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Abstract We describe and analyse Levenberg-Marquardt methods for solving systems of non-
linear equations. More specifically, we propose an adaptive formula for the Levenberg-Marquardt
parameter and analyse the local convergence of the method under Hélder metric subregularity
of the function defining the equation and Holder continuity of its gradient mapping. Further, we
analyse the local convergence of the method under the additional assumption that the Lojasiewicz
gradient inequality holds. We finally report encouraging numerical results confirming the theoret-
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1 Introduction

For a given continuously differentiable mapping h : R™ — R"™, we consider the problem of finding
a solution of the system of nonlinear equations

h(z) =0, =ze€R™. (1)

We denote by (2 the set of solutions of this problem, which is assumed to be nonempty. Systems
of nonlinear equations of type (1) frequently appear in the mathematical modelling of many real-
world applications in the fields of solid-state physics [14], quantum field theory, optics, plasma
physics [27], fluid mechanics [51], chemical kinetics [2,3], and applied mathematics including the
discretisation of ordinary and partial differential equations [47].

A classical approach for finding a solution of (1) is to search for a minimiser of the nonlinear
least-squares problem

1
min ¢(z), with ¢ : R™ — R given by ¢(x) := 5||h(z)||2, (2)
ZcR™
where || - || denotes the Euclidean norm. This is a well-studied topic and there are many iterative

schemes with fast local convergence rates (e.g., superlinear or quadratic) such as Newton, quasi-
Newton, Gauss—Newton, adaptive regularised methods, and the Levenberg—Marquardt method.
When m = n, to guarantee fast local convergence, these methods require an initial point xo to be
sufficiently close to a solution z*, and the matriz gradient of h at =* (i.e., the transpose of the
Jacobian matrix), denoted by Vh(z™), to be nonsingular (i.e., full rank), cf. [7,20,46,47,53].

The Levenberg-Marquardt method is a standard technique used to solve the nonlinear sys-
tem (1), which is a combination of the gradient descent and the Gauss-Newton methods. More
precisely, in each step, for a positive parameter uy, the convex subproblem

min ¢ (d),

deER™

with ¢ : R™ — R given by
T 2 2
6r(d) = (@) d + b+ ), (3)
is solved to compute a direction dj, which is the unique solution to the system of linear equations
(Vh(er)Vh(zn)" + pid ) di = —Vh(zi)h(zr), (4)

where I € R™*™ denotes the identity matrix. By choosing a suitable parameter py, the Levenberg—
Marquardt method acts like the gradient descent method whenever the current iteration is far from
a solution z*, and behaves similar to the Gauss—Newton method if the current iteration is close
to x*. The parameter py, helps to overcome problematic cases where Vh(zy)Vh(zi)? is singular,
or nearly singular, and thus ensures the existence of a unique solution to (4), or avoids very large
steps, respectively. For m = n, the Levenberg—Marquardt method is known to be quadratically
convergent to a solution of (1) if Vh(z™) is nonsingular. In fact, the nonsingularity assumption
implies that the solution to the minimisation problem (2) must be locally unique, see [8,33,52].
However, assuming local uniqueness of the solution might be restrictive for many applications.

The notion of (local) error bound usually plays a key role in establishing the rate of convergence
of the sequence of iterations generated by a given algorithm. This condition guarantees that the
distance from the current iteration zj, to the solution set {2, denoted by dist(z, 2) = infyc o ||k —
yl|, is less than the value of a residual function R : R™ — R4 at that point (R(zg)). The earliest
publication using error bounds for solving a linear inequality system is due to Hoffman [29], which
was followed by many other authors, especially in optimisation. For more information about error
bounds, we recommend the nice survey [48].
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For the particular case of nonlinear systems of equations, Yamashita and Fukushima [52] proved
the local quadratic convergence of the Levenberg-Marquardt method with pu, = ||h(x)||? assuming
alocal error bound condition. More precisely, they assumed metric subregularity of h around (z*, 0),
which entails the existence of some constants 8 > 0 and r > 0 such that

Bdist(z, £2) < ||h(z)||, Vz € B(z",r), (5)

where B(z",r) denotes the closed ball centered at z* with radius r > 0. In this case, the residual
function is given by R(z) := %Hh(x)” In those situations where the value of § is known, the
condition ||h(z)|| < & can be used as a stopping criterion for an iterative scheme, as it entails that
the iterations must be close to a solution of (1).

Let us emphasise that, for m = n, the nonsingularity of Vh(z™) implies that 2* is locally unique
and that (5) holds. Indeed, by the Lyusternik—Graves theorem (see, e.g., [13, Theorem 5D.5], [42,
Theorem 1.57], or [11, Proposition 1.2]), the nonsingularity of Vh(z™) is equivalent to the strong
metric regularity of h at (z*,0), which implies strong metric subregularity of h at (z*,0). However,
the latter does not imply the nonsingularity assumption and allows the solutions to be locally
nonunique. This means that metric subregularity is a weaker assumption than the nonsingularity.
In fact, for m possibly different than n, strong metric subregularity of h at (z*,0) is equivalent to
surjectivity of Vh(z™) (see, e.g., [11, Proposition 1.2 and Theorem 2.6]). The successful use of the
local error bound has motivated many researchers to investigate, under assumption (5), the local
convergence of trust-region methods [15], adaptive regularised methods [8], and the Levenberg—
Marquardt method [6,16, 18], among other iterative schemes.

The main motivation for this paper comes from a nonlinear system of equations, the solution of
which corresponds to a steady state of a given biochemical reaction network, which plays a crucial
role in the modeling of biochemical reaction systems. These problems are usually ill-conditioned and
require the application of the Levenberg—Marquardt method. As we numerically show in Section 4,
Vh is usually rank deficient at the solutions of (1). During our study of the properties of this
problem, we were not able to show that the metric subregularity condition (5) is satisfied. However,
taking standard biochemical assumptions [3], we can show that the corresponding merit function
is real analytic and thus satisfies the Lojasiewicz gradient inequality and is Holder metrically
subregular around the solutions.

The local convergence of a Levenberg—Marquardt method under Holder metric subregularity
has been recently studied in [24,54]. Nonetheless, the standard rules for the regularisation para-
meter have a very poor performance when they are applied for solving the nonlinear equation
arising from the biochemical reaction network systems, as we show in a numerical experiment
in Section 4. This motivated our quest to further investigate an adaptive Levenberg-Marquart
method under the assumption that the underlying mapping is Hélder metrically subregular.

From the definition of the Levenberg—Marquardt direction in (4), we observe that a key factor
in the performance of the Levenberg—Marquardt method is the choice of the parameter uy, cf. [32,
35]. Several parameters have been proposed to improve the efficiency of the method. For example,
Yamashita and Fukushima [52] took jux = ||h(zx)||?, Fischer [19] used px = || Vh(zx)h(zy)]||, while
Fan and Yuan [18] proposed pr = ||h(z)||” with n € [1,2]. Ma and Jiang [41] proposed a convex
combination of these two types of parameters, namely, ur = 0||h(zg)|| + (1 — 0)||Vh(zk)h(zr)]|
for some constant 6 € [0, 1]. In a subsequent work, Fan and Pan [17] proposed the more general
choice pr = &kp(zr), where & is updated by a trust-region technique, p(zr) = min {p(zx), 1} and
p: R™ — Ry is a positive function such that p(zx) = O (||h(zk)||"), with n € ]0,2]. Inspired by
these works, and assuming that the function h is Holder metrically subregular of order § € ]0, 1]
and its gradient Vh is Holder continuous of order v € ]0, 1], in this paper we consider an adaptive
parameter of the form

pre = Ekllh(zi) | + wil[VR(zk)h(ze) ||, (6)

where n > 0, & € [Emin, Emax] and wi € [Wmin, Wmax], for some constants 0 < &min < &max and
0 < Wmin < Wmax such that &min + wmin > 0.
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In our first main result, Theorem 1, we provide an interval depending on § and v where the
parameter n must be chosen to guarantee the superlinear convergence of the sequence generated
by the Levenberg—Marquardt method with the adaptive parameter (6). In our second main result,
Theorem 2, under the additional assumption that the merit function ¢ defined in (2) satisfies
the Lojasiewicz gradient inequality with exponent 6 € ]0, 1], we prove local convergence for every
parameter n smaller than a constant depending on both v and 0. As a consequence, we can ensure
local convergence of the Lebenverg-Marquardt algorithm to a solution of (1) for all the above-
mentioned biochemical networks as long as the parameter n is chosen sufficiently small. To the
best of our knowledge, this is the first such algorithm able to reliably handle these nonlinear
systems arising in the study of biological networks. We successfully apply the proposed algorithm
to nonlinear systems derived from many real biological networks, which are representative of a
diverse set of biological species.

