm

input: spatial PH quintic r(ξ) with pre–image quaternion polynomial A(ξ)
and orientations θi, θf of the initial and final frames (19) relative to the ERF.

1. compute the complex conjugate roots z1, z1 and z2, z2 of the parametric
speed polynomial (3) and the corresponding residues (14);

2. compute the ERF twist TERF by taking the difference of expression (15)
evaluated at ξ = 1 and ξ = 0;
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3. define the reduced twist Tmin by adding to or subtracting from (25) the
integer multiple of 2π that yields a value Tmin ∈ (−π, +π ];

4. compute the mean angular velocity component Ω1 defined by (26);

5. with γ a free parameter, set w0 = exp(i1
2
θi) and w2 = γ exp(i1

2
θf ), and

assign w1 according to expressions (33) and (35);

6. with the coefficients w0,w1,w2 express θ′(ξ) in terms of (34) using (30);

7. using an adaptive quadrature rule to evaluate (37), and a minimization
scheme that does not employ derivatives, obtain the γ value that yields
the least value for this integral;

8. instantiate w(ξ) by computing w0,w1,w2 for this γ value, and hence
obtain the rational functions cos θ(ξ) and sin θ(ξ) from (22);

9. obtain the rational MTF frame vectors f2(ξ), f3(ξ) from the ERF frame
vectors e2(ξ), e3(ξ) using (20) and set f1(ξ) = e1(ξ).

output: rational MTF (f1(ξ), f2(ξ), f3(ξ)) on the PH quintic r(ξ) satisfying
the specified boundary conditions, with minimized variation of the tangent–
direction angular velocity component Ω1 about the mean value Ω1.

Example 1. The spatial PH quintic in Figure 1 is defined by the coefficients

A0 = − 0.9515 + 0.9515 i + 0.3941 j− 0.3941k ,

A1 = − 0.2085 + 1.4435 i− 0.2981 j + 1.0472k ,

A2 = 1.2294 + 0.6264 i + 1.3768 j− 0.0915k .

Relative to the ERF, the orientations of the two end frames (19) are specified
by the angles θi = 0.125 π and θf = 0.50 π. For this curve, the ERF exhibits
no inflections, since the Bernstein coefficients (16) are all negative. The total
twist (25) is T ≈ −4.3703, and the reduced twist is Tmin ≈ 1.9129. Figure 3
illustrates the relative root–mean–square (rms) variation

√

〈 |∆Ω1|2 〉 / |Ω1|
of Ω1 about Ω1 for γ ∈ [−2, +2 ] with a neighborhood of γ = 0 excluded —
the minimum is approximately 0.168, and occurs at γ ≈ −0.938.

For this γ value, Figure 4 shows the angular velocity components ω1(ξ)
of the ERF, θ′(ξ)/σ(ξ) associated with the normal plane rotation (20)–(21),
and Ω1(ξ) of the rational MTF generated from (20). The angle function θ(ξ)
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Figure 3: The dependence of the relative root–mean–square variation in the
angular velocity component Ω1, defined in terms of expressions (26) and (36)
as

√

〈 |∆Ω1|2 〉 / |Ω1|, on the parameter γ for the PH quintic in Example 1.

specified by (29) and (34) evidently performs very well in compensating for
the ERF variation, so as to yield an MTF angular velocity component Ω1(ξ)
that conforms quite closely to the “ideal” constant value Ω1.

For the optimum γ value, Figure 5 compares the variation of the normal
plane vectors for the ERF and the rational MTF. For this comparison, the
initial ERF vectors e2(0), e3(0) are made to coincide with f2(0), f3(0) by post–
multiplying (4) with the unit quaternion U = cos 1

2
θi + sin 1

2
θi i. Comparing

Figures 1 and Figure 5, it is apparent that the small variation in the angular
velocity component Ω1 of the rational MTF is barely discernible.

This example highlights the importance of the chosen γ value: it is evident
from Figure 3 that positive γ values will generally yield poor results. Figure 6
shows the angular velocity components illustrated in Figure 4 again, but with
γ = 1 (note the difference in the vertical scales). This value incurs a distinctly
bimodal variation of θ′(ξ)/σ(ξ) which, because of the mild variation of ω1(ξ),
is mirrored in Ω1(ξ). In fact (f1(ξ), f2(ξ), f3(ξ)) is no longer a true MTF, since
Ω1(ξ) changes sign and the total twist exceeds Tmin by 2π.

