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Abstract

We illustrate the potential applications in machine learning of the
Christoffel function, or more precisely, its empirical counterpart associated
with a counting measure uniformly supported on a finite set of points.
Firstly, we provide a thresholding scheme which allows to approximate
the support of a measure from a finite subset of its moments with strong
asymptotic guaranties. Secondly, we provide a consistency result which
relates the empirical Christoffel function and its population counterpart
in the limit of large samples. Finally, we illustrate the relevance of our
results on simulated and real world datasets for several applications in
statistics and machine learning: (a) density and support estimation from
finite samples, (b) outlier and novelty detection and (c) affine matching.

1 Introduction

The main claim of this paper is that the Christoffel function (a tool from Approx-
imation Theory) can prove to be very useful machine learning applications. The
Christoffel function is associated with a finite measure and a degree parameter
d. It has an important history of research with strong connection to orthogonal
polynomials [Szegö (1974), Dunkl and Xu (2001)], interpolation and approxi-
mation theory [Nevai (1986), De Marchi et al. (2014)]. Its typical asymptotic
behavior as d increases is of particular interest because, in some specific settings,
it provides very relevant information on the support and the density of the as-
sociated input measure. Important references include [Máté and Nevai (1980),
Máté et al. (1991), Totik (2000), Gustafsson et al. (2009)] in a single dimen-
sion, [Bos (1994), Bos et al. (1998), Xu (1999), Berman (2009), Kroo and Lubinsky (2013)]
for specific multivariate settings and [Kroo and Lubinsky (2012)] for ratii of mu-
tually absolutely continuous measures. The topic is still a subject of active re-
search, but regarding properties of the Christoffel function, a lot of information
is already available.
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The present work shows how properties of the Christoffel function can be
used successfully in some machine learning applications. To the best of our our
knowledge, this is the first attempt in such a context with the recent work of
[Lasserre and Pauwels (2016)] and [Malyshkin (2015)]. More precisely, we con-
sider the empirical Christoffel function, a specific case where the input measure
is a scaled counting measure uniformly supported on a set (a cloud) of data-
points. This methodology has three distinguishing features: (i) It is extremely
simple and involves no optimization procedure, (ii) it scales linearly with the
number of observations (one pass over the data is sufficient), and (iii) it is affine
invariant. These three features prove to be especially important in all the ap-
plications that we consider.

In [Lasserre and Pauwels (2016)] we have exhibited a striking property of
some distinguished family of sum-of-squares (SOS) polynomials (Qd)d∈N, in-
dexed by their degree (2d ∈ N), and easily computed from empirical moments
associated with a cloud of n points in Rp which we call X. The associated
family of sublevel sets Sα,d = {x : Qd(x) ≤ α}, for various values of α > 0,
approximates the global shape of original cloud of points X. The degree index
d can be used as a tuning parameter, trading off regularity of the polynomial
Qd with the fitness of the approximation of the shape of X (as long as the cloud
contains sufficiently many points). Remarkably, even with relatively low degree
d, the sets Sα,d capture acurately the shape of X, and so provides a compact
(algebraic) encoding of the cloud.

In fact the reciprocal function x 7→ Qd(x)−1 is precisely the Christoffel
function Λµn,d associated to the empirical counting measure supported on X and
the degree index d. Some properties of the Christoffel function stemming from
approximation theory suggest that it could be exploited in a statistical learning
context by considering its empirical counterpart. The purpose of this work is
to push this idea further. In particular we investigate (a) further properties of
the Christoffel function which prove to be relevant in some machine learning
applications, (b) statistical properties of the empirical Christoffel function as
well as (c) further applications to well known machine learning tasks.

Contributions

This paper significantly extends [Lasserre and Pauwels (2016)] in several direc-
tions. Indeed our contribution is threefold:

I. We first provide a thresholding scheme which allows to approximate the
compact support S of a measure with strong asymptotic guarantees. This result
rigorously establishes the property that, as d increases, the scaled Christoffel
function decreases to zero outside S and remains positive in the interior of S.

II. In view of potential applications in machine learning we provide a ratio-
nale for using the empirical Christoffel function in place of its population coun-
terpart in the limit of large sample size. We consider a compactly supported
population measure µ as well as an empirical measure µn uniformly supported
on a sample of n vectors in Rp, drawn independently from µ. For each fixed d
we show a highly desirable strong asymptotic property as n increases. Namely,
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the empirical Christofell function Λµn,d(·) converges, uniformly in x ∈ Rp, to
Λµ,d(·), almost-surely with respect to the draw of the random sample.

III. We illustrate the benefits of the empirical Christoffel function in some
important applications, mainly in machine learning. The rationale for such ben-
efits builds on approximation properties of the Christoffel function combined
with our consistency result. In particular, we first show on simulated data that
the Christoffel function can be useful for density estimation and support infer-
ence. In [Lasserre and Pauwels (2016)] we have described how the Christoffel
function yields a simple procedure for intrusion detection in networks, and here
we extend these results by performing a numerical comparison with well estab-
lished methods for novelty detection on a real world dataset. Finally we show
that the Christoffel function is also very useful to perform affine matching and
inverse affine shuffling of a dataset.

Comparison with existing literature on set estimation

Support estimation and more generaly set estimation has a long history in statis-
tics and we intend to give a nonexhaustive overview in this section. The main
question of interest is that of inferering a set (support, level sets of the density
function . . . ) based on independants samples from an unknown distribution.
Pioneering works include [Rényi and Sulanke (1963), Geffroy (1964)] followed
by [Chevalier (1976), Devroye and Wise (1980)] and resulted in the introduc-
tion and first analyses for estimators based on convex hull for convex domains
or union of balls for nonconvex sets. This motivated the development of min-
imax statistical analysis for the set estimation problem [Hardle et al. (1995),
Mammen and Tsybakov (1995), Tsybakov (1997)] and the introduction of more
sophisticated optimal estimators, such as the excess mass estimator [Polonik (1995)].
Strong relations between set estimation and density estimation lead to the de-
velopment of the plugin approach for support and density level set estima-
tion [Cuevas and Fraiman (1997), Molchanov (1998)] with futher generalization
proposed in [Cuevas et al. (2006)] and a precise minimax analysis described in
[Rigollet and Vert (2009)].

These works provide a rich statitical analysis of the main estimation ap-
proaches currently available. The topic is still active with more precise questions
ranging from inference of topological properties [Aaron and Bodart (2016)], new
geometric conditions [Cholaquidis et al. (2014)], adaptivity to local properties
of the underlying density [Patschkowski and Rohde (2016), Singh et al. (2009)].

One of the goals of our work is the introduction of the Christoffel function
as a tool to solve similar problems. This approach has several advantages

• The Christoffel function allows to encode the global shape of a cloud of
points in any finite dimension using a polynomial level set. This kind of
encoding is relatively simple and compact. This has clear advantages, for
example, the evaluation of a polynomial has a complexity which does not
depend on the size of the sample used to qualibrate its coefficients and the
boundary of the corresponding sublevel set as a very compact representa-
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tion as an algebraic set. Furthermore, it turns out that the estimation of
the empirical Christoffel function has a computational cost which is linear
in the sample size. This is in contrast with distance based approaches for
which membership evaluation requires to query all the sample points. As
pointed out in [Báıllo et al. (2000)], the practical use of multidimensional
set estimation techniques involves formidable computational difficulties so
that simplicity arises as a major advantage in this context.

• The proposed approach is specific in the sense that it relies on tools
which were not considered before for support estimation such as orthog-
onal polynomials. Topological properties of the support of the distribu-
tion or its boundary arise as major questions beyond minimax analysis
[Aaron and Bodart (2016)]. In this realm, the objects which we manipu-
late have a simple algebraic description and could be coupled with compu-
tational real algebraic geometry tools to infer topological properties such
as, for example, Betty numbers [Basu et al. (2005)]. This strong algebraic
structure could in principle allow to push further the statistical settings
which could be handled, with, for example, notions such as singular mea-
sures and intrinsic dimension.