The remainder of this paper is organised as follows. In the next section, we particularise the
Holder metric subregularity for nonlinear equations and recall the Lojasiewicz inequalities. We
investigate the local convergence of the Levenberg—Marquardt method under these conditions in
Section 3. In Section 4, we report encouraging numerical results where nonlinear systems, arising
from biochemical reaction networks, were quickly solved. Finally, we deliver some conclusions in
Section 5.

2 Hoélder metric subregularity and Lojasiewicz inequalities

Let us begin this section by recalling the notion of Holder metric subregularity, which can be also
defined in a similar manner for set-valued mappings (see, e.g., [37,11]).

Definition 1 A mapping h : R™ — R" is said to be Hélder metrically subregular of order § > 0
around (Z,y) with 7 = h(Z) if there exist some constants r > 0 and S > 0 such that

ﬂdist(x, h*@)) <|[7—h(@)|°, VzeBE,r).

For any solution z* € §2 of the system of nonlinear equations (1), the Holder metric subregularity
of h around (z*,0) reduces to

Bdist(z, 2) < ||h(z)||°, Vz €B(z",r). (7)

Therefore, this property provides an upper bound for the distance from any point sufficiently close
to the solution z* to the nearest zero of the function.

Holder metric subregularity around (z*,0) is also called Hélderian local error bound [45,50]. It
is known that Holder metric subregularity is closely related to the Lojasiewicz inequalities, which
are defined as follows.

Definition 2 Let ¢ : U — R be a function defined on an open set U C R™, and assume that the
set of zeros 2 := {z € U, ¢(xz) = 0} is nonempty.

(i) The function v is said to satisfy the Lojasiewicz inequality if for every compact subset C' C U,
there exist positive constants g and v such that

dist(z, 2)7 < o|o(z)|, Vz € C. (8)

(ii) The function 9 is said to satisfy the Lojasiewicz gradient inequality if for any critical point =™,
there exist constants k > 0,¢ > 0 and 6 € 0, 1] such that

[Y(2) = ¢(2")” < K| VY()], Vo Ba,e). (9)
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Stanistaw Lojasiewicz proved that every real analytic function satisfies these properties [40]. Recall
that a function ¢ : R™ — R is said to be real analytic if it can be represented by a convergent power
series. Fortunately, real analytic functions frequently appear in real world application problems. A
relevant example in biochemistry is presented in Section 4.

Fact 1 ([40, pp. 62 and 67]) Every real analytic function ¢ : R™ — R satisfies both the Lo-
jasiewicz inequality and the Lojasiewicz gradient inequality.

Clearly, if the merit function ¢(-) = 3||h(-)||* satisfies the Lojasiewicz inequality (8), then the
mapping h satisfies (7) with 8 := (2/0)"/" and § := 2/; i.e., h is Holder metrically subregular
around (z*,0) of order 2/v. In addition, if ¢ (-) satisfies the Lojasiewicz gradient inequality (9),
then for any Z € 2 and z € B(Z, ), it holds

édist(m, 2) < ()| < & Vy)|M? = £ Vh(z)h(z)]].

The Lojasiewicz gradient inequality has recently gained much attention because of its role for
proving the convergence of various numerical methods (e.g., [9,4,5,3]). The connection between
this property and metric regularity of the set-valued mapping ¥(x) := [¢(z), oo on an adequate
set was revealed in [10], where it was also applied to deduce strong convergence of the proximal
algorithm.

In some cases, for example when 9 is a polynomial with an isolated zero at the origin, an order
of the Holder metric subregularity is known [25,38,39].

Fact 2 ([25, Theorem 1.5]) Let ¢ : R™ — R be a polynomial function with an isolated zero at
the origin. Then < is Hélder metrically subregular around (0,0) of order ((degty —1)™ +1)71,
where deg ) denotes the degree of the polynomial function .

The next example shows that the Powell singular function, which is a classical test function
for nonlinear systems of equations, is not metrically subregular around its unique solution but is
Holder metrically subregular there. In addition, it demonstrates that the order given by Fact 2 is,
in general, far from being tight.

Ezample 1 The Powell singular function [44], which is the function h : R* — R* given by
h(z1, 2,3, 24) 1= (ml + 102, V5(x3 — 24), (2 — 223)%,V10(z1 — :174)2) ,

is (strongly) Hoélder metrically subregular around (04,0) but does not satisfy the metric subregu-
larity condition (5). We have 2 = {04} and Vh(04) is singular; thus, h is not metrically regular
around (04,0). Further, to prove that (5) does not hold, consider the sequence {zy} defined by
T = (070, %7 %) We see that {zx} — 04 and
. V2 -
dist(xx, 2) = x| = 2= = O(k™1).

Since ||h(zk)|| = ‘{C—Q:G = O(k™?), we conclude that (5) does not hold.

Consider the polynomial function ¥ (z) := %||h(x)|\2 of degree 4, which satisfies 1/ ~*(0) = 04.
It follows from Fact 2 that there exist some constants 8 > 0 and r > 0 such that

1 _
5Ih@)IF = () 2 Blle| "V = Blle|*?, Vo € B0, r).

This implies that A is Holder metrically subregular of order § = ﬁ around (04, 0). Nonetheless,
the order ﬁ given by Fact 2 can be improved by using the theory of 2-regularity: the function
h turns out to be 2-regular at 04, which implies by [30, Theorem 4] that (7) holds with § = %
(see also [30, Remark 7]). Recall that a twice differentiable mapping h : R™ — R"™ is said to be
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2-regular at the point T if the range of 12(z) is R™ for all z € T» \ {0}, where 92 : R™ — R™*"™ is
defined for z € R™ by

Va(2) := Vh(Z)T + D?*Ph(z)(2,-),
Ty = {z €R™ | Vh(@) 2z = 0, and D*Ph(z)(z, 2) = on} ,

P is the projector in R™ onto the complementary subspace to the range of Vh(f)T7 and D? stands
for the second-order (Fréchet) derivative.

Indeed, for any z € R* one has Vh(04)Tz = (21 + 1022,/5(23 — 24),0,0)”, so the range
of Vh(04)™ is Y1 = R? x {02}, whose complementary subspace is Yo = {02} x R?. Then, Ty =
{(—10t,t,0,0)T,t € R} and for each z € Tz \ {04}, one has

1 10 0 0
0 0 v5 —V5

2(2) = 0 2t—4t 0 |’
—20v/10t 0 0 2010t

which is full-rank for all ¢ # 0. Therefore, the range of ¥2(2) is equal to R* for all z € T» \ {04},
and the function h is 2-regular at 04. O

There are many examples of smooth functions that are Holder metrically subregular of order &
around some zero of the function and whose gradient is not full row rank at that point, cf. [30,31].
Nonetheless, the following result restricts the possible values of §: if * is an isolated solution in {2
(i.e., the function is Hélder strongly metrically subregular at x*, cf. [43,11]), and Vh is Lipschitz
continuous around z* then one must have § € ]0,1/2] if § # 1. In fact, only Holder continuity of Vh
is needed. Recall that a function g : R™ — R"™ is said to be Hélder continuous of order v € 10, 1]
with constant L > 0 around some point z* € R™ whenever there exist a positive constant r such
that

lg(z) — 9|l < Lllz —yll”, Y,y € Bz",r).

