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Abstract

The Minkowski product of unit quaternion sets is introduced and
analyzed, motivated by the desire to characterize the overall variation
of compounded spatial rotations that result from individual rotations
subject to known uncertainties in their rotation axes and angles. For a
special type of unit quaternion set, the spherical caps of the 3–sphere
S3 in R4, closure under the Minkowski product is achieved. Products
of sets characterized by fixing either the rotation axis or rotation angle,
and allowing the other to vary over a given domain, are also analyzed.
Two methods for visualizing unit quaternion sets and their Minkowski
products in R3 are also discussed, based on stereographic projection
and the Lie algebra formulation. Finally, some general principles for
identifying Minkowski product boundary points are discussed in the
case of full–dimension set operands.
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1 Introduction

The Minkowski sum A⊕B of two point sets A,B ∈ Rn is the set of all points
generated [16] by the vector sums of points chosen independently from those
sets, i.e.,

A⊕B := { a + b : a ∈ A and b ∈ B } . (1)

The Minkowski sum has applications in computer graphics, geometric design,
image processing, and related fields [9, 11, 12, 13, 14, 15, 20]. The validity of
the definition (1) in Rn for all n ≥ 1 stems from the straightforward extension
of the vector sum a + b to higher–dimensional Euclidean spaces. However,
to define a Minkowski product set

A⊗B := { a b : a ∈ A and b ∈ B } , (2)

it is necessary to specify products of points in Rn. In the case n = 1, this is
simply the real–number product — the resulting algebra of point sets in R1 is
called interval arithmetic [17, 18] and is used to monitor the propagation of
uncertainty through computations in which the initial operands (and possibly
also the arithmetic operations) are not precisely determined.

A natural realization of the Minkowski product (2) in R2 may be achieved
[7] by interpreting the points a and b as complex numbers, with a b being the
usual complex–number product. Algorithms to compute Minkowski products
of complex–number sets have been formulated [6], and extended to determine
Minkowski roots and powers [3, 8] of complex sets; to evaluate polynomials
specified by complex–set coefficients and arguments [4]; and to solve simple
equations expressed in terms of complex–set coefficients and unknowns [5].
The Minkowski algebra of complex sets introduces rich geometrical structures
and has useful applications to mathematical morphology, geometrical optics,
and the stability analysis of linear dynamic systems.

In proceeding to higher dimensions, it is natural to consider next the case
of R4, in which a (non–commutative) “product of points” may be specified by
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invoking the quaternion algebra. In this context, the study of the Minkowski
sum has no obvious and intuitive motivation, but the use of unit quaternions
to describe spatial rotations provides a compelling case for the investigation
of Minkowski products in R4. Applications in computer animation, robot
path planning, 5–axis CNC machining, and related fields frequently involve
compounded sequences of spatial rotations, that are individually subject to
certain indeterminacies. The set of all possible outcomes of such compounded
sequences of indeterminate spatial rotations possesses a natural description
as the (ordered) Minkowski product of unit quaternion sets.

The remainder of this paper is organized as follows. Section 2 provides a
brief review of the key properties of unit quaternions and their interpretation
as rotation operators, while Section 3 discusses the visualization of the set of
all unit quaternions (namely, the 3–sphere S3 in R4) through its stereographic
projection to R3. The concept of a Minkowski product of two unit quaternion
sets is then introduced in Section 4. In Sections 5 and Section 6, we focus on
a specific type of unit quaternion set, the spherical caps on S3, and show that
they exhibit closure under the Minkowski product. Section 7 then considers
products of sets more closely related to applications, specified by fixing either
the rotation axis or the angle, and varying the other over a given domain. As
an alternative to stereographic projection, Section 8 describes a Lie algebra
approach to visualizing unit quaternion sets and their Minkowski products,
which has the virtue of generating bounded images in R3. Finally, Section 9
discusses general principles for identifying boundary points of Minkowski
products, giving some necessary conditions and a sufficient condition for a
product of two points to lie on the boundary. Section 10 summarizes the key
results of this study and suggests further lines of investigation.

2 Quaternions and spatial rotations

Quaternions are “four–dimensional numbers” of the form

A = a+ axi + ayj + azk and B = b+ bxi + byj + bzk .

where the elements i, j, k of the quaternion algebra H obey the multiplication
rules i2 = j2 = k2 = −1 and i j = k, j k = i, k i = j. A quaternion A may be
regarded as comprising scalar (real) and vector (imaginary) parts a = scal(A)
and a = axi + ayj + azk = vect(A), and we write A = a + a. Real numbers
and 3–vectors are subsumed as “pure scalar” and “pure vector” quaternions.
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The sum and (non–commutative) product of A = a + a and B = b + b can
be expressed using scalar and cross products of vectors as

A+ B = a+ b+ a + b , AB = ab− 〈a,b〉+ ab + b a + a× b .

Every quaternion A = a+ a has a conjugate A∗ = a−a, and a non–negative
magnitude |A| defined by |A|2 = A∗A = AA∗ = a2 + |a|2, and one can verify
that (AB)∗ = B∗A∗ and |AB| = |A| |B|. If |A| 6= 0, the quaternion A has an
inverse A−1 = A∗/|A|2 satisfying A−1A = AA−1 = 1, and A−1B and BA−1
specify the left and right division of B by A. We also define an inner product
〈A,B 〉 of A and B (regarded as vectors in R4) by

〈A,B 〉 := a b+ 〈a,b〉 = scal(AB∗) . (3)

A unit quaternion U = u+uxi+uyj+uzk satisfies |U| = 1, and it may be
identified with a point on the unit 3–sphere S3 in R4 defined by the equation
u2 +u2x +u2y +u2z = 1. Since a product U1 U2 of two unit quaternions is also a
unit quaternion, the points of S3 have the structure of a (non–commutative)
group with respect to the quaternion product. Note that the inner product
(3) is invariant under multiplication of the operands by a unit quaternion,

〈A,B 〉 = 〈 UA,UB 〉 = 〈AU ,B U 〉 , (4)

since such multiplications correspond [2] to rotations in R4.
Any unit quaternion U may be expressed in the form

U = cos 1
2
θ + sin 1

2
θ n (5)

for some angle θ ∈ [−π, π ] and unit vector n. This defines a rotation operator
in R3 — for any pure vector v, the product U vU∗ also defines a pure vector,
corresponding to a rotation of v through angle θ about an axis defined by n.
Note that U and −U define equivalent rotations.