We see these facts as potential advantages of the Christoffel function in the con-
text of support estimation and relevant motivation to further study the potential
of this procedure in modern data analysis contexts. However, we emphasize that
this work constitutes only a first step in this direction. Indeed, we are not able
to provide a complete statistical efficiency analysis as precisely described in the
support and set estimation literature (e.g. [Cuevas et al. (2006)]). This would
require further studies of precise properties of the Christoffel function itself
which are not available given the state of knowledge for this object. We aim
at providing a rationale for the proposed approach and motivation for future
studies, among which a complete statistical analysis is a longer term goal.1

Organisation of the paper

Section 2 describes the notation and definitions which will be used throughout
the paper. In Section 3 we introduce the Christoffel function, outline some of
its known properties and describe our main theoretical results. Applications
are presented in Section 4 where we consider both simulated and real world
data as well as a comparison with well established machine learning methods.
For clarity of exposition most proofs and technical details are postponed to the
Appendix in Section 6.

1In particular qualibration of the underlying polynomial degree as a function of the sample
size is out of the scope of this paper and left for future research.
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2 Notation, definitions and Preliminary results

2.1 Notation and definitions

We fix the ambient dimension to be p throughout the text. For example, we
will manipulate vectors in Rp as well as p-variate polynomials with real co-
efficients. We denote by X a set of p variables X1, . . . , Xp which we will
use in mathematical expressions defining polynomials. We identify monomi-
als from the canonical basis of p-variate polynomials with their exponents in
Np: we associate to α = (αi)i=1...p ∈ Np the monomial Xα := Xα1

1 Xα2
2 . . . X

αp
p

which degree is deg(α) :=
∑p
i=1 αi = |α|. We use the expressions <gl and

≤gl to denote the graded lexicographic order, a well ordering over p-variate
monomials. This amounts to, first, use the canonical order on the degree
and, second, break ties in monomials with the same degree using the lexico-
graphic order with X1 = a,X2 = b . . . For example, the monomials in two
variables X1, X2, of degree less or equal to 3 listed in this order are given by:
1, X1, X2, X

2
1 , X1X2, X

2
2 , X

3
1 , X

2
1X2, X1X

2
2 , X

3
2 .

We denote by Npd, the set {α ∈ Np; deg(α) ≤ d} ordered by ≤gl. R[X] de-
notes the set of p-variate polynomials: linear combinations of monomials with
real coefficients. The degree of a polynomial is the highest of the degrees of
its monomials with nonzero coefficients2. We use the same notation, deg(·), to
denote the degree of a polynomial or of an element of Np. For d ∈ N, R[X]d de-
notes the set of p-variate polynomials of degree at most d. We set s(d) =

(
p+d
d

)
,

the number of monomials of degree less or equal to d.
We will denote by vd(X) the vector of monomials of degree less or equal to

d sorted by ≤gl, i.e., vd(X) := (Xα)α∈Npd
∈ R[X]

s(d)
d . With this notation, we

can write a polynomial P ∈ R[X]d as P (X) = 〈p,vd(X)〉 for some real vector
of coefficients p = (pα)α∈Npd

∈ Rs(d) ordered using ≤gl. Given x = (xi)i=1...p ∈
Rp, P (x) denotes the evaluation of P with the assignments X1 = x1, X2 =
x2, . . . Xp = xp. Given a Borel probability measure µ and α ∈ Np, yα(µ)
denotes the moment α of µ, i.e., yα(µ) =

∫
Rp xαdµ(x). Finally for δ > 0 and

every x ∈ Rp, let Bδ(x) := {x : ‖x‖ ≤ δ} be the closed Euclidean ball of radius
δ and centered at x. We use the shorthand notation B to denote the closed
Euclidean unit ball. For a given subset of Euclidean space, A, ∂A denotes the
topological boundary of A. Recall that its Lebesgue volume vol(Bδ(x)) satisfies:

vol(Bδ(x)) =
π
p
2

Γ
(
p
2 + 1

)δp, ∀x ∈ Rp.

Furthermore, let ωp := 2π
p+1
2

Γ( p+1
2 )

denote the surface of the p dimensional unit

sphere in Rp+1. Throughout the paper, we will only consider measures of which
all moments are finite.

2For the null polynomial, we use the convention that its degree is 0 and it is ≤gl smaller
than all other monomials.
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Moment matrix

For a finite Borel measure µ on Rp denote by supp(µ) its support, i.e., the
smallest closed set Ω ⊂ Rp such that µ(Rp \ Ω) = 0. The moment matrix of
µ, Md(µ), is a matrix indexed by monomials of degree at most d ordered by
≤gl. For α, β ∈ Npd, the corresponding entry in Md(µ) is defined by Md(µ)α,β :=
yα+β(µ), the moment

∫
xα+βdµ of µ. When p = 2 and d = 2, letting yα = yα(µ)

for α ∈ N2
4, we have

M2(µ) :

1 X1 X2 X2
1 X1X2 X2

2

1 1 y10 y01 y20 y11 y02

X1 y10 y20 y11 y30 y21 y12

X2 y01 y11 y02 y21 y12 y03

X2
1 y20 y30 y21 y40 y31 y22

X1X2 y11 y21 y12 y31 y22 y13

X2
2 y02 y12 y03 y22 y13 y04

.

The matrix Md(µ) is positive semidefinite for all d ∈ N. Indeed, for any
p ∈ Rs(d), let P ∈ R[X]d be the polynomial with vector of coefficients p;
then pTMd(µ)p =

∫
Rp P (x)2dµ(x) ≥ 0. We also have the identity Md(µ) =∫

Rp vd(x)vd(x)T dµ(x) where the integral is understood elementwise.

Sum of squares (SOS)

We denote by Σ[X] ⊂ R[X] (resp. Σ[X]d ⊂ R[X]d), the set of polynomials (resp.
polynomials of degree at most d) which can be written as a sum of squares of
polynomials. Let P ∈ R[X]2m for some m ∈ N, then P belongs to Σ[X]2m if
there exists a finite J ⊂ N and a family of polynomials Pj ∈ R[X]m, j ∈ J , such
that P =

∑
j∈J P

2
j . It is obvious that sum of squares polynomials are always

nonnegative. A further interesting property is that this class of polynomials is
connected with positive semidefiniteness. Indeed, P belongs to Σ[X]2m if and
only if

∃Q ∈ Rs(m)×s(m), Q = QT , Q � 0, P (x) = vm(x)TQvm(x), ∀x ∈ Rp. (2.1)

As a consequence, every real symmetric positive semidefinite matrixQ ∈ Rs(m)×s(m)

defines a polynomial in Σ[X]2m by using the representation (2.1).

Orthonormal polynomials

We define a classical [Szegö (1974), Dunkl and Xu (2001)] family of orthonormal
polynomials, {Pα}α∈Npd ordered according to ≤gl, which satisfies for all α ∈ Npd

〈Pα, Pβ〉µ = δα=β , 〈Pα, Xβ〉µ = 0, if β <gl α, 〈Pα, Xα〉µ > 0. (2.2)

Existence and uniqueness of such a family is guaranteed by the Gram-Schmidt
orthonormalization process following the ≤gl ordering on monomials and by
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the positivity of the moment matrix, see for instance [Dunkl and Xu (2001)]
Theorem 3.1.11.

Let Dd(µ) be the lower triangular matrix of which rows are the coeffi-
cients of the polynomials Pα defined in (2.2) ordered by ≤gl. It can be shown
that Dd(µ) = Ld(µ)−T , where Ld(µ) is the Cholesky factorization of Md(µ).
Furthermore, there is a direct relation with the inverse moment matrix as
Md(µ)−1 = Dd(µ)TDd(µ) ([Helton et al. (2008)] Proof of Theorem 3.1).

3 The Christoffel function and its empirical coun-
terpart

3.1 The Christoffel function

Let µ be a finite Borel measure on Rp with all moments finite and such that its
moment matrix Md(µ) is positive definite for every d = 0, 1, . . .. For every d,
define the function κµ,d : Rp × Rp → R by:

(x,y) 7→ κµ,d(x,y) :=
∑
α∈Npd

Pα(x)Pα(y) = vd(x)TMd(µ)−1vd(y), (3.1)

where the family of polynomials {Pα}α∈Npd is defined in (2.2) and the last equal-

ity follows from properties of this family (see also [Lasserre and Pauwels (2016)]).
The kernel (x,y) 7→ K(x,y) :=

∑
α∈Np Pα(x)Pα(y) is a reproducing kernel on

L2(µ) because

Pα(X) =

∫
K(X,y)Pα(y) dµ(y), ∀α ∈ Np,

that is, the (Pα) are eigenvectors of the associated operator on L2(µ), and so

p(X) =

∫
K(X,y) p(y) dµ(y), ∀p ∈ R[X].