When v = 1, g is said to be Lipschitz continuous with constant L around z*.

Proposition 1 Let h : R™ — R"™ be a continuously differentiable function which is Hélder met-
rically subreqular of order & around some isolated solution x* € 2 = {x € R™ : h(z) = 0}. Assume
further that Vh is Holder continuous around x™* of order v € ]0,1] and that Vh(z™) is not full row

rank. Then, it holds that 6 € }O, 1-%1}}

Proof Because of the Holder continuity assumption and the mean value theorem, there are some
positive constants L and r such that, for all =,y € B(x*, ), it holds

1h(y) = h(z) = Vh(z)" (y - 2)|

_ ' /01 Vh(z +t(y — 2)T (y — 2)dt — Vh(z)T(y — z)

1
< lly— ] / IVA(z + ty — 2)) — Vi) di

1
L
< Lly—z|* | tdt= ——||y — 2|*t". 10
< Ly — =l /0 1Jrvlly x| (10)

By using the fact that z* is an isolated solution, it is possible to make r smaller if needed so
that (7) holds and
|z — x*|| = dist(z, 2), Vz € B(z",r).
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Since Vh(z*) is not full row rank, there exists some z # 0 such that Vh(z*)T2 = 0. Consider now
the points

W ::x*—l—Lz, with k=1,2,....
k||l

Observe that

Vh(z®)" (wy, — z%) Vh(z*) 'z =0.

_ T
k=]

As wy, € B(z™,r) for all k, we deduce

Bllwy, — 2*|| = Bdist (wg, 2) < [|h(wr)|’
= ||h(wr) — h(z*) — Vh(z")(w), — «*)|]°
< L75Hwk _ x*||(1+v)5_

~ (1+4wv)?

Ihus7 we get
* ) ﬁ + v g
— X ||(1 ) 1 > 7( ) s

which implies that § < 1—&-%’ since wy — x*, as claimed. O

[|lwg

The next example shows that the full rank assumption in Proposition 1 is not redundant, and
1

that the upper bound § < o can be attained.

Ezample 2 Consider the continuously differentiable functions h,iAz : R — R given for z € R by
h(z) = 3Vz* and h(z) := 2Vz* + 2, whose solution sets are 2 = {0} and 2 = {-52,0},

respectively. Let z* := 0 € 2N 2. Then, h'(z) = ¥z and ?L’(x) = ¥/x + 1, which are both Holder

continuous around z* of order v =0 = % Observe that h’(0) = 0 while E/(O) = 1. Hence, it follows
1

~

that h is (Holder) metrically subregular around z* of order § :=1 > while it is easy to check

+o°
that h is Holder metrically subregular around z* of order ¢ := % = 1—%) O

3 Local convergence of the Levenberg—Marquardt method

In this section, to solve a nonlinear system of the form (1), we consider an adaptive Levenberg—
Marquardt method and investigate its local convergence near a solution. Specifically, we consider
the following Levenberg—Marquardt algorithm.

Algorithm LM-AR: (Levenberg-Marquardt method with Adaptive Regularisation)

Input: zg € R™, n >0, & € [gmin,fmax], wo € [Wmimwmax}, with §min + Wmin > 0;
begin
k = 0; po = &ollh(wo)|" + woll VA(zo)h(z0)l|";
while ||h(l‘k+1)|| >0 do
solve the linear system (4) to specify the direction dy;
Tp+1 = Tk + di;
update & € [gminygmax]a wy € [Wminvwmax} and compute HEk with (6)7
end
end

In order to prove the local convergence of algorithm LM-AR to some solution z* € 2, we
assume throughout the paper that the next two conditions hold:
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(A1) There exists some constants r € ]0,1[, A > 0, 8> 0 and 0 € ]0, 1] such that the function h is
continuously differentiable and Lipschitz continuous with constant A on B(x*,r), and is Holder
metrically subregular of order ¢ around (z*,0); that is, (7) holds.

(A2) Vh is Hélder continuous of order v € ]0,1] with constant L > 0 on B(z*, 7).

Note that from (A1)-(A2) and the mean value theorem, see (10), it holds
1) — ta) - Vr@ T - o) < ol =2l vy € B, (1)

Let us define the constants
5 if Emin > 0,

1
ri= . 201 26\ 25(14+0)—2 .
min {g, (% () , otherwise,

and
o { 1, if Emin > 0,
’ 2 — ¢, otherwise.
We begin our study with an analysis inspired by [52], [19] and [24]. The following result provides
a bound for the norm of the direction d based on the distance of the current iteration xj to the
solution set (2. This will be useful later for deducing the rate of convergence of LM-AR.

Proposition 2 If&nmin = 0, assume that 6 > + . Let xy, € §2 be an iteration generated by LM-AR
with n €10,26(1 4+ v)/w(. Then, if xi € B(x*,7), the direction dj, given by (4) satisfies

de|| < Bidist (zx, £2)°* (12)

where §1 1= min{l +v— 1T, 1} and

VR Pl AL i G > 0,
\/L24’7wmm(1 +v)” 28=% +1, otherwise.

Proof For all k, we will denote by Tj a vector in {2 such that ||zx — Zg| = dist(z, £2). Since
xr € B(z*,r/2), we have

[1Zk — 2| < 17k — il + llzx — 27| < 2llzk — 2" <7,
which implies Ty, € B(z*,r). Further,

. " r
Tk — zk|| = dist(zx, 2) < ||z — 27| < 3 < 1. (13)

Observe that ¢ is strongly convex and the global minimiser of ¢ is given by (4). Then, we
have

Pr(di) < ¢r(Tr — zk). (14)
From the definition of ¢y in (3), by (11) and (14), we deduce

1 1
llde|* < Esbk(dk) < E%(@ — zy)

1
o (IIVh(wk)T(fk — o) + h(zp)||? + pl[T — xk||2)

= (IVA(@0) @ = 22) + o) = @I + 7k = o)

1 L 2(1+4v) — 2
/Tk m”mk—xku + pellTe — xx||” ) -

IN
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Let us assume first that &min > 0. It follows from the definition of uy in (6) and (7) that

e > Ellh(zi)[|” > Eminllh(z)|”
> fminﬁgdiSt(xkv Q)% = gminﬂ% ka - ka?v
leading to

L? 1,1 2(14v)—2 2
dk2§7min STk — Xk v 5+ ||Tk — Tk
e e 7 = el
< ( L2 57'1 ﬁf% N 1) [ :Ekain{z(LHj)f},Q}
= (1 I 'U)2 min )
and this completes the proof of (12) for the case &min > 0.
Let us consider now the case where £yin = 0, assuming then § >
Cauchy—Schwarz inequality, we have

2

1

14v°

By (11), (7) and the
2
= k()| + 2@ — %) Vh(zk)h(zk)
2
+ HVh(xk)T(fk — :L‘k)H
Thus, since xx € (2, we deduce

> B dist(zx, 2)7 — 2|[Tx — zxll[| Vh(zr)h(zp)].

il

VA h(z) | > 2

2
7dist(a:k,9)%_l —
Since § > H%, we have

(16)

dist(zg, £2)112Y.
2(1 + v)> (@, 2)

2 1420 (2-1) L? wp2(14Hv—1)
sdist(ay, )G < = oy — 27 ;
2(1+v) 2(1 +v)
2 N (17)
< 2772(1+v7%) < 575
2(14v)
and therefore

4 )

SIS

V() bz > 2

Tdist(wk, .Q)g_l.
This, together with the definition of py in (6), implies

e > wl[Vh(@) (@) " > CmB "z o )G,
Using (15), we obtain

L24n
el <

wmin(l + 'U)QB o

_(2_ _
= @k — 22O+~ G07 iz, — g2
( 1,247

=+ 1) [Tk — w2040 = (5 =1)n.2}
Wmin(l ""U)Qﬂ7

IN

which completes the proof.
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Remark 1 If § > 14%11’ by (16), we have that Vh(xg)h(zr) = 0 implies z; € 2 whenever xy, is

sufficiently close to z*.