Successive spatial rotations can be replaced by a “compounded” rotation
— the result of consecutively applying rotations U2 = cos 1

2
θ2 + sin 1

2
θ2 n2

and U1 = cos 1
2
θ1 + sin 1

2
θ1 n1 to v is U1 (U2vU∗2 ) U∗1 , which can be expressed

as U vU∗ with U = U1 U2. The non–commutative product captures the fact
that the result of a sequence of rotations depends upon the order of their
application. The rotation angle θ and axis n of U are given by

cos 1
2
θ = cos 1

2
θ1 cos 1

2
θ2 − sin 1

2
θ1 sin 1

2
θ2 〈n1,n2〉 , (6)

n =
sin 1

2
θ1 cos 1

2
θ2 n1 + cos 1

2
θ1 sin 1

2
θ2 n2 + sin 1

2
θ1 sin 1

2
θ2 n1 × n2

sin 1
2
θ

. (7)
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3 Stereographic projection to R3

The set of all unit quaternions occupies the 3–sphere S3 in R4. To visualize
S3 a stereographic projection can be used to map it into R3, just as points on
the 2–sphere can be imaged onto R2 to generate a map of the earth’s surface.
We recall the following definition.

Definition 1 Consider the conformal map Ψ : H \ {1} → H \ {−1} defined
by

Ψ(Q) := (1−Q)−1(1 +Q) = (1 +Q)(1−Q)−1 ,

and its inverse

Φ(Q) := (Q+ 1)−1(Q− 1) = (Q− 1)(Q+ 1)−1 .

The maps Ψ and Φ, or rather their continuous extensions to the Alexandroff
compactification Ĥ := H ∪ {∞}, are called quaternionic Cayley transforma-
tions.

As conformal maps, Ψ and Φ map n–spheres and n–spaces to n–spheres
and n–spaces for 0 ≤ n ≤ 3. In particular, the next result concerns the unit
3-sphere in H, denoted S3, and the 3–space of purely imaginary quaternions,
denoted R3.

Proposition 1 The stereographic projection from the point −1 of S3 to R3,
defined by

u+ u 7→ u

1 + u
, (8)

is the restriction of Φ to S3.

Proof : By direct computation, for all Q = q + q ∈ H \ {−1} we have

Φ(Q) := (|Q|2 + 2q + 1)−1(Q∗ + 1)(Q− 1)

= (|Q|2 + 2q + 1)−1(|Q|2 + 2 q− 1) . (9)

Hence, writing Q = U = u+ u when |Q| = 1, we obtain

Φ(U) =
2 u

2 + 2u
=

u

1 + u
.
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The set of unit quaternions U = u+uxi +uyj +uzk ∈ S3 can be parame-
terized in terms of hyperspherical coordinates (α, β, γ) through the expression

(u, ux, uy, uz) = (cosα, sinα cos β, sinα sin β cos γ, sinα sin β sin γ) , (10)

where α, β ∈ [ 0, π ] and γ ∈ [ 0, 2π ]. In terms of the scalar–vector form (5)
with n = nxi + nyj + nzk we have

θ = 2α , nx = cos β , ny = sin β cos γ , nz = sin β sin γ ,

and conversely

α = 1
2
θ , β = arccosnx , γ = arctan(ny, nz) ,

where arctan(a, b) is the angle with cosine a/
√
a2 + b2 and sine b/

√
a2 + b2.

For each unit quaternion U ∈ S3, the point v = vxi + vyj + vzk =
Φ(U) ∈ R3 defined by the stereographic projection (8) may be identified as
the intersection with R3 of the line in R4 that passes through −1 and U . In
terms of the hyperspherical coordinates (10) on S3, we have

(vx, vy, vz) = tan 1
2
α (cos β, sin β cos γ, sin β sin γ) . (11)

Thus v may be interpreted as the point with “ordinary” spherical coordinates
(β, γ) on the 2–sphere in R3 with radius r = tan 1

2
α. The points U = 1 and

U = −1, corresponding to α = 0 and α = π, are mapped to the origin of R3

and to infinity, respectively. In terms of the scalar–vector form (5) of U , the
stereographic projection to R3 becomes

v = tan 1
4
θ n , (12)

i.e., U is mapped to the point identified by the unit vector n on the 2–sphere
of radius r = tan 1

4
θ in R3. Note that, although the unit quaternion −U =

− cos 1
2
θ − sin 1

2
θ n specifies a rotation by angle −θ about −n, equivalent to

that specified by U , it is mapped to the distinct point

v′ = − cot 1
4
θ n .

4 Quaternionic Minkowski product

Definition 2 The Minkowski product of two subsets U, V of H is defined by

U ⊗ V = { U V : U ∈ U , V ∈ V } .
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If U, V ⊆ S3, then the elements of U⊗V describe all possible compounded
rotations generated by a rotation V ∈ V followed by a rotation U ∈ U .

Remark 1 As a consequence of the properties of quaternionic multiplication,
⊗ is an associative but noncommutative operation on the power set of H.

The following Lemma can be verified by direct computation.

Lemma 1 Let

T : H×H→ H
(P ,Q) 7→ PQ .

Then for all V ∈ H the directional derivatives of T in the directions (V , 0)
and (0,V) are

∂T

∂(V , 0)
(P ,Q) = VQ and

∂T

∂(0,V)
(P ,Q) = PV .

Remark 2 Consider two unit quaternions

U1 = cos 1
2
θ1 + sin 1

2
θ1 n1, U2 = cos 1

2
θ2 + sin 1

2
θ2 n2

and the unit quaternions U1 + δ U1,U2 + δ U2 that result from perturbations
δθ1, δn1, δθ2, δn2 to the rotation angles and axes of U1,U2. By Lemma 1, the
following equality holds to first order:

(U1 + δ U1)(U2 + δ U2) = U1 U2 + δU1 U2 + U1 δU2 .

Thus, to first order in δθ1, δn1 and δθ2, δn2 the product (U1+δ U1)(U2+δ U2) is
always distinct from U1 U2 — i.e., the unit quaternion product map S3×S3 →
S3 has no stationary points.

We address the problem of determining Minkowski products of different
types of subsets of S3. For subsets U, V of S3 of full dimension, we would
ideally like to determine either (i) a “faithful” (one–to-one) parameterization,
over a suitable domain in three parameters, of the product set U ⊗ V ⊂ S3;
or (ii) a characterization of its boundary ∂(U ⊗ V ) in S3. Problem (ii) is, in
general, more tractable. We show in Section 9 that ∂(U ⊗V ) ⊆ ∂U ⊗∂V , so
(ii) amounts to identifying corresponding points U ∈ ∂U and V ∈ ∂V that
generate (potential) points on the Minkowski product boundary ∂(U ⊗ V ).
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5 Unit quaternion spherical caps

In the Minkowski algebra of complex sets [7], emphasis was placed on circular
disks as set operands, and it seems natural to extend this to the context of
unit quaternion sets. For this reason, the first class of subsets of S3 that we
will study is that of spherical caps, namely the subsets

{U ∈ S3 : | U − U0| ≤ ρ } (13)

defined by the intersection of S3 with a 4–ball that has a prescribed radius ρ
and unit quaternion U0 as center. The set (13) includes all unit quaternions
U whose distance (measured on S3) from U0 does not exceed ρ. In the case of
deviations δ U resulting from small perturbations δθ and δn to the rotation
angle θ0 and axis n0 of U0, it includes all unit quaternions satisfying

| δ U | =
√

1
4
(δθ)2 + sin2 1

2
θ0 |δn|2 < ρ .