Example 2. Consider next the spatial PH quintic defined by the coefficients

A0 = − 1.3777 + 1.3777 i− 0.5444 j + 0.0000k ,

A1 = − 0.3078 + 0.9131 i + 1.1730 j + 1.9514k ,

A2 = 1.7882 + 0.9111 i + 0.6158 j + 0.3853k .
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Figure 4: Angular velocity components in the tangent direction for the Euler–
Rodrigues frame (ERF), the normal–plane rotation specified by (20)–(21),
and the rational miminal twist frame (MTF) defined by (20) for γ ≈ −0.938,
the value that minimizes (36). The dashed line indicates the mean value Ω1.

ERF MTF

Figure 5: Comparison of normal–plane vectors of the Euler–Rodrigues frame
(left) and the minimal twist frame (right) along the spatial PH quintic curve
in Example 1. The initial orientations of the ERF and MTF are coincident.
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Figure 6: Angular velocity components in the tangent direction for the Euler–
Rodrigues frame, normal–plane rotation specified by (20)–(21), and rational
miminal twist frame defined by (20) for the “poor” choice γ = 1 used in (35).

The orientations of the two end frames (19) are specified by the angles θi =
− 1.25 π and θf = 0.75 π, and the ERF has one inflection in this case. The
total twist is T ≈ −3.6675, and the reduced twist is Tmin ≈ 2.6157. Figure 7
shows the dependence of the relative rms variation of Ω1 about Ω1 for γ ∈
[−2, +2 ]. The minimum value is approximately 0.112, at γ ≈ −0.749.

For the optimum γ, Figure 8 shows the angular velocity components for
the ERF, the rational normal plane rotation applied to it, and the resulting
rational MTF. Again, the angle function θ(ξ) performs well in compensating
for the ERF variation to yield a nearly–constant MTF angular velocity Ω1.
Figure 9 compares the ERF and MTF normal plane vectors along the curve:
e2(0), e3(0) are again made coincident with f2(0), f3(0).

Example 3. Consider the spatial PH quintic defined by the coefficients

A0 = − 1.2403 + 1.2403 i + 0.5039 j + 0.9070k ,

A1 = − 0.2745 + 0.6921 i + 1.5422 j− 1.1255k ,

A2 = 1.6063 + 0.8184 i− 0.6131 j + 0.9349k .

The orientations of the two end frames (19) are specified by the angles θi =
− 0.25 π and θf = 1.25 π, and the ERF has one inflection in this case. The
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Figure 7: Variation of the relative root–mean–square variation in the angular
velocity Ω1 with the parameter γ for the spatial PH quintic in Example 2.
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Figure 8: Angular velocity components in the tangent direction for the Euler–
Rodrigues frame (ERF), the normal–plane rotation specified by (20)–(21),
and rational miminal twist frame (MTF) defined by (20) with γ ≈ −0.749,
the value that minimizes (36). The dashed line indicates the mean value Ω1.
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ERF MTF

Figure 9: Comparison of normal–plane vectors of the Euler–Rodrigues frame
(left) and the minimal twist frame (right) along the spatial PH quintic curve
in Example 2. The initial ERF and MTF orientations are coincident.

total twist is T ≈ 2.2046, and the reduced twist is Tmin ≈ 2.2046. Figure 10
shows the dependence of the relative rms variation of Ω1 about Ω1 for γ ∈
[−2, +2 ]. The minimum value is approximately 0.555, at γ ≈ 0.557.

For the optimum γ, Figure 11 shows the angular velocity components for
the ERF, the rational normal plane rotation applied to it, and the rational
frame (f1(ξ), f2(ξ), f3(ξ)). The ERF angular velocity component ω1 exhibits
a pronounced variation, with an inflection at ξ ≈ 0.2363, a mild extremum at
ξ ≈ 0.043205, and a sharp extremum at ξ ≈ 0.6735. Consequently, even with
the optimum γ value, the angle function θ(ξ) cannot adequately compensate
for this variation to achieve a nearly–constant MTF angular velocity Ω1. As
seen in Figure 11, the frame (f1(ξ), f2(ξ), f3(ξ)) exhibits two inflections, where
Ω1 changes sign, inconsistent with the definition of an MTF.