The next result provides an upper bound for the distance of xx41 to the solution set {2 based
on the distance of x;, to (2.

Proposition 3 If {min = 0, assume that § > p%u Let i, & 2 and xk4+1 be two consecutive

iterations generated by LM-AR with n € ]0,26(1 4+ v)/w]|. Then, if zk, xp+1 € B(z™,7), we have
dist(zp41, 2) < Badist(zy, £2)°2, (18)

where P2 is a positive constant and

5 ::min{(1+v)5, (1+g) 5, (1+v) (5+5U—777w)}. (19)

Proof Let Ty, € 2 be such that ||z — Ty || = dist(zg, 2). From the definition of ¢y, in (3) and the
reasoning in (15), we obtain

L? v _
VA d + b I < on(de) < sy s =l ™+ gl — ™

It follows from (A1) that there exists some constant L such that |[Vh(z)|| < L for all z € B(z*, 7).
Then, by the definition of px in (6) and the Lipschitz continuity of h, we have that

pr = El|h(zp)]|” + wil[VhA(zk)h(zy) ||
< Emax (@) ]|” + Wmax L | (1) |
= (gmax +wmaxzn) ||h(37k) - h(fk)‘ln

< (gmax +Wmaxzn) >\n||$k - jk?”n»

(20)

which implies, thanks to (13),
T 2 rr 2(14v)
Vh(zk)” di + h(zk)|| < ——5 1Tk — 2l
(1+wv)

+ (fmax + Wmaxzn) Anllwk - EkHQJH7
< L? A\ " — 1<
< m + A€max + Wmax | [Tk — Tk ||,
where ¢ := min{2(1 +v), 2+ n}. By (7), (11), the latter inequality and Proposition 2, we get

(Bdist(zy41,2))5 < [|h(zy, + di)]|

<|
< HVh(xk)Tdk + h(xk)H
+ Hh(flfk +dy) — h(zy) — Vh(wk)TdkH

L v
< HVh(xk)Tdk + h(l‘k)H + m”dkHH

_ = ¢
< \/L2(1 + 'U) 2 + )\ngmax + Ln)\nwmaxnxk - jk:” 2

L 14+v
+7 _’1_1) dist (2, 2)1T)%

< B\QdiSt(mka 9)627
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where
52 = min g, (1+v)d1 :min{l—i—v, 1+ﬁ, (1+4+v) (1+U— E)},
2 2 28
By = \JL2(1 + 0) 2 + N1 + DN + LA (14 0)
Therefore,
dist(zgt1, 2) < Padist (z, 9)55} = Bodist (zx, 2)°2,
with d2 given by (19) and 82 := %B\S, giving the result. O

The following proposition gives a different value of the exponent in (18).
Proposition 4 Assume that § > ﬁ Let xi & £2 and xp11 be two consecutive iterations gener-

ated by LM-AR with n € ]0,26(1 4+ v)/w| and such that zi,xp+1 € B(x™,7). Then, there exists a
positive constant B3 such that

dist(z41, £2) < Badist(zy, £2)%, (21)

where

::min{(1+n)5 (1+v)s n6+ (1+v)5— 22 (1+U)25—(1+v)”§“'}. 22)

2—-6 " 2-6§ " 2-6 ’ 2-6

Proof Let Ty, Trp4+1 € §2 be such that ||z — Tk || = dist(z, 2) and ||Tk4+1 — Tr1]| = dist(zr41, 2).
Assume that zp1 € 2 (otherwise, the inequality trivially holds). By (11), we have

2 2
Hh(zk+l) + Vh(k1)” @rir — $k+1)H S 5 ITht1 — T |
1+4wv)
_ 9)20+)
= ———dist(xp41, 2) .

(1+v)

2(14v)

Thus, by the Cauchy—Schwarz inequality and (7), we get

— [IVA(zg ) (@) [[dist (211, £2)

< h(@rgr) Vi(@rsr)” (Trgr — 2xp1)
2

L . 2(14v) 1 2
[ — — —
S e 3@l

1
B §||Vh(:vkz+1)T (Tht1 — zrpr) |2

< L722dist(xk+1, .Q)Q(H'U) — ﬁdist(x;ﬁl, Q)g,
T 2(14v) 2
that is,
8% . 2 L? . 2(14v)
P2 dist 02)F — — 7 _dist 0
5 dist(zpr1, 2) 21+ o (Tht1, £2) (23)

S NVh(zr41)h(zp+1) || dist(zr41, £2).
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Now, by (4), we have

IVA(zki1)h(@p1) |
- HVh(ka)h(ka) — Vh(zk) (h(xk) + Vh(:ck)Tdk) — pkdkH
< |IVR(zk+1) — VR(zp)|| [[M(@k41)]]

(24)
VA [A@en) = he) = Vhlan) @i = )| + el

v L v
< L{[dg|]” [|P(zr41)] + 1JrivHVh(ﬂf?k)||Hdk||1+ + pelldr |-
By (A1) and Proposition 2, it holds,

lh(zr+) | = Ih(zr+1) — (@) || < M|zk+1 — T
<A (|eks1 — zil| + |2k — Zkell)

<A (ﬁldist (21, )% + dist (z, (z))
< A(B1 + 1)dist (z, 2)° .

It follows from (A1) that there exists some constant L such that IVRh(z)| < Lforallz e B(z*, 7).
Then, by the definition of p in (6) and (A1), we get (20). Hence, by (24) and Proposition 2, we
deduce

[V h(zsi1)h(zrs)|| < LAY (B1 + )dist (zy, £2)7 )

LLB™ 81 (14v)
+ Tto dist (zg, £2)

+ (fmax + Wmaxzn) /\",6’1dist (Jfk, Q)W+51

< B;gdist (zk, 9)63 s

where 33 = LABY (B + 1) + EL,BlH'U(l +U)_1 + (ﬁmax +wmaxi7’) A3 and 33 = min{n +
01,91(1 4+ v)}. Therefore, by (23),

2

2
5 2 .
%dist(l‘k+1,9)5 — 2dlst($k+1,9)2(l+v)

2(1 + v) (25)
< Badist (zk, 2)% dist(zpi1, 2).

Since § > 1—&%)’ we have by (17) that

2 2(1+v)—2 5%
T dist(zpaq, 2)20TF < 22
2(1 + v)? (@k+1,92) =4

Finally, by (25), we deduce

2

ﬂ—édist(xk+1, !2)%_1 < Bgdist (v, (2)53 ,

4
whence,
dist(zpr1, £2) < Badist (zx, 2)%
where (3 := % and J3 := 253%. Since the expression for d3 coincides with (22), the proof is
)

complete. a
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Remark 2 (i) The bounds given by (18) and (21) are usually employed to analyse the rate of
convergence of the sequence {z} generated by LM-AR. Observe that the values of d2 and J3
when &nin > 0 are greater or equal than their respective values when &nin = 0. A larger value
of d2 or d3 would serve us to derive a better rate of convergence. To deduce a converlgence result

from Proposition 3, one needs to have 62 > 1. This holds if and only if § > 7 and 7 €

}% -2, % (26(1 +v) — 1-4%;) [, which imposes an additional requirement on the value of § (to

have a nonempty interval). For instance, when v = 1, one must have § > % if Emin > 0 and
6 > 75%@ if €min = 0. On the other hand, to guarantee that d3 > 1, a stronger requirement

would be needed, namely, § > 2_% > % and n € } % -2, é (25(1 +v) — 41:_25) [ Nonetheless, it is
important to observe that if 6 = 1 one has that 63 = 1 + v when 7 € [v,2v/w], while d2 =1+ v
only if n = 2v and w = 1. Therefore, if v = § = 1, we can derive from Proposition 4 the quadratic
convergence of the sequence for n € [1, 2], which can only be guaranteed for n = 2 by Proposition 3.
In Figure 1, we plot the values of d2 in Proposition 3 and d3 in Proposition 4 when v = 1 and

gmin > 0.