Remark 3 For U0 ∈ S3 the intersection of S3 with the ball of radius ρ and
center U0 in H is identical to its intersection with a half–space orthogonal to
U0, namely

{U ∈ S3 : | U − U0| ≤ ρ } = {U ∈ S3 : 〈 U ,U0〉 ≥ 1− 1
2
ρ2 } ,

since | U − U0|2 = 2 (1− 〈U ,Uo〉). We distinguish three cases:

• for ρ ≥ 2, this set coincides with S3;

• for 0 < ρ < 2 it is a proper subset of S3 — a spherical cap — and its
boundary in the topology of S3 induced by R4 is a 2–sphere;

• for ρ = 0, it is the singleton set {U0}.

Based on the preceding remark, we set ρ = 2 sin 1
2
t with t ∈ [ 0, π ] so that

1− 1
2
ρ2 = cos t, and formulate unit quaternion spherical caps as follows.

Definition 3 For U0 ∈ S3 and t ∈ [ 0, π ], we define

U(U0, t) := {U ∈ S3 : 〈 U ,U0〉 ≥ cos t } .

and denote its boundary in the topology of S3 as ∂U(U0, t).
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Regarding quaternions U ∈ S3 as unit vectors in R4, we can also interpret
U(U0, t) as the intersection of S3 with the cone of vectors U whose inclinations
with U0 do not exceed t = 2 arcsin 1

2
ρ. We note that, if U0 = 1, then 〈 U ,U0〉

is just the scalar part of U . For the unit quaternion U = cos 1
2
θ + sin 1

2
θ n

corresponding to a rotation through angle θ about the axis n, the condition
| U − 1| ≤ ρ = 2 sin 1

2
t reduces to

cos 1
2
θ ≥ 1− 1

2
ρ2 = cos t , (14)

i.e., |θ| ≤ 2 t = 4 arcsin 1
2
ρ. The boundary ∂U(1, t) corresponds to satisfaction

of (14) with equality, i.e., |θ| = 2 t = 4 arcsin 1
2
ρ. As observed in Remark 3,

U(1, t) = {1} if t = 0 (ρ = 0), and U(1, t) = S3 if t = π (ρ = 2). In the case
t = 1

2
π (ρ =

√
2), it is the set of all unit quaternions with any rotation axis

n and rotation angles θ ∈ [−π, π ].

Remark 4 Setting exp(sn) = cos s+ sin sn, we have

U(1, t) = { exp(sn) : 0 ≤ s ≤ t, |n| = 1 } .

5.1 Visualization by stereographic projection

We now consider the stereographic projection of the set U(U0, t) onto R3.

Proposition 2 Let U0 ∈ S3 and t ∈ (0, π).

1. If −1 6∈ U(U0, t) then Φ(U(U0, t)) is a closed 3–ball in R3.

2. If −1 ∈ ∂U(U0, t) then Φ(U(U0, t) \ {−1}) is a closed half–space in R3.

3. If −1 ∈ U(U0, t) \ ∂U(U0, t) then Φ(U(U0, t) \ {−1}) is R3 minus an
open 3–ball.

Finally, for t = 0 the image of U(U0, t) through Φ is {Φ(U0)}, and for t = π
it is R3.

Proof : Since the statements for the cases t = 0 and π are trivial, we focus
on the case t ∈ (0, π). The set U(U0, t) is the intersection of S3 with a 4–ball
B centered at U0 in H. Thus,

Φ(U(U0, t)) = Φ(S3) ∩ Φ(B) = R3 ∩ Φ(B) .

where Φ(B) is a closed subset of Ĥ that includes Φ(U0) ∈ R3 ∪ {∞} as an
interior point. The proposition then follows from the following observations:
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1. If −1 6∈ U(U0, t) then −1 6∈ B and Φ(B) is a closed 4–ball in H.

2. If −1 ∈ ∂U(U0, t) then −1 ∈ ∂B and Φ(B\{−1}) is a closed half–space
in H.

3. If −1 ∈ U(U0, t) \ ∂U(U0, t) then −1 is an interior point of B and
Φ(B \ {−1}) is H minus an open 4–ball.

6 Products of unit quaternion spherical caps

We now compute the product U(U0, s)⊗U(V0, t). To this end, the following
remark will be useful.

Remark 5 For all U0,V0 ∈ S3 and for all t ∈ [ 0, π ], we have

U(U0, t)⊗ {V0} = U(U0V0, t) = {U0} ⊗ U(V0, t),

since from (4) we note that 〈 UV∗0 ,U0〉 = 〈 U ,U0V0〉 = 〈 U∗0U ,V0〉.

As a first consequence, it is possible to visualize U(U0, t) = U(1, t)⊗{U0}
and its boundary ∂U(U0, t) = ∂U(1, t)⊗{U0} as copies of U(1, t) and ∂U(1, t),
rotated within S3 so as to have center U0 instead of 1. We recall that U(1, t)
and ∂U(1, t) have been described in detail in the first part of Section 5.

Before considering the general product U(U0, s)⊗U(V0, t), it is instructive
to examine a special case.

Lemma 2 Let s, t ∈ [ 0, π ]. Then

U(1, s)⊗ U(1, t) =

{
U(1, s+ t) if s+ t ∈ [ 0, π ],

S3 if s+ t ∈ [ π, 2π ].

Proof : By Remark 4, U(1, s)⊗U(1, t) is the set of all products of the form
exp(am) exp(bn) with |m| = |n| = 1, 0 ≤ a ≤ s, 0 ≤ b ≤ t. Now, the scalar
part of exp(am) exp(bn) is equal to

cos a cos b− sin a sin b 〈m,n〉,

which is greater than or equal to cos a cos b−sin a sin b = cos(a+b). If s+ t ∈
[ 0, π ] this bound implies that U(1, s)⊗U(1, t) ⊆ U(1, s+t). If s+t ∈ [ π, 2π ],
the bound only implies the trivial inclusion U(1, s)⊗ U(1, t) ⊆ S3.
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On the other hand, let U = u + u ∈ S3. If we can identify real numbers
a, b with 0 ≤ a ≤ s and 0 ≤ b ≤ t such that u = cos(a + b), then U =
exp((a + b) p) for a suitably chosen p with |p| = 1, and we conclude that
U = exp(ap) exp(bp) ∈ U(1, s)⊗U(1, t). If s+ t ∈ [ 0, π ], then such a and b
exist when u ≥ cos(s+ t). If s+ t ∈ [ π, 2π ], then they exist for all u ≥ −1.
This proves that U(1, s)⊗ U(1, t) ⊇ U(1, s+ t) in the former case, and that
U(1, s)⊗ U(1, t) ⊇ S3 in the latter case.