Figure 12 illustrates the dramatic improvement in the behavior of Ω1 that
can be achieved by a single subdivision, at the parameter value ξm ≈ 0.6735
identifying the sharp extremum in the ERF angular velocity ω1. Individual
optimum values γ1 ≈ 1.351 and γ2 ≈ 0.563 were identified for the segments
ξ ∈ [ 0, ξm ] and ξ ∈ [ ξm, 1 ] yielding fractional rms deviations of Ω1 about Ω1

of 0.0138 and 0.0471. It can be seen that the inflections of the rational frame
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Figure 10: Variation of relative root–mean–square variation in the angular
velocity Ω1 with the parameter γ for the spatial PH quintic in Example 3.
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Figure 11: Angular velocity components on the curve in Example 3, for the
value γ ≈ 0.557 minimizing (36). In this case, the ERF angular velocity ω1

has one inflection and two extrema (identified by dots on the horizontal axis)
and the frame (f1(ξ), f2(ξ), f3(ξ)) is not a true MTF because Ω1 changes sign.
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(f1(ξ), f2(ξ), f3(ξ)) evident in Figure 11 have been eliminated, and the MTF
angular velocity Ω1 adheres very closely to the mean value Ω1 (the deviation
may be further suppressed, if desired, through further subdivision).
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Figure 12: Angular velocity components in Example 3 after subdivision at
the ERF angular velocity extremum, indicated by the dashed line. The two
curve segments have the individual optimum values γ1 ≈ 1.351, γ2 ≈ 0.563.
Comparison with Figure 11 shows that the rational rotations (20) now yield
a true MTF, with Ω1 exhibiting only minor deviations about the mean Ω1.

Figure 13 compares the ERF and MTF normal plane vectors along the
curve after subdivision at the sharp extremum in the ERF angular velocity
component ω1, with e2(0), e3(0) again made coincident with f2(0), f3(0). Note
the rapid twisting of e2(ξ), e3(ξ) in the vicinity of this extremum at ξ = ξm.
The optimum rational normal–plane rotations on the intervals [ 0, ξm ] and
[ ξm, 1 ] effectively cancel this “unnecessary” rotation, yielding an MTF with
an angular velocity Ω1 that is very close to the mean value Ω1, as determined
by the curve intrinsic geometry and the specified boundary conditions.

6 Closure

The problem of constructing an adapted orthonormal frame on a space curve
(comprising the curve tangent and mutually orthogonal vectors in the normal
plane), that exhibits minimal “twisting” between prescribed initial and final
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Figure 13: Comparison of normal–plane vectors of the Euler–Rodrigues frame
(left) and the minimal twist frame (right) along the spatial PH quintic curve
in Example 3. The initial ERF and MTF orientations are coincident.

instances, has been addressed. The Euler–Rodrigues frame (ERF) on spatial
Pythagorean–hodograph (PH) curves offers a convenient point of departure
for such constructions, since it is inherently rational and non–singular.

It was shown that, for spatial PH curves, the minimal twist frame (MTF)
that satisfies the given boundary conditions and maintains a constant angular
velocity component in the tangent direction admits a closed–form expression,
although this incurs rather intricate transcendental terms. As an alternative,
the strict imposition of a constant angular velocity component was relaxed, to
permit the construction of rational MTFs on spatial PH quintics. By defining
a rational MTF through a rational quartic rotation of the ERF normal–plane
vectors, one can satisfy the boundary conditions and make the MTF angular
velocity component agree with the constant mean value at both end points,
with one residual scalar degree of freedom. Through a numerical optimization
process, this free parameter can be used to minimize the root–mean–square
deviation of the rational MTF angular velocity component about the mean
value. This process yields rational MTFs of degree 8 on spatial PH quintics
that are compatible with the boundary conditions and exhibit relatively mild
variations of the tangent angular velocity component.

As a means of ensuring monotonicity of the rational MTF, or of further
suppressing variations of the tangent angular velocity component, a strategy
of subdividing the curve at the points that correspond to inflections and/or
extrema of the ERF tangent angular velocity component was proposed. The
“simple” variation of the ERF over the resulting subsegments allows a more
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accurate compensation of the ERF variation by the rational normal–plane
rotation that is employed to generate the MTF.

The algorithm described herein is relatively easy to implement, and yields
simple (rational) solutions to the problem of smoothly varying the orientation
of a rigid body along a given spatial path, compatible with prescribed initial
and final orientations. A number of possible extensions of the algorithm come
to mind. For example, one might consider the use of a cubic or higher–order
complex polynomial w(ξ) = a(ξ) + i b(ξ) — or complex spline function — to
specify the rational normal–plane rotation (20) through expression (29). This
offers additional free parameters to suppress the variation of Ω1(ξ) about Ω1.
The basic methodology remains the same, but would require a computation–
intensive solution of a non–linear multivariate optimization problem in order
to determine appropriate values for these parameters.
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