0.5 '
7 0 )

Figure 1 For v = 1, {qin > 0, 0 € [%,1] and n € [0,44], plot of 2 = min {26,5—4— %77, 496 — 7)} (in blue) and

P +1)6 2 :
83 = rnm{ 55 (172—6) ,% (in red).

(ii) The values of d2 and 3 are maximised when 1 = % and 7 € [v, 220], respectively, in
2
which case d2 = § + % and 3 = %, having then 2 < 3.

Remark 3 In light of Proposition 1, the extent of the results that can be derived from Propositions 3
and 4 is rather reduced when z* is an isolated solution and Vh(z™) is not full rank, since it
imposes § < H% Note that the function Fs given as an example in [24, Section 5] is Holder
metrically subregular of order § = % > 0.5, but VFg is not Lipschitz continuous around any zero
of the function, so it does not satisfy (A2) for v = 1 (and, therefore, it does not satisfy [24,
Assumption 4.1] either). However, with the additional assumption that the Lojasiewicz gradient

inequality (9) holds, we will obtain local convergence for all § € ]0,1] (see Theorem 2).

Next, we proceed to derive the main result of this section from Propositions 3 and 4, where we
provide a region from which the parameter n must be chosen so that superlinear convergence is
guaranteed. Recall that a sequence {zy} is said to converge superlinearly to z* with order ¢ > 1 if
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zy, converges to z* and there exists K > 0 such that ||zp1 —2"|| < K||z —2"||? for all k sufficiently
large.

Theorem 1 Assume that § > I_%v and n € }% -2,L <25(1 +v)— H_%

some T > 0 such that, for every sequence {xr} generated by LM-AR with xo € B(x*,7), one
has that {dist(zy, 2)} is superlinearly convergent to 0 with order d2 given by (19). Further, the
sequence {xy} converges to a solution T € 2 NB(z*,7), and if n < 2%;;, its rate of convergence is
also superlinear with order d2. Moreover, if 6 > 2%} andn < é (2(1 +v)d — 41—+2U5), all the latter
holds with order d3 given by (22).

Proof We assume that z ¢ (2 for all k (otherwise, the statement trivially holds). Let 61, 51 be
defined as in Proposition 2 and d2, B2 be defined as in the proof of Proposition 3. Since d2 > 1,

we have that 6105 > i for all i sufficiently large. As >°7°, (2)" = 1, we deduce that

o= i (;)M; < 00. (26)

=1

rmmind Ly (T )
r._mln{2(52) ’<1+ﬁ1+25151‘7> }

Note that 7 € ]0, 7], because 7 € ]0,1[ and 61 < 1.
Pick any xg € B(z*,7) and let {xx} be an infinite sequence generated by LM-AR. First, we
will show by induction that zj € B(z*,7). It follows from 7 < 1 and (12) that

)[ Then, there exists

Define

a1 — 2| = ||lzo + do — 2¥|| < [lzo — z*|| + [|do]| < 7+ Brdist (zo, £2)* e
<F 4 Biflmo — 2| < (L4 B)F <

Let us assume now that z; € B(z*,7) fori = 1,2, ..., k. Then, from Proposition 3 and the definition
of 7, we have

dist (2, 2) < Badist(zi_1, 2)% < BET02dist(zi_2, 2)%

=157 i
< ... < B dist(wo, 02)%

i—1 s ) a1 .
< BE0 |z — |15 = B3 |lwo — [

i1 8
1 2 Y Al 2
< [ = 2 =9 -

1) %1%
dist(zs, £2) < (27)% <5> . (28)

The latter inequality, together with (12), (26) and (27), implies

which yields

k k
|zt =@ < lox —2"[ + Y Idall < (14 B)7™ + 1Yy dist(wi, 2)

i=1 =1

k 5168
< (14617 + B (27)™ ; (%)

3 516
<A+ B B NS (%)
=1

=(1+B)F" 4 B1(2F) 0 = (1 + B+ 251510) 71 < 7,
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which completes the induction. Thus, we have shown that z; € B(z*,7) for all k, as claimed.
From Proposition 3, we obtain that {dist(xg, £2)} is superlinearly convergent to 0. Further, it
follows from (12) and (28) that

D Ndill < B1 Y dist(zi, 2)° < Bro (27) < oo.
=1 =1

Denoting by sy := Z§=1 |ld: ||, we have that {sj} is a Cauchy sequence. Then, for any k,p € NU{0},
we have

lZk4p — il < Ndktp-1ll + [ Thtp—1 — k|l
kip—1 (29)
<...< Z ldill = sk+p—1 — Sk—1,
i=k

which implies that {x} is also a Cauchy sequence. Thus, the sequence {x\} converges to some T.
Since zx € B(z*,7) for all k and {dist(xg, 2)} converges to 0, we have T € 2 NB(z™, 7).
Further, if n < %j we have §; = 1 in Proposition 2, and by letting p — oo in (29), we deduce

7 — @l <D lldill < 1Y dist(xs, 2).

i=k i=k

Since {dist(zx, {2)} is superlinearly convergent to zero, for all k sufficiently large, it holds that
dist(zx1, £2) < Sdist(zy, £2). Therefore, for k sufficiently large, we have

— 1 . .
|z —Z|| < B1 Z Qi—_kdlst(xk, ) < 261 dist(zg, 2) < 261 fodist(xg—1, 9)52
i=k
< 2B1B2||wk—1 — 2|,

which proves the superlinear convergence of xx to T with order J2.
Finally, the last assertion follows by the same argumentation, using d3, 83 and Proposition 4
instead of d2, B2 and Proposition 3, respectively. a

Remark 4 Our results above generalise the results in [24,54], not only because in these works
they assume Vh to be Lipschitz continuous (i.e., v = 1), but also because the parameter pp
considered by these authors is equal to £||h(zg)||”. Furthermore, in their convergence results,
cf. [24, Theorem 4.1 and Theorem 4.2] and [54, Theorem 2.1 and Theorem 2.2], the authors assume

o > max{%, 2"%’ and § > max{iw,ﬁ,ﬁ + %"TH} > @, respectively, which

both entail § > %, so we have slightly improved the lower bound on ¢ for the superlinear
convergence in Theorem 1.

As a direct consequence of Theorem 1, whenever 6 = v = 1 and n € [1,2], we can derive
quadratic convergence of the sequence generated by LM-AR.

Corollary 1 Assume that 6 = 1 and n € ]0,2v]|. Then, there exists T > 0 such that for every
sequence {x} generated by LM-AR with zo € B(x",7), one has that {dist(zx, £2)} is superlinearly
convergent to 0 with order
53:{1+77, ifn < v,
14w, ifn>wo.

Moreover, the sequence {x} converges superlinearly with order 03 to a solution T € 2 NB(x*,7).
Therefore, when v =1 and n € [1,2], the sequence {dist(zk, £2)} is quadratically convergent to 0,
and the sequence {x} converges quadratically to a solution T € 2 NB(x*,7).
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Remark 5 In particular, Corollary 1 generalizes [41, Theorem 3.7], where the authors prove quad-
ratic convergence of the sequence {x} by assuming 6 = v = 1, and where the parameters in (6)
are chosen as n =1, £, =6 € [0,1] and wr, =1 — 0, for all k.