We are now ready to present the general result for the Minkowski products
of unit quaternion spherical caps.

Theorem 1 Let U0,V0 ∈ S3 and s, t ∈ [ 0, π ]. Then

U(U0, s)⊗ U(V0, t) =

{
U(U0V0, s+ t) if s+ t ∈ [ 0, π ],

S3 if s+ t ∈ [ π, 2π ].

Proof : From Remark 5, we have U(U0, s) = {U0} ⊗U(1, s) and U(V0, t) =
U(1, t)⊗ {V0}. Taking into account Remark 1, we write

U(U0, s)⊗ U(V0, t) = {U0} ⊗ U(1, s)⊗ U(1, t)⊗ {V0} .

We now apply Lemma 2. If s+ t ∈ [ 0, π ] then

U(U0, s)⊗ U(V0, t) = {U0} ⊗ U(1, s+ t)⊗ {V0} ,

whence
U(U0, s)⊗ U(V0, t) = U(U0V0, s+ t)

by two further applications of Remark 5. However, if s+ t ∈ [ π, 2π ], then

U(U0, s)⊗ U(V0, t) = {U0} ⊗ S3 ⊗ {V0} = S3 .

7 Bounded rotation angles and axes

Although unit quaternion spherical caps admit a simple and elegant theory
for their Minkowski products, they correspond to somewhat complicated and
non–intuitive relations among the feasible rotation axes and angles. We now
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consider different types of sets, of greater relevance to the physical actuators
used in robot manipulators, 5–axis milling machines, and related contexts.

Specifically, we analyze below the Minkowski products of sets defined by
(1) fixed rotation axes, and rotation angles that vary over prescribed subsets
of [−π, π ]; and (2) fixed rotation angles, and rotation axes that deviate from
prescribed directions by no more than a given angle. In case (1) the operand
sets are curves and their product is a 2–surface in S3, while in case (2) the
operand sets are 2–surfaces and their product is of full dimension in S3.

7.1 Fixed rotation axis, bounded angle

Let us consider the following sets.

Definition 4 For each quaternionic imaginary unit c, and for all φ ∈ R and
all δ ∈ [ 0, π ],

C(c, φ, δ) := { exp(s c) : |s− φ| ≤ δ } .

C(c, φ, π) is the great circle in S3 that passes through 1 and exp(φ c). For
all δ ∈ (0, π) the set C(c, φ, δ) is an arc of this great circle. Finally, C(c, φ, 0)
is the singleton {exp(φ c)}.

Proposition 3 For a fixed quaternionic imaginary unit c, angles φ1, φ2 ∈ R,
and ranges δ1, δ2 ∈ [ 0, π ], the product C(c, φ1, δ1)⊗C(c, φ2, δ2) is a circle, a
circular arc, or a singleton:

C(c, φ1, δ1)⊗ C(c, φ2, δ2) =

{
C(c, φ1 + φ2, δ1 + δ2) if δ1 + δ2 ∈ [ 0, π ],

C(c, φ1 + φ2, π) if δ1 + δ2 ∈ [ π, 2π ].

Proof : The statement is an immediate consequence of the fact that

exp(s c) exp(t c) = exp((s+ t)c)

for all s, t ∈ R.

We now study the nature of the product C(c1, φ1, δ1) ⊗ C(c2, φ2, δ2) in
greater detail. To this end, the following remark will prove useful.

Remark 6 For each quaternionic imaginary unit c, and for all φ ∈ R and
all δ ∈ [ 0, π ],

C(c, 0, δ)⊗ {exp(φ c)} = C(c, φ, δ) = {exp(φ c)} ⊗ C(c, 0, δ) .
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Theorem 2 For fixed quaternionic imaginary units c1, c2 with c2 6= ± c1,
the product

C(c1, φ1, δ1)⊗ C(c2, φ2, δ2) ⊂ S3

is an immersed 2–surface in H, possibly with boundary. The smallest unit
quaternion spherical cap U(exp(φ1c1) exp(φ2c2), η) that includes this product
has η := arccos(r), where

r := min
|s|≤δ1,|t|≤δ2

(cos s cos t− sin s sin t 〈c1, c2〉) . (15)

Moreover, if neither δ1 nor δ2 is equal to π, and at least one of them is less
than 1

2
π, then C(c1, φ1, δ1) ⊗ C(c2, φ2, δ2) ⊂ S3 is an embedded 2–surface

in H, with boundary. Its boundary consists of four circular arcs which have
pairwise intersections at the four points

exp((φ1 ± δ1)c1) exp((φ2 ± δ2)c2) , exp((φ1 ± δ1)c1) exp((φ2 ∓ δ2)c2) .

Proof : By Remarks 5 and 6, it suffices to consider the case φ1 = φ2 = 0.
Consider the surjective map

P : [−δ1, δ1]× [−δ2, δ2]→ C(c1, 0, δ1)⊗ C(c2, 0, δ2)

(s, t) 7→ exp(s c1) exp(t c2) .

Note that P is non–singular, since the s–derivative exp(s c1) c1 exp(t c2) and
t–derivative exp(s c1) exp(t c2) c2 = exp(s c1) c2 exp(t c2) cannot be linearly
dependent over R: if they were, then c1, c2 would also be linearly dependent,
contradicting the hypothesis c2 6= ±c1.

Now let us determine for which η the inclusion

C(c1, 0, δ1)⊗ C(c2, 0, δ2) ⊆ U(1, η)

holds. The scalar part of the product exp(s c1) exp(t c2) is

cos s cos t− sin s sin t 〈c1, c2〉 .

This quantity spans the whole interval [ r, 1 ] with

r := min
|s|≤δ1,|t|≤δ2

(cos s cos t− sin s sin t 〈c1, c2〉) .

Moreover, P is an embedding if and only if P is injective. The equality
exp(p c1) exp(r c2) = exp(s c1) exp(t c2) holds if, and only if, exp((p−s)c1) =
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exp((t−r)c2), i.e., p−s, t−r ∈ {−2π, 0, 2π} or p−s, t−r ∈ {±π}. Thus, P is
injective if and only if neither δ1 nor δ2 equals π and at least one of them is less
than 1

2
π. When P is an embedding, the boundary of C(c1, 0, δ1)⊗C(c2, 0, δ2)

consists of the four circular arcs

[−δ1, δ1]→ C(c1, 0, δ1)⊗ C(c2, 0, δ2) s 7→ exp(s c1) exp(±δ2c2) ,

[−δ2, δ2]→ C(c1, 0, δ1)⊗ C(c2, 0, δ2) t 7→ exp(±δ1c1) exp(t c2) ,

as desired.