The function x 7→ Λµ,d(x) := κµ,d(x,x)−1 is called the Christoffel function
associated with µ and d ∈ N. The following result states a fundamental extremal
property of the Christoffel function.

Theorem 3.1 (see e.g. [Dunkl and Xu (2001), Nevai (1986)]). Let ξ ∈ Rp be
fixed, arbitrary. Then

Λµ,d(ξ) = min
P∈R[X]d

{∫
Rp
P (x)2 dµ(x) : P (ξ) = 1

}
. (3.2)

The Christoffel function plays an important role in orthogonal polynomi-
als and the theory of interpolation and approximation, see e.g. [Szegö (1974),
Dunkl and Xu (2001)]. One is particularly interested in the asymptotics of the
normalized Christoffel function x 7→ s(d)Λµ,d(x) as d→∞. The subject has a
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very long history in the univariate case, see [Nevai (1986)] for a detailed histori-
cal account prior to the 80’s. The first quantitative asymptotic result was given
in [Máté and Nevai (1980)] and was latter improved by [Máté et al. (1991)] and
[Totik (2000)]. In the multivariate setting, precise results are known in some par-
ticular cases such as balls, spheres and simplices [Bos (1994), Bos et al. (1998),
Xu (1996), Xu (1999), Kroo and Lubinsky (2013)] but much remains to be done
for the general multivariate case. A typical example of asymptotic result is given
under quite general (and technical) conditions in [Kroo and Lubinsky (2013),
Kroo and Lubinsky (2012)]. This work shows that, as d → ∞, the limit of the

ratio,
Λν,d
Λµ,d

, of two Christoffel functions associated to two mutually absolutely

continuous measures µ and ν, converges to the density dν
dµ (x) on the interior of

their common support.

Remark 3.2. Notice that Theorem 3.1 also provides a method to compute the
numerical value Λµ,d(x) for x ∈ Rn, fixed, arbitrary. Then indeed (3.2) is a
convex quadratic programming problem which can be solved efficiently, even in
high dimension using first order methods such as projected gradient descent and
its stochastic variants. This is particularly interesting when the nonsingular
moment matrix Md(µ) is large.

We next provide additional insights on Theorem 3.1 and solutions of (3.2).

Theorem 3.3. For any ξ ∈ Rp, the optimization problem in (3.2) is convex
with a unique optimal solution P ∗d ∈ R[X]d defined by

P ∗d (X) =
κµ,d(X, ξ)

κµ,d(ξ, ξ)
= Λµ,d(ξ)κµ,d(X, ξ). (3.3)

In addition,

Λµ,d(ξ) =

∫
P ∗d (x)2 dµ(x) =

∫
P ∗d (x) dµ(x) (3.4)

Λµ,d(ξ)ξ
α =

∫
xα P ∗d (x) dµ(x) α ∈ Npd. (3.5)

The proof is postponed to Section 6. Interestingly, each of the orthonormal
polynomials (Pα)α∈Np also satisfies an important and well-known extremality
property.

Theorem 3.4 (see e.g. [Dunkl and Xu (2001)]). Let α ∈ Np be fixed, arbitrary
and let d = |α|. Then up to a multiplicative positive constant, Pα is the unique
optimal solution of

min
P∈R[x]d


∫
P 2(x) dµ(x) : P (x) = xα +

∑
β<gl α

θβ xβ for some {θβ}β<glα

 .

(3.6)

Finally, we highlight the following important property which will be useful
in the sequel.
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Theorem 3.5 (See e.g. [Lasserre and Pauwels (2016)]). Λµ,d is invariant by
change of polynomial basis vd, change of the origin of Rp or change of basis in
Rp.

Remark 3.6. All these statements can be deduced from identity (3.1). Indeed,
we have, for any x,y ∈ Rp,

vd(x)TMd(µ)−1vd(y) = (Avd(x))T
(
AMd(µ)AT

)−1
(Avd(y))

= (Avd(x))T
(∫

Rp
(Avd(z))(Avd(z))T dµ(z)

)−1

(Avd(y))

for any invertible matrix A of suitable size. All the proposed transformations
induce a change of basis of polynomials up to degree d which can be represented
by such an A.

3.2 When µ is the Lebesgue measure

In this section we consider the important case of the Lebesgue measure on a
compact set S ⊂ Rp such that cl(int(S)) = S. It is known that in this case
the Christoffel function encodes information on the set S; see for example the
discussion in Section 3.1. In particular, the scaled Christoffel function remains
positive on the interior of S. We push this idea further and present a new result
asserting that it is possible to recover the set S with strong asymptotic guar-
anties by carefully thresholding the corresponding scaled Christoffel function.

For any measurable set A, denote by µA the uniform probability measure
on A, that is µA = λA/λ(A) where λ is the Lebesgue measure and λA the
measure consisting of the restriction of Lebesgue measure to A which is defined
by λA(A′) = λA∩A′ for any measurable set A′.

Threshold and asymptotics

The main idea is to use quantitative lower bounds on the scaled Christoffel
function, s(d)ΛµS ,d, on the interior of S (Lemma 6.2) and upper bounds outside
S (Lemma 6.6). Recall that µS denotes the uniform measure on S. In combining
these bounds one proves the existence of a sequence of thresholds of the scaled
Christoffel function which estimate S in a strongly consistent manner. Let us
introduce the following notation and assumption.

Assumption 3.7.

(a) S ⊂ Rp is a compact set such that cl(int(S)) = S.

(b) The sequence (δk)k∈N is a decreasing sequence of positive numbers con-
verging to 0. For every k ∈ N, let dk be the smallest integer such that:

2
3− δkdk

δk+diam(S) dpk

(
e

p

)p
exp

(
p2

dk

)
≤ αk (3.7)
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where diam(S) denotes the diameter of the set S, and

αk :=
δpkωp
λ(S)

(dk + 1)(dk + 2)(dk + 3)

(dk + p+ 1)(dk + p+ 2)(2dk + p+ 6)

Remark 3.8 (On Assumption 3.7).

• dk is well defined. Indeed, since δk is positive, the left hand side of (3.7)
goes to 0 as k →∞ while the right hand side remains bounded for increas-
ing values of dk.

• From the definition of dk and the fact that δk is decreasing, the sequence
{dk}k∈N is non decreasing. Indeed, in (3.7) the right hand side is an
increasing function of δk while the left hand side is decreasing so that if
(3.7) is satisfied for a certain value of dk and δk, it is also satisfied with
the same dk and any value of δ ≥ δk.

• Given {δk}k∈N, computing dk can be done recursively and only requires
the knowledge of diam(S) and λ(S).

• A similar condition can be enforced if only upper bounds on diam(S) and
on λ(S) are available. In this case, replace these quantities by their upper
bounds in (3.7) to obtain a similar result.

We are now ready to state the first main result of this section whose proof
is postponed to Section 6 for sake of clarity of exposition. Recall the definition
of the Hausdorff distance dH(X,Y ) between two subsets X,Y of Rp:

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

dist(x,y), sup
y∈Y

inf
x∈X

dist(x,y)

}
.

Theorem 3.9. Let S ⊂ Rp, {δk}k∈N, {αk}k∈N and {dk}k∈N satisfy Assumption
3.7. For every k ∈ N let Sk ⊂ Rp be the set defined by,

Sk := {x ∈ Rp : s(dk) ΛµS ,dk(x) ≥ αk} .

Then, as k →∞,

dH(Sk, S)→ 0

dH(∂Sk, ∂S)→ 0.

Remark 3.10. The relevance of Hausdorff distance and the notion of dis-
tance between topological boundaries is discussed in [Cuevas et al. (2006)] and
[Singh et al. (2009)].
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Extension to more general probability measures

Theorem 3.9 can easily be extended to probability measures that are more
general than uniform distributions, in which case we consider the following al-
ternative assumption.

Assumption 3.11.

(a) S ⊂ Rp is a compact set such that cl(int(S)) = S.

(b) The function w : int(S)→ [w−,+∞) is integrable on int(S) with w− > 0.
The measure µ is such that for any measurable set A, µ(A) =

∫
A∩S w(x)dx

and µ(S) = 1. {δk}k∈N is a decreasing sequence of positive numbers which
converges to 0. For every k ∈ N, let dk be the smallest integer such that:

2
3− δkdk

δk+diam(S) dpk

(
e

p

)p
exp

(
p2

dk

)
≤ αk (3.8)

where

αk := w−δ
p
kωp

(dk + 1)(dk + 2)(dk + 3)

(dk + p+ 1)(dk + p+ 2)(2dk + p+ 6)
.