Ezample 3 (Example 2 revisited) Let h and h be the functions defined in Example 2. The function
h does not satisfy the assumptions of Theorem 1, since § = 1%} On the other hand, if € ]0, %[

and the starting point xg is chosen sufficiently close to 0, Theorem 1 proves for the function h the
superlinear convergence of the sequence generated by LM-AR to 0 with order

1+17, if0<ﬁ<§2,
4 e 1 =
03 =< 3> 1f§§77§§’
4 (4 n 2 o 7
3(§—3)» if 3 <n<g

Note that, since the solution is locally unique, the additional assumption n < 20 5 = % is not

needed. The order of convergence d3 is thus maximised when 7] € [%, %] O

The question of whether the sequence {dist(z, 2)} converges to 0 when § does not satisfy the
requirements commented in Remark 2(i) remains open. However, with the additional assumption
that v satisfies the Lojasiewicz gradient inequality (which holds for real analytic functions), we
can prove that the sequences {dist(xg, £2)} and {¢(x)} converge to 0 for all § € (0, 1] as long as
the parameter n is sufficiently small, and we can also provide a rate of convergence that depends
on the exponent of the Lojasiewicz gradient inequality. This is the subject of the next subsection.

3.1 Convergence analysis under the Lojasiewicz gradient inequality

To prove our convergence result, we make use of the following two lemmas.

Lemma 1 Let {si} be a nonnegative real sequence and let o, be some nonnegative constants.
Suppose that s — 0 and that the sequence satisfies

sy < V(sk — sk+1), for all k sufficiently large.

Then

(i) if « =0, the sequence {sr} converges to 0 in a finite number of steps;

. . . . 1 .
(ii) if a €10,1], the sequence {sx} converges linearly to 0 with rate 1 — 5;
(ii3) if o > 1, there exists ¢ > 0 such that

sk < gkfﬁ, for all k sufficiently large.
Proof See [3, Lemma 1]. O

Lemma 2 The sequence {xx} generated by LM-AR satisfies

1
lld |l < m”h(mk)”a

and

Ih(zes)|* < [|A(er)|* + di Vh(zr)h(er)

L? v 2L v—
el (o Il + o Tl = ).
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Proof This result is a straightforward modification of [34, Theorem 2.5 and Lemma 2.3], using (10)
instead of the Lipschitz continuity of Vh. a

In our second main result of this paper, under the additional assumption that the Lojasiewicz
gradient inequality holds, we prove the convergence to 0 of the sequences {dist(zy,2)} and

{¥(z)}-
Theorem 2 Suppose that v satisfies the Lojasiewicz gradient inequality (9) with exponent 6 €
10, 1[. Let

o= {1, if (Wmin = 0) or (€min >0 and 6 < 3), (30)

260, otherwise.

Then, if n € }07 min { X(fiv), 2(1;9) } [, there exist some positive constants s and s such that, for
every xo € B(z™,s) and every sequence {xy} generated by LM-AR, one has {zy} C B(z",s) and

the two sequences {1(xr)} and {dist(zk, 2)} converge to 0. Moreover, the following holds:

(i) if 0 €10, 3], the sequences {1 (zy)} and {dist(zy, 2)} converge linearly to 0;
(i) if 0 € ]%, 1 [, there exist some positive constants g1 and <2 such that, for all large k,

(zr) <k~ T and  dist(zy, 2) < ok 200D,
Proof The proof has three key parts.

In the first part of the proof, we will set the values of s and 5. Let ¢ > 0 and x > 0 be such
that (9) holds. Thus, one has

IVh@R@)]| = V6@ > ~6@)" = 5 |h@)*, Vo € Ba",e). (31)

Let 5 := min{r,e} > 0. Then, by Assumption (A1), there exists some positive constant M such
that

HVh(mk)Vh(:ck)TH + ur, < M, whenever zj € B(z",3). (32)
Since n € }0, ﬁ [, it is possible to make s smaller if needed to ensure, for all z € B(z*,s), that
_2
i Lmin mes ((2HEVE N 2
(i + g @™ 2 (2 rost) @I 53)

For all x € B(z",3), one has by the Lipschitz continuity of h that

1 * 2 AQ * 12 >\2 *
$(@) = S Ih@) — b < S lle =27 < e - 7]l (34)

since s < r < 1. Let

29’1M)\2(1797%) 3 — %
A= T P and s:= (7> .
(1 =60 = 5) (Emin + 573227) 1+4

Then, since 5 < 1 and 6 + "4 € ]0,1[, we have s <.
In the second part of the proof, we will prove by induction that

x; € B(z",5), and (35)
21_%/€M 1—9—1x 1—9—1x
ldi-a]l < = (V) T @) ), (36)
(1 —0- %) <€min + 2“;',',%)
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for all i =1,2,.... Pick any zo € B(z", s) and let {z;} be the sequence generated by LM-AR. It
follows from Lemma 2 that

Y(rry1) < Y(vr) — %d;‘ngdk

L 37)
927V Ly, o 1ee (
B LI B

1| L?
2py \ 4v(1+w)

2 | h(eR)|* +

for all k, where Hy, = Vh(z)Vh(zi)T + pupl, since dj, = —H,:1Vh(mk)h(mk). Since zo € B(z*,3),
we have by (31), the definition of x in (30) and (33) that

0 > Eminllh(zo) " + wmin | VR(z0)h(zo)||”

> Eaninl[A(@0)||” + Syt | (o) |
Wi 245
> min i X L 1+v
> (6nin + gomim ) )™ > (20 ) (o)) 5 (38)
which implies
14v
L2 9 22_ULIUIT 1
——||h(z V4 0 h(x —pptU<o.
Mo+ E e o)l
Therefore, from (37), we get
1
(1) < o) — 5d§ Hodo < (o) — 52 dol|. (39)
Observe that the convexity of the function ¢(t) := —t' 7075 with ¢ > 0 yields
@) T =) 2 (10 D) p@) 0 @) - ), (40)
for all z,y € R™ \ {2. By combining (39) with (40), we deduce
1—6—1x 1—6—1X (1 V= *) Ho —f—1x 2
Pao) 0 (a0 > BT B )0 g (41)

Since zg € B(z*,s) C B(z*,3), we have by (32) that ||Ho|| < M. Further, by the Lojasiewicz
gradient inequality (9), it holds

Y(x0)” < Kl|Ve(wo)l| < wl|Hollldo]| < xM]|do]-

From the last inequality, together with (41), the first inequality in (38) and then (34), we obtain

26M )2 . o
Idoll < w(zﬂ(mof R ()
2
2k M 1—p—nx 1o
= (1 -6 )<§m1n+ 2%?:77)2 2 ( (330) ’(/}(1‘1) )
21 kM

P(w0) 70T < Allwo — 2",

(1=0=5) oo+ 35%)

which, in particular, proves (36) for ¢ = 1. Hence,

les = 2" < fleo — 2" + |ldol| < l|wo — 2" || + Allzo — ||' =%

nx

<A+ A)zo—2" 07T <1+ A)s0F =5
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Therefore, 1 € B(z*,35). Assume now that (35)—(36) holds for all ¢ = 1,.. ., k. Since z} € B(z",3),
by (33) and the same argumentation as in (38), we have

2++5 B 20
— " L 1+v
20(1 + v) ) h(zk)l v,

Wmin
2 (6min + o) o)™

which implies

14v
L? 20 | 227V Lp? 1
—— = ||h(= Vg TR h(x)||Y - U < 0.
o el e @Ol =t <
Therefore, by (37), we get
1
Ylan) < blew) = 5di Hedie < d(ar) — | (42)

Combining the latter inequality with (40), we deduce

Y(ap) 0T () T 2—( 5 ) i

k) ™07 i (43)
Further, since zx € B(z",3), from the Lojasiewicz gradient inequality (9) and (32), it holds
Y(ax)’ < K| V(ar)l| < sl Helllldill < wM]|dgll-

From the last inequality and (43), we deduce

2 Myp(zg) 2 1-6—1x 1-0—1x
Il £ g~ gy g (W) "% — wlows)' ™)
2% kM 1-g—1x 1—g—1x
< €T 2 — €T 2 s
T (10— ) (Sumin + 5) (v W) %)

which proves (36) for ¢ = k + 1. Hence, by (34), we have

[zk+1 — 27|

k
< lwo — 2™+ ) lldil|

=0
< lwo — 2|

21_%I€M k 1—0—1x 1—9— 11X
+ o (w(wz—) 2 —p(Tig1) 2 )
(1_9_% <€min+ﬁ) ;)
215 kM

< lwo — 27| + W(xo) 0T

(1 —0- %) (émin + Qﬁif‘;‘,,,)
<A+ A)zo 2" < (1+2)s0F =5,

which proves (35) for ¢ = k 4+ 1. This completes the second part of the proof.