Proposition 4 If δ1, δ2 ∈ [ 0, 1
2
π ] then the smallest unit quaternion spherical

cap U(exp(φ1c1) exp(φ2c2), η) that includes C(c1, φ1, δ1)⊗ C(c2, φ2, δ2) has

η = arccos (cos δ1 cos δ2 − sin δ1 sin δ2|〈c1, c2〉|) < δ1 + δ2 .

Furthermore, the boundary of the embedded surface C(c1, φ1, δ1)⊗C(c2, φ2, δ2)
intersects the boundary of U(exp(φ1c1) exp(φ2c2), η) either at the two corners
exp((φ1 ± δ1)c1) exp((φ2 ± δ2)c2) or at exp((φ1 ± δ1)c1) exp((φ2 ∓ δ2)c2).

Proof : Let F (s, t) := cos s cos t− sin s sin t 〈c1, c2〉. By direct computation,
the only critical point of F in the interior of [−δ1, δ1]×[−δ2, δ2] is its maximum
point (0, 0). Moreover, the restrictions to (−δ1, δ1)×{±δ2}, {±δ1}×(−δ2, δ2)
are concave. Hence, the minimum of F in [−δ1, δ1]× [−δ2, δ2] is attained at
one of the four corner points (±δ1,±δ2), (±δ1,∓δ2). Now

F (±δ1,±δ2) = cos δ1 cos δ2 − sin δ1 sin δ2 〈c1, c2〉,

F (±δ1,∓δ2) = cos δ1 cos δ2 + sin δ1 sin δ2 〈c1, c2〉,

and consequently

η = arccos (cos δ1 cos δ2 − sin δ1 sin δ2|〈c1, c2〉|) < δ1 + δ2 ,

since cos(δ1 + δ2) = cos δ1 cos δ2 − sin δ1 sin δ2.
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7.2 Bounded rotation axis, fixed angle

We now consider the following sets.

Definition 5 For each quaternionic imaginary unit c and for all φ ∈ (0, π)
and all ξ ∈ [ 0, π ], we define

S(c, φ, ξ) := { exp(φm) = cosφ+ sinφm : 〈m, c〉 ≥ cos ξ } .

S(c, φ, π) is the 2–sphere obtained by intersecting S3 with the 3–space of
quaternions whose scalar part is equal to cosφ. For all ξ ∈ (0, π), the set
S(c, φ, ξ) is a spherical cap of that 2–sphere, whose boundary in the topology
of the 2–sphere is a circle:

bS(c, φ, ξ) = { exp(φm) = cosφ+ sinφm : 〈m, c〉 = cos ξ } .

Here we introduce the symbol b to distinguish this type of boundary from
the boundary ∂ of the same set in the topology of S3. Finally, we note that
S(c, φ, 0) = { exp(φ c) }.

Proposition 5 Choose quaternionic imaginary units c1, c2 and let φ1, φ2 ∈
(0, π) and ξ1, ξ2 ∈ (0, π ]. Then the rank of the real differential of the map

S(c1, φ1, ξ1)× S(c2, φ2, ξ2)→ S3

(exp(φ1m), exp(φ2n)) 7→ exp(φ1m) exp(φ2n)

at a point (exp(φ1m), exp(φ2n)) is less than 3 if and only if m = ±n.

Proof : We denote the map by σ and fix a point (exp(φ1m), exp(φ2n)) ∈
S(c1, φ1, ξ1)× S(c2, φ2, ξ2). By Lemma 1, we have

∂σ

∂(v, 0)
(exp(φ1m), exp(φ2n)) = v exp(φ2n) ,

∂σ

∂(0,w)
(exp(φ1m), exp(φ2n)) = exp(φ1m) w ,

for all (v, 0) and (0,w) in the tangent space to S(c1, φ1, ξ1)×S(c2, φ2, ξ2) at
the point (exp(φ1m), exp(φ2n)), i.e., for all

v ∈ Πm := {v : v ⊥m}, w ∈ Πn := {w : w ⊥ n}.
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The image of the differential of σ is the sum Π1 + Π2 of the 2–plane Π1 :=
Πm exp(φ2n) through the origin and the 2–plane Π2 := exp(φ1m) Πn through
the origin. Now, Π1 + Π2 has dimension less than 3 if and only if Π1 = Π2,
which is equivalent to

exp(−φ1m) Πm = Πn exp(−φ2n) ,

and this in turn is equivalent to Πm = Πn, i.e., m = ±n.

The previous result immediately implies the following description of the
product S(c1, φ1, ξ1)⊗ S(c2, φ2, ξ2) for small ξ1, ξ2.

Corollary 1 Choose quaternionic imaginary units c1, c2 with c1 6= ±c2 and
let φ1, φ2 ∈ (0, π). Then if ξ1, ξ2 ∈ (0, π) are sufficiently small, we have:

1. the map

σ : S(c1, φ1, ξ1)× S(c2, φ2, ξ2)→ S3

(exp(φ1m), exp(φ2n)) 7→ exp(φ1m) exp(φ2n)

is a submersion;

2. its image S(c1, φ1, ξ1) ⊗ S(c2, φ2, ξ2) is (the closure in S3 of) an open
subset of S3;

3. the boundary ∂(S(c1, φ1, ξ1)⊗ S(c2, φ2, ξ2)) is included in

(bS(c1, φ1, ξ1)⊗ S(c2, φ2, ξ2)) ∪ (S(c1, φ1, ξ1)⊗ bS(c2, φ2, ξ2)) ,

where the two members of the union intersect in the set bS(c1, φ1, ξ1)⊗
bS(c2, φ2, ξ2).

The next result determines which spherical caps U(exp(φ c), t) contain
S(c, φ, ξ) and it provides a rough estimate of which U(exp(φ1c1) exp(φ2c2), t)
contain S(c1, φ1, ξ1)⊗ S(c2, φ2, ξ2).

Proposition 6 For each quaternionic imaginary unit c and for all φ ∈ (0, π)
and all ξ ∈ [ 0, π ], the smallest unit quaternion spherical cap U(exp(φ c), t)
that includes S(c, φ, ξ) has t equal to

t(φ, ξ) := arccos(cos2 φ+ sin2 φ cos ξ) ≤ ξ .
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As a consequence, for all c1, c2, all φ1, φ2 ∈ (0, π), and all ξ1, ξ2 ∈ [ 0, π ], if
T := t(φ1, ξ1) + t(φ2, ξ2) ∈ [ 0, π ] then the unit quaternion spherical cap

U(exp(φ1c1) exp(φ2c2), T )

includes S(c1, φ1, ξ1)⊗ S(c2, φ2, ξ2).