Under Assumption 3.11 we obtain the following analogue of Theorem 3.9.

Theorem 3.12. Let S ⊂ Rp, w : S → [w−,+∞), {δk}k∈N, {αk}k∈N and
{dk}k∈N satisfy Assumption 3.11. For every k ∈ N, let

Sk := {x ∈ Rp : s(dk) ΛµS ,dk(x) ≥ αk} .

Then, as k →∞,

dH(Sk, S)→ 0

dH(∂Sk, ∂S)→ 0.

The proof is postponed to Section 6.

3.3 Discrete approximation via the empirical Christoffel
function

In this section µ is a probability measure on Rp with compact support S. We
focus on the statistical setting where information on µ is available only through
a sample of points drawn independently from the given distribution µ. In this
setting, for every n ∈ N, let µn denote the empirical measure uniformly sup-
ported on an independent sample of n points distributed according to µ. It is
worth emphasizing that in principle Λµn,d is easy to compute and requires the
inversion of a square matrix of size s(d), see (3.1). Note that the definition in
(3.1) can only be used if the empirical moment matrix, Md(µn) is invertible
which is the case almost surely if Md(µ) is invertible and n is large enough.
Alternatively, the numerical evaluation of Λµn,d(x) at x ∈ Rn, fixed arbitrary,
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reduces to solving the convex quadratic programming problem (3.2), which can
in principle be done efficiently even in high dimension, see Remark 3.2.

Our second main result is for fixed d ∈ N and relates the population Christof-
fel function Λµ,d and its empirical version Λµn,d, as n increases. We proceed
by distinguishing what happens far from S and close to S. First, Lemma 6.8
ensures that both Christoffel functions associated with µ and µn vanish far from
S so that the influence of this region can be neglected. Second, when closer to
S one remains in a compact set and the strong law of large numbers applies.

Theorem 3.13. Let µ be a probability measure on Rp with compact support.
Let {Xi}i∈N be a sequence of i.i.d. Rp-valued random variables with common
distribution µ. For n = 1, 2, . . ., define the (random) empirical probability mea-
sure µn = 1

n

∑n
i=1 δXi . Then, for every d ∈ N, d > 0, such that the moment

matrix Md(µ) is invertible, it holds that

sup
x∈Rp

{|Λµn,d(x)− Λµ,d(x)|} a.s.−→
n→∞

0. (3.9)

Equivalently

‖Λµn,d − Λµ,d‖∞
a.s.−→
n→∞

0. (3.10)

where ‖ · ‖∞ denotes the usual “sup-norm”.

A detailed proof can be found in Section 6. Theorem 3.13 is a strong result
which states a highly desirable property, namely that almost surely with respect
to the random draw of the sample, the (random) function Λµn,d(·) converges to
Λµ,d(·) uniformly in x ∈ Rp as n increases. Since we manipulate polynomials, it
can be checked that [Cuevas et al. (2006), Theorem 1] for general level sets can
be applied in the setting of Christoffel level set estimation. We get the following
consequence in terms of consistency of the boundary of plugin estimates for
Christoffel level sets.

Theorem 3.14. Let µ be a probability measure on Rp with compact support.
Let {Xi}i∈N be a sequence of i.i.d. Rp-valued random variables with common
distribution µ. For n = 1, 2, . . ., define the (random) empirical probability mea-
sure µn = 1

n

∑n
i=1 δXi . Then, for every d ∈ N, d > 0, such that the moment

matrix Md(µ) is invertible and any c ∈ (0, supx∈Rp{Λµ,d(x)}), as n increases,
it holds that

dH(∂Ln, ∂L)
a.s.−→ 0, (3.11)

where L = {x ∈ Rp,Λµ,d(x) ≥ c} and Ln = {x ∈ Rp,Λµn,d(x) ≥ c}.

4 Applications

4.1 Rationale

In this section we describe some applications for which properties of the Christof-
fel function prove to be very useful in a statistical context. We only consider the

12



case of bounded support. A relevant property of the scaled Christoffel function
is that it encodes information on the support and the density of a population
measure µ:

• [Máté et al. (1991)], [Totik (2000)] and [Kroo and Lubinsky (2012)] pro-
vide asymptotic results involving the density of the input measure.

• Theorem 3.9 provides asymptotic results related to the support of the
input measure.

The support and density of a measure is of interest in many statistical applica-
tions. However, the aforementioned results are limited to population measures
which are not accessible in a statistical setting. In the context of empirical
Christoffel functions, Theorem 3.13 suggests that these properties still hold (at
least in the limit of large number of samples) when one uses the empirical mea-
sure µn in place of the population measure µ. Combining these ideas suggests
to use of the empirical Chritoffel function in statistical applications such as (a)
density estimation, (b) support inference or (c) outlier detection. This is illus-
trated on simulated and real world data and we compare the performance with
well established methods for the same purpose. Finally, we also describe another
application, namely inversion of affine shuffling, whose links with statistics are
less clear.

All results presented in this section are mainly for illustrative purposes. In
particular, the choice of the degree d as a function of the sample size n was
done empirically and a precise quantitative analysis is a topic of future research
beyond the scope of the present paper.

4.2 Density estimation

Most asymptotic results regarding the scaled Christoffel function suggest that
the limiting behaviour involves the product of a boundary effect term and a
density term. Hence if one knows both the Christoffel function and the boundary
effect term, one has access to the density term. Unfortunately, this boundary
term is only known in specific situations, the most typical example being the
Euclidean ball. Hence, in the present state of knowledge, one of the following is
assumed to hold true.

• The support of the population measure µ is S and limd→∞ s(d)ΛλS ,d exists
(possibly unknown).

• The support is unknown but contains a set S with the same property as
above. In this case, we consider the restriction of the population measure
µ to S. Note that a sample from the restriction is easily obtained from a
sample from µ by rejection.

In both cases, assuming that µ has a density h on S, it is expected that the

ratii
Λµ,d

ΛλS,d
or

s(d)Λµ,d
limd→∞ s(d)ΛλS,d

, converge to h. An example of such a result in

the univariate setting is the following.
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Figure 1: Comparison of Christoffel and kernel density estimation with Gaussian
kernel. The same samples are used in both cases. We vary the sample size n, the
degree d for the Christoffel function and the scale parameter σ for the Gaussian
kernel. The black curve shows the population density.

Theorem 4.1 (Theorem 5 [Máté et al. (1991)]). Suppose that µ is supported
on [−1, 1] with density h ≥ a > 0. Then for almost every x ∈ [−1, 1],

lim
d→∞

dΛµ,d(x)→ πh(x)
√

1− x2.

Extensions include [Totik (2000)] for general support and [Kroo and Lubinsky (2012)]
for the multivariate setting. Combining Theorems 4.1 and 3.13 suggest that the
empirical Christoffel function can be used for density estimation. For illustra-
tion purposes, we set µ to be the restriction of a Gaussian to [−1, 1]. We perform
the following experiment for given n, d ∈ N.

• Generate x1, . . . , xn ∈ [−1, 1] sampled independently from µ.

• Compute and plot x → Λµn,d(x)
ΛλS,d(x) . Note that ΛλS ,d is easily derived from

the moments of the uniform distribution on [−1, 1].

The result is presented in Figure 1 and a comparison is given with a classical
technique, kernel density estimation [Rosenblatt (1956), Parzen (1962)] with the
Gaussian kernel. The result suggest that empirical Christoffel based density
estimation is competitive with kernel density estimation in this setting. It is
worth noticing how simple the methodology is with a single parameter to tune.
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Figure 2: Finie sample from the uniform measure over a star shaped domain
in R2. For each value of n and d, the red line represents the sublevel set{
x ∈ R2, s(d)Λµn,d(x) = α(δ)

}
, where δ = 0.5 and α is given in Assumption

3.7.