In the third part of the proof, we will finally show the assertions in the statement of the
theorem. From the second part of the proof we know that x) € B(z*,3s) for all k. This, together
with (32), implies that |Hy|| < M for all k. Thus,

_ 1 1
dic Hidie = Vip(an)" Hy " Vob(an) 2 el Ve ” 2 gV
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Therefore, by (42), we have

Y(en) < () — g IVl

It follows from the Lojasiewicz gradient inequality (9) and the last inequality that

1

TR

Y(wp1) < Plag) —

This implies that {¢(zx)} converges to 0. By applying Lemma 1 with sy, := ¢(zx), ¥ := 2k*M
and « := 26, we conclude that the rate of convergence depends on 6 as claimed in (i)-(ii). Finally,
observe that {dist (zx, {2)} converges to 0 with the rate stated in (i)-(ii) thanks to the Holder
metric subregularity of the function h. a

Remark 6 Observe that every real analytic function satisfies the assumptions of Theorem 2, thanks
to Fact 1 and the discussion after it in Section 2. Therefore, local sublinear convergence of LM-AR
is guaranteed for all 7 sufficiently small (i.e., whenever 7 < min {Xfl, 2(1 — 6)){1}). This is the
best that we can get with these weak assumptions, as we show in the next example.

Ezample 4 (Ezample 2 revisited) Let h(z) = %\3/9:Tl be the function considered in Example 2. The
function h does not satisfy the assumptions of Theorem 1, but it verifies the ones of Theorem 2.
Indeed, it is straightforward to check that ¢ (z) = %|h(ac)|2 satisfies the Lojasiewicz gradient
inequality (9) with exponent 6 = % Since 6 > %, we can only guarantee the sublinear convergence

of the sequence {z;} generated by LM-AR to 0 when 7 € }0, i[ = }O,min{i, %} [ In fact,
this is the best convergence rate that we can get. Indeed, a direct computation gives us

2
3

33
Tpr1 = [ 1= — 44nk 5y | TR (44)
2f + & (D)7 |zl ¥ o ()7 el

On the one hand, when &5, > 0 and n € ]0, % [, we have %’7 < % Therefore, it follows from (44)

and & > Emin > 0 that

which means that {z)} is sublinearly convergent to 0. This coincides with what Theorem 2 asserts,

since ]0, ﬁ [ =10, 3[. On the other hand, when &min = 0 and 7 € |0, 2], sublinear convergence is

also obtained from (44), which is exactly what Theorem 2 guarantees for all n € }O, ﬁ [ = }0, % [

4 Application to biochemical reaction networks

In this section, we introduce first a class of nonlinear equations arising in the study of biochemistry,
cf. [21]. After that, we compare the performance of LM-AR with various Levenberg-Marquardt
algorithms for finding steady states of nonlinear systems of biochemical networks on 20 different
real data biological models.
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4.1 Nonlinear systems in biochemical reaction networks

Consider a biochemical network with m molecular species and n reversible elementary reactions’.
We define forward and reverse stoichiometric matrices, F, R € Z7'*", respectively, where Fj;
denotes the stoichiometry? of the i*" molecular species in the j* forward reaction and R;; denotes
the stoichiometry of the it" molecular species in the jth reverse reaction. We assume that every
reaction conserves mass, that is, there exists at least one positive vector [ € R, satisfying
(R— F)T1 = 0, cf. [23]. The matrix N := R — F represents net reaction stoichiometry and may
be viewed as the incidence matrix of a directed hypergraph, see [36]. We assume that there are
less molecular species than there are net reactions, that is m < n. We assume the cardinality of
each row of F' and R is at least one, and the cardinality of each column of R — F' is at least two.
The matrices F' and R are sparse and the particular sparsity pattern depends on the particular
biochemical network being modeled. Moreover, we also assume that rank([F, R]) = m, which is a
requirement for kinetic consistency, cf. [22].

Let ¢ € R, denote a variable vector of molecular species concentrations. Assuming con-
stant nonnegative elementary kinetic parameters ky, k. € R}, we assume elementary reaction
kinetics for forward and reverse elementary reaction rates as s(ky,c) := exp(In(ks) + FT In(c))
and 7(ky, ¢) := exp(In(k,) + RT In(c)), respectively, where exp(:) and In(-) denote the respective
componentwise functions, see, e.g., [3,22]. Then, the deterministic dynamical equation for time
evolution of molecular species concentration is given by

% = N(s(kys,c) — r(kr,c)) (45)
- N (exp(ln(kf) +FT ln(c)) —exp (ln(kr) +RT 1n(c))) = — (o).
A vector ¢* is a steady state if and only if it satisfies
fler) =o.
Note that a vector ¢* is a steady state of the biochemical system if and only if

s(ks, ) —r(kr, ") € N(N),

here A'(N) denotes the null space of N. Therefore, the set of steady states 2 = {c € Ry, f(c) =0}
is unchanged if we replace the matrix N by a matrix N with the same null space. Suppose that
N € Z™*"™ is the submatrix of N whose rows are linearly independent, then rank (N ) = rank(N) =
r. If one replaces N by N and transforms (45) to logarithmic scale, by letting = := In(c) € R™,
k= [In(ks)", In(k,)"]" € R®™, then the right-hand side of (45) is equal to the function

f(@) = [N, ~N]exp (k+ [F, "),

where [-, -] stands for the horizontal concatenation operator.

Let L € RU™"™™X™ denote a basis for the left null space of N, which implies LN = 0. We
have rank(L) = m — r. We say that the system satisfies moiety conservation if for any initial
concentration c¢g € Ry, it holds

Le= Lexp(z) =lo

along the trajectory of (45), given an initial starting point lp € R’y . It is possible to compute L
such that each row corresponds to a structurally identifiable conserved moiety in a biochemical

L An elementary reaction is a chemical reaction for which no intermediate molecular species need to be postu-
lated in order to describe the chemical reaction on a molecular scale.

2 Reaction stoichiometry is a quantitative relationship between the relative quantities of molecular species
involved in a single chemical reaction.
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network, cf. [26]. The problem of finding the moiety conserved steady state of a biochemical reaction
network is equivalent to solving the nonlinear equation (1) with

hiz) = (Lexpjj((;j))— lo)' (46)

By replacing f by f we have improved the rank deficiency of V f, and thus the one of k in (46).
Nonetheless, as we demonstrate in Figure 5, VA is usually still far from being full rank at the
solutions.

Let us show that A is real analytic. Let A := [N, —N] and B := [F, R]”. Then we can write

¥(z) = 51| = Sh@)Th(E)

= % exp (k 4+ Bz)T AT Aexp (k + Bz)

+ % (Lexp(z) —lo)" (Lexp(z) —lo)

= exp (k + Bz)" Qexp (k + Bz) + % (Lexp(z) —lo)" (Lexp(x) — lo)

2n m
= Z Qpq €xp (kp +kq + Z(Bm’ + qu)”)

p,q=1 i=1
1

3

(Lexp(z) — o))" (Lexp(z) — o),

where Q@ = AT A. Since B;; are nonnegative integers for all ¢ and j, we conclude that the function v
is real analytic (see Proposition 2.2.2 and Proposition 2.2.8 in [49]). It follows from Remark 6 that
1 satisfy the Lojasiewicz gradient inequality (with some unknown exponent 6 € [0,1]) and the
mapping h is Holder metrically subregular around (z*,0). Therefore, the assumptions of The-
orem 2 are satisfied as long as 7 is sufficiently small, and local sublinear convergence of LM-AR is
guaranteed.