Proof : The first statement is a consequence of the fact that, for exp(φm) ∈
S(c, φ, ξ), the expression

〈exp(φm), exp(φ c)〉 = cos2 φ+ sin2 φ 〈m, c〉

attains its minimum when 〈m, c〉 = cos ξ. The second statement follows from
the inclusions

S(ci, φi, ξi) ⊂ U(exp(φi ci), t(φi, ξi)) , i = 1, 2

and from Theorem 1.

Remark 7 The inequality t(φ, ξ) ≤ ξ is strict if and only if φ 6= 1
2
π and

ξ 6= 0.

In some instances, the estimate for the product S(c1, φ1, ξ1)⊗S(c2, φ2, ξ2)
presented in Proposition 6 is sharp.

Example 1 For all quaternionic imaginary units c and all ξ ∈ [ 0, 1
2
π ],

S
(
c, 1

2
π, ξ
)
⊗ S

(
c, 1

2
π, ξ
)
⊆ U(−1, 2ξ)

by Proposition 6 and Remark 7. For a fixed unitary v orthogonal to c, the
product of the two elements

cos ξ c± sin ξ v

of S
(
c, 1

2
π, ξ
)

has scalar product with −1 equal to cos2 ξ − sin2 ξ = cos 2ξ.
Hence, the product of these elements does not belong to U(−1, t) if t < 2ξ.
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8 Lie algebra representation

As an alternative to stereographic projection, the Lie algebra so(3) associated
with the Lie group SO(3) provides a more intuitive visualization in R3 of the
Minkowski products of unit quaternion sets. In this algebra, spatial rotations
are represented by Euler vectors of the form θ n, where θ is the rotation angle
and the unit vector n defines the rotation axis. With θ ∈ [−π, π ], any set of
spatial rotations lies inside the sphere with center at the origin and radius π
in R3. This approach avoids mapping finite points to infinity, which was the
case with stereographic projection in Section 5.

We recall that the elements of the Lie algebra so(3) are exactly all skew-
symmetric 3× 3 real matrices. Thus,

a = axi + ayj + azk 7→ A =

 0 −az ay
az 0 −ax
−ay ax 0


defines an isomorphism between the vector spaces R3 and so(3). It maps any
vector a to the matrix A associated with the linear map v 7→ a × v. If the
inverse isomorphism is denoted by

I : so(3)→ R3 ,

then by direct computation one can verify that for all A,B ∈ so(3),

I ([A,B]) = I (A)×I (B) ,

where [A,B] = AB−BA is the commutator of A and B.
Each element of so(3) has the form θN with θ ∈ R and

N =

 0 −nz ny
nz 0 −nx
−ny nx 0

 ,

where n = nxi + nyj + nzk = I (N) is a unitary element of R3.

Remark 8 If n = I (N) is unitary, then by direct computation1 we have

N2 =

 n2
x − 1 nxny nxnz
nxny n2

y − 1 nynz
nxnz nynz n2

z − 1

 = n nT − I ,

1Here the vector n ∈ R3 is regarded as a column matrix, subject to the matrix product.
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and
N3 = N n nT −N = (n× n) nT −N = −N .

Consequently, the exponential map

exp : so(3)→ SO(3)

acts on θN as follows:

exp(θN) = I + θN +
θ2

2!
N2 +

θ3

3!
N3 + · · ·

= I +

(
θ − θ3

3!
+
θ5

5!
− · · ·

)
N +

(
θ2

2!
− θ4

4!
+
θ6

6!
− · · ·

)
N2

= I + sin θ N + (1− cos θ) N2 .

The explicit form of the matrix M ∈ SO(3) defining a rotation by angle
θ about a unit axis vector n = nxi + nyj + nzk is well known, e.g., [1, p. 75].

Remark 9 If M = exp(θN), then 1
2

(M −MT ) = sin θ N. Consequently,
the logarithmic map log : SO(3)→ so(3) acts on M as follows:

log(M) =
arcsin(‖I (A)‖)
‖I (A)‖

A, A = 1
2

(M−MT ) , (16)

where the range of arcsin is [−1
2
π, 1

2
π ].

Multiplication on SO(3) induces, through the logarithmic map (16), an
operation on so(3) defined by the Baker–Campbell–Hausdorff (BCH) formula
[10, 19]. We give a brief introduction to this approach, and illustrate its use
in visualizing Minkowski products of unit quaternion sets by some examples.

Definition 6 (Baker–Campbell–Hausdorff formula) We define BCH :
so(3)× so(3)→ so(3) as the unique function such that

log(M1M2) = BCH(log(M1), log(M2))

for all M1,M2 ∈ SO(3). The symbol BCH is also used to denote the function
R3 × R3 → R3 mapping any pair (I (A1),I (A2)) to I (BCH(A1,A2)).
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Note that expressions (6) and (7) suffice to determine the rotation angle
θ and axis n in the relation

θ n = BCH(θ1n1, θ2n2) .

We now illustrate the Lie algebra approach by several computed examples.

Example 2 We consider (see Section 7) the great circles

U = C(j, 0, π) and V = C(k, 0, π)

associated with the subsets U,V of SO(3) that comprise rotations about the
y and z axes, respectively. We can visualize the Minkowski product U ⊗ V
as I (log UV) = BCH(I (log U),I (log V)) ⊂ R3. The BCH operands can
be parameterized as

I (log U) = {t j : −2π ≤ t ≤ 2π},
I (log V) = {sk : −2π ≤ s ≤ 2π}.

The set I (log UV) is a surface lying inside the sphere with center 0 and
radius π, as illustrated in Figure 1 (for reference, the spheres of radius 1 and
π are also shown). The hue value of the plot corresponds to the parameter t.

Figure 1: A general view (left), top view (center), and left view (right) of the
Minkowski product of the two great circles U and V specified in Example 2.
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Example 3 Consider (see Section 7) the Minkowski product

C(j, 0, 1
4
π)⊗ S(k, 1

8
π, 1

8
π) .

The former set is defined by a fixed rotation axis and variable rotation angle,
and the latter corresponds to a fixed rotation angle θ = 1

4
π with rotation

axes varying in a neighborhood of the z axis. The BCH operands are

I (log U) = {t j : −1
2
π ≤ t ≤ 1

2
π},

I (log V) =
{

1
4
π(cosu sin v i + sinu sin v j + cos v k) : −π ≤ u ≤ π, 0 ≤ v ≤ 1

8
π
}
.

The 3-dimensional set I (log UV) is the union of a one–parameter family of
surfaces.

Example 4 Consider now the Minkowski product

S(j, 1
8
π, 1

8
π)⊗ S(k, 1

8
π, 1

8
π) .

These sets have a fixed rotation angle θ = 1
4
π, and rotation axes varying in

neighborhoods of the y and z axes, respectively. The BCH operands are

I (log U) =
{

1
4
π(cos s sin t i + cos t j + sin s sin tk) : −π ≤ s ≤ π, 0 ≤ t ≤ 1

8
π
}
,

I (log V) =
{

1
4
π(cosu sin v i + sinu sin v j + cos v k) : −π ≤ u ≤ π, 0 ≤ v ≤ 1

8
π
}
.