4.3 Support inference

Combining Theorems 3.9 and 3.13 suggest that one may recover the unknown
support of a population measure µ from n independant samples by thresholding
the scaled empirical Christoffel function. In this section we set µ to be the uni-
form probability measure over a star shaped domain in R2 (see Figure 2). For
different values of the degree d and sample size n, we plot in Figure 2 the corre-
sponding sample and the associated level set

{
x ∈ R2 : s(d)Λµn,d(x) = α(δ)

}
,

where δ = 0.5 and α is given in Assumption 3.7.
The results displayed in Figure 2 show that for well chosen values of d and

with α as in Assumption 3.7, the support of the population measure is rather
well approximated from a finite independent sample. The results even suggest
that a careful tuning of the degree d and the threshold level set α allows to
approximate the support extremely well for larger sample sizes. Of course the
degree d should be chosen to avoid a form of over-fitting as the results suggest for
small sample sizes and large values of d. A precise analysis of this phenomenon
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1SVM

σ
ν

0.005 0.01 0.02 0.05 0.1 0.2

0.01 10 17 17 17 15 11
0.02 2 17 18 17 15 12
0.05 8 1 14 18 15 11
0.1 9 8 12 17 14 11
0.2 7 9 8 17 14 13
0.5 3 5 9 15 17 16
1 3 6 9 14 19 18
2 4 4 5 1 18 18
5 4 3 4 9 12 16
10 5 4 4 7 10 15

Christoffel
d AUPR
1 8
2 18
3 18
4 16
5 15
6 13

KDE
σ AUPR

0.01 8
0.02 1
0.05 13
0.1 13
0.2 12
0.5 5
1 4

Table 1: AUPR scores (×100) for the network intrusion detection task for the
three different methods considered in this paper. 1SVM corresponds to one-
class SVM with Gaussian kernel and varying kernel scale parameter σ and SVM
parameter ν. Christoffel corresponds to the empirical Christoffel function with
varying degree d. KDE corresponds to kernel density estimation with Gaussian
kernel and varying scale parameter σ. The best scores are higlighted in boldface
font.

is a topic of future research.

4.4 Outlier detection

In [Lasserre and Pauwels (2016)] we suggested that the empirical Christoffel
function could be used for the purpose of detecting outliers and the claim was
supported by some numerical experiments. The rationale for this is that the
empirical Christoffel function encodes information about the population den-
sity and outliers can be seen as samples from low density areas. We follow
the same line and consider the network intrusion detection task described in
[Williams et al. (2002)] based on the KDD cup 99 dataset [Lichman (2013)].
Following the pre-processing described in [Williams et al. (2002), Lasserre and Pauwels (2016)],
we build up five datasets consisting of network connections represented by la-
beled vectors in R3 where each label indicates wether the connection was an
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attack or not.

Dataset http smtp ftp-data ftp other
Number of examples 567498 95156 30464 4091 5858

Proportions of attacks 0.004 0.0003 0.023 0.077 0.016

All the experiments described in this section are performed on the “other”
dataset which is the most heterogeneous. The main task is to recover attacks
from the collection of points in R3, ignoring the labels, and then compare the
predictions with the ground thruth (given by the labels). We compare different
methods, each of them assign a score to an individual, the higher the score,
the more likely the individual is to be an outlier, or an attack. The metric
that we use to compare different methods is the area under the Precision Recall
curve (AUPR); see for example [Davis and Goadrich (2006)]. We compare three
different methods, each of them producing a score reflecting some degree of
outlyingness.

• Empirical Christoffel function.

• Kernel density estimation [Rosenblatt (1956), Parzen (1962)] with Gaus-
sian kernel. The value of the density estimated at each datapoint is used
as an outlyingness score.

• One-class SVM [Schölkopf et al. (2001)] with Gaussian kernel. The value
of the estimated decision function at each datapoint is used as an outlying-
ness score. We used the implementation provided in the kernlab package
[Zeileis et al. (2004)].

The first two methods involve only a single parameter while the last method
requires two parameters to be tuned. The results are given in Table 1 and the
corresponding curves can be found in Section 6.1. Table 1 suggest that one-class
SVM and the empirical Christoffel perform similarly and clearly outperform the
kernel density estimation approach. It is worth noticing here that the one-class
SVM provides slightly better performances but requires a precise tuning of the
second parameter.

4.5 Inversion of affine shuffling

This last application has fewer connections with statistics. Suppose that we
are given two matrices X ∈ Rp×n and X′ ∈ Rp×n. Furthermore, we know that
there exists an invertible affine mapping A : Rp → Rp such that after a potential
permutation of the columns, A defines a bijection between the columns of X′ and
those of X. The problem is to recover the correspondence between the columns
of X and the columns of X′, whence the name “affine shuffling inversion”. Note
that the columns may be shuffled in an arbitrary way and therefore the matching
problem is not trivial. In this setting we can use the affine invariance property
of the Christoffel function described in Theorem 3.5. This is based on the two
following observations.
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Figure 3: Illustration of the affine matching procedure based on the empircal
Christoffel function. On the left, two datasets of points in R2, the second one
is the image of the first one by an affine transformation. The colours indicates
the correspondance between the two clouds of points which have been recovered
by matching the corresponding empirical Christoffel functions. The matching of
these values is illustrated on the left with a quantile quantile plot of the empirical
Chritoffel function values for each datasets. We applied a log transformation
for readability and the first diagonal is represented.

• The Christoffel function only depends on the empirical moments and hence
is not sensitive to reshufling of the columns.

• Working with the affine image amounts to perform a change of basis and
a change of origin. By Theorem 3.5, the evaluation of the Christoffel
function does not change.

This suggests the following procedure.

• Compute ΛX,d and ΛX′,d the Christoffel functions associated to the columns
of X and the columns of X′ respectively.

• Set A ∈ Rn to be the vector with ΛX,d(Xi) as i-th entry where Xi is the
i-th column of X. Set A′ similarly.

• Match the values in A to the values in A′ according to their rank.

The proposed procedure defines a unique permutation between columns of X
and columns of X′ when there are no ties in the vectors A and A′. In this case,
Theorem 3.5 ensures that we have found the correct correspondance. In case
of ties, the procedure does not allow to elicit completely the correspondance
matching. Overall, the method is not garanteed to work but allows to treat
simple cases easily. Investigating the robustness of this procedure to noise or to
matching mispecification is the subject of future research.

An illustration is given in Figure 3 where a moon shaped cloud of points in
R2 is deformed by an affine transformation and the matching between the points
between the two clouds is recovered by matching the corresponding Christof-
fel function values. The correspondance between Christoffel function values is
illustrated on a quantile quantile plot.
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5 Conclusion

In this paper we have investigated the potential of the empirical Christoffel
function for some applications in statistics and machine learning. This question
led us to investigate its theoretical properties as well as potential paths toward
applications, mostly in a statistical framework.

On the theoretical side, we proposed two main contributions. The first one
provides an explicit thresholding scheme which allows to use the Christoffel
function to recover the support of a measure with strong asymptotic guaran-
tees. Although this property finds its root in the long history of results regarding
asymptotic properties of the Christoffel function, we have provided a systematic
way to tune the threshold and the degree to ensure strong convergence guaran-
tees. The second main contribution relates the empirical Christoffel function to
its population counterpart in the limit of large samples. This type of results is
new and paves the way toward a much more precise understanding of relations
between these two objects in a small sample setting.

On the practical side, we have illustrated the relevance of the Christoffel
function as a practical tool in a machine learning context. In particular, simula-
tions and experiments on real world data support our claim that the empirical
Christoffel function is potentially useful for density estimation, support infer-
ence and outlier detection. Finally, in another application outside the statistical
framework (detection of affine matching between two clouds of points), we have
again illustrated the potential of the Christoffel function as a tool in shape
recognition and shape comparison.