4.2 Computational experiments

In this subsection, we compare LM-AR, with various Levenberg—-Marquardt methods for solving
the nonlinear system (1) with h defined by (46) on 20 different biological models. These codes
are available in the COBRA Toolbox v3 [28]. In our implementation, all codes were written in
MATLAB and runs were performed on Intel Core i7-4770 CPU 3.40GHz with 12GB RAM, under
Windows 10 (64-bits). The algorithms were stopped whenever

[|A(zr)]] < 107°

is satisfied or the maximum number of iterations (say 10,000) is reached. On the basis of our
experiments with the mapping (46), we set

€ = max {0.952’2 10—9} and  wj, := 0.95". (47)

The initial point is set to zo = 0 in all the experiments.

To illustrate the results, we use the Dolan and Moré performance profile [12] with the per-
formance measures N; and T, where N; and T denote the total number of iterations and the
running time. In this procedure, the performance of each algorithm is measured by the ratio of
its computational outcome versus the best numerical outcome of all algorithms. This performance
profile offers a tool to statistically compare the performance of algorithms. Let S be a set of all
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algorithms and P be a set of test problems. For each problem p and algorithm s, ¢, s denotes the
computational outcome with respect to the performance index, which is used in the definition of
the performance ratio ;
— X

Tpoe = min{t,s:s €S} (48)
If an algorithm s fails to solve a problem p, the procedure sets rp s := T'tailed, Where Tgai1cq4 should
be strictly larger than any performance ratio (48). Let m, be the number of problems in the
experiment. For any factor 7 € R, the overall performance of an algorithm s is given by

1
ps(T) == n—size{p EP:rps < T}
P

Here, ps(7) is the probability that a performance ratio rp s of an algorithm s € S is within a factor
7 of the best possible ratio. The function ps(7) is a distribution function for the performance
ratio. In particular, ps(1) gives the probability that an algorithm s wins over all other considered
algorithms, and limr s ;.. ps(7) gives the probability that algorithm s solves all considered prob-
lems. Therefore, this performance profile can be considered as a measure of efficiency among all
considered algorithms.

In our first experiment, we explore for which parameter 1 the best performance of LM-AR is
obtained. To this end, we apply seven versions of LM-AR associated to each of the parameters
n € {0.6,0.7,0.8,0.9,0.99,0.999, 1} to the nonlinear system (46) defined by 20 biological models.
The results of this comparison are summarised in Table 1 and Figure 2, from where it can be
observed that LM-AR with nn = 0.999 outperforms the other values of the parameters. It is also
apparent that smaller values of n are less efficient, although LM-AR successfully found a solution
for every model and every value of i that was tested. It is important to recall here that local
convergence is only guaranteed by Theorem 2 for sufficiently small values of 7, since the value of 6
is unknown. Also, note that the local convergence for the value n = 1 is not covered by Theorem 2
for our choice of the parameters, because it requires n < min{1, 2 — 20}, since wmin = 0 in (47).

1 15 2 25 3 35

Figure 2 Performance profile for the number of iterations of LM-AR with parameters (47) and n €
{0.6,0.7,0.8,0.9,0.99,0.999, 1}. The best performance is attained by n = 0.999.

We now set 7 = 0.999 and compare LM-AR with parameters (47) with the following Levenberg—
Marquardt methods:
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e LM-YF: with ux = ||h(zx)||?, given by Yamashita and Fukushima [52];
e LM-FY: with py = ||h(x)||, given by Fan and Yuan [18];
o LM-F: with ug = ||Vh(xk)h(zr)||, given by Fischer [19].

It is clear that all of these three methods are special cases of LM-AR by selecting suitable para-
meters &k, wk, and 1. The results of our experiments are summarised in Table 2 and Figure 3. In
Figures 3(a) and 3(b), we see that LM-AR is clearly always the winner, both for the number of
iterations and the running time. Moreover, LM-F outperforms both LM-YF and LM-FY. In fact,
LM-FY was not able to solve any of the considered problems within the 10,000 iterations.

(a) Number of iterations N; (b) Running time T’

Figure 3 Performance profiles for the number of iterations (N;) and the running time (7T") of LM-YF, LM-FY,
LM-F, and LM-AR with parameters (47) and n = 0.999 on a set of 20 biological models for the mapping (46).
LM-AR clearly outperforms the other methods.

In order to see the evolution of the merit function, we illustrate its value with respect to the
number of iterations in Figure 4 for the mapping (46) with the biological models iAF692 and
iNJ661. We limit the maximum number of iterations to 1,000. Clearly, LM-AR attains the best
results, followed by LM-F. Both methods seem to be more suited to biological problems than LM-
YF and LM-FY. We also show in Figure 4 the evolution of the value of the step size ||dy||. Both
LM-AR and LM-F show a rippling behaviour, while the value of ||dj|| is nearly constant along the
1,000 iterations for LM-YF and LM-FY. Probably, this rippling behaviour is letting the first two
methods escape from a flat valley of the merit function, while the two last methods get trapped
there. Observe also that, by Lemma 2, one has that ||dx|| < 3 for LM-YF and ||dg|| < %Hh(xk)H%
for LM-FY, while this upper bound can be larger for both LM-AR and LM-F.

In our last experiment, we find 10 solutions of the nonlinear system (1) with LM-AR using
10 random starting points x¢ € ]—%, % [m for each of the 20 biological models and compute the
rank of Vh at each of these solutions. The results are shown in Figure 5, where we plot the rank
deficiency of Vh at each of the solutions. For all the models, except for the Ecoli_core, we observe
that Vh at the solutions found is far from being full rank. For the Ecoli_core, although VA had full
rank at every solution found, the smallest eigenvalue at these solutions had a value around 10™?,
making also this problem ill-conditioned. This explains the difficulties that most of the algorithms
had for solving the nonlinear system (1) with h defined by (46). Therefore, since we are dealing
with a difficult problem, it is more meritorious the successfulness of LM-AR with parameters (47)
for finding a solution of each of the 20 models in less than 400 iterations (in less than one minute),
as shown in Table 2.
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Figure 4 Value of the merit function and step size with respect to the number of iterations for the methods LM-
YF, LM-FY, LM-F, and LM-AR with parameters (47) and nn = 0.999, when applied to the mapping (46) defined
by the biological models iAF692 and iNJ661. It clearly shows that LM-AR outperforms the other methods.

5 Conclusion and further research

We have presented an adaptive Levenberg—Marquardt method for solving systems of nonlinear
equations with possible non-isolated solutions. We have analysed its local convergence under Holder
metric subregularity of the underlying function and Hélder continuity of its gradient. We have fur-
ther analysed the local convergence under the additional assumption that the Lojasiewicz gradient
inequality holds. These properties hold in many applied problems, as they are satisfied by any
real analytic function. One of these applications is computing a solution to a system of nonlin-
ear equations arising in biochemical reaction networks, a problem which is usually ill-conditioned.
We showed that such systems satisfy both the Holder metric subregularity and the Lojasiewicz
gradient inequality assumptions. In our numerical experiments, we clearly obtained a superior per-
formance of our regularisation parameter, compared to existing Levenberg—Marquardt methods,
for 20 different biological networks.

Several extensions to the present study are possible, the most important of which would be
to develop a globally convergent version of the proposed Levenberg—Marquardt method. One ap-
proach, which is currently being investigated, would be to combine the scheme with an Armijo-type
line search and a trust-region technique. This will be reported in a separate article [1]. It would
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Figure 5 Plot of the difference between m and the rank of Vh at 10 solutions found with LM-AR for each of the
20 biological models considered. The models are represented in the z-axis, using the same order than in Tables 1
and 2.

also be interesting to analyse a regularisation parameter where the value of 7 is updated at each
iteration. The analysis of the convergence with such a parameter would be much more involved,
so we leave this for future work.
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Appendix

See Tables 1 and 2 for the summary results of the comparisons.
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