The 3-dimensional set I (log UV) can be regarded as the union of a two–
parameter family of surfaces.

9 Minkowski product boundaries

Thus far, we have investigated Minkowski products for specific 1–dimensional,
2–dimensional, and 3–dimensional subsets of S3. We now consider properties
of the Minkowski product U ⊗ V valid for any subsets U, V of S3 that have
interior points U ,V in the topology of S3 induced by R4. We note that, in
this setting, U and V are interior points if and only if U and V include unit
quaternion spherical caps U(U , δ) and V (V , ε) with δ > 0 and ε > 0.

Theorem 3 Let U, V ⊆ S3 and let U ∈ U , V ∈ V . Then UV is an interior
point of U ⊗ V if U is an interior point of U , or V is an interior point of V .
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Proof : When U is an interior point of U , there exists a δ > 0 such that
U(U , δ) ⊆ U . Then by Remark 5,

U(UV , δ) = U(U , δ)⊗ {V} ,

whence U(UV , δ) is included in U ⊗ V , so UV is an interior point of U ⊗ V .
The case when V is an interior point of V is treated in the same fashion.

Corollary 2 Let U, V be subsets of S3 and let ∂U, ∂V be their boundaries in
the topology of S3. Then the boundary ∂(U ⊗ V ) of U ⊗ V in the topology of
S3 is included in ∂U ⊗ ∂V .

The requirement that U ∈ ∂U , V ∈ ∂V is a necessary but not sufficient
condition for U V ∈ ∂(U ⊗ V ). In general, products of points on ∂U and ∂V
may generate interior points of U ⊗V , and it can be difficult to identify only
those pairs of boundary points such that U V ∈ ∂(U ⊗ V ):

• U ⊗ V may cover all of S3 (and thus have no boundary) even in cases
where U and V are proper subsets of S3;

• it may happen for U ∈ ∂U,V ∈ ∂V that

U V = U ′ V ′ ,

where U ′ is an interior point of U or V ′ is an interior point of V ;

• if ∂U, ∂V, ∂(U⊗V ) are 2-surfaces in S3 then we cannot expect ∂U⊗∂V
to coincide with ∂(U ⊗ V ) by dimensional considerations.

All three phenomena can be observed in the next example:

Example 5 By Theorem 1, the equality U(1, s) ⊗ U(1, s) = U(1, 2s) holds
for all s ∈ (0, 1

2
π]. Now:

• if s = 1
2
π, then U(1, 2s) = S3 has no boundary;

• the product 1 of the boundary points exp(si) and exp(−si) equals the
product of the interior points exp(1

2
si) and exp(−1

2
si);
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• if s < 1
2
π then, by direct computation, the product of two boundary

points exp(sm), exp(sn) of U(1, s) belongs to ∂U(1, 2s) if, and only if,
m = n; therefore,

(∂U ⊗ ∂U) \ {U2 : U ∈ ∂U}

is included in the interior of U(1, 2s).

For the case of Minkowski sums S1⊕S2 of point sets S1, S2 in R2 or R3, a
necessary condition for the sum of boundary points p1 ∈ ∂S1 and p2 ∈ ∂S2

to belong to ∂(S1⊕S2) is well–known: namely, the normals n1,n2 to ∂S1, ∂S2

at p1,p2 must be linearly dependent — or, equivalently, the tangent spaces
to ∂S1 and ∂S2 at p1 and p2 must be identical. This principle was extended
to Minkowksi products of point sets in R2 by interpreting points as complex
numbers p1 = x1 + i y1, p2 = x2 + i y2 and invoking the complex logarithm
to transform Minkowski products into Minkowski sums [6, 7].

The situation with the Minkowski products of unit quaternion sets is more
subtle, because the map log : SO(3) → so(3) is not a homomorphism from
the multiplicative group SO(3) to the additive group so(3), i.e., in general

log(M1M2) = BCH(log(M1), log(M2)) 6= log(M1) + log(M2) .

Nevertheless, we can find a necessary condition using a different strategy.
We begin by considering the case of spherical caps, before proceeding to state
and prove a general result.

Lemma 3 Let U0,V0 ∈ S3 and let s0, t0 be such that 0 < s0 ≤ t0 <
1
2
π.

Suppose that the boundaries in S3 of the spherical caps U(U0, s0) and U(V0, t0)
intersect at 1. Then 1 belongs to the boundary of the Minkowski product
U(U0, s0)⊗ U(V0, t0) = U(U0V0, s0 + t0) in S3 if, and only if, there exists an
imaginary unit c such that

U0 = exp(s0c), V0 = exp(t0c) .

This happens if, and only if, U(U0, s0) is included in U(V0, t0) and the bound-
aries ∂U(U0, s0), ∂U(V0, t0) are tangent at 1.

Proof : By hypothesis, the scalar part of U0 equals cos s0 and the scalar part
of V0 equals cos t0. In this case, the scalar part of U0V0 equals cos(s0 + t0) =
cos s0 cos t0− sin s0 sin t0 if, and only if, there exists an imaginary unit c such
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that U0 = exp(s0c) and V0 = exp(t0c). This happens if, and only if, U0 is
included in the (smaller) arc of the great circle in S3 with endpoints 1 and
V0. This is the same as asking for U(U0, s0) to be included in U(V0, t0) and
for ∂U(U0, s0), ∂U(V0, t0) to be tangent at 1.

Definition 7 Let U ⊂ S3. Then the boundary of U in S3 is tame if, for
every point U0 ∈ ∂U , the following conditions hold:

(1) U includes a spherical cap U(U , s) with s > 0, such that U(U , s)∩∂U =
{U0};

(2) at U0, the set of all tangent vectors to curves in U through U0 spans a
2–plane, which we denote by TU0∂U and call the tangent plane to ∂U
at U0, as usual.

In the situation described in the previous definition, TU0∂U coincides with
the tangent plane to the 2–sphere ∂U(U , s) at U0.

Remark 10 If U is the closure in S3 of an open connected subset of S3 and
its boundary ∂U is a smooth surface, then ∂U is tame.

Theorem 4 Let U , V be proper subsets of S3 and assume that ∂U , ∂V are
both tame. Let U ∈ ∂U and V ∈ ∂V . If UV belongs to ∂(U ⊗ V ), then

U∗ (TU(∂U)) = (TV(∂V ))V∗.

Furthermore, for each spherical cap U(U0, s) ⊆ U with s ∈ (0, 1
2
π) whose

boundary is tangent to ∂U at U , and each spherical cap U(V0, t) ⊆ V with
t ∈ (0, 1

2
π) whose boundary is tangent to ∂V at V, we have

U∗ U(U0, s) ⊆ U(V0, t)V∗ or U∗ U(U0, s) ⊇ U(V0, t)V∗ .