Both theory and applications suggest a broad research program. As already
mentioned, an important issue is to quantify the deviation of the empirical
Christofel function from its population counterpart in a finite sample setting.
Results in this direction could have both theoretical and practical impacts and
would to compare more accurately the performance of Christoffel-based ap-
proaches with state-of-the art methods. Furthermore, the use of the Christoffel
function in a statistical framework raises questions specific to each application
considered in this paper and will be the subject of future investigations. Finally,
there are still important open questions on the Christoffel function itself and
works in the line of [Berman (2009)] are of great interest to address applications
in statistics.
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6 Appendix

6.1 Precision recall curves from section 4.4

This section displays the curves from which the AUPR scores were measured in
Section 4.4. Christoffel function and kernel density estimation are presented in
Figure 4 and the one-class SVM is presented in Figure 5. A detailed discussion
the experiment is given in Section 4.4.
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Figure 4: Precision recall curves for the network intrusion detection task. Left:
Christoffel function with varying degree d. Right: kernel density estimation
with Gaussian kernel and varying scale parameter σ.
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Figure 5: Precision recall curves for the network intrusion detection task. The
method used is the one-class SVM with a Gaussian kernel. We vary the scale
parameter σ and the SVM parameter ν. We used the SVM solver of the package
[Zeileis et al. (2004)].
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6.2 Proof of Theorem 3.3

Proof. In the optimization problem (3.2) the objective function P 7→
∫
P 2dµ is

strongly convex in the vector of coefficients of P because∫
P 2 dµ = PTMd(µ)P and Md(µ) � 0,

and therefore (3.2) reads min{PTMd(µ)P : PTvd(ξ) = 1}, which is a con-
vex optimization problem with a strongly convex objective function. Slater’s
condition holds (only one linear equality constraint) and so the Karush-Kuhn-
Tucker (KKT) -optimality conditions are both necessary and sufficient. At an
optimality solution P ∗d they read:

P ∗d (ξ) = 1; 2Md(µ)P ∗d = θ vd(ξ),

for some scalar θ. Multiplying by (P ∗d )T yields

2κµ,d(ξ, ξ)
−1 = 2(P ∗d )TMd(µ)P ∗d = θ.

Hence necessarily

P ∗d (X) = vd(X)T P ∗d =
θ

2
vd(X)TMd(µ)−1 vd(ξ) =

κµ,d(X, ξ)

κµ,d(ξ, ξ)
,

which is (3.3). Next, let eα ∈ Rs(d) be the vector with null coordinates except
the entry α which is 1. From the definition of the moment matrix Md(µ),

eTαMd(µ)P ∗d =

∫
xαP ∗(z) dµ(z) = κµ,d(ξ, ξ)

−1eTαvd(ξ) = κµ,d(ξ, ξ)
−1 ξα,

which is (3.5). In particular with α := 0, we recover (3.4),∫
P ∗d (x) dµ(x) = κµ,d(ξ, ξ)

−1 =

∫
P ∗d (x)2 dµ(x).

6.3 Proof of Theorems 3.9 and 3.12

6.3.1 Lower bound on the Christoffel function inside S

We will heavily rely on results from [Bos (1994)] (note that similar results could
be obtained on the box, see for example [Xu (1995)]). In particular, we have
the following result.

Lemma 6.1. We have for any d ≥ 2

κλB,d(0, 0)

s(d)
≤ 1

ωp

(d+ p+ 1)(d+ p+ 2)

(d+ 1)(d+ 2)

(
1 +

d+ p+ 3

d+ 3

)

21



Proof. Combining Lemma 2 in [Bos (1994)] and the last equation of the proof
of Lemma 3 in [Bos (1994)], we have

κλB,d(0, 0) ≤ 1

ωp

((
p+ d+ 3

p

)
+

(
p+ d+ 2

p

))
.

The result follows by using the expression given for s(d) and simplifying factorial
terms.

From this result, we deduce the following bound.

Lemma 6.2. Let δ > 0 and x ∈ S such that dist(x, ∂S) ≥ δ. Then

s(d)ΛµS ,d(x) ≥ δpωp
λ(S)

(d+ 1)(d+ 2)(d+ 3)

(d+ p+ 1)(d+ p+ 2)(2d+ p+ 6)
.

Proof. Decompose the measure µS into the sum,

µS =
λ(S \Bδ(x))

λ(S)
µS\Bδ(x) +

λ(Bδ(x))

λ(S)
µBδ(x).

Hence, by monotonicity of the Christoffel function with respect to addition
and closure under multiplication by a positive term (this follows directly from
Theorem 3.1), we have

ΛµS ,d(x) ≥ λ(Bδ(x))

λ(S)
ΛµBδ(x),d(x). (6.1)

Next, by affine invariance of the Christoffel function (Theorem 3.5),

ΛµBδ(x),d(x) = ΛµB,d(0) =
1

λ(B)
ΛλB,d(0) =

1

λ(B)

1

κλB,d(0, 0)
, (6.2)

where B is the unit Euclidean ball in Rp. The result follows by combining (6.1),

(6.2), Lemma 6.1 and the fact that λ(Bδ(x))
λ(B) = δp.

6.3.2 Upper bound on the Christoffel function outside S

We next exhibit an upper bound on the Christoffel function outside of S. We
first provide a useful quantitative refinement of the “Needle polynomial” intro-
duced in [Kroo and Lubinsky (2012)].

Lemma 6.3. For any d ∈ N, d > 0, and any δ ∈ (0, 1), there exists a p-variate
polynomial of degree 2d, q, such tha

q(0) = 1 ; −1 ≤ q ≤ 1, on B ; |q| ≤ 21−δd on B \Bδ(x).

Proof. Let r be the univariate polynomial of degree 2d, defined by

r : t→ Td(1 + δ2 − t2)

Td(1 + δ2)
,
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where Td is the Chebyshev polynomial of the first kind. We have

r(0) = 1. (6.3)

Furthermore, for t ∈ [−1, 1], we have 0 ≤ 1 + δ2 − t2 ≤ 1 + δ2. Td has absolute
value less than 1 on [−1, 1] and is inceasing on [1,∞) with Td(1) = 1, so for
t ∈ [−1, 1],

−1 ≤ r(t) ≤ 1. (6.4)

For |t| ∈ [δ, 1], we have δ2 ≤ 1 + δ2 − t2 ≤ 1, so

|r(t)| ≤ 1

Td(1 + δ2)
. (6.5)

Let us bound the last quantity. Recall that for t ≥ 1, we have the following
explicit expression

Td(t) =
1

2

((
t+

√
t2 − 1

)d
+
(
t+
√
t2 − 1

)−d)
.

We have 1 + δ2 +
√

(1 + δ2)2 − 1 ≥ 1 +
√

2δ, which leads to

Td(1 + δ2) ≥ 1

2

(
1 +
√

2δ
)d

(6.6)

=
1

2
exp

(
log
(

1 +
√

2δ
)
d
)

≥ 1

2
exp

(
log(1 +

√
2)δd

)
≥ 2δd−1,

where we have used concavity of the log and the fact that 1+
√

2 ≥ 2. It follows
by combining (6.3), (6.4), (6.5) and (6.6), that q : y → r(‖y − x‖2) satisfies the
claimed properties.

We recall the following well known bound for the factorial taken from [Robbins (1955)].

Lemma 6.4 ([Robbins (1955)]). For any n ∈ N, we have

exp

(
1

12n+ 1

)
≤ n!√

2πnnn exp(−n)
≤ exp

(
1

12n

)
.

We deduce the following Lemma.

Lemma 6.5. For any d ∈ N, d > 0, we have(
p+ d

d

)
≤ dp

(
e

p

)p
exp

(
p2

d

)
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Proof. This follows from a direct computation using Lemma 6.4.(
p+ d

d

)
=

(p+ d)!

p!d!

≤
exp

(
1
24

)
√

2π

√
p+ d

pd

(p+ d)p+d

ppdd

≤
exp

(
1
24

)
√

2π

√
2
dp

pp

(
1 +

p

d

)p+d
≤ dp

pp
exp

(
p2

d
+ p

)
which proves the result.

Combining the last two Lemma, we get the following bound on the Christoffel
function.

Lemma 6.6. Let x 6∈ S and δ be such that dist(x, S) ≥ δ. Then, for any d ∈ N,
d > 0, we have

s(d)ΛµS ,d(x) ≤ 23− δd
δ+diam(S) dp

(
e

p

)p
exp

(
p2

d

)
.

Proof. We may translate the origin of Rp at x and scale the coordinates by
δ + diam(S), this results in x = 0 and distance from x to S is at most δ′ =

δ
δ+diam(S) ≤ 1. Furthermore, S is contained in the unit Euclidean ball B. Using

invariance of the Christoffel function with respect to change of origin and change
of basis in Rp, (Theorem 3.5), this affine transformation does not change the
value of the Christoffel function. Now the polynomial described in Lemma 6.3
provides an upper bound on the Christoffel function. Indeed for any d′ ∈ N, we
have

ΛµS ,2d′+1(0) ≤ ΛµS ,2d′(0) ≤ 22−2δ′d′ ≤ 23−δ′(2d′+1), (6.7)

where we have used δ′ ≤ 1 to obtain the last inequality. Combining Lemma 6.5
and (6.7), we obtain for any d′ ∈ N

s(2d′) ΛµS ,2d′(0) ≤ 23−2δ′d′(2d′)p
(
e

p

)p
exp

(
p2

2d′

)
, (6.8)

s(2d′ + 1) ΛµS ,2d′+1(0) ≤ 23−δ′(2d′+1)(2d′ + 1)p
(
e

p

)p
exp

(
p2

2d′ + 1

)
.

Since in (6.8) d′ ∈ N was arbitrary, we obtain in particular

s(d) ΛµS ,d(0) ≤ 23−δ′ddp
(
e

p

)p
exp

(
p2

d

)
. (6.9)

The result follows by from (6.9) by setting δ′ = δ
δ+diam(S) .
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6.3.3 Proof of Theorem 3.9

Proof. Let us first prove that limk→∞ dH(S, Sk) = 0. We take care of both
expressions in the definition of dH separately. Fix an arbitrary k ∈ N, from
Assumption 3.7 and Lemma 6.6, for any x ∈ Rp such that dist(x, S) > δk,

s(dk)ΛµS ,dk(x) ≤ 23− dist(x,S)dk
dist(x,S)+diam(S) dpk

(
e

p

)p
exp

(
p2

dk

)
< αk.

From this we deduce that Rp \ Sk ⊇ {x ∈ Rp : dist(x, S) > δk} and thus Sk ⊆
{x ∈ Rp : dist(x, S) ≤ δk}. Since k was arbitrary, for any k ∈ N,

sup
x∈Sk

dist(x, S) ≤ δk. (6.10)

Inequality (6.10) allows to take care of one term in the expression of dH . Let
us now consider the second term. We would like to show that

sup
x∈S

dist(x, Sk)→ 0 as k →∞. (6.11)

Note that the supremum is attained in (6.11). We will prove this by contradic-
tion, for the rest of the proof, M denotes a fixed positive number which value
can change between expressions. Suppose that (6.11) is false. This means that
for each k ∈ N (up to a subsequence), we can find xk ∈ S which satisfies

dist(xk, Sk) ≥M (6.12)

Since xk ∈ S and S is compact, the sequence (xk)k∈N has an accumulation
point x̄ ∈ S, i.e., (up to a subsequence) xk → x̄ as k →∞. Since dist(·, Sk) is a
Lipschitz function, combining with (6.12), for every k ∈ N (up to a subsequence),

dist(x̄, Sk) ≥M. (6.13)

We next show that (6.13) contradicts the assumption S = cl(int(S)). From now
on, we discard terms not in the subsequence and assume that (6.13) holds for
all k ∈ N. Combining Lemma 6.2 and Assumption 3.7, for every k ∈ N

Sk ⊇ {x ∈ S : dist(x, ∂S) ≥ δk} . (6.14)

Since S = cl(int(S)) and x̄ ∈ S, consider a sequence {yl}l∈N ⊂ int(S) such that
yl → x̄ as l → ∞. Since yl ∈ int(S), we have dist(yl, ∂S) > 0 for all l. Up
to a rearrangment of the terms, we may assume that dist(yl, ∂S) is decreasing
and dist(y0, ∂S) ≥ δ0. For all l, denote by kl the smallest integer such that
dist(yl, ∂S) ≥ δkl . We must have kl → ∞ and we can discard terms so that kl
is a valid subsequence. We have constructed a subsequence kl such that for every
l ∈ N, yl ∈ Skl and yl → x̄. This is in contradiction with (6.13) and hence (6.11)
must be true. Combining (6.10) and (6.11) we have that limk→∞ dH(S, Sk) = 0.
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Let us now prove that limk→∞ dH(∂S, ∂Sk) = 0, we begin with the term
supx∈∂Sk dist(x, ∂S). Fix an arbitrary k ∈ N and x̄ ∈ ∂Sk. We will distinguish
the cases x̄ ∈ S and x̄ 6∈ S. Assume first that x̄ 6∈ S. We deduce from (6.10),
that

dist(x̄, ∂S) = dist(x̄, S) ≤ δk. (6.15)

Assume now that x̄ ∈ S. If x̄ ∈ ∂S, we have dist(x̄, ∂S) = 0. Assume that
x̄ ∈ int(S). From (6.14), we have that S \ Sk ⊆ {x ∈ S : dist(x, ∂S) < δk} and
hence cl(S \ Sk) ⊆ {x ∈ S : dist(x, ∂S) ≤ δk}. Since x̄ ∈ ∂Sk ∩ int(S), we have
x̄ ∈ cl(S \ Sk) and hence dist(x̄, ∂S) ≤ δk. Combining the two cases x̄ ∈ S and
x̄ 6∈ S, we have in any case that dist(x̄, ∂S) ≤ δk and hence

sup
x∈∂Sk

dist(x, ∂S) ≤ δk. (6.16)

Let us now prove that

sup
x∈∂S

dist(x, ∂Sk)→ 0 as k →∞. (6.17)

First since S is closed by asumption, the supremum is attained for each k ∈ N.
Assume that (6.17) does not hold, this means there exists a constant M > 0,
such that we can find xk ∈ ∂S, k ∈ N with dist(xk, ∂Sk) ≥ M . If xk 6∈
Sk infinitely often, then, we would have up to a subsequence xk ∈ S and
dist(xk, Sk) ≥ M . This is exactly (6.12) and we alredy proved that it can-
not hold true. Hence, xk 6∈ Sk only finitely many times and we may assume
by discarding finitely many terms that xk ∈ Sk for all k ∈ N. Let x̄ ∈ ∂S be
an accumulation point of (xk)k∈N. Since x̄ ∈ ∂S, there exists ȳ 6∈ S such that
0 < dist(ȳ, S) ≤ lim infk→∞ dist(xk, ∂Sk)/2. Since xk ∈ Sk for all k sufficiently
large, we have ȳ ∈ Sk for all k sufficiently large but the fact that 0 < dist(ȳ, S)
contradicts (6.10). Hence (6.17) must hold true and the proof is complete.

Remark 6.7 (Refinements). The proof of Theorem 3.9 is based on the following
fact {

x ∈ Rp : dist(x, S̄) ≥ δk
}
⊆ Sk ⊆ {x ∈ Rp : dist(x, S) ≤ δk} .

Depending on the regularity of the boundary ∂S of S, it should be possible to
get sharper bounds on the distance as a function of δk. This should involve the
dependency on δ of the function

δ → dH
({

x ∈ Rp : dist(x, S̄) ≥ δ
}
, ∂S

)
.

For example, if the boundary ∂S has bounded curvature, this function is equal
to δ for sufficiently small δ. Another example, if S ⊂ R2 is the interior region
of a non self intersecting continuous polygonal loop, then the function is of the
order of δ

sin( θ2 )
, where θ is the smallest angle between two consecutive segments

of the loop.
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6.3.4 Proof of Theorem 3.12

Proof. Lemma 6.2 holds with µ in place of µS and w− in place of 1
λ(S) . Indeed,

we have

Λµ,d ≥ w−λ(Bδ(x))ΛµBδ(x)
,

and the rest of the proof remains the same with different constants. Similarly,
Lemma 6.6 holds with µ in place of µS , indeed, the proof only uses the fact that
µS is a probability measure supported on S which is also true for µ. The proof
then is identical to that of Theorem 3.9 by reflecting the corresponding change
in the constants.

6.4 Proof of Theorem 3.13

6.4.1 A preliminary Lemma

Lemma 6.8. Let µ be a probability measure supported on a compact set S.
Then for every d ∈ N, d > 0, and every x ∈ Rp,

Λµ,d(x) ≤
(

diam(conv(S))

dist(x, conv(S)) + diam(conv(S))

)2

.