Proof : Fix any spherical cap U(U0, s) ⊆ U whose boundary is tangent to
∂U at U , and any spherical cap U(V0, t) ⊆ V whose boundary is tangent to
∂V at V . We rotate U to U1 := U∗U , and V to V1 := V V∗ in S3. After these
rotations:

• the point 1 belongs to both ∂U1 and ∂V1;

• U∗ U(U0, s) is a spherical cap U(P , s) ⊆ U1 tangent to ∂U1 at 1;
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• U(V0, t)V∗ is a spherical cap U(Q, t) ⊆ V1 tangent to ∂V1 at 1;

• T1∂U1 = U∗ (TU(∂U)), T1∂V1 = (TV(∂V ))V∗.
Finally, since U1⊗V1 is obtained from U ⊗V by means of the rotationW 7→
U∗WV∗, we conclude that UV ∈ ∂(U ⊗ V ) is equivalent to 1 ∈ ∂(U1 ⊗ V1).

We now show that 1 ∈ ∂(U1⊗V1) implies both the equality T1∂U1 = T1∂V1
and one of the inclusions U(P , s) ⊆ U(Q, t), U(P , s) ⊇ U(Q, t). We claim
that

1 ∈ ∂(U(P , s)⊗ U(Q, t)) = ∂U(PQ, s+ t) .

Indeed, if 1 were an interior point of U(PQ, s+ t) ⊆ U1⊗V1 then it would be
an interior point of U1 ⊗ V1, contradicting our hypothesis. Lemma 3 allows
us to deduce that one of U(P , s) and U(Q, t) is included in the other, and
that their boundaries are tangent at 1. As a consequence,

T1∂U1 = T1∂U(P , s) = T1∂U(Q, t) = T1∂V1 ,

as desired.

The previous theorem immediately implies the next corollary: a criterion
to identify parts of ∂U ⊗ ∂V that are not included in ∂(U ⊗ V ).

Corollary 3 Let U, V be proper subsets of S3 with tame boundaries, and let
U ∈ ∂U , V ∈ ∂V . Suppose two spherical caps U(U0, s), U(U ′0, s′) exist, such
that

1. neither cap includes the other;

2. both caps are included in U ;

3. the boundaries of both caps are tangent to ∂U at U .

Then
UV 6∈ ∂(U ⊗ V ) and VU 6∈ ∂(V ⊗ U) .

In other words, ∂(U⊗V ) does not include any point of {U}⊗V , and ∂(V ⊗U)
does not include any point of V ⊗ {U}.

Example 6 Let s ∈ (0, 1
2
π) and set

U := U(exp(s i), s) ∪ U(exp(−s i), s) .

Consider the boundary point 1 of U . Then as a consequence of the previous
corollary, for each proper subset V of S3 with tame boundary, the boundary
∂(U ⊗ V ) does not include any point of V .
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Theorem 4 inspires our last result, which identifies a sufficient condition
for a product UV of points U ∈ ∂U and V ∈ ∂V to belong to ∂(U ⊗ V ).

Theorem 5 Let U ∈ ∂U , V ∈ ∂V for proper subsets U , V of S3. Assume
that there exist s ∈ (0, 1

2
π) and a spherical cap U(P , s) with 1 ∈ ∂U(P , s)

and with
U∗U ⊆ U(P , s) ⊇ V V∗ .

Then
UV ∈ ∂(U ⊗ V ) .

Proof : Suppose, by contradiction, that UV is an interior point of

U ⊗ V ⊆ (U U(P , s))⊗ (U(P , s)V) = U(UP2V , 2s) .

Then 1 would be an interior point of

U(P2, 2s) = U(P , s)⊗ U(P , s) ,

and since 1 ∈ ∂U(P , s), this would contradict Lemma 3.

We mention that, in order to apply this sufficient condition, it is not nec-
essary to assume that the tangent planes TU(∂U), TV(∂V ) are well–defined.
However, if they are well-defined, then

U∗TU(∂U) = T1U(P , s) = TV(∂V )V∗ .

We also point out that, in the statement, the assumption s < 1
2
π is essential.

This fact is illustrated in the next examples.

Example 7 If P = i and s = 1
2
π then, although 1 is a boundary point of

U(P , s), the Minkowski product

U(P , s)⊗ U(P , s) = U(−1, π) = S3

admits no boundary points.

Example 8 Fix s ∈ (1
2
π, π) and let P := exp(si), so that 1 ∈ ∂U(P , s). Set

U := U(P , s) ∩ U(1, 1
8
π)

and consider the boundary point 1 of U . Although U ⊆ U(P , s), the point
1 is an interior point of U ⊗ U . Indeed, it can be obtained not only as the
product of 1 with itself, but also as the product of the two points exp( 1

16
πj)

and exp(− 1
16
πj). These two points are interior points of U because they are

interior points of U(1, 1
8
π) and because

〈exp(± 1
16
πj), exp(si)〉 = cos( 1

16
π) cos(s) > cos(s) .
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10 Closure

The characterization of the uncertainties in a compounded spatial rotation,
arising from the ordered product of a sequence of individual rotations subject
to prescribed uncertainties in their rotation angles and axes, is of fundamental
interest in diverse contexts. Unit quaternion sets offer compact and intuitive
representations for families of spatial rotations, and their Minkowski products
describe the outcomes of all combinations of the individual rotations.

Whereas Minkowski sums have been extensively studied, and methods for
computing them readily generalize to higher dimensions, Minkowski products
have received less attention. Using complex–number multiplication to define
products of points in R2, algorithms for the Minkowski products of planar
sets are based upon invoking the complex logarithm to transform Minkowski
products into Minkowski sums. However, the situation with unit quaternion
sets is much more challenging, since (i) they reside in a non–Euclidean space,
the 3–sphere S3; and (ii) their product is non–commutative.

This preliminary study of the Minkowski products of unit quaternion sets
describes some basic results and guiding principles for their systematic study.
A family of unit quaternion sets that is closed under the Minkowski product
— the spherical caps of S3 — was identified, and some key results concerning
sets defined by fixing either the rotation axis or rotation angle, and allowing
the other to vary over a given domain, were also developed. To help visualize
unit quaternion sets and their Minkowski products, mappings to R3 based
upon stereographic projection and the associated Lie algebra were proposed.
Finally, general principles to identify boundary points of Minkowski products,
for full–dimension operand sets with smooth boundaries, were analyzed.

The results presented herein serve to introduce the problem of computing
Minkowksi products of unit quaternions, to establish some basic foundations,
and to identify some possibilities and difficulties it entails. Through its depth
and practical importance, this problem offers scope for much further study.
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