Proof. Set y = proj(x, conv(S)), that is ‖y − x‖ = dist(x, conv(S)) and:

y = arg minz∈conv(S){ 〈z,y − x〉}. (6.18)

Consider the affine function

z 7→ fx(z) :=

〈
x− z, x−y

‖x−y‖

〉
‖x− y‖+ diam(conv(S))

. (6.19)

For any z ∈ S, we have

fx(z) ≤ ‖x− z‖
‖x− y‖+ diam(conv(S))

≤ ‖x− y‖+ ‖y − z‖
‖x− y‖+ diam(conv(S))

≤ 1, (6.20)

where we have used Cauchy-Schwartz and triangular inequalities. Furthermore,
we have for any z ∈ S,

fx(z) ≥ min
z∈conv(S)

fx(z) =
‖x− y‖

‖x− y‖+ diam(conv(S))
, (6.21)

where we have used equation (6.18). Consider the affine function qx : z →
1− fx(z). We have

qx(x) = 1 (6.22)

0 ≤ qx(z) ≤ diam(conv(S))

‖x− y‖+ diam(conv(S))
, for any z ∈ S,

where the inequalities are obtained by combining (6.20) and (6.21). The result
follows from (6.18), (6.22) and Theorem 3.1.
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6.4.2 Proof of Theorem 3.13

.

Proof. First let us consider measurability issues. Fix n and d such that Md(µ)
is invertible. Let X be a matrix in Rp×n, we use the shorthand notation

ΛX,d(z) = min
P∈Rd[x], P (z)=1

1

n

n∑
i=1

P (Xi)
2, (6.23)

where for each i, Xi is the i-th column of the matrix X. This corresponds to
the empirical Christoffel function with input data given by the columns of X.
Consider the function F : Rp×n → [0, 1] defined as follows:

F : X→ sup
z∈Rp

|Λµ,d(z)− ΛX,d(z)| . (6.24)

It turns out that F is a semi-algebraic function (its graph is a semi-algebraic
set). Roughly speaking a set is semi-algebraic if it can be defined by finitely
many polynomial inequalities. We refer the reader to [Coste (2000)] for an
introduction to semi-algebraic geometry, we mostly rely on content from Chapter
2. First, the function

(X, z, P )→ 1

n

n∑
i=1

P (Xi)
2

is semi-algebraic (by identifying the space of polynomials with the Euclidean
space of their coefficients) and the set {(P, z) : P (z) = 1} is also semi-algebraic.
Constrained partial minimization can be expressed by a first order formula,
and, by Tarski-Seidenberg Theorem (see e.g. [Coste (2000), Theorem 2.6]), this
operation preserves semi-algebraicity. Hence, the function (X, z) → ΛX,d(z) is
semi-algebraic. Furthermore, Theorem 3.1 ensures that Λµ,d(z) = 1/κ(z, z) for
any z, where κ(z, z) is a polynomial in z and hence z→ Λµ,d(z) is semi-algebraic.
Finally absolute value is semi-algebraic and using a partial minimization argu-
ment again, we have that F is a semi-algebraic function.

As a semi-algebraic function, F is Borel measurable. Indeed, using the
good sets principle ([Ash (1972)] §1.5.1, p. 35) it is sufficient to prove that, for
an arbitrary interval3 (a, b] ⊂ [0, 1], F−1((a, b]) ∈ B(Rp×n). Any such set is
the pre-image of a semi-algebraic set by a semi-algebraic map. As proved in
[Coste (2000), Corollary 2.9], any such set must be semi-algebraic and hence
measurable. Thus, with the notations of Theorem 3.13, ‖Λµn,d − Λµ,d‖∞ is
indeed a random variable for each fixed n, d such that Md(µ) is invertible.

We now turn to the proof of the main result of the Theorem. For simplicity
we adopt the following notation for the rest of the proof. For any continuous
function f : Rp → R, and any subset V ⊆ Rp,

‖f‖V := sup
x∈V
|f(x)|, [ so that ‖f‖Rp = ‖f‖∞], (6.25)

3Recall that the Borel σ-field B([0, 1]) is generated by the intervals (a, b] of [0, 1]; see
[Ash (1972)] §1.4.6, p. 27.
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which could be infinite. We prove that for any ε > 0,

P (lim supn {‖Λµn,d − Λµ,d‖Rp ≥ ε}) = 0, (6.26)

where the probability is taken with respect to the random choice of the sequence
of independent samples from µ and the limit supremum is the set theoretic limit
of the underlying events.

Fix ε > 0. Denote by S the compact support of µ. Note that S contains also
the support of µn with probability one. From Lemma 6.8, we have an upper
bound on both Λµn,d and Λµ,d of order O

(
dist(x, conv(S))−2

)
which holds with

probability one. Hence, it is possible to find a compact set Vε containing S (with
complement V cε = Rn \ Vε) such that, almost surely,

max
{
‖Λµn,d‖V cε , ‖Λµ,d‖V cε

}
≤ ε

2
. (6.27)

Next, we have the following equivalence

‖Λµn,d − Λµ,d‖Rp ≥ ε ⇔
{
‖Λµn,d − Λµ,d‖Vε ≥ ε or
‖Λµn,d − Λµ,d‖V cε ≥ ε

(6.28)

On the other hand, since both functions are non negative, from equation (6.27),
almost surely,

‖Λµn,d − Λµ,d‖V cε ≤ max
{
‖Λµn,d‖V cε , ‖Λµ,d‖V cε

}
≤ ε

2
. (6.29)

Hence the second event in the right hand side of (6.28) occurs with probability
zero. As a consequence, except for a set of events of measure zero, we have

‖Λµn,d − Λµ,d‖Rp ≥ ε⇔ ‖Λµn,d − Λµ,d‖Vε ≥ ε,

which in turn implies

P (lim supn {‖Λµn,d − Λµ,d‖Rp} ≥ ε) = P (lim supn {‖Λµn,d − Λµ,d‖Vε} ≥ ε) .
(6.30)

By assumption the moment matrix Md(µ) is invertible and by the strong law
of large numbers, almost surely, Md(µn) must be invertible for sufficiently large
n. Assume that Md(µn) is invertible, we have

‖Λµn,d − Λµ,d‖Vε = sup
x∈Vε

{∣∣∣∣ 1

vd(x)TMd(µ)−1vd(x)
− 1

vd(x)TMd(µn)−1vd(x)

∣∣∣∣}
(6.31)

= sup
x∈Vε

{∣∣∣∣ vd(x)T (Md(µn)−1 −Md(µ)−1)vd(x)

vd(x)TMd(µ)−1vd(x)vd(x)TMd(µn)−1vd(x)

∣∣∣∣} .
Using the strong law of large numbers again, continuity of eigenvalues and the
fact that for large enough n, Md(µn) is invertible with probability one, the
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continuous mapping theorem ensures that almost surely, for n sufficiently large,
the smallest eigenvalue of Md(µn)−1 is close to that of Md(µ)−1 and hence
bounded away from zero. Since the first coordinate of vd(x) is 1, the denom-
inator in (6.31) is bounded away from zero almost surely for sufficiently large
n. In addition, since Vε is compact, vd(x) is bounded on Vε and there exists a
constant K such that, almost surely, for sufficiently large n,

‖Λµn,d − Λµ,d‖Vε ≤ K‖Md(µ)−1 −Md(µn)−1‖, (6.32)

where the matrix-norm in the right hand side is the operator norm induced by
the Euclidean norm. Combining (6.30) and (6.32), we obtain

P (lim supn {‖Λµn,d − Λµ,d‖Rp} ≥ ε)
≤ P

(
lim supn

{
K‖Md(µ)−1 −Md(µn)−1‖ ≥ ε

})
. (6.33)

The strong law of large numbers and the continuity of the matrix inverse
Md(·)−1 at µ ensure that the right hand side of (6.33) is 0. This concludes
the proof.
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[Kroo and Lubinsky (2013)] A. Kroó and D.S. Lubinsky (2013). Christoffel
functions and universality on the boundary of the ball. Acta Mathematica
Hungarica 140:117–133.

[Lasserre and Pauwels (2016)] J.B. Lasserre and E. Pauwels (2016). Sorting out
typicality with the inverse moment matrix SOS polynomial, Proceedings
of the 30-th Conference on Advances in Neural Information Processing
Systems.

[Lasserre (2015)] J.B. Lasserre (2015). Level sets and non Gaussian integrals
of positively homogeneous functions. International Game Theory Review
17(1):1540001.

[Lichman (2013)] M. Lichman (2013). UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml University of California, Irvine,
School of Information and Computer Sciences.

32



[Malyshkin (2015)] V.G. Malyshkin (2015). Multiple Instance Learning:
Christoffel Function Approach to Distribution Regression Problem. arXiv
preprint arXiv:1511.07085.

[Mammen and Tsybakov (1995)] E. Mammen and A.B.Tsybakov (1995).
Asymptotical minimax recovery of sets with smooth boundaries. The
Annals of Statistics, 23(2):502–524